aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssanames.c
blob: 8b80bce894551a2c540968f0dcef7dc7c558eb16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
/* Generic routines for manipulating SSA_NAME expressions
   Copyright (C) 2003-2019 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-iterator.h"
#include "stor-layout.h"
#include "tree-into-ssa.h"
#include "tree-ssa.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"

/* Rewriting a function into SSA form can create a huge number of SSA_NAMEs,
   many of which may be thrown away shortly after their creation if jumps
   were threaded through PHI nodes.

   While our garbage collection mechanisms will handle this situation, it
   is extremely wasteful to create nodes and throw them away, especially
   when the nodes can be reused.

   For PR 8361, we can significantly reduce the number of nodes allocated
   and thus the total amount of memory allocated by managing SSA_NAMEs a
   little.  This additionally helps reduce the amount of work done by the
   garbage collector.  Similar results have been seen on a wider variety
   of tests (such as the compiler itself).

   Right now we maintain our free list on a per-function basis.  It may
   or may not make sense to maintain the free list for the duration of
   a compilation unit.

   External code should rely solely upon HIGHEST_SSA_VERSION and the
   externally defined functions.  External code should not know about
   the details of the free list management.

   External code should also not assume the version number on nodes is
   monotonically increasing.  We reuse the version number when we
   reuse an SSA_NAME expression.  This helps keep arrays and bitmaps
   more compact.  */


/* Version numbers with special meanings.  We start allocating new version
   numbers after the special ones.  */
#define UNUSED_NAME_VERSION 0

unsigned int ssa_name_nodes_reused;
unsigned int ssa_name_nodes_created;

#define FREE_SSANAMES(fun) (fun)->gimple_df->free_ssanames
#define FREE_SSANAMES_QUEUE(fun) (fun)->gimple_df->free_ssanames_queue


/* Initialize management of SSA_NAMEs to default SIZE.  If SIZE is
   zero use default.  */

void
init_ssanames (struct function *fn, int size)
{
  if (size < 50)
    size = 50;

  vec_alloc (SSANAMES (fn), size);

  /* Version 0 is special, so reserve the first slot in the table.  Though
     currently unused, we may use version 0 in alias analysis as part of
     the heuristics used to group aliases when the alias sets are too
     large.

     We use vec::quick_push here because we know that SSA_NAMES has at
     least 50 elements reserved in it.  */
  SSANAMES (fn)->quick_push (NULL_TREE);
  FREE_SSANAMES (fn) = NULL;
  FREE_SSANAMES_QUEUE (fn) = NULL;

  fn->gimple_df->ssa_renaming_needed = 0;
  fn->gimple_df->rename_vops = 0;
}

/* Finalize management of SSA_NAMEs.  */

void
fini_ssanames (struct function *fn)
{
  vec_free (SSANAMES (fn));
  vec_free (FREE_SSANAMES (fn));
  vec_free (FREE_SSANAMES_QUEUE (fn));
}

/* Dump some simple statistics regarding the re-use of SSA_NAME nodes.  */

void
ssanames_print_statistics (void)
{
  fprintf (stderr, "%-32s" PRsa (11) "\n", "SSA_NAME nodes allocated:",
	   SIZE_AMOUNT (ssa_name_nodes_created));
  fprintf (stderr, "%-32s" PRsa (11) "\n", "SSA_NAME nodes reused:",
	   SIZE_AMOUNT (ssa_name_nodes_reused));
}

/* Verify the state of the SSA_NAME lists.

   There must be no duplicates on the free list.
   Every name on the free list must be marked as on the free list.
   Any name on the free list must not appear in the IL.
   No names can be leaked.  */

DEBUG_FUNCTION void
verify_ssaname_freelists (struct function *fun)
{
  if (!gimple_in_ssa_p (fun))
    return;

  auto_bitmap names_in_il;

  /* Walk the entire IL noting every SSA_NAME we see.  */
  basic_block bb;
  FOR_EACH_BB_FN (bb, fun)
    {
      tree t;
      /* First note the result and arguments of PHI nodes.  */
      for (gphi_iterator gsi = gsi_start_phis (bb);
	   !gsi_end_p (gsi);
	   gsi_next (&gsi))
	{
	  gphi *phi = gsi.phi ();
	  t = gimple_phi_result (phi);
	  bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));

	  for (unsigned int i = 0; i < gimple_phi_num_args (phi); i++)
	    {
	      t = gimple_phi_arg_def (phi, i);
	      if (TREE_CODE (t) == SSA_NAME)
		bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
	    }
	}

      /* Then note the operands of each statement.  */
      for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
	   !gsi_end_p (gsi);
	   gsi_next (&gsi))
	{
	  ssa_op_iter iter;
	  gimple *stmt = gsi_stmt (gsi);
	  FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, SSA_OP_ALL_OPERANDS)
	    bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
	}
    }

  /* Now walk the free list noting what we find there and verifying
     there are no duplicates.  */
  auto_bitmap names_in_freelists;
  if (FREE_SSANAMES (fun))
    {
      for (unsigned int i = 0; i < FREE_SSANAMES (fun)->length (); i++)
	{
	  tree t = (*FREE_SSANAMES (fun))[i];

	  /* Verify that the name is marked as being in the free list.  */
	  gcc_assert (SSA_NAME_IN_FREE_LIST (t));

	  /* Verify the name has not already appeared in the free list and
	     note it in the list of names found in the free list.  */
	  gcc_assert (!bitmap_bit_p (names_in_freelists, SSA_NAME_VERSION (t)));
	  bitmap_set_bit (names_in_freelists, SSA_NAME_VERSION (t));
	}
    }

  /* Similarly for the names in the pending free list.  */
  if (FREE_SSANAMES_QUEUE (fun))
    {
      for (unsigned int i = 0; i < FREE_SSANAMES_QUEUE (fun)->length (); i++)
	{
	  tree t = (*FREE_SSANAMES_QUEUE (fun))[i];

	  /* Verify that the name is marked as being in the free list.  */
	  gcc_assert (SSA_NAME_IN_FREE_LIST (t));

	  /* Verify the name has not already appeared in the free list and
	     note it in the list of names found in the free list.  */
	  gcc_assert (!bitmap_bit_p (names_in_freelists, SSA_NAME_VERSION (t)));
	  bitmap_set_bit (names_in_freelists, SSA_NAME_VERSION (t));
	}
    }

  /* If any name appears in both the IL and the freelists, then
     something horrible has happened.  */
  bool intersect_p = bitmap_intersect_p (names_in_il, names_in_freelists);
  gcc_assert (!intersect_p);

  /* Names can be queued up for release if there is an ssa update
     pending.  Pretend we saw them in the IL.  */
  if (names_to_release)
    bitmap_ior_into (names_in_il, names_to_release);

  /* Function splitting can "lose" SSA_NAMEs in an effort to ensure that
     debug/non-debug compilations have the same SSA_NAMEs.  So for each
     lost SSA_NAME, see if it's likely one from that wart.  These will always
     be marked as default definitions.  So we loosely assume that anything
     marked as a default definition isn't leaked by pretending they are
     in the IL.  */
  for (unsigned int i = UNUSED_NAME_VERSION + 1; i < num_ssa_names; i++)
    if (ssa_name (i) && SSA_NAME_IS_DEFAULT_DEF (ssa_name (i)))
      bitmap_set_bit (names_in_il, i);

  unsigned int i;
  bitmap_iterator bi;
  auto_bitmap all_names;
  bitmap_set_range (all_names, UNUSED_NAME_VERSION + 1, num_ssa_names - 1);
  bitmap_ior_into (names_in_il, names_in_freelists);

  /* Any name not mentioned in the IL and not in the feelists
     has been leaked.  */
  EXECUTE_IF_AND_COMPL_IN_BITMAP(all_names, names_in_il,
				 UNUSED_NAME_VERSION + 1, i, bi)
    gcc_assert (!ssa_name (i));
}

/* Move all SSA_NAMEs from FREE_SSA_NAMES_QUEUE to FREE_SSA_NAMES.

   We do not, but should have a mode to verify the state of the SSA_NAMEs
   lists.  In particular at this point every name must be in the IL,
   on the free list or in the queue.  Anything else is an error.  */

void
flush_ssaname_freelist (void)
{
  /* If there were any SSA names released reset the SCEV cache.  */
  if (! vec_safe_is_empty (FREE_SSANAMES_QUEUE (cfun)))
    scev_reset_htab ();
  vec_safe_splice (FREE_SSANAMES (cfun), FREE_SSANAMES_QUEUE (cfun));
  vec_safe_truncate (FREE_SSANAMES_QUEUE (cfun), 0);
}

/* Return an SSA_NAME node for variable VAR defined in statement STMT
   in function FN.  STMT may be an empty statement for artificial
   references (e.g., default definitions created when a variable is
   used without a preceding definition).  If VERISON is not zero then
   allocate the SSA name with that version.  */

tree
make_ssa_name_fn (struct function *fn, tree var, gimple *stmt,
		  unsigned int version)
{
  tree t;
  use_operand_p imm;

  gcc_assert (VAR_P (var)
	      || TREE_CODE (var) == PARM_DECL
	      || TREE_CODE (var) == RESULT_DECL
	      || (TYPE_P (var) && is_gimple_reg_type (var)));

  /* Get the specified SSA name version.  */
  if (version != 0)
    {
      t = make_node (SSA_NAME);
      SSA_NAME_VERSION (t) = version;
      if (version >= SSANAMES (fn)->length ())
	vec_safe_grow_cleared (SSANAMES (fn), version + 1);
      gcc_assert ((*SSANAMES (fn))[version] == NULL);
      (*SSANAMES (fn))[version] = t;
      ssa_name_nodes_created++;
    }
  /* If our free list has an element, then use it.  */
  else if (!vec_safe_is_empty (FREE_SSANAMES (fn)))
    {
      t = FREE_SSANAMES (fn)->pop ();
      ssa_name_nodes_reused++;

      /* The node was cleared out when we put it on the free list, so
	 there is no need to do so again here.  */
      gcc_assert ((*SSANAMES (fn))[SSA_NAME_VERSION (t)] == NULL);
      (*SSANAMES (fn))[SSA_NAME_VERSION (t)] = t;
    }
  else
    {
      t = make_node (SSA_NAME);
      SSA_NAME_VERSION (t) = SSANAMES (fn)->length ();
      vec_safe_push (SSANAMES (fn), t);
      ssa_name_nodes_created++;
    }

  if (TYPE_P (var))
    {
      TREE_TYPE (t) = TYPE_MAIN_VARIANT (var);
      SET_SSA_NAME_VAR_OR_IDENTIFIER (t, NULL_TREE);
    }
  else
    {
      TREE_TYPE (t) = TREE_TYPE (var);
      SET_SSA_NAME_VAR_OR_IDENTIFIER (t, var);
    }
  SSA_NAME_DEF_STMT (t) = stmt;
  if (POINTER_TYPE_P (TREE_TYPE (t)))
    SSA_NAME_PTR_INFO (t) = NULL;
  else
    SSA_NAME_RANGE_INFO (t) = NULL;

  SSA_NAME_IN_FREE_LIST (t) = 0;
  SSA_NAME_IS_DEFAULT_DEF (t) = 0;
  imm = &(SSA_NAME_IMM_USE_NODE (t));
  imm->use = NULL;
  imm->prev = imm;
  imm->next = imm;
  imm->loc.ssa_name = t;

  return t;
}

/* Helper function for set_range_info.

   Store range information RANGE_TYPE, MIN, and MAX to tree ssa_name
   NAME.  */

void
set_range_info_raw (tree name, enum value_range_kind range_type,
		    const wide_int_ref &min, const wide_int_ref &max)
{
  gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
  gcc_assert (range_type == VR_RANGE || range_type == VR_ANTI_RANGE);
  range_info_def *ri = SSA_NAME_RANGE_INFO (name);
  unsigned int precision = TYPE_PRECISION (TREE_TYPE (name));

  /* Allocate if not available.  */
  if (ri == NULL)
    {
      size_t size = (sizeof (range_info_def)
		     + trailing_wide_ints <3>::extra_size (precision));
      ri = static_cast<range_info_def *> (ggc_internal_alloc (size));
      ri->ints.set_precision (precision);
      SSA_NAME_RANGE_INFO (name) = ri;
      ri->set_nonzero_bits (wi::shwi (-1, precision));
    }

  /* Record the range type.  */
  if (SSA_NAME_RANGE_TYPE (name) != range_type)
    SSA_NAME_ANTI_RANGE_P (name) = (range_type == VR_ANTI_RANGE);

  /* Set the values.  */
  ri->set_min (min);
  ri->set_max (max);

  /* If it is a range, try to improve nonzero_bits from the min/max.  */
  if (range_type == VR_RANGE)
    {
      wide_int xorv = ri->get_min () ^ ri->get_max ();
      if (xorv != 0)
	xorv = wi::mask (precision - wi::clz (xorv), false, precision);
      ri->set_nonzero_bits (ri->get_nonzero_bits () & (ri->get_min () | xorv));
    }
}

/* Store range information RANGE_TYPE, MIN, and MAX to tree ssa_name
   NAME while making sure we don't store useless range info.  */

void
set_range_info (tree name, enum value_range_kind range_type,
		const wide_int_ref &min, const wide_int_ref &max)
{
  gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));

  /* A range of the entire domain is really no range at all.  */
  tree type = TREE_TYPE (name);
  if (min == wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type))
      && max == wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type)))
    {
      range_info_def *ri = SSA_NAME_RANGE_INFO (name);
      if (ri == NULL)
	return;
      if (ri->get_nonzero_bits () == -1)
	{
	  ggc_free (ri);
	  SSA_NAME_RANGE_INFO (name) = NULL;
	  return;
	}
    }

  set_range_info_raw (name, range_type, min, max);
}

/* Store range information for NAME from a value_range.  */

void
set_range_info (tree name, const value_range_base &vr)
{
  wide_int min = wi::to_wide (vr.min ());
  wide_int max = wi::to_wide (vr.max ());
  set_range_info (name, vr.kind (), min, max);
}

/* Gets range information MIN, MAX and returns enum value_range_kind
   corresponding to tree ssa_name NAME.  enum value_range_kind returned
   is used to determine if MIN and MAX are valid values.  */

enum value_range_kind
get_range_info (const_tree name, wide_int *min, wide_int *max)
{
  gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
  gcc_assert (min && max);
  range_info_def *ri = SSA_NAME_RANGE_INFO (name);

  /* Return VR_VARYING for SSA_NAMEs with NULL RANGE_INFO or SSA_NAMEs
     with integral types width > 2 * HOST_BITS_PER_WIDE_INT precision.  */
  if (!ri || (GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (name)))
	      > 2 * HOST_BITS_PER_WIDE_INT))
    return VR_VARYING;

  *min = ri->get_min ();
  *max = ri->get_max ();
  return SSA_NAME_RANGE_TYPE (name);
}

/* Gets range information corresponding to ssa_name NAME and stores it
   in a value_range VR.  Returns the value_range_kind.  */

enum value_range_kind
get_range_info (const_tree name, value_range_base &vr)
{
  tree min, max;
  wide_int wmin, wmax;
  enum value_range_kind kind = get_range_info (name, &wmin, &wmax);

  if (kind == VR_VARYING || kind == VR_UNDEFINED)
    min = max = NULL;
  else
    {
      min = wide_int_to_tree (TREE_TYPE (name), wmin);
      max = wide_int_to_tree (TREE_TYPE (name), wmax);
    }
  vr.set (kind, min, max);
  return kind;
}

/* Set nonnull attribute to pointer NAME.  */

void
set_ptr_nonnull (tree name)
{
  gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
  struct ptr_info_def *pi = get_ptr_info (name);
  pi->pt.null = 0;
}

/* Return nonnull attribute of pointer NAME.  */
bool
get_ptr_nonnull (const_tree name)
{
  gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
  struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
  if (pi == NULL)
    return false;
  /* TODO Now pt->null is conservatively set to true in PTA
     analysis. vrp is the only pass (including ipa-vrp)
     that clears pt.null via set_ptr_nonull when it knows
     for sure. PTA will preserves the pt.null value set by VRP.

     When PTA analysis is improved, pt.anything, pt.nonlocal
     and pt.escaped may also has to be considered before
     deciding that pointer cannot point to NULL.  */
  return !pi->pt.null;
}

/* Change non-zero bits bitmask of NAME.  */

void
set_nonzero_bits (tree name, const wide_int_ref &mask)
{
  gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
  if (SSA_NAME_RANGE_INFO (name) == NULL)
    {
      if (mask == -1)
	return;
      set_range_info_raw (name, VR_RANGE,
			  wi::to_wide (TYPE_MIN_VALUE (TREE_TYPE (name))),
			  wi::to_wide (TYPE_MAX_VALUE (TREE_TYPE (name))));
    }
  range_info_def *ri = SSA_NAME_RANGE_INFO (name);
  ri->set_nonzero_bits (mask);
}

/* Return a widest_int with potentially non-zero bits in SSA_NAME
   NAME, the constant for INTEGER_CST, or -1 if unknown.  */

wide_int
get_nonzero_bits (const_tree name)
{
  if (TREE_CODE (name) == INTEGER_CST)
    return wi::to_wide (name);

  /* Use element_precision instead of TYPE_PRECISION so complex and
     vector types get a non-zero precision.  */
  unsigned int precision = element_precision (TREE_TYPE (name));
  if (POINTER_TYPE_P (TREE_TYPE (name)))
    {
      struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
      if (pi && pi->align)
	return wi::shwi (-(HOST_WIDE_INT) pi->align
			 | (HOST_WIDE_INT) pi->misalign, precision);
      return wi::shwi (-1, precision);
    }

  range_info_def *ri = SSA_NAME_RANGE_INFO (name);
  if (!ri)
    return wi::shwi (-1, precision);

  return ri->get_nonzero_bits ();
}

/* Return TRUE is OP, an SSA_NAME has a range of values [0..1], false
   otherwise.

   This can be because it is a boolean type, any unsigned integral
   type with a single bit of precision, or has known range of [0..1]
   via VRP analysis.  */

bool
ssa_name_has_boolean_range (tree op)
{
  gcc_assert (TREE_CODE (op) == SSA_NAME);

  /* Boolean types always have a range [0..1].  */
  if (TREE_CODE (TREE_TYPE (op)) == BOOLEAN_TYPE)
    return true;

  /* An integral type with a single bit of precision.  */
  if (INTEGRAL_TYPE_P (TREE_TYPE (op))
      && TYPE_UNSIGNED (TREE_TYPE (op))
      && TYPE_PRECISION (TREE_TYPE (op)) == 1)
    return true;

  /* An integral type with more precision, but the object
     only takes on values [0..1] as determined by VRP
     analysis.  */
  if (INTEGRAL_TYPE_P (TREE_TYPE (op))
      && (TYPE_PRECISION (TREE_TYPE (op)) > 1)
      && wi::eq_p (get_nonzero_bits (op), 1))
    return true;

  return false;
}

/* We no longer need the SSA_NAME expression VAR, release it so that
   it may be reused.

   Note it is assumed that no calls to make_ssa_name will be made
   until all uses of the ssa name are released and that the only
   use of the SSA_NAME expression is to check its SSA_NAME_VAR.  All
   other fields must be assumed clobbered.  */

void
release_ssa_name_fn (struct function *fn, tree var)
{
  if (!var)
    return;

  /* Never release the default definition for a symbol.  It's a
     special SSA name that should always exist once it's created.  */
  if (SSA_NAME_IS_DEFAULT_DEF (var))
    return;

  /* If VAR has been registered for SSA updating, don't remove it.
     After update_ssa has run, the name will be released.  */
  if (name_registered_for_update_p (var))
    {
      release_ssa_name_after_update_ssa (var);
      return;
    }

  /* release_ssa_name can be called multiple times on a single SSA_NAME.
     However, it should only end up on our free list one time.   We
     keep a status bit in the SSA_NAME node itself to indicate it has
     been put on the free list.

     Note that once on the freelist you cannot reference the SSA_NAME's
     defining statement.  */
  if (! SSA_NAME_IN_FREE_LIST (var))
    {
      int saved_ssa_name_version = SSA_NAME_VERSION (var);
      use_operand_p imm = &(SSA_NAME_IMM_USE_NODE (var));

      if (MAY_HAVE_DEBUG_BIND_STMTS)
	insert_debug_temp_for_var_def (NULL, var);

      if (flag_checking)
	verify_imm_links (stderr, var);
      while (imm->next != imm)
	delink_imm_use (imm->next);

      (*SSANAMES (fn))[SSA_NAME_VERSION (var)] = NULL_TREE;
      memset (var, 0, tree_size (var));

      imm->prev = imm;
      imm->next = imm;
      imm->loc.ssa_name = var;

      /* First put back the right tree node so that the tree checking
	 macros do not complain.  */
      TREE_SET_CODE (var, SSA_NAME);

      /* Restore the version number.  */
      SSA_NAME_VERSION (var) = saved_ssa_name_version;

      /* Note this SSA_NAME is now in the first list.  */
      SSA_NAME_IN_FREE_LIST (var) = 1;

      /* Put in a non-NULL TREE_TYPE so dumping code will not ICE
         if it happens to come along a released SSA name and tries
	 to inspect its type.  */
      TREE_TYPE (var) = error_mark_node;

      /* And finally queue it so that it will be put on the free list.  */
      vec_safe_push (FREE_SSANAMES_QUEUE (fn), var);
    }
}

/* If the alignment of the pointer described by PI is known, return true and
   store the alignment and the deviation from it into *ALIGNP and *MISALIGNP
   respectively.  Otherwise return false.  */

bool
get_ptr_info_alignment (struct ptr_info_def *pi, unsigned int *alignp,
			unsigned int *misalignp)
{
  if (pi->align)
    {
      *alignp = pi->align;
      *misalignp = pi->misalign;
      return true;
    }
  else
    return false;
}

/* State that the pointer described by PI has unknown alignment.  */

void
mark_ptr_info_alignment_unknown (struct ptr_info_def *pi)
{
  pi->align = 0;
  pi->misalign = 0;
}

/* Store the power-of-two byte alignment and the deviation from that
   alignment of pointer described by PI to ALIOGN and MISALIGN
   respectively.  */

void
set_ptr_info_alignment (struct ptr_info_def *pi, unsigned int align,
			    unsigned int misalign)
{
  gcc_checking_assert (align != 0);
  gcc_assert ((align & (align - 1)) == 0);
  gcc_assert ((misalign & ~(align - 1)) == 0);

  pi->align = align;
  pi->misalign = misalign;
}

/* If pointer described by PI has known alignment, increase its known
   misalignment by INCREMENT modulo its current alignment.  */

void
adjust_ptr_info_misalignment (struct ptr_info_def *pi, poly_uint64 increment)
{
  if (pi->align != 0)
    {
      increment += pi->misalign;
      if (!known_misalignment (increment, pi->align, &pi->misalign))
	{
	  pi->align = known_alignment (increment);
	  pi->misalign = 0;
	}
    }
}

/* Return the alias information associated with pointer T.  It creates a
   new instance if none existed.  */

struct ptr_info_def *
get_ptr_info (tree t)
{
  struct ptr_info_def *pi;

  gcc_assert (POINTER_TYPE_P (TREE_TYPE (t)));

  pi = SSA_NAME_PTR_INFO (t);
  if (pi == NULL)
    {
      pi = ggc_cleared_alloc<ptr_info_def> ();
      pt_solution_reset (&pi->pt);
      mark_ptr_info_alignment_unknown (pi);
      SSA_NAME_PTR_INFO (t) = pi;
    }

  return pi;
}


/* Creates a new SSA name using the template NAME tobe defined by
   statement STMT in function FN.  */

tree
copy_ssa_name_fn (struct function *fn, tree name, gimple *stmt)
{
  tree new_name;

  if (SSA_NAME_VAR (name))
    new_name = make_ssa_name_fn (fn, SSA_NAME_VAR (name), stmt);
  else
    {
      new_name = make_ssa_name_fn (fn, TREE_TYPE (name), stmt);
      SET_SSA_NAME_VAR_OR_IDENTIFIER (new_name, SSA_NAME_IDENTIFIER (name));
    }

  return new_name;
}


/* Creates a duplicate of the ptr_info_def at PTR_INFO for use by
   the SSA name NAME.  */

void
duplicate_ssa_name_ptr_info (tree name, struct ptr_info_def *ptr_info)
{
  struct ptr_info_def *new_ptr_info;

  gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
  gcc_assert (!SSA_NAME_PTR_INFO (name));

  if (!ptr_info)
    return;

  new_ptr_info = ggc_alloc<ptr_info_def> ();
  *new_ptr_info = *ptr_info;

  SSA_NAME_PTR_INFO (name) = new_ptr_info;
}

/* Creates a duplicate of the range_info_def at RANGE_INFO of type
   RANGE_TYPE for use by the SSA name NAME.  */
void
duplicate_ssa_name_range_info (tree name, enum value_range_kind range_type,
			       struct range_info_def *range_info)
{
  struct range_info_def *new_range_info;

  gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
  gcc_assert (!SSA_NAME_RANGE_INFO (name));

  if (!range_info)
    return;

  unsigned int precision = TYPE_PRECISION (TREE_TYPE (name));
  size_t size = (sizeof (range_info_def)
		 + trailing_wide_ints <3>::extra_size (precision));
  new_range_info = static_cast<range_info_def *> (ggc_internal_alloc (size));
  memcpy (new_range_info, range_info, size);

  gcc_assert (range_type == VR_RANGE || range_type == VR_ANTI_RANGE);
  SSA_NAME_ANTI_RANGE_P (name) = (range_type == VR_ANTI_RANGE);
  SSA_NAME_RANGE_INFO (name) = new_range_info;
}



/* Creates a duplicate of a ssa name NAME tobe defined by statement STMT
   in function FN.  */

tree
duplicate_ssa_name_fn (struct function *fn, tree name, gimple *stmt)
{
  tree new_name = copy_ssa_name_fn (fn, name, stmt);
  if (POINTER_TYPE_P (TREE_TYPE (name)))
    {
      struct ptr_info_def *old_ptr_info = SSA_NAME_PTR_INFO (name);

      if (old_ptr_info)
	duplicate_ssa_name_ptr_info (new_name, old_ptr_info);
    }
  else
    {
      struct range_info_def *old_range_info = SSA_NAME_RANGE_INFO (name);

      if (old_range_info)
	duplicate_ssa_name_range_info (new_name, SSA_NAME_RANGE_TYPE (name),
				       old_range_info);
    }

  return new_name;
}


/* Reset all flow sensitive data on NAME such as range-info, nonzero
   bits and alignment.  */

void
reset_flow_sensitive_info (tree name)
{
  if (POINTER_TYPE_P (TREE_TYPE (name)))
    {
      /* points-to info is not flow-sensitive.  */
      if (SSA_NAME_PTR_INFO (name))
	{
	  /* [E]VRP can derive context sensitive alignment info and
	     non-nullness properties.  We must reset both.  */
	  mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
	  SSA_NAME_PTR_INFO (name)->pt.null = 1;
	}
    }
  else
    SSA_NAME_RANGE_INFO (name) = NULL;
}

/* Clear all flow sensitive data from all statements and PHI definitions
   in BB.  */

void
reset_flow_sensitive_info_in_bb (basic_block bb)
{
  for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
       gsi_next (&gsi))
    {
      gimple *stmt = gsi_stmt (gsi);
      ssa_op_iter i;
      tree op;
      FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
	reset_flow_sensitive_info (op);
    }

  for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
       gsi_next (&gsi))
    {
      tree phi_def = gimple_phi_result (gsi.phi ());
      reset_flow_sensitive_info (phi_def);
    }
}

/* Release all the SSA_NAMEs created by STMT.  */

void
release_defs (gimple *stmt)
{
  tree def;
  ssa_op_iter iter;

  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
    if (TREE_CODE (def) == SSA_NAME)
      release_ssa_name (def);
}


/* Replace the symbol associated with SSA_NAME with SYM.  */

void
replace_ssa_name_symbol (tree ssa_name, tree sym)
{
  SET_SSA_NAME_VAR_OR_IDENTIFIER (ssa_name, sym);
  TREE_TYPE (ssa_name) = TREE_TYPE (sym);
}

/* Release the vector of free SSA_NAMEs and compact the vector of SSA_NAMEs
   that are live.  */

static void
release_free_names_and_compact_live_names (function *fun)
{
  unsigned i, j;
  int n = vec_safe_length (FREE_SSANAMES (fun));

  /* Now release the freelist.  */
  vec_free (FREE_SSANAMES (fun));

  /* And compact the SSA number space.  We make sure to not change the
     relative order of SSA versions.  */
  for (i = 1, j = 1; i < fun->gimple_df->ssa_names->length (); ++i)
    {
      tree name = ssa_name (i);
      if (name)
	{
	  if (i != j)
	    {
	      SSA_NAME_VERSION (name) = j;
	      (*fun->gimple_df->ssa_names)[j] = name;
	    }
	  j++;
	}
    }
  fun->gimple_df->ssa_names->truncate (j);

  statistics_counter_event (fun, "SSA names released", n);
  statistics_counter_event (fun, "SSA name holes removed", i - j);
  if (dump_file)
    fprintf (dump_file, "Released %i names, %.2f%%, removed %i holes\n",
	     n, n * 100.0 / num_ssa_names, i - j);
}

/* Return SSA names that are unused to GGC memory and compact the SSA
   version namespace.  This is used to keep footprint of compiler during
   interprocedural optimization.  */

namespace {

const pass_data pass_data_release_ssa_names =
{
  GIMPLE_PASS, /* type */
  "release_ssa", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_SSA_OTHER, /* tv_id */
  PROP_ssa, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  TODO_remove_unused_locals, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_release_ssa_names : public gimple_opt_pass
{
public:
  pass_release_ssa_names (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_release_ssa_names, ctxt)
  {}

  /* opt_pass methods: */
  virtual unsigned int execute (function *);

}; // class pass_release_ssa_names

unsigned int
pass_release_ssa_names::execute (function *fun)
{
  release_free_names_and_compact_live_names (fun);
  return 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_release_ssa_names (gcc::context *ctxt)
{
  return new pass_release_ssa_names (ctxt);
}