aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-threadedge.c
blob: 3c7cdc58b939ad0aa45142ad838dcded016f9242 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
/* SSA Jump Threading
   Copyright (C) 2005-2021 Free Software Foundation, Inc.
   Contributed by Jeff Law  <law@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "ssa.h"
#include "fold-const.h"
#include "cfgloop.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-threadupdate.h"
#include "tree-ssa-scopedtables.h"
#include "tree-ssa-threadedge.h"
#include "tree-ssa-dom.h"
#include "gimple-fold.h"
#include "cfganal.h"
#include "alloc-pool.h"
#include "vr-values.h"
#include "gimple-ssa-evrp-analyze.h"

/* To avoid code explosion due to jump threading, we limit the
   number of statements we are going to copy.  This variable
   holds the number of statements currently seen that we'll have
   to copy as part of the jump threading process.  */
static int stmt_count;

/* Array to record value-handles per SSA_NAME.  */
vec<tree> ssa_name_values;

/* Set the value for the SSA name NAME to VALUE.  */

void
set_ssa_name_value (tree name, tree value)
{
  if (SSA_NAME_VERSION (name) >= ssa_name_values.length ())
    ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1, true);
  if (value && TREE_OVERFLOW_P (value))
    value = drop_tree_overflow (value);
  ssa_name_values[SSA_NAME_VERSION (name)] = value;
}

jump_threader::jump_threader (jump_threader_simplifier *simplifier,
			      jt_state *state)
{
  /* Initialize the per SSA_NAME value-handles array.  */
  gcc_assert (!ssa_name_values.exists ());
  ssa_name_values.create (num_ssa_names);

  dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
				  integer_zero_node, NULL, NULL);

  m_registry = new jump_thread_path_registry ();
  m_simplifier = simplifier;
  m_state = state;
}

jump_threader::~jump_threader (void)
{
  ssa_name_values.release ();
  ggc_free (dummy_cond);
  delete m_registry;
}

void
jump_threader::remove_jump_threads_including (edge_def *e)
{
  m_registry->remove_jump_threads_including (e);
}

bool
jump_threader::thread_through_all_blocks (bool may_peel_loop_headers)
{
  return m_registry->thread_through_all_blocks (may_peel_loop_headers);
}

static inline bool
has_phis_p (basic_block bb)
{
  return !gsi_end_p (gsi_start_phis (bb));
}

/* Return TRUE for a block with PHIs but no statements.  */

static bool
empty_block_with_phis_p (basic_block bb)
{
  return gsi_end_p (gsi_start_nondebug_bb (bb)) && has_phis_p (bb);
}

/* Return TRUE if we may be able to thread an incoming edge into
   BB to an outgoing edge from BB.  Return FALSE otherwise.  */

static bool
potentially_threadable_block (basic_block bb)
{
  gimple_stmt_iterator gsi;

  /* Special case.  We can get blocks that are forwarders, but are
     not optimized away because they forward from outside a loop
     to the loop header.   We want to thread through them as we can
     sometimes thread to the loop exit, which is obviously profitable.
     The interesting case here is when the block has PHIs.  */
  if (empty_block_with_phis_p (bb))
    return true;

  /* If BB has a single successor or a single predecessor, then
     there is no threading opportunity.  */
  if (single_succ_p (bb) || single_pred_p (bb))
    return false;

  /* If BB does not end with a conditional, switch or computed goto,
     then there is no threading opportunity.  */
  gsi = gsi_last_bb (bb);
  if (gsi_end_p (gsi)
      || ! gsi_stmt (gsi)
      || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
	  && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
	  && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
    return false;

  return true;
}

/* Record temporary equivalences created by PHIs at the target of the
   edge E.

   If a PHI which prevents threading is encountered, then return FALSE
   indicating we should not thread this edge, else return TRUE.  */

bool
jump_threader::record_temporary_equivalences_from_phis (edge e)
{
  gphi_iterator gsi;

  /* Each PHI creates a temporary equivalence, record them.
     These are context sensitive equivalences and will be removed
     later.  */
  for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gphi *phi = gsi.phi ();
      tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
      tree dst = gimple_phi_result (phi);

      /* If the desired argument is not the same as this PHI's result
	 and it is set by a PHI in E->dest, then we cannot thread
	 through E->dest.  */
      if (src != dst
	  && TREE_CODE (src) == SSA_NAME
	  && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
	  && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
	return false;

      /* We consider any non-virtual PHI as a statement since it
	 count result in a constant assignment or copy operation.  */
      if (!virtual_operand_p (dst))
	stmt_count++;

      m_state->register_equiv (dst, src, /*update_range=*/true);
    }
  return true;
}

/* Valueize hook for gimple_fold_stmt_to_constant_1.  */

static tree
threadedge_valueize (tree t)
{
  if (TREE_CODE (t) == SSA_NAME)
    {
      tree tem = SSA_NAME_VALUE (t);
      if (tem)
	return tem;
    }
  return t;
}

/* Try to simplify each statement in E->dest, ultimately leading to
   a simplification of the COND_EXPR at the end of E->dest.

   Record unwind information for temporary equivalences onto STACK.

   Uses M_SIMPLIFIER to further simplify statements using pass specific
   information.

   We might consider marking just those statements which ultimately
   feed the COND_EXPR.  It's not clear if the overhead of bookkeeping
   would be recovered by trying to simplify fewer statements.

   If we are able to simplify a statement into the form
   SSA_NAME = (SSA_NAME | gimple invariant), then we can record
   a context sensitive equivalence which may help us simplify
   later statements in E->dest.  */

gimple *
jump_threader::record_temporary_equivalences_from_stmts_at_dest (edge e)
{
  gimple *stmt = NULL;
  gimple_stmt_iterator gsi;
  int max_stmt_count;

  max_stmt_count = param_max_jump_thread_duplication_stmts;

  /* Walk through each statement in the block recording equivalences
     we discover.  Note any equivalences we discover are context
     sensitive (ie, are dependent on traversing E) and must be unwound
     when we're finished processing E.  */
  for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      tree cached_lhs = NULL;

      stmt = gsi_stmt (gsi);

      /* Ignore empty statements and labels.  */
      if (gimple_code (stmt) == GIMPLE_NOP
	  || gimple_code (stmt) == GIMPLE_LABEL
	  || is_gimple_debug (stmt))
	continue;

      /* If the statement has volatile operands, then we assume we
	 cannot thread through this block.  This is overly
	 conservative in some ways.  */
      if (gimple_code (stmt) == GIMPLE_ASM
	  && gimple_asm_volatile_p (as_a <gasm *> (stmt)))
	return NULL;

      /* If the statement is a unique builtin, we cannot thread
	 through here.  */
      if (gimple_code (stmt) == GIMPLE_CALL
	  && gimple_call_internal_p (stmt)
	  && gimple_call_internal_unique_p (stmt))
	return NULL;

      /* We cannot thread through __builtin_constant_p, because an
	 expression that is constant on two threading paths may become
	 non-constant (i.e.: phi) when they merge.  */
      if (gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P))
	return NULL;

      /* If duplicating this block is going to cause too much code
	 expansion, then do not thread through this block.  */
      stmt_count++;
      if (stmt_count > max_stmt_count)
	{
	  /* If any of the stmts in the PATH's dests are going to be
	     killed due to threading, grow the max count
	     accordingly.  */
	  if (max_stmt_count
	      == param_max_jump_thread_duplication_stmts)
	    {
	      max_stmt_count += estimate_threading_killed_stmts (e->dest);
	      if (dump_file)
		fprintf (dump_file, "threading bb %i up to %i stmts\n",
			 e->dest->index, max_stmt_count);
	    }
	  /* If we're still past the limit, we're done.  */
	  if (stmt_count > max_stmt_count)
	    return NULL;
	}

      m_state->record_ranges_from_stmt (stmt, true);

      /* If this is not a statement that sets an SSA_NAME to a new
	 value, then do not try to simplify this statement as it will
	 not simplify in any way that is helpful for jump threading.  */
      if ((gimple_code (stmt) != GIMPLE_ASSIGN
           || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
          && (gimple_code (stmt) != GIMPLE_CALL
              || gimple_call_lhs (stmt) == NULL_TREE
              || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
	continue;

      /* The result of __builtin_object_size depends on all the arguments
	 of a phi node. Temporarily using only one edge produces invalid
	 results. For example

	 if (x < 6)
	   goto l;
	 else
	   goto l;

	 l:
	 r = PHI <&w[2].a[1](2), &a.a[6](3)>
	 __builtin_object_size (r, 0)

	 The result of __builtin_object_size is defined to be the maximum of
	 remaining bytes. If we use only one edge on the phi, the result will
	 change to be the remaining bytes for the corresponding phi argument.

	 Similarly for __builtin_constant_p:

	 r = PHI <1(2), 2(3)>
	 __builtin_constant_p (r)

	 Both PHI arguments are constant, but x ? 1 : 2 is still not
	 constant.  */

      if (is_gimple_call (stmt))
	{
	  tree fndecl = gimple_call_fndecl (stmt);
	  if (fndecl
	      && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
	      && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
	    continue;
	}

      /* At this point we have a statement which assigns an RHS to an
	 SSA_VAR on the LHS.  We want to try and simplify this statement
	 to expose more context sensitive equivalences which in turn may
	 allow us to simplify the condition at the end of the loop.

	 Handle simple copy operations as well as implied copies from
	 ASSERT_EXPRs.  */
      if (gimple_assign_single_p (stmt)
          && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
	cached_lhs = gimple_assign_rhs1 (stmt);
      else if (gimple_assign_single_p (stmt)
               && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
	cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
      else
	{
	  /* A statement that is not a trivial copy or ASSERT_EXPR.
	     Try to fold the new expression.  Inserting the
	     expression into the hash table is unlikely to help.  */
	  /* ???  The DOM callback below can be changed to setting
	     the mprts_hook around the call to thread_across_edge,
	     avoiding the use substitution.  The VRP hook should be
	     changed to properly valueize operands itself using
	     SSA_NAME_VALUE in addition to its own lattice.  */
	  cached_lhs = gimple_fold_stmt_to_constant_1 (stmt,
						       threadedge_valueize);
          if (NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES) != 0
	      && (!cached_lhs
                  || (TREE_CODE (cached_lhs) != SSA_NAME
                      && !is_gimple_min_invariant (cached_lhs))))
	    {
	      /* We're going to temporarily copy propagate the operands
		 and see if that allows us to simplify this statement.  */
	      tree *copy;
	      ssa_op_iter iter;
	      use_operand_p use_p;
	      unsigned int num, i = 0;

	      num = NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES);
	      copy = XALLOCAVEC (tree, num);

	      /* Make a copy of the uses & vuses into USES_COPY, then cprop into
		 the operands.  */
	      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
		{
		  tree tmp = NULL;
		  tree use = USE_FROM_PTR (use_p);

		  copy[i++] = use;
		  if (TREE_CODE (use) == SSA_NAME)
		    tmp = SSA_NAME_VALUE (use);
		  if (tmp)
		    SET_USE (use_p, tmp);
		}

	      cached_lhs = m_simplifier->simplify (stmt, stmt, e->src, m_state);

	      /* Restore the statement's original uses/defs.  */
	      i = 0;
	      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
		SET_USE (use_p, copy[i++]);
	    }
	}

      /* Record the context sensitive equivalence if we were able
	 to simplify this statement.  */
      if (cached_lhs
	  && (TREE_CODE (cached_lhs) == SSA_NAME
	      || is_gimple_min_invariant (cached_lhs)))
	m_state->register_equiv (gimple_get_lhs (stmt), cached_lhs);
    }
  return stmt;
}

/* Simplify the control statement at the end of the block E->dest.

   Use SIMPLIFY (a pointer to a callback function) to further simplify
   a condition using pass specific information.

   Return the simplified condition or NULL if simplification could
   not be performed.  When simplifying a GIMPLE_SWITCH, we may return
   the CASE_LABEL_EXPR that will be taken.  */

tree
jump_threader::simplify_control_stmt_condition (edge e, gimple *stmt)
{
  tree cond, cached_lhs;
  enum gimple_code code = gimple_code (stmt);

  /* For comparisons, we have to update both operands, then try
     to simplify the comparison.  */
  if (code == GIMPLE_COND)
    {
      tree op0, op1;
      enum tree_code cond_code;

      op0 = gimple_cond_lhs (stmt);
      op1 = gimple_cond_rhs (stmt);
      cond_code = gimple_cond_code (stmt);

      /* Get the current value of both operands.  */
      if (TREE_CODE (op0) == SSA_NAME)
	{
	  for (int i = 0; i < 2; i++)
	    {
	      if (TREE_CODE (op0) == SSA_NAME
		  && SSA_NAME_VALUE (op0))
		op0 = SSA_NAME_VALUE (op0);
	      else
		break;
	    }
	}

      if (TREE_CODE (op1) == SSA_NAME)
	{
	  for (int i = 0; i < 2; i++)
	    {
	      if (TREE_CODE (op1) == SSA_NAME
		  && SSA_NAME_VALUE (op1))
		op1 = SSA_NAME_VALUE (op1);
	      else
		break;
	    }
	}

      const unsigned recursion_limit = 4;

      cached_lhs
	= simplify_control_stmt_condition_1 (e, stmt, op0, cond_code, op1,
					     recursion_limit);

      /* If we were testing an integer/pointer against a constant, then
	 we can use the FSM code to trace the value of the SSA_NAME.  If
	 a value is found, then the condition will collapse to a constant.

	 Return the SSA_NAME we want to trace back rather than the full
	 expression and give the FSM threader a chance to find its value.  */
      if (cached_lhs == NULL)
	{
	  /* Recover the original operands.  They may have been simplified
	     using context sensitive equivalences.  Those context sensitive
	     equivalences may not be valid on paths found by the FSM optimizer.  */
	  tree op0 = gimple_cond_lhs (stmt);
	  tree op1 = gimple_cond_rhs (stmt);

	  if ((INTEGRAL_TYPE_P (TREE_TYPE (op0))
	       || POINTER_TYPE_P (TREE_TYPE (op0)))
	      && TREE_CODE (op0) == SSA_NAME
	      && TREE_CODE (op1) == INTEGER_CST)
	    return op0;
	}

      return cached_lhs;
    }

  if (code == GIMPLE_SWITCH)
    cond = gimple_switch_index (as_a <gswitch *> (stmt));
  else if (code == GIMPLE_GOTO)
    cond = gimple_goto_dest (stmt);
  else
    gcc_unreachable ();

  /* We can have conditionals which just test the state of a variable
     rather than use a relational operator.  These are simpler to handle.  */
  if (TREE_CODE (cond) == SSA_NAME)
    {
      tree original_lhs = cond;
      cached_lhs = cond;

      /* Get the variable's current value from the equivalence chains.

	 It is possible to get loops in the SSA_NAME_VALUE chains
	 (consider threading the backedge of a loop where we have
	 a loop invariant SSA_NAME used in the condition).  */
      if (cached_lhs)
	{
	  for (int i = 0; i < 2; i++)
	    {
	      if (TREE_CODE (cached_lhs) == SSA_NAME
		  && SSA_NAME_VALUE (cached_lhs))
		cached_lhs = SSA_NAME_VALUE (cached_lhs);
	      else
		break;
	    }
	}

      /* If we haven't simplified to an invariant yet, then use the
	 pass specific callback to try and simplify it further.  */
      if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
	{
	  if (code == GIMPLE_SWITCH)
	    {
	      /* Replace the index operand of the GIMPLE_SWITCH with any LHS
		 we found before handing off to VRP.  If simplification is
	         possible, the simplified value will be a CASE_LABEL_EXPR of
		 the label that is proven to be taken.  */
	      gswitch *dummy_switch = as_a<gswitch *> (gimple_copy (stmt));
	      gimple_switch_set_index (dummy_switch, cached_lhs);
	      cached_lhs = m_simplifier->simplify (dummy_switch, stmt, e->src,
						   m_state);
	      ggc_free (dummy_switch);
	    }
	  else
	    cached_lhs = m_simplifier->simplify (stmt, stmt, e->src, m_state);
	}

      /* We couldn't find an invariant.  But, callers of this
	 function may be able to do something useful with the
	 unmodified destination.  */
      if (!cached_lhs)
	cached_lhs = original_lhs;
    }
  else
    cached_lhs = NULL;

  return cached_lhs;
}

/* Recursive helper for simplify_control_stmt_condition.  */

tree
jump_threader::simplify_control_stmt_condition_1
					(edge e,
					 gimple *stmt,
					 tree op0,
					 enum tree_code cond_code,
					 tree op1,
					 unsigned limit)
{
  if (limit == 0)
    return NULL_TREE;

  /* We may need to canonicalize the comparison.  For
     example, op0 might be a constant while op1 is an
     SSA_NAME.  Failure to canonicalize will cause us to
     miss threading opportunities.  */
  if (tree_swap_operands_p (op0, op1))
    {
      cond_code = swap_tree_comparison (cond_code);
      std::swap (op0, op1);
    }

  /* If the condition has the form (A & B) CMP 0 or (A | B) CMP 0 then
     recurse into the LHS to see if there is a dominating ASSERT_EXPR
     of A or of B that makes this condition always true or always false
     along the edge E.  */
  if ((cond_code == EQ_EXPR || cond_code == NE_EXPR)
      && TREE_CODE (op0) == SSA_NAME
      && integer_zerop (op1))
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
      if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
        ;
      else if (gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR
	       || gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
	{
	  enum tree_code rhs_code = gimple_assign_rhs_code (def_stmt);
	  const tree rhs1 = gimple_assign_rhs1 (def_stmt);
	  const tree rhs2 = gimple_assign_rhs2 (def_stmt);

	  /* Is A != 0 ?  */
	  const tree res1
	    = simplify_control_stmt_condition_1 (e, def_stmt,
						 rhs1, NE_EXPR, op1,
						 limit - 1);
	  if (res1 == NULL_TREE)
	    ;
	  else if (rhs_code == BIT_AND_EXPR && integer_zerop (res1))
	    {
	      /* If A == 0 then (A & B) != 0 is always false.  */
	      if (cond_code == NE_EXPR)
	        return boolean_false_node;
	      /* If A == 0 then (A & B) == 0 is always true.  */
	      if (cond_code == EQ_EXPR)
		return boolean_true_node;
	    }
	  else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res1))
	    {
	      /* If A != 0 then (A | B) != 0 is always true.  */
	      if (cond_code == NE_EXPR)
		return boolean_true_node;
	      /* If A != 0 then (A | B) == 0 is always false.  */
	      if (cond_code == EQ_EXPR)
		return boolean_false_node;
	    }

	  /* Is B != 0 ?  */
	  const tree res2
	    = simplify_control_stmt_condition_1 (e, def_stmt,
						 rhs2, NE_EXPR, op1,
						 limit - 1);
	  if (res2 == NULL_TREE)
	    ;
	  else if (rhs_code == BIT_AND_EXPR && integer_zerop (res2))
	    {
	      /* If B == 0 then (A & B) != 0 is always false.  */
	      if (cond_code == NE_EXPR)
	        return boolean_false_node;
	      /* If B == 0 then (A & B) == 0 is always true.  */
	      if (cond_code == EQ_EXPR)
		return boolean_true_node;
	    }
	  else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res2))
	    {
	      /* If B != 0 then (A | B) != 0 is always true.  */
	      if (cond_code == NE_EXPR)
		return boolean_true_node;
	      /* If B != 0 then (A | B) == 0 is always false.  */
	      if (cond_code == EQ_EXPR)
		return boolean_false_node;
	    }

	  if (res1 != NULL_TREE && res2 != NULL_TREE)
	    {
	      if (rhs_code == BIT_AND_EXPR
		  && TYPE_PRECISION (TREE_TYPE (op0)) == 1
		  && integer_nonzerop (res1)
		  && integer_nonzerop (res2))
		{
		  /* If A != 0 and B != 0 then (bool)(A & B) != 0 is true.  */
		  if (cond_code == NE_EXPR)
		    return boolean_true_node;
		  /* If A != 0 and B != 0 then (bool)(A & B) == 0 is false.  */
		  if (cond_code == EQ_EXPR)
		    return boolean_false_node;
		}

	      if (rhs_code == BIT_IOR_EXPR
		  && integer_zerop (res1)
		  && integer_zerop (res2))
		{
		  /* If A == 0 and B == 0 then (A | B) != 0 is false.  */
		  if (cond_code == NE_EXPR)
		    return boolean_false_node;
		  /* If A == 0 and B == 0 then (A | B) == 0 is true.  */
		  if (cond_code == EQ_EXPR)
		    return boolean_true_node;
		}
	    }
	}
      /* Handle (A CMP B) CMP 0.  */
      else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
	       == tcc_comparison)
	{
	  tree rhs1 = gimple_assign_rhs1 (def_stmt);
	  tree rhs2 = gimple_assign_rhs2 (def_stmt);

	  tree_code new_cond = gimple_assign_rhs_code (def_stmt);
	  if (cond_code == EQ_EXPR)
	    new_cond = invert_tree_comparison (new_cond, false);

	  tree res
	    = simplify_control_stmt_condition_1 (e, def_stmt,
						 rhs1, new_cond, rhs2,
						 limit - 1);
	  if (res != NULL_TREE && is_gimple_min_invariant (res))
	    return res;
	}
    }

  gimple_cond_set_code (dummy_cond, cond_code);
  gimple_cond_set_lhs (dummy_cond, op0);
  gimple_cond_set_rhs (dummy_cond, op1);

  /* We absolutely do not care about any type conversions
     we only care about a zero/nonzero value.  */
  fold_defer_overflow_warnings ();

  tree res = fold_binary (cond_code, boolean_type_node, op0, op1);
  if (res)
    while (CONVERT_EXPR_P (res))
      res = TREE_OPERAND (res, 0);

  fold_undefer_overflow_warnings ((res && is_gimple_min_invariant (res)),
				  stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);

  /* If we have not simplified the condition down to an invariant,
     then use the pass specific callback to simplify the condition.  */
  if (!res
      || !is_gimple_min_invariant (res))
    res = m_simplifier->simplify (dummy_cond, stmt, e->src, m_state);

  return res;
}

/* Copy debug stmts from DEST's chain of single predecessors up to
   SRC, so that we don't lose the bindings as PHI nodes are introduced
   when DEST gains new predecessors.  */
void
propagate_threaded_block_debug_into (basic_block dest, basic_block src)
{
  if (!MAY_HAVE_DEBUG_BIND_STMTS)
    return;

  if (!single_pred_p (dest))
    return;

  gcc_checking_assert (dest != src);

  gimple_stmt_iterator gsi = gsi_after_labels (dest);
  int i = 0;
  const int alloc_count = 16; // ?? Should this be a PARAM?

  /* Estimate the number of debug vars overridden in the beginning of
     DEST, to tell how many we're going to need to begin with.  */
  for (gimple_stmt_iterator si = gsi;
       i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si))
    {
      gimple *stmt = gsi_stmt (si);
      if (!is_gimple_debug (stmt))
	break;
      if (gimple_debug_nonbind_marker_p (stmt))
	continue;
      i++;
    }

  auto_vec<tree, alloc_count> fewvars;
  hash_set<tree> *vars = NULL;

  /* If we're already starting with 3/4 of alloc_count, go for a
     hash_set, otherwise start with an unordered stack-allocated
     VEC.  */
  if (i * 4 > alloc_count * 3)
    vars = new hash_set<tree>;

  /* Now go through the initial debug stmts in DEST again, this time
     actually inserting in VARS or FEWVARS.  Don't bother checking for
     duplicates in FEWVARS.  */
  for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si))
    {
      gimple *stmt = gsi_stmt (si);
      if (!is_gimple_debug (stmt))
	break;

      tree var;

      if (gimple_debug_bind_p (stmt))
	var = gimple_debug_bind_get_var (stmt);
      else if (gimple_debug_source_bind_p (stmt))
	var = gimple_debug_source_bind_get_var (stmt);
      else if (gimple_debug_nonbind_marker_p (stmt))
	continue;
      else
	gcc_unreachable ();

      if (vars)
	vars->add (var);
      else
	fewvars.quick_push (var);
    }

  basic_block bb = dest;

  do
    {
      bb = single_pred (bb);
      for (gimple_stmt_iterator si = gsi_last_bb (bb);
	   !gsi_end_p (si); gsi_prev (&si))
	{
	  gimple *stmt = gsi_stmt (si);
	  if (!is_gimple_debug (stmt))
	    continue;

	  tree var;

	  if (gimple_debug_bind_p (stmt))
	    var = gimple_debug_bind_get_var (stmt);
	  else if (gimple_debug_source_bind_p (stmt))
	    var = gimple_debug_source_bind_get_var (stmt);
	  else if (gimple_debug_nonbind_marker_p (stmt))
	    continue;
	  else
	    gcc_unreachable ();

	  /* Discard debug bind overlaps.  Unlike stmts from src,
	     copied into a new block that will precede BB, debug bind
	     stmts in bypassed BBs may actually be discarded if
	     they're overwritten by subsequent debug bind stmts.  We
	     want to copy binds for all modified variables, so that we
	     retain a bind to the shared def if there is one, or to a
	     newly introduced PHI node if there is one.  Our bind will
	     end up reset if the value is dead, but that implies the
	     variable couldn't have survived, so it's fine.  We are
	     not actually running the code that performed the binds at
	     this point, we're just adding binds so that they survive
	     the new confluence, so markers should not be copied.  */
	  if (vars && vars->add (var))
	    continue;
	  else if (!vars)
	    {
	      int i = fewvars.length ();
	      while (i--)
		if (fewvars[i] == var)
		  break;
	      if (i >= 0)
		continue;
	      else if (fewvars.length () < (unsigned) alloc_count)
		fewvars.quick_push (var);
	      else
		{
		  vars = new hash_set<tree>;
		  for (i = 0; i < alloc_count; i++)
		    vars->add (fewvars[i]);
		  fewvars.release ();
		  vars->add (var);
		}
	    }

	  stmt = gimple_copy (stmt);
	  /* ??? Should we drop the location of the copy to denote
	     they're artificial bindings?  */
	  gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
	}
    }
  while (bb != src && single_pred_p (bb));

  if (vars)
    delete vars;
  else if (fewvars.exists ())
    fewvars.release ();
}

/* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
   need not be duplicated as part of the CFG/SSA updating process).

   If it is threadable, add it to PATH and VISITED and recurse, ultimately
   returning TRUE from the toplevel call.   Otherwise do nothing and
   return false.  */

bool
jump_threader::thread_around_empty_blocks (vec<jump_thread_edge *> *path,
					   edge taken_edge,
					   bitmap visited)
{
  basic_block bb = taken_edge->dest;
  gimple_stmt_iterator gsi;
  gimple *stmt;
  tree cond;

  /* The key property of these blocks is that they need not be duplicated
     when threading.  Thus they cannot have visible side effects such
     as PHI nodes.  */
  if (has_phis_p (bb))
    return false;

  /* Skip over DEBUG statements at the start of the block.  */
  gsi = gsi_start_nondebug_bb (bb);

  /* If the block has no statements, but does have a single successor, then
     it's just a forwarding block and we can thread through it trivially.

     However, note that just threading through empty blocks with single
     successors is not inherently profitable.  For the jump thread to
     be profitable, we must avoid a runtime conditional.

     By taking the return value from the recursive call, we get the
     desired effect of returning TRUE when we found a profitable jump
     threading opportunity and FALSE otherwise.

     This is particularly important when this routine is called after
     processing a joiner block.  Returning TRUE too aggressively in
     that case results in pointless duplication of the joiner block.  */
  if (gsi_end_p (gsi))
    {
      if (single_succ_p (bb))
	{
	  taken_edge = single_succ_edge (bb);

	  if ((taken_edge->flags & EDGE_DFS_BACK) != 0)
	    return false;

	  if (!bitmap_bit_p (visited, taken_edge->dest->index))
	    {
	      jump_thread_edge *x
		= m_registry->allocate_thread_edge (taken_edge,
						    EDGE_NO_COPY_SRC_BLOCK);
	      path->safe_push (x);
	      bitmap_set_bit (visited, taken_edge->dest->index);
	      return thread_around_empty_blocks (path, taken_edge, visited);
	    }
	}

      /* We have a block with no statements, but multiple successors?  */
      return false;
    }

  /* The only real statements this block can have are a control
     flow altering statement.  Anything else stops the thread.  */
  stmt = gsi_stmt (gsi);
  if (gimple_code (stmt) != GIMPLE_COND
      && gimple_code (stmt) != GIMPLE_GOTO
      && gimple_code (stmt) != GIMPLE_SWITCH)
    return false;

  /* Extract and simplify the condition.  */
  cond = simplify_control_stmt_condition (taken_edge, stmt);

  /* If the condition can be statically computed and we have not already
     visited the destination edge, then add the taken edge to our thread
     path.  */
  if (cond != NULL_TREE
      && (is_gimple_min_invariant (cond)
	  || TREE_CODE (cond) == CASE_LABEL_EXPR))
    {
      if (TREE_CODE (cond) == CASE_LABEL_EXPR)
	taken_edge = find_edge (bb, label_to_block (cfun, CASE_LABEL (cond)));
      else
	taken_edge = find_taken_edge (bb, cond);

      if (!taken_edge
	  || (taken_edge->flags & EDGE_DFS_BACK) != 0)
	return false;

      if (bitmap_bit_p (visited, taken_edge->dest->index))
	return false;
      bitmap_set_bit (visited, taken_edge->dest->index);

      jump_thread_edge *x
	= m_registry->allocate_thread_edge (taken_edge,
					    EDGE_NO_COPY_SRC_BLOCK);
      path->safe_push (x);

      thread_around_empty_blocks (path, taken_edge, visited);
      return true;
    }

  return false;
}

/* We are exiting E->src, see if E->dest ends with a conditional
   jump which has a known value when reached via E.

   E->dest can have arbitrary side effects which, if threading is
   successful, will be maintained.

   Special care is necessary if E is a back edge in the CFG as we
   may have already recorded equivalences for E->dest into our
   various tables, including the result of the conditional at
   the end of E->dest.  Threading opportunities are severely
   limited in that case to avoid short-circuiting the loop
   incorrectly.

   Positive return value is success.  Zero return value is failure, but
   the block can still be duplicated as a joiner in a jump thread path,
   negative indicates the block should not be duplicated and thus is not
   suitable for a joiner in a jump threading path.  */

int
jump_threader::thread_through_normal_block (vec<jump_thread_edge *> *path,
					    edge e, bitmap visited)
{
  m_state->register_equivs_on_edge (e);

  /* PHIs create temporary equivalences.
     Note that if we found a PHI that made the block non-threadable, then
     we need to bubble that up to our caller in the same manner we do
     when we prematurely stop processing statements below.  */
  if (!record_temporary_equivalences_from_phis (e))
    return -1;

  /* Now walk each statement recording any context sensitive
     temporary equivalences we can detect.  */
  gimple *stmt = record_temporary_equivalences_from_stmts_at_dest (e);

  /* There's two reasons STMT might be null, and distinguishing
     between them is important.

     First the block may not have had any statements.  For example, it
     might have some PHIs and unconditionally transfer control elsewhere.
     Such blocks are suitable for jump threading, particularly as a
     joiner block.

     The second reason would be if we did not process all the statements
     in the block (because there were too many to make duplicating the
     block profitable.   If we did not look at all the statements, then
     we may not have invalidated everything needing invalidation.  Thus
     we must signal to our caller that this block is not suitable for
     use as a joiner in a threading path.  */
  if (!stmt)
    {
      /* First case.  The statement simply doesn't have any instructions, but
	 does have PHIs.  */
      if (empty_block_with_phis_p (e->dest))
	return 0;

      /* Second case.  */
      return -1;
    }

  /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
     will be taken.  */
  if (gimple_code (stmt) == GIMPLE_COND
      || gimple_code (stmt) == GIMPLE_GOTO
      || gimple_code (stmt) == GIMPLE_SWITCH)
    {
      tree cond;

      /* Extract and simplify the condition.  */
      cond = simplify_control_stmt_condition (e, stmt);

      if (!cond)
	return 0;

      if (is_gimple_min_invariant (cond)
	  || TREE_CODE (cond) == CASE_LABEL_EXPR)
	{
	  edge taken_edge;
	  if (TREE_CODE (cond) == CASE_LABEL_EXPR)
	    taken_edge = find_edge (e->dest,
				    label_to_block (cfun, CASE_LABEL (cond)));
	  else
	    taken_edge = find_taken_edge (e->dest, cond);

	  basic_block dest = (taken_edge ? taken_edge->dest : NULL);

	  /* DEST could be NULL for a computed jump to an absolute
	     address.  */
	  if (dest == NULL
	      || dest == e->dest
	      || (taken_edge->flags & EDGE_DFS_BACK) != 0
	      || bitmap_bit_p (visited, dest->index))
	    return 0;

	  /* Only push the EDGE_START_JUMP_THREAD marker if this is
	     first edge on the path.  */
	  if (path->length () == 0)
	    {
              jump_thread_edge *x
		= m_registry->allocate_thread_edge (e, EDGE_START_JUMP_THREAD);
	      path->safe_push (x);
	    }

	  jump_thread_edge *x
	    = m_registry->allocate_thread_edge (taken_edge,
						EDGE_COPY_SRC_BLOCK);
	  path->safe_push (x);

	  /* See if we can thread through DEST as well, this helps capture
	     secondary effects of threading without having to re-run DOM or
	     VRP.

	     We don't want to thread back to a block we have already
 	     visited.  This may be overly conservative.  */
	  bitmap_set_bit (visited, dest->index);
	  bitmap_set_bit (visited, e->dest->index);
	  thread_around_empty_blocks (path, taken_edge, visited);
	  return 1;
	}
    }
  return 0;
}

/* There are basic blocks look like:
   <P0>
   p0 = a CMP b ; or p0 = (INT) (a CMP b)
   goto <X>;

   <P1>
   p1 = c CMP d
   goto <X>;

   <X>
   # phi = PHI <p0 (P0), p1 (P1)>
   if (phi != 0) goto <Y>; else goto <Z>;

   Then, edge (P0,X) or (P1,X) could be marked as EDGE_START_JUMP_THREAD
   And edge (X,Y), (X,Z) is EDGE_COPY_SRC_JOINER_BLOCK

   Return true if E is (P0,X) or (P1,X)  */

bool
edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (edge e)
{
  /* See if there is only one stmt which is gcond.  */
  gcond *gs;
  if (!(gs = safe_dyn_cast<gcond *> (last_and_only_stmt (e->dest))))
    return false;

  /* See if gcond's cond is "(phi !=/== 0/1)" in the basic block.  */
  tree cond = gimple_cond_lhs (gs);
  enum tree_code code = gimple_cond_code (gs);
  tree rhs = gimple_cond_rhs (gs);
  if (TREE_CODE (cond) != SSA_NAME
      || (code != NE_EXPR && code != EQ_EXPR)
      || (!integer_onep (rhs) && !integer_zerop (rhs)))
    return false;
  gphi *phi = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (cond));
  if (phi == NULL || gimple_bb (phi) != e->dest)
    return false;

  /* Check if phi's incoming value is CMP.  */
  gassign *def;
  tree value = PHI_ARG_DEF_FROM_EDGE (phi, e);
  if (TREE_CODE (value) != SSA_NAME
      || !has_single_use (value)
      || !(def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (value))))
    return false;

  /* Or if it is (INT) (a CMP b).  */
  if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
    {
      value = gimple_assign_rhs1 (def);
      if (TREE_CODE (value) != SSA_NAME
	  || !has_single_use (value)
	  || !(def = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (value))))
	return false;
    }

  if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
    return false;

  return true;
}

/* We are exiting E->src, see if E->dest ends with a conditional jump
   which has a known value when reached via E.  If so, thread the
   edge.  */

void
jump_threader::thread_across_edge (edge e)
{
  bitmap visited = BITMAP_ALLOC (NULL);

  m_state->push (e);

  stmt_count = 0;

  vec<jump_thread_edge *> *path = m_registry->allocate_thread_path ();
  bitmap_clear (visited);
  bitmap_set_bit (visited, e->src->index);
  bitmap_set_bit (visited, e->dest->index);

  int threaded;
  if ((e->flags & EDGE_DFS_BACK) == 0)
    threaded = thread_through_normal_block (path, e, visited);
  else
    threaded = 0;

  if (threaded > 0)
    {
      propagate_threaded_block_debug_into (path->last ()->e->dest,
					   e->dest);
      BITMAP_FREE (visited);
      m_registry->register_jump_thread (path);
      m_state->pop ();
      return;
    }
  else
    {
      /* Negative and zero return values indicate no threading was possible,
	 thus there should be no edges on the thread path and no need to walk
	 through the vector entries.  */
      gcc_assert (path->length () == 0);
      path->release ();

      /* A negative status indicates the target block was deemed too big to
	 duplicate.  Just quit now rather than trying to use the block as
	 a joiner in a jump threading path.

	 This prevents unnecessary code growth, but more importantly if we
	 do not look at all the statements in the block, then we may have
	 missed some invalidations if we had traversed a backedge!  */
      if (threaded < 0)
	{
	  BITMAP_FREE (visited);
	  m_state->pop ();
	  return;
	}
    }

 /* We were unable to determine what out edge from E->dest is taken.  However,
    we might still be able to thread through successors of E->dest.  This
    often occurs when E->dest is a joiner block which then fans back out
    based on redundant tests.

    If so, we'll copy E->dest and redirect the appropriate predecessor to
    the copy.  Within the copy of E->dest, we'll thread one or more edges
    to points deeper in the CFG.

    This is a stopgap until we have a more structured approach to path
    isolation.  */
  {
    edge taken_edge;
    edge_iterator ei;
    bool found;

    /* If E->dest has abnormal outgoing edges, then there's no guarantee
       we can safely redirect any of the edges.  Just punt those cases.  */
    FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
      if (taken_edge->flags & EDGE_COMPLEX)
	{
	  m_state->pop ();
	  BITMAP_FREE (visited);
	  return;
	}

    /* Look at each successor of E->dest to see if we can thread through it.  */
    FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
      {
	if ((e->flags & EDGE_DFS_BACK) != 0
	    || (taken_edge->flags & EDGE_DFS_BACK) != 0)
	  continue;

	m_state->push (taken_edge);

	/* Avoid threading to any block we have already visited.  */
	bitmap_clear (visited);
	bitmap_set_bit (visited, e->src->index);
	bitmap_set_bit (visited, e->dest->index);
	bitmap_set_bit (visited, taken_edge->dest->index);
	vec<jump_thread_edge *> *path = m_registry->allocate_thread_path ();

	/* Record whether or not we were able to thread through a successor
	   of E->dest.  */
	jump_thread_edge *x
	  = m_registry->allocate_thread_edge (e, EDGE_START_JUMP_THREAD);
	path->safe_push (x);

	x = m_registry->allocate_thread_edge (taken_edge,
					      EDGE_COPY_SRC_JOINER_BLOCK);
	path->safe_push (x);
	found = thread_around_empty_blocks (path, taken_edge, visited);

	if (!found)
	  found = thread_through_normal_block (path,
					       path->last ()->e, visited) > 0;

	/* If we were able to thread through a successor of E->dest, then
	   record the jump threading opportunity.  */
	if (found
	    || edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (e))
	  {
	    if (taken_edge->dest != path->last ()->e->dest)
	      propagate_threaded_block_debug_into (path->last ()->e->dest,
						   taken_edge->dest);
	    m_registry->register_jump_thread (path);
	  }
	else
	  path->release ();

	m_state->pop ();
      }
    BITMAP_FREE (visited);
  }

  m_state->pop ();
}

/* Return TRUE if BB has a single successor to a block with multiple
   incoming and outgoing edges.  */

bool
single_succ_to_potentially_threadable_block (basic_block bb)
{
  int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
  return (single_succ_p (bb)
	  && (single_succ_edge (bb)->flags & flags) == 0
	  && potentially_threadable_block (single_succ (bb)));
}

/* Examine the outgoing edges from BB and conditionally
   try to thread them.  */

void
jump_threader::thread_outgoing_edges (basic_block bb)
{
  int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
  gimple *last;

  /* If we have an outgoing edge to a block with multiple incoming and
     outgoing edges, then we may be able to thread the edge, i.e., we
     may be able to statically determine which of the outgoing edges
     will be traversed when the incoming edge from BB is traversed.  */
  if (single_succ_to_potentially_threadable_block (bb))
    thread_across_edge (single_succ_edge (bb));
  else if ((last = last_stmt (bb))
	   && gimple_code (last) == GIMPLE_COND
	   && EDGE_COUNT (bb->succs) == 2
	   && (EDGE_SUCC (bb, 0)->flags & flags) == 0
	   && (EDGE_SUCC (bb, 1)->flags & flags) == 0)
    {
      edge true_edge, false_edge;

      extract_true_false_edges_from_block (bb, &true_edge, &false_edge);

      /* Only try to thread the edge if it reaches a target block with
	 more than one predecessor and more than one successor.  */
      if (potentially_threadable_block (true_edge->dest))
	thread_across_edge (true_edge);

      /* Similarly for the ELSE arm.  */
      if (potentially_threadable_block (false_edge->dest))
	thread_across_edge (false_edge);
    }
}

jt_state::jt_state (const_and_copies *copies,
		    avail_exprs_stack *exprs,
		    evrp_range_analyzer *evrp)
{
  m_copies = copies;
  m_exprs = exprs;
  m_evrp = evrp;
}

// Record that E is being crossed.

void
jt_state::push (edge)
{
  if (m_copies)
    m_copies->push_marker ();
  if (m_exprs)
    m_exprs->push_marker ();
  if (m_evrp)
    m_evrp->push_marker ();
}

// Pop to the last pushed state.

void
jt_state::pop ()
{
  if (m_copies)
    m_copies->pop_to_marker ();
  if (m_exprs)
    m_exprs->pop_to_marker ();
  if (m_evrp)
    m_evrp->pop_to_marker ();
}

// Record an equivalence from DST to SRC.  If UPDATE_RANGE is TRUE,
// update the value range associated with DST.

void
jt_state::register_equiv (tree dst, tree src, bool update_range)
{
  if (m_copies)
    m_copies->record_const_or_copy (dst, src);

  /* If requested, update the value range associated with DST, using
     the range from SRC.  */
  if (m_evrp && update_range)
    {
      /* Get new VR we can pass to push_value_range.  */
      value_range_equiv *new_vr = m_evrp->allocate_value_range_equiv ();
      new (new_vr) value_range_equiv ();

      /* There are three cases to consider:

	 First if SRC is an SSA_NAME, then we can copy the value range
	 from SRC into NEW_VR.

	 Second if SRC is an INTEGER_CST, then we can just set NEW_VR
	 to a singleton range.  Note that even if SRC is a constant we
	 need to set a suitable output range so that VR_UNDEFINED
	 ranges do not leak through.

	 Otherwise set NEW_VR to varying.  This may be overly
	 conservative.  */
      if (TREE_CODE (src) == SSA_NAME)
	new_vr->deep_copy (m_evrp->get_value_range (src));
      else if (TREE_CODE (src) == INTEGER_CST)
	new_vr->set (src);
      else
	new_vr->set_varying (TREE_TYPE (src));

      /* This is a temporary range for DST, so push it.  */
      m_evrp->push_value_range (dst, new_vr);
    }
}

// Record any ranges calculated in STMT.  If TEMPORARY is TRUE, then
// this is a temporary equivalence and should be recorded into the
// unwind table, instead of the global table.

void
jt_state::record_ranges_from_stmt (gimple *stmt, bool temporary)
{
  if (m_evrp)
    m_evrp->record_ranges_from_stmt (stmt, temporary);
}

// Record any equivalences created by traversing E.

void
jt_state::register_equivs_on_edge (edge e)
{
  if (m_copies && m_exprs)
    record_temporary_equivalences (e, m_copies, m_exprs);
}

jump_threader_simplifier::jump_threader_simplifier (vr_values *v)
{
  m_vr_values = v;
}

// Return the singleton that resolves STMT, if it is possible to
// simplify it.
//
// STMT may be a dummy statement, not necessarily in the CFG, in which
// case WITHIN_STMT can be used to determine the position in the CFG
// where STMT should be evaluated as being in.

tree
jump_threader_simplifier::simplify (gimple *stmt,
				    gimple *within_stmt,
				    basic_block,
				    jt_state *)
{
  if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
    {
      simplify_using_ranges simplifier (m_vr_values);
      return simplifier.vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
						  gimple_cond_lhs (cond_stmt),
						  gimple_cond_rhs (cond_stmt),
						  within_stmt);
    }
  if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
    {
      tree op = gimple_switch_index (switch_stmt);
      if (TREE_CODE (op) != SSA_NAME)
	return NULL_TREE;

      const value_range_equiv *vr = m_vr_values->get_value_range (op);
      return find_case_label_range (switch_stmt, vr);
    }
   if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
    {
      tree lhs = gimple_assign_lhs (assign_stmt);
      if (TREE_CODE (lhs) == SSA_NAME
	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
	  && stmt_interesting_for_vrp (stmt))
	{
	  edge dummy_e;
	  tree dummy_tree;
	  value_range_equiv new_vr;
	  m_vr_values->extract_range_from_stmt (stmt, &dummy_e, &dummy_tree,
						&new_vr);
	  tree singleton;
	  if (new_vr.singleton_p (&singleton))
	    return singleton;
	}
    }
   return NULL;
}