aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-structalias.cc
blob: bb19123a6a11f024a83fffe8ca99f55d05275f5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
/* Tree based points-to analysis
   Copyright (C) 2005-2025 Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dberlin@dberlin.org>

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   GCC is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "tree-pretty-print.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "stmt.h"
#include "gimple-iterator.h"
#include "tree-into-ssa.h"
#include "tree-dfa.h"
#include "gimple-walk.h"
#include "varasm.h"
#include "stringpool.h"
#include "attribs.h"
#include "tree-ssa.h"
#include "tree-cfg.h"
#include "gimple-range.h"
#include "ipa-modref-tree.h"
#include "ipa-modref.h"
#include "attr-fnspec.h"

#include "tree-ssa-structalias.h"
#include "pta-andersen.h"
#include "gimple-ssa-pta-constraints.h"

/* The idea behind this analyzer is to generate set constraints from the
   program, then solve the resulting constraints in order to generate the
   points-to sets.

   Set constraints are a way of modeling program analysis problems that
   involve sets.  They consist of an inclusion constraint language,
   describing the variables (each variable is a set) and operations that
   are involved on the variables, and a set of rules that derive facts
   from these operations.  To solve a system of set constraints, you derive
   all possible facts under the rules, which gives you the correct sets
   as a consequence.

   See  "Efficient Field-sensitive pointer analysis for C" by "David
   J. Pearce and Paul H. J. Kelly and Chris Hankin", at
   http://citeseer.ist.psu.edu/pearce04efficient.html

   Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
   of C Code in a Second" by "Nevin Heintze and Olivier Tardieu" at
   http://citeseer.ist.psu.edu/heintze01ultrafast.html

   There are three types of real constraint expressions, DEREF,
   ADDRESSOF, and SCALAR.  Each constraint expression consists
   of a constraint type, a variable, and an offset.

   SCALAR is a constraint expression type used to represent x, whether
   it appears on the LHS or the RHS of a statement.
   DEREF is a constraint expression type used to represent *x, whether
   it appears on the LHS or the RHS of a statement.
   ADDRESSOF is a constraint expression used to represent &x, whether
   it appears on the LHS or the RHS of a statement.

   Each pointer variable in the program is assigned an integer id, and
   each field of a structure variable is assigned an integer id as well.

   Structure variables are linked to their list of fields through a "next
   field" in each variable that points to the next field in offset
   order.
   Each variable for a structure field has

   1. "size", that tells the size in bits of that field.
   2. "fullsize", that tells the size in bits of the entire structure.
   3. "offset", that tells the offset in bits from the beginning of the
   structure to this field.

   Thus,
   struct f
   {
     int a;
     int b;
   } foo;
   int *bar;

   looks like

   foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
   foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
   bar -> id 3, size 32, offset 0, fullsize 32, next NULL


  In order to solve the system of set constraints, the following is
  done:

  1. Each constraint variable x has a solution set associated with it,
  Sol(x).

  2. Constraints are separated into direct, copy, and complex.
  Direct constraints are ADDRESSOF constraints that require no extra
  processing, such as P = &Q
  Copy constraints are those of the form P = Q.
  Complex constraints are all the constraints involving dereferences
  and offsets (including offsetted copies).

  3. All direct constraints of the form P = &Q are processed, such
  that Q is added to Sol(P)

  4. All complex constraints for a given constraint variable are stored in a
  linked list attached to that variable's node.

  5. A directed graph is built out of the copy constraints. Each
  constraint variable is a node in the graph, and an edge from
  Q to P is added for each copy constraint of the form P = Q

  6. The graph is then walked, and solution sets are
  propagated along the copy edges, such that an edge from Q to P
  causes Sol(P) <- Sol(P) union Sol(Q).

  7.  As we visit each node, all complex constraints associated with
  that node are processed by adding appropriate copy edges to the graph, or the
  appropriate variables to the solution set.

  8. The process of walking the graph is iterated until no solution
  sets change.

  Prior to walking the graph in steps 6 and 7, We perform static
  cycle elimination on the constraint graph, as well
  as off-line variable substitution.

  TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
  on and turned into anything), but isn't.  You can just see what offset
  inside the pointed-to struct it's going to access.

  TODO: Constant bounded arrays can be handled as if they were structs of the
  same number of elements.

  TODO: Modeling heap and incoming pointers becomes much better if we
  add fields to them as we discover them, which we could do.

  TODO: We could handle unions, but to be honest, it's probably not
  worth the pain or slowdown.  */

/* IPA-PTA optimizations possible.

   When the indirect function called is ANYTHING we can add disambiguation
   based on the function signatures (or simply the parameter count which
   is the varinfo size).  We also do not need to consider functions that
   do not have their address taken.

   The is_global_var bit which marks escape points is overly conservative
   in IPA mode.  Split it to is_escape_point and is_global_var - only
   externally visible globals are escape points in IPA mode.
   There is now is_ipa_escape_point but this is only used in a few
   selected places.

   The way we introduce DECL_PT_UID to avoid fixing up all points-to
   sets in the translation unit when we copy a DECL during inlining
   pessimizes precision.  The advantage is that the DECL_PT_UID keeps
   compile-time and memory usage overhead low - the points-to sets
   do not grow or get unshared as they would during a fixup phase.
   An alternative solution is to delay IPA PTA until after all
   inlining transformations have been applied.

   The way we propagate clobber/use information isn't optimized.
   It should use a new complex constraint that properly filters
   out local variables of the callee (though that would make
   the sets invalid after inlining).  OTOH we might as well
   admit defeat to WHOPR and simply do all the clobber/use analysis
   and propagation after PTA finished but before we threw away
   points-to information for memory variables.  WHOPR and PTA
   do not play along well anyway - the whole constraint solving
   would need to be done in WPA phase and it will be very interesting
   to apply the results to local SSA names during LTRANS phase.

   We probably should compute a per-function unit-ESCAPE solution
   propagating it simply like the clobber / uses solutions.  The
   solution can go alongside the non-IPA escaped solution and be
   used to query which vars escape the unit through a function.
   This is also required to make the escaped-HEAP trick work in IPA mode.

   We never put function decls in points-to sets so we do not
   keep the set of called functions for indirect calls.

   And probably more.  */

using namespace pointer_analysis;

/* Pool of variable info structures.  */
static object_allocator<variable_info> variable_info_pool
  ("Variable info pool");

/* Map varinfo to final pt_solution.  */
static hash_map<varinfo_t, pt_solution *> *final_solutions;
static struct obstack final_solutions_obstack;


namespace pointer_analysis {

bool use_field_sensitive = true;
int in_ipa_mode = 0;

/* Used for points-to sets.  */
bitmap_obstack pta_obstack;

/* Used for oldsolution members of variables.  */
bitmap_obstack oldpta_obstack;

/* Table of variable info structures for constraint variables.
   Indexed directly by variable info id.  */
vec<varinfo_t> varmap;

/* List of constraints that we use to build the constraint graph from.  */
vec<constraint_t> constraints;

/* The representative variable for a variable.  The points-to solution for a
   var can be found in its rep.  Trivially, a var can be its own rep.

   The solver provides this array once it is done solving.  */
unsigned int *var_rep;

struct constraint_stats stats;

/* Find the first varinfo in the same variable as START that overlaps with
   OFFSET.  Return NULL if we can't find one.  */

varinfo_t
first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
{
  /* If the offset is outside of the variable, bail out.  */
  if (offset >= start->fullsize)
    return NULL;

  /* If we cannot reach offset from start, lookup the first field
     and start from there.  */
  if (start->offset > offset)
    start = get_varinfo (start->head);

  while (start)
    {
      /* We may not find a variable in the field list with the actual
	 offset when we have glommed a structure to a variable.
	 In that case, however, offset should still be within the size
	 of the variable.  */
      if (offset >= start->offset
	  && (offset - start->offset) < start->size)
	return start;

      start = vi_next (start);
    }

  return NULL;
}

/* Find the first varinfo in the same variable as START that overlaps with
   OFFSET.  If there is no such varinfo the varinfo directly preceding
   OFFSET is returned.  */

varinfo_t
first_or_preceding_vi_for_offset (varinfo_t start,
				  unsigned HOST_WIDE_INT offset)
{
  /* If we cannot reach offset from start, lookup the first field
     and start from there.  */
  if (start->offset > offset)
    start = get_varinfo (start->head);

  /* We may not find a variable in the field list with the actual
     offset when we have glommed a structure to a variable.
     In that case, however, offset should still be within the size
     of the variable.
     If we got beyond the offset we look for return the field
     directly preceding offset which may be the last field.  */
  while (start->next
	 && offset >= start->offset
	 && !((offset - start->offset) < start->size))
    start = vi_next (start);

  return start;
}

/* Determine global memory access of call STMT and update
   WRITES_GLOBAL_MEMORY, READS_GLOBAL_MEMORY and USES_GLOBAL_MEMORY.  */

void
determine_global_memory_access (gcall *stmt,
				bool *writes_global_memory,
				bool *reads_global_memory,
				bool *uses_global_memory)
{
  tree callee;
  cgraph_node *node;
  modref_summary *summary;

  /* We need to detrmine reads to set uses.  */
  gcc_assert (!uses_global_memory || reads_global_memory);

  if ((callee = gimple_call_fndecl (stmt)) != NULL_TREE
      && (node = cgraph_node::get (callee)) != NULL
      && (summary = get_modref_function_summary (node)))
    {
      if (writes_global_memory && *writes_global_memory)
	*writes_global_memory = summary->global_memory_written;
      if (reads_global_memory && *reads_global_memory)
	*reads_global_memory = summary->global_memory_read;
      if (reads_global_memory && uses_global_memory
	  && !summary->calls_interposable
	  && !*reads_global_memory && node->binds_to_current_def_p ())
	*uses_global_memory = false;
    }
  if ((writes_global_memory && *writes_global_memory)
      || (uses_global_memory && *uses_global_memory)
      || (reads_global_memory && *reads_global_memory))
    {
      attr_fnspec fnspec = gimple_call_fnspec (stmt);
      if (fnspec.known_p ())
	{
	  if (writes_global_memory
	      && !fnspec.global_memory_written_p ())
	    *writes_global_memory = false;
	  if (reads_global_memory && !fnspec.global_memory_read_p ())
	    {
	      *reads_global_memory = false;
	      if (uses_global_memory)
		*uses_global_memory = false;
	    }
	}
    }
}

/* Return true if FNDECL may be part of another lto partition.  */

bool
fndecl_maybe_in_other_partition (tree fndecl)
{
  cgraph_node *fn_node = cgraph_node::get (fndecl);
  if (fn_node == NULL)
    return true;

  return fn_node->in_other_partition;
}

/* Return a new variable info structure consisting for a variable
   named NAME, and using constraint graph node NODE.  Append it
   to the vector of variable info structures.  */

varinfo_t
new_var_info (tree t, const char *name, bool add_id)
{
  unsigned index = varmap.length ();
  varinfo_t ret = variable_info_pool.allocate ();

  if (dump_file && add_id)
    {
      char *tempname = xasprintf ("%s(%d)", name, index);
      name = ggc_strdup (tempname);
      free (tempname);
    }

  ret->id = index;
  ret->name = name;
  ret->decl = t;
  /* Vars without decl are artificial and do not have sub-variables.  */
  ret->is_artificial_var = (t == NULL_TREE);
  ret->is_special_var = false;
  ret->is_unknown_size_var = false;
  ret->is_full_var = (t == NULL_TREE);
  ret->is_heap_var = false;
  ret->may_have_pointers = true;
  ret->only_restrict_pointers = false;
  ret->is_restrict_var = false;
  ret->ruid = 0;
  ret->is_global_var = (t == NULL_TREE);
  ret->is_ipa_escape_point = false;
  ret->is_fn_info = false;
  ret->address_taken = false;
  if (t && DECL_P (t))
    ret->is_global_var = (is_global_var (t)
			  /* We have to treat even local register variables
			     as escape points.  */
			  || (VAR_P (t) && DECL_HARD_REGISTER (t)));
  ret->is_reg_var = (t && TREE_CODE (t) == SSA_NAME);
  ret->solution = BITMAP_ALLOC (&pta_obstack);
  ret->oldsolution = NULL;
  ret->next = 0;
  ret->shadow_var_uid = 0;
  ret->head = ret->id;

  stats.total_vars++;

  varmap.safe_push (ret);

  return ret;
}

/* Print out constraint C to FILE.  */

void
dump_constraint (FILE *file, constraint_t c)
{
  if (c->lhs.type == ADDRESSOF)
    fprintf (file, "&");
  else if (c->lhs.type == DEREF)
    fprintf (file, "*");
  if (dump_file)
    fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
  else
    fprintf (file, "V%d", c->lhs.var);
  if (c->lhs.offset == UNKNOWN_OFFSET)
    fprintf (file, " + UNKNOWN");
  else if (c->lhs.offset != 0)
    fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
  fprintf (file, " = ");
  if (c->rhs.type == ADDRESSOF)
    fprintf (file, "&");
  else if (c->rhs.type == DEREF)
    fprintf (file, "*");
  if (dump_file)
    fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
  else
    fprintf (file, "V%d", c->rhs.var);
  if (c->rhs.offset == UNKNOWN_OFFSET)
    fprintf (file, " + UNKNOWN");
  else if (c->rhs.offset != 0)
    fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
}

/* Print out constraint C to stderr.  */

DEBUG_FUNCTION void
debug_constraint (constraint_t c)
{
  dump_constraint (stderr, c);
  fprintf (stderr, "\n");
}

/* Print out all constraints to FILE.  */

void
dump_constraints (FILE *file, int from)
{
  int i;
  constraint_t c;
  for (i = from; constraints.iterate (i, &c); i++)
    if (c)
      {
	dump_constraint (file, c);
	fprintf (file, "\n");
      }
}

/* Print out all constraints to stderr.  */

DEBUG_FUNCTION void
debug_constraints (void)
{
  dump_constraints (stderr, 0);
}

/* Print out the points-to solution for VAR to FILE.  */

void
dump_solution_for_var (FILE *file, unsigned int var)
{
  varinfo_t vi = get_varinfo (var);
  unsigned int i;
  bitmap_iterator bi;

  /* Dump the solution for unified vars anyway, this avoids difficulties
     in scanning dumps in the testsuite.  */
  fprintf (file, "%s = { ", vi->name);
  vi = get_varinfo (var_rep[var]);
  EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
    fprintf (file, "%s ", get_varinfo (i)->name);
  fprintf (file, "}");

  /* But note when the variable was unified.  */
  if (vi->id != var)
    fprintf (file, " same as %s", vi->name);

  fprintf (file, "\n");
}

/* Print the points-to solution for VAR to stderr.  */

DEBUG_FUNCTION void
debug_solution_for_var (unsigned int var)
{
  dump_solution_for_var (stderr, var);
}

/* Dump stats information to OUTFILE.  */

void
dump_sa_stats (FILE *outfile)
{
  fprintf (outfile, "Points-to Stats:\n");
  fprintf (outfile, "Total vars:               %d\n", stats.total_vars);
  fprintf (outfile, "Non-pointer vars:          %d\n",
	   stats.nonpointer_vars);
  fprintf (outfile, "Statically unified vars:  %d\n",
	   stats.unified_vars_static);
  fprintf (outfile, "Dynamically unified vars: %d\n",
	   stats.unified_vars_dynamic);
  fprintf (outfile, "Iterations:               %d\n", stats.iterations);
  fprintf (outfile, "Number of edges:          %d\n", stats.num_edges);
  fprintf (outfile, "Number of implicit edges: %d\n",
	   stats.num_implicit_edges);
  fprintf (outfile, "Number of avoided edges: %d\n",
	   stats.num_avoided_edges);
}

/* Dump points-to information to OUTFILE.  */

void
dump_sa_points_to_info (FILE *outfile)
{
  fprintf (outfile, "\nPoints-to sets\n\n");

  for (unsigned i = 1; i < varmap.length (); i++)
    {
      varinfo_t vi = get_varinfo (i);
      if (!vi->may_have_pointers)
	continue;
      dump_solution_for_var (outfile, i);
    }
}


/* Debug points-to information to stderr.  */

DEBUG_FUNCTION void
debug_sa_points_to_info (void)
{
  dump_sa_points_to_info (stderr);
}

/* Dump varinfo VI to FILE.  */

void
dump_varinfo (FILE *file, varinfo_t vi)
{
  if (vi == NULL)
    return;

  fprintf (file, "%u: %s\n", vi->id, vi->name);

  const char *sep = " ";
  if (vi->is_artificial_var)
    fprintf (file, "%sartificial", sep);
  if (vi->is_special_var)
    fprintf (file, "%sspecial", sep);
  if (vi->is_unknown_size_var)
    fprintf (file, "%sunknown-size", sep);
  if (vi->is_full_var)
    fprintf (file, "%sfull", sep);
  if (vi->is_heap_var)
    fprintf (file, "%sheap", sep);
  if (vi->may_have_pointers)
    fprintf (file, "%smay-have-pointers", sep);
  if (vi->only_restrict_pointers)
    fprintf (file, "%sonly-restrict-pointers", sep);
  if (vi->is_restrict_var)
    fprintf (file, "%sis-restrict-var", sep);
  if (vi->is_global_var)
    fprintf (file, "%sglobal", sep);
  if (vi->is_ipa_escape_point)
    fprintf (file, "%sipa-escape-point", sep);
  if (vi->is_fn_info)
    fprintf (file, "%sfn-info", sep);
  if (vi->ruid)
    fprintf (file, "%srestrict-uid:%u", sep, vi->ruid);
  if (vi->next)
    fprintf (file, "%snext:%u", sep, vi->next);
  if (vi->head != vi->id)
    fprintf (file, "%shead:%u", sep, vi->head);
  if (vi->offset)
    fprintf (file, "%soffset:" HOST_WIDE_INT_PRINT_DEC, sep, vi->offset);
  if (vi->size != ~HOST_WIDE_INT_0U)
    fprintf (file, "%ssize:" HOST_WIDE_INT_PRINT_DEC, sep, vi->size);
  if (vi->fullsize != ~HOST_WIDE_INT_0U && vi->fullsize != vi->size)
    fprintf (file, "%sfullsize:" HOST_WIDE_INT_PRINT_DEC, sep,
	     vi->fullsize);
  fprintf (file, "\n");

  if (vi->solution && !bitmap_empty_p (vi->solution))
    {
      bitmap_iterator bi;
      unsigned i;
      fprintf (file, " solution: {");
      EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
	fprintf (file, " %u", i);
      fprintf (file, " }\n");
    }

  if (vi->oldsolution && !bitmap_empty_p (vi->oldsolution)
      && !bitmap_equal_p (vi->solution, vi->oldsolution))
    {
      bitmap_iterator bi;
      unsigned i;
      fprintf (file, " oldsolution: {");
      EXECUTE_IF_SET_IN_BITMAP (vi->oldsolution, 0, i, bi)
	fprintf (file, " %u", i);
      fprintf (file, " }\n");
    }
}

/* Dump varinfo VI to stderr.  */

DEBUG_FUNCTION void
debug_varinfo (varinfo_t vi)
{
  dump_varinfo (stderr, vi);
}

/* Dump varmap to FILE.  */

void
dump_varmap (FILE *file)
{
  if (varmap.length () == 0)
    return;

  fprintf (file, "variables:\n");

  for (unsigned int i = 0; i < varmap.length (); ++i)
    {
      varinfo_t vi = get_varinfo (i);
      dump_varinfo (file, vi);
    }

  fprintf (file, "\n");
}

/* Dump varmap to stderr.  */

DEBUG_FUNCTION void
debug_varmap (void)
{
  dump_varmap (stderr);
}

} // namespace pointer_analysis


/* Structure used to put solution bitmaps in a hashtable so they can
   be shared among variables with the same points-to set.  */

typedef struct shared_bitmap_info
{
  bitmap pt_vars;
  hashval_t hashcode;
} *shared_bitmap_info_t;
typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;

/* Shared_bitmap hashtable helpers.  */

struct shared_bitmap_hasher : free_ptr_hash <shared_bitmap_info>
{
  static inline hashval_t hash (const shared_bitmap_info *);
  static inline bool equal (const shared_bitmap_info *,
			    const shared_bitmap_info *);
};

/* Hash function for a shared_bitmap_info_t.  */

inline hashval_t
shared_bitmap_hasher::hash (const shared_bitmap_info *bi)
{
  return bi->hashcode;
}

/* Equality function for two shared_bitmap_info_t's.  */

inline bool
shared_bitmap_hasher::equal (const shared_bitmap_info *sbi1,
			     const shared_bitmap_info *sbi2)
{
  return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
}

/* Shared_bitmap hashtable.  */

static hash_table<shared_bitmap_hasher> *shared_bitmap_table;

/* Lookup a bitmap in the shared bitmap hashtable, and return an already
   existing instance if there is one, NULL otherwise.  */

static bitmap
shared_bitmap_lookup (bitmap pt_vars)
{
  shared_bitmap_info **slot;
  struct shared_bitmap_info sbi;

  sbi.pt_vars = pt_vars;
  sbi.hashcode = bitmap_hash (pt_vars);

  slot = shared_bitmap_table->find_slot (&sbi, NO_INSERT);
  if (!slot)
    return NULL;
  else
    return (*slot)->pt_vars;
}

/* Add a bitmap to the shared bitmap hashtable.  */

static void
shared_bitmap_add (bitmap pt_vars)
{
  shared_bitmap_info **slot;
  shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);

  sbi->pt_vars = pt_vars;
  sbi->hashcode = bitmap_hash (pt_vars);

  slot = shared_bitmap_table->find_slot (sbi, INSERT);
  gcc_assert (!*slot);
  *slot = sbi;
}

/* Set bits in INTO corresponding to the variable uids in solution set FROM.  */

static void
set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt,
		   tree fndecl)
{
  unsigned int i;
  bitmap_iterator bi;
  varinfo_t escaped_vi = get_varinfo (var_rep[escaped_id]);
  varinfo_t escaped_return_vi = get_varinfo (var_rep[escaped_return_id]);
  bool everything_escaped
    = escaped_vi->solution && bitmap_bit_p (escaped_vi->solution, anything_id);

  EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
    {
      varinfo_t vi = get_varinfo (i);

      if (vi->is_artificial_var)
	continue;

      if (everything_escaped
	  || (escaped_vi->solution
	      && bitmap_bit_p (escaped_vi->solution, i)))
	{
	  pt->vars_contains_escaped = true;
	  pt->vars_contains_escaped_heap |= vi->is_heap_var;
	}
      if (escaped_return_vi->solution
	  && bitmap_bit_p (escaped_return_vi->solution, i))
	pt->vars_contains_escaped_heap |= vi->is_heap_var;

      if (vi->is_restrict_var)
	pt->vars_contains_restrict = true;

      if (VAR_P (vi->decl)
	  || TREE_CODE (vi->decl) == PARM_DECL
	  || TREE_CODE (vi->decl) == RESULT_DECL)
	{
	  /* If we are in IPA mode we will not recompute points-to
	     sets after inlining so make sure they stay valid.  */
	  if (in_ipa_mode
	      && !DECL_PT_UID_SET_P (vi->decl))
	    SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));

	  /* Add the decl to the points-to set.  Note that the points-to
	     set contains global variables.  */
	  bitmap_set_bit (into, DECL_PT_UID (vi->decl));
	  if (vi->is_global_var
	      /* In IPA mode the escaped_heap trick doesn't work as
		 ESCAPED is escaped from the unit but
		 pt_solution_includes_global needs to answer true for
		 all variables not automatic within a function.
		 For the same reason is_global_var is not the
		 correct flag to track - local variables from other
		 functions also need to be considered global.
		 Conveniently all HEAP vars are not put in function
		 scope.  */
	      || (in_ipa_mode
		  && fndecl
		  && ! auto_var_in_fn_p (vi->decl, fndecl)))
	    pt->vars_contains_nonlocal = true;

	  /* If we have a variable that is interposable record that fact
	     for pointer comparison simplification.  */
	  if (VAR_P (vi->decl)
	      && (TREE_STATIC (vi->decl) || DECL_EXTERNAL (vi->decl))
	      && ! decl_binds_to_current_def_p (vi->decl))
	    pt->vars_contains_interposable = true;

	  /* If this is a local variable we can have overlapping lifetime
	     of different function invocations through recursion duplicate
	     it with its shadow variable.  */
	  if (in_ipa_mode
	      && vi->shadow_var_uid != 0)
	    {
	      bitmap_set_bit (into, vi->shadow_var_uid);
	      pt->vars_contains_nonlocal = true;
	    }
	}

      else if (TREE_CODE (vi->decl) == FUNCTION_DECL
	       || TREE_CODE (vi->decl) == LABEL_DECL)
	{
	  /* Nothing should read/write from/to code so we can
	     save bits by not including them in the points-to bitmaps.
	     Still mark the points-to set as containing global memory
	     to make code-patching possible - see PR70128.  */
	  pt->vars_contains_nonlocal = true;
	}
    }
}


/* Compute the points-to solution *PT for the variable VI.  */

static struct pt_solution
find_what_var_points_to (tree fndecl, varinfo_t orig_vi)
{
  unsigned int i;
  bitmap_iterator bi;
  bitmap finished_solution;
  bitmap result;
  varinfo_t vi;
  struct pt_solution *pt;

  /* This variable may have been collapsed, let's get the real
     variable.  */
  vi = get_varinfo (var_rep[orig_vi->id]);

  /* See if we have already computed the solution and return it.  */
  pt_solution **slot = &final_solutions->get_or_insert (vi);
  if (*slot != NULL)
    return **slot;

  *slot = pt = XOBNEW (&final_solutions_obstack, struct pt_solution);
  memset (pt, 0, sizeof (struct pt_solution));

  /* Translate artificial variables into SSA_NAME_PTR_INFO
     attributes.  */
  EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
    {
      varinfo_t vi = get_varinfo (i);

      if (vi->is_artificial_var)
	{
	  if (vi->id == nothing_id)
	    pt->null = 1;
	  else if (vi->id == escaped_id)
	    {
	      if (in_ipa_mode)
		pt->ipa_escaped = 1;
	      else
		pt->escaped = 1;
	      /* Expand some special vars of ESCAPED in-place here.  */
	      varinfo_t evi = get_varinfo (var_rep[escaped_id]);
	      if (bitmap_bit_p (evi->solution, nonlocal_id))
		pt->nonlocal = 1;
	    }
	  else if (vi->id == nonlocal_id)
	    pt->nonlocal = 1;
	  else if (vi->id == string_id)
	    pt->const_pool = 1;
	  else if (vi->id == anything_id
		   || vi->id == integer_id)
	    pt->anything = 1;
	}
    }

  /* Instead of doing extra work, simply do not create
     elaborate points-to information for pt_anything pointers.  */
  if (pt->anything)
    return *pt;

  /* Share the final set of variables when possible.  */
  finished_solution = BITMAP_GGC_ALLOC ();
  stats.points_to_sets_created++;

  set_uids_in_ptset (finished_solution, vi->solution, pt, fndecl);
  result = shared_bitmap_lookup (finished_solution);
  if (!result)
    {
      shared_bitmap_add (finished_solution);
      pt->vars = finished_solution;
    }
  else
    {
      pt->vars = result;
      bitmap_clear (finished_solution);
    }

  return *pt;
}

/* Given a pointer variable P, fill in its points-to set.  */

static void
find_what_p_points_to (tree fndecl, tree p)
{
  struct ptr_info_def *pi;
  tree lookup_p = p;
  varinfo_t vi;
  prange vr;
  get_range_query (DECL_STRUCT_FUNCTION (fndecl))->range_of_expr (vr, p);
  bool nonnull = vr.nonzero_p ();

  /* For parameters, get at the points-to set for the actual parm
     decl.  */
  if (TREE_CODE (p) == SSA_NAME
      && SSA_NAME_IS_DEFAULT_DEF (p)
      && (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
	  || TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL))
    lookup_p = SSA_NAME_VAR (p);

  vi = lookup_vi_for_tree (lookup_p);
  if (!vi)
    return;

  pi = get_ptr_info (p);
  pi->pt = find_what_var_points_to (fndecl, vi);
  /* Conservatively set to NULL from PTA (to true). */
  pi->pt.null = 1;
  /* Preserve pointer nonnull globally computed.  */
  if (nonnull)
    set_ptr_nonnull (p);
}


/* Query statistics for points-to solutions.  */

static struct {
  unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
  unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
  unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
  unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
} pta_stats;

void
dump_pta_stats (FILE *s)
{
  fprintf (s, "\nPTA query stats:\n");
  fprintf (s, "  pt_solution_includes: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   pta_stats.pt_solution_includes_no_alias,
	   pta_stats.pt_solution_includes_no_alias
	   + pta_stats.pt_solution_includes_may_alias);
  fprintf (s, "  pt_solutions_intersect: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   pta_stats.pt_solutions_intersect_no_alias,
	   pta_stats.pt_solutions_intersect_no_alias
	   + pta_stats.pt_solutions_intersect_may_alias);
}


/* Reset the points-to solution *PT to a conservative default
   (point to anything).  */

void
pt_solution_reset (struct pt_solution *pt)
{
  memset (pt, 0, sizeof (struct pt_solution));
  pt->anything = true;
  pt->null = true;
}

/* Set the points-to solution *PT to point only to the variables
   in VARS.  VARS_CONTAINS_GLOBAL specifies whether that contains
   global variables and VARS_CONTAINS_RESTRICT specifies whether
   it contains restrict tag variables.  */

void
pt_solution_set (struct pt_solution *pt, bitmap vars,
		 bool vars_contains_nonlocal)
{
  memset (pt, 0, sizeof (struct pt_solution));
  pt->vars = vars;
  pt->vars_contains_nonlocal = vars_contains_nonlocal;
  pt->vars_contains_escaped
    = (cfun->gimple_df->escaped.anything
       || bitmap_intersect_p (cfun->gimple_df->escaped.vars, vars));
}

/* Set the points-to solution *PT to point only to the variable VAR.  */

void
pt_solution_set_var (struct pt_solution *pt, tree var)
{
  memset (pt, 0, sizeof (struct pt_solution));
  pt->vars = BITMAP_GGC_ALLOC ();
  bitmap_set_bit (pt->vars, DECL_PT_UID (var));
  pt->vars_contains_nonlocal = is_global_var (var);
  pt->vars_contains_escaped
    = (cfun->gimple_df->escaped.anything
       || bitmap_bit_p (cfun->gimple_df->escaped.vars, DECL_PT_UID (var)));
}

/* Computes the union of the points-to solutions *DEST and *SRC and
   stores the result in *DEST.  This changes the points-to bitmap
   of *DEST and thus may not be used if that might be shared.
   The points-to bitmap of *SRC and *DEST will not be shared after
   this function if they were not before.  */

static void
pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
{
  dest->anything |= src->anything;
  if (dest->anything)
    {
      pt_solution_reset (dest);
      return;
    }

  dest->nonlocal |= src->nonlocal;
  dest->escaped |= src->escaped;
  dest->ipa_escaped |= src->ipa_escaped;
  dest->null |= src->null;
  dest->const_pool |= src->const_pool ;
  dest->vars_contains_nonlocal |= src->vars_contains_nonlocal;
  dest->vars_contains_escaped |= src->vars_contains_escaped;
  dest->vars_contains_escaped_heap |= src->vars_contains_escaped_heap;
  if (!src->vars)
    return;

  if (!dest->vars)
    dest->vars = BITMAP_GGC_ALLOC ();
  bitmap_ior_into (dest->vars, src->vars);
}

/* Return true if the points-to solution *PT is empty.  */

bool
pt_solution_empty_p (const pt_solution *pt)
{
  if (pt->anything
      || pt->nonlocal)
    return false;

  if (pt->vars
      && !bitmap_empty_p (pt->vars))
    return false;

  /* If the solution includes ESCAPED, check if that is empty.  */
  if (pt->escaped
      && !pt_solution_empty_p (&cfun->gimple_df->escaped))
    return false;

  /* If the solution includes ESCAPED, check if that is empty.  */
  if (pt->ipa_escaped
      && !pt_solution_empty_p (&ipa_escaped_pt))
    return false;

  return true;
}

/* Return true if the points-to solution *PT only point to a single var, and
   return the var uid in *UID.  */

bool
pt_solution_singleton_or_null_p (struct pt_solution *pt, unsigned *uid)
{
  if (pt->anything || pt->nonlocal || pt->escaped || pt->ipa_escaped
      || pt->vars == NULL
      || !bitmap_single_bit_set_p (pt->vars))
    return false;

  *uid = bitmap_first_set_bit (pt->vars);
  return true;
}

/* Return true if the points-to solution *PT includes global memory.
   If ESCAPED_LOCAL_P is true then escaped local variables are also
   considered global.  */

bool
pt_solution_includes_global (struct pt_solution *pt, bool escaped_local_p)
{
  if (pt->anything
      || pt->nonlocal
      || pt->vars_contains_nonlocal
      /* The following is a hack to make the malloc escape hack work.
	 In reality we'd need different sets for escaped-through-return
	 and escaped-to-callees and passes would need to be updated.  */
      || pt->vars_contains_escaped_heap)
    return true;

  if (escaped_local_p && pt->vars_contains_escaped)
    return true;

  /* 'escaped' is also a placeholder so we have to look into it.  */
  if (pt->escaped)
    return pt_solution_includes_global (&cfun->gimple_df->escaped,
					escaped_local_p);

  if (pt->ipa_escaped)
    return pt_solution_includes_global (&ipa_escaped_pt,
					escaped_local_p);

  return false;
}

/* Return true if the points-to solution *PT includes the variable
   declaration DECL.  */

static bool
pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
{
  if (pt->anything)
    return true;

  if (pt->nonlocal
      && is_global_var (decl))
    return true;

  if (pt->vars
      && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
    return true;

  /* If the solution includes ESCAPED, check it.  */
  if (pt->escaped
      && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
    return true;

  /* If the solution includes ESCAPED, check it.  */
  if (pt->ipa_escaped
      && pt_solution_includes_1 (&ipa_escaped_pt, decl))
    return true;

  return false;
}

bool
pt_solution_includes (struct pt_solution *pt, const_tree decl)
{
  bool res = pt_solution_includes_1 (pt, decl);
  if (res)
    ++pta_stats.pt_solution_includes_may_alias;
  else
    ++pta_stats.pt_solution_includes_no_alias;
  return res;
}

/* Return true if the points-to solution *PT contains a reference to a
   constant pool entry.  */

bool
pt_solution_includes_const_pool (struct pt_solution *pt)
{
  return (pt->const_pool
	  || pt->nonlocal
	  || (pt->escaped && (!cfun || cfun->gimple_df->escaped.const_pool))
	  || (pt->ipa_escaped && ipa_escaped_pt.const_pool));
}

/* Return true if both points-to solutions PT1 and PT2 have a non-empty
   intersection.  */

static bool
pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
{
  if (pt1->anything || pt2->anything)
    return true;

  /* If either points to unknown global memory and the other points to
     any global memory they alias.  */
  if ((pt1->nonlocal
       && (pt2->nonlocal
	   || pt2->vars_contains_nonlocal))
      || (pt2->nonlocal
	  && pt1->vars_contains_nonlocal))
    return true;

  /* If either points to all escaped memory and the other points to
     any escaped memory they alias.  */
  if ((pt1->escaped
       && (pt2->escaped
	   || pt2->vars_contains_escaped))
      || (pt2->escaped
	  && pt1->vars_contains_escaped))
    return true;

  /* Check the escaped solution if required.
     ???  Do we need to check the local against the IPA escaped sets?  */
  if ((pt1->ipa_escaped || pt2->ipa_escaped)
      && !pt_solution_empty_p (&ipa_escaped_pt))
    {
      /* If both point to escaped memory and that solution
	 is not empty they alias.  */
      if (pt1->ipa_escaped && pt2->ipa_escaped)
	return true;

      /* If either points to escaped memory see if the escaped solution
	 intersects with the other.  */
      if ((pt1->ipa_escaped
	   && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
	  || (pt2->ipa_escaped
	      && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
	return true;
    }

  /* Now both pointers alias if their points-to solution intersects.  */
  return (pt1->vars
	  && pt2->vars
	  && bitmap_intersect_p (pt1->vars, pt2->vars));
}

bool
pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
{
  bool res = pt_solutions_intersect_1 (pt1, pt2);
  if (res)
    ++pta_stats.pt_solutions_intersect_may_alias;
  else
    ++pta_stats.pt_solutions_intersect_no_alias;
  return res;
}


/* Initialize things necessary to perform PTA.  */

static void
init_alias_vars (void)
{
  use_field_sensitive = (param_max_fields_for_field_sensitive > 1);

  bitmap_obstack_initialize (&pta_obstack);
  bitmap_obstack_initialize (&oldpta_obstack);

  constraints.create (8);
  varmap.create (8);

  memset (&stats, 0, sizeof (stats));
  shared_bitmap_table = new hash_table<shared_bitmap_hasher> (511);

  final_solutions = new hash_map<varinfo_t, pt_solution *>;
  gcc_obstack_init (&final_solutions_obstack);

  init_constraint_builder ();
}

/* Create points-to sets for the current function.  See the comments
   at the start of the file for an algorithmic overview.  */

static void
compute_points_to_sets (void)
{
  basic_block bb;
  varinfo_t vi;

  timevar_push (TV_TREE_PTA);

  init_alias_vars ();

  intra_build_constraints ();

  /* From the constraints compute the points-to sets.  */
  solve_constraints ();

  if (dump_file && (dump_flags & TDF_STATS))
    dump_sa_stats (dump_file);

  if (dump_file && (dump_flags & TDF_DETAILS))
    dump_sa_points_to_info (dump_file);

  /* Compute the points-to set for ESCAPED used for call-clobber analysis.  */
  cfun->gimple_df->escaped = find_what_var_points_to (cfun->decl,
						      get_varinfo (escaped_id));

  /* Make sure the ESCAPED solution (which is used as placeholder in
     other solutions) does not reference itself.  This simplifies
     points-to solution queries.  */
  cfun->gimple_df->escaped.escaped = 0;

  /* The ESCAPED_RETURN solution is what contains all memory that needs
     to be considered global.  */
  cfun->gimple_df->escaped_return
    = find_what_var_points_to (cfun->decl, get_varinfo (escaped_return_id));
  cfun->gimple_df->escaped_return.escaped = 1;

  /* Compute the points-to sets for pointer SSA_NAMEs.  */
  unsigned i;
  tree ptr;

  FOR_EACH_SSA_NAME (i, ptr, cfun)
    {
      if (POINTER_TYPE_P (TREE_TYPE (ptr)))
	find_what_p_points_to (cfun->decl, ptr);
    }

  /* Compute the call-used/clobbered sets.  */
  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator gsi;

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gcall *stmt;
	  struct pt_solution *pt;

	  stmt = dyn_cast <gcall *> (gsi_stmt (gsi));
	  if (!stmt)
	    continue;

	  pt = gimple_call_use_set (stmt);
	  if (gimple_call_flags (stmt) & ECF_CONST)
	    memset (pt, 0, sizeof (struct pt_solution));
	  else
	    {
	      bool uses_global_memory = true;
	      bool reads_global_memory = true;

	      determine_global_memory_access (stmt, NULL,
					      &reads_global_memory,
					      &uses_global_memory);
	      if ((vi = lookup_call_use_vi (stmt)) != NULL)
		{
		  *pt = find_what_var_points_to (cfun->decl, vi);
		  /* Escaped (and thus nonlocal) variables are always
		     implicitly used by calls.  */
		  /* ???  ESCAPED can be empty even though NONLOCAL
		     always escaped.  */
		  if (uses_global_memory)
		    {
		      pt->nonlocal = 1;
		      pt->escaped = 1;
		    }
		}
	      else if (uses_global_memory)
		{
		  /* If there is nothing special about this call then
		     we have made everything that is used also escape.  */
		  *pt = cfun->gimple_df->escaped;
		  pt->nonlocal = 1;
		}
	      else
		memset (pt, 0, sizeof (struct pt_solution));
	    }

	  pt = gimple_call_clobber_set (stmt);
	  if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
	    memset (pt, 0, sizeof (struct pt_solution));
	  else
	    {
	      bool writes_global_memory = true;

	      determine_global_memory_access (stmt, &writes_global_memory,
					      NULL, NULL);

	      if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
		{
		  *pt = find_what_var_points_to (cfun->decl, vi);
		  /* Escaped (and thus nonlocal) variables are always
		     implicitly clobbered by calls.  */
		  /* ???  ESCAPED can be empty even though NONLOCAL
		     always escaped.  */
		  if (writes_global_memory)
		    {
		      pt->nonlocal = 1;
		      pt->escaped = 1;
		    }
		}
	      else if (writes_global_memory)
		{
		  /* If there is nothing special about this call then
		     we have made everything that is used also escape.  */
		  *pt = cfun->gimple_df->escaped;
		  pt->nonlocal = 1;
		}
	      else
		memset (pt, 0, sizeof (struct pt_solution));
	    }
	}
    }

  timevar_pop (TV_TREE_PTA);
}

/* Delete created points-to sets.  */

static void
delete_points_to_sets (void)
{
  delete shared_bitmap_table;
  shared_bitmap_table = NULL;
  if (dump_file && (dump_flags & TDF_STATS))
    fprintf (dump_file, "Points to sets created:%d\n",
	     stats.points_to_sets_created);

  bitmap_obstack_release (&pta_obstack);
  constraints.release ();

  free (var_rep);

  varmap.release ();
  variable_info_pool.release ();

  delete final_solutions;
  obstack_free (&final_solutions_obstack, NULL);

  delete_constraint_builder ();
}


struct vls_data
{
  unsigned short clique;
  bool escaped_p;
  bitmap rvars;
};

/* Mark "other" loads and stores as belonging to CLIQUE and with
   base zero.  */

static bool
visit_loadstore (gimple *, tree base, tree ref, void *data)
{
  unsigned short clique = ((vls_data *) data)->clique;
  bitmap rvars = ((vls_data *) data)->rvars;
  bool escaped_p = ((vls_data *) data)->escaped_p;
  if (TREE_CODE (base) == MEM_REF
      || TREE_CODE (base) == TARGET_MEM_REF)
    {
      tree ptr = TREE_OPERAND (base, 0);
      if (TREE_CODE (ptr) == SSA_NAME)
	{
	  /* For parameters, get at the points-to set for the actual parm
	     decl.  */
	  if (SSA_NAME_IS_DEFAULT_DEF (ptr)
	      && (TREE_CODE (SSA_NAME_VAR (ptr)) == PARM_DECL
		  || TREE_CODE (SSA_NAME_VAR (ptr)) == RESULT_DECL))
	    ptr = SSA_NAME_VAR (ptr);

	  /* We need to make sure 'ptr' doesn't include any of
	     the restrict tags we added bases for in its points-to set.  */
	  varinfo_t vi = lookup_vi_for_tree (ptr);
	  if (! vi)
	    return false;

	  vi = get_varinfo (var_rep[vi->id]);
	  if (bitmap_intersect_p (rvars, vi->solution)
	      || (escaped_p && bitmap_bit_p (vi->solution, escaped_id)))
	    return false;
	}

      /* Do not overwrite existing cliques (that includes clique, base
	 pairs we just set).  */
      if (MR_DEPENDENCE_CLIQUE (base) == 0)
	{
	  MR_DEPENDENCE_CLIQUE (base) = clique;
	  MR_DEPENDENCE_BASE (base) = 0;
	}
    }

  /* For plain decl accesses see whether they are accesses to globals
     and rewrite them to MEM_REFs with { clique, 0 }.  */
  if (VAR_P (base)
      && is_global_var (base)
      /* ???  We can't rewrite a plain decl with the walk_stmt_load_store
	 ops callback.  */
      && base != ref)
    {
      tree *basep = &ref;
      while (handled_component_p (*basep))
	basep = &TREE_OPERAND (*basep, 0);
      gcc_assert (VAR_P (*basep));
      tree ptr = build_fold_addr_expr (*basep);
      tree zero = build_int_cst (TREE_TYPE (ptr), 0);
      *basep = build2 (MEM_REF, TREE_TYPE (*basep), ptr, zero);
      MR_DEPENDENCE_CLIQUE (*basep) = clique;
      MR_DEPENDENCE_BASE (*basep) = 0;
    }

  return false;
}

struct msdi_data {
  tree ptr;
  unsigned short *clique;
  unsigned short *last_ruid;
  varinfo_t restrict_var;
};

/* If BASE is a MEM_REF then assign a clique, base pair to it, updating
   CLIQUE, *RESTRICT_VAR and LAST_RUID as passed via DATA.
   Return whether dependence info was assigned to BASE.  */

static bool
maybe_set_dependence_info (gimple *, tree base, tree, void *data)
{
  tree ptr = ((msdi_data *)data)->ptr;
  unsigned short &clique = *((msdi_data *)data)->clique;
  unsigned short &last_ruid = *((msdi_data *)data)->last_ruid;
  varinfo_t restrict_var = ((msdi_data *)data)->restrict_var;
  if ((TREE_CODE (base) == MEM_REF
       || TREE_CODE (base) == TARGET_MEM_REF)
      && TREE_OPERAND (base, 0) == ptr)
    {
      /* Do not overwrite existing cliques.  This avoids overwriting dependence
	 info inlined from a function with restrict parameters inlined
	 into a function with restrict parameters.  This usually means we
	 prefer to be precise in innermost loops.  */
      if (MR_DEPENDENCE_CLIQUE (base) == 0)
	{
	  if (clique == 0)
	    {
	      if (cfun->last_clique == 0)
		cfun->last_clique = 1;
	      clique = 1;
	    }
	  if (restrict_var->ruid == 0)
	    restrict_var->ruid = ++last_ruid;
	  MR_DEPENDENCE_CLIQUE (base) = clique;
	  MR_DEPENDENCE_BASE (base) = restrict_var->ruid;
	  return true;
	}
    }
  return false;
}

/* Clear dependence info for the clique DATA.  */

static bool
clear_dependence_clique (gimple *, tree base, tree, void *data)
{
  unsigned short clique = (uintptr_t)data;
  if ((TREE_CODE (base) == MEM_REF
       || TREE_CODE (base) == TARGET_MEM_REF)
      && MR_DEPENDENCE_CLIQUE (base) == clique)
    {
      MR_DEPENDENCE_CLIQUE (base) = 0;
      MR_DEPENDENCE_BASE (base) = 0;
    }

  return false;
}

/* Compute the set of independend memory references based on restrict
   tags and their conservative propagation to the points-to sets.  */

static void
compute_dependence_clique (void)
{
  /* First clear the special "local" clique.  */
  basic_block bb;
  if (cfun->last_clique != 0)
    FOR_EACH_BB_FN (bb, cfun)
      for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
	   !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple *stmt = gsi_stmt (gsi);
	  walk_stmt_load_store_ops (stmt, (void *)(uintptr_t) 1,
				    clear_dependence_clique,
				    clear_dependence_clique);
	}

  unsigned short clique = 0;
  unsigned short last_ruid = 0;
  bitmap rvars = BITMAP_ALLOC (NULL);
  bool escaped_p = false;
  for (unsigned i = 0; i < num_ssa_names; ++i)
    {
      tree ptr = ssa_name (i);
      if (!ptr || !POINTER_TYPE_P (TREE_TYPE (ptr)))
	continue;

      /* Avoid all this when ptr is not dereferenced?  */
      tree p = ptr;
      if (SSA_NAME_IS_DEFAULT_DEF (ptr)
	  && (TREE_CODE (SSA_NAME_VAR (ptr)) == PARM_DECL
	      || TREE_CODE (SSA_NAME_VAR (ptr)) == RESULT_DECL))
	p = SSA_NAME_VAR (ptr);
      varinfo_t vi = lookup_vi_for_tree (p);
      if (!vi)
	continue;
      vi = get_varinfo (var_rep[vi->id]);
      bitmap_iterator bi;
      unsigned j;
      varinfo_t restrict_var = NULL;
      EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, j, bi)
	{
	  varinfo_t oi = get_varinfo (j);
	  if (oi->head != j)
	    oi = get_varinfo (oi->head);
	  if (oi->is_restrict_var)
	    {
	      if (restrict_var
		  && restrict_var != oi)
		{
		  if (dump_file && (dump_flags & TDF_DETAILS))
		    {
		      fprintf (dump_file, "found restrict pointed-to "
			       "for ");
		      print_generic_expr (dump_file, ptr);
		      fprintf (dump_file, " but not exclusively\n");
		    }
		  restrict_var = NULL;
		  break;
		}
	      restrict_var = oi;
	    }
	  /* NULL is the only other valid points-to entry.  */
	  else if (oi->id != nothing_id)
	    {
	      restrict_var = NULL;
	      break;
	    }
	}
      /* Ok, found that ptr must(!) point to a single(!) restrict
	 variable.  */
      /* ???  PTA isn't really a proper propagation engine to compute
	 this property.
	 ???  We could handle merging of two restricts by unifying them.  */
      if (restrict_var)
	{
	  /* Now look at possible dereferences of ptr.  */
	  imm_use_iterator ui;
	  gimple *use_stmt;
	  bool used = false;
	  msdi_data data = { ptr, &clique, &last_ruid, restrict_var };
	  FOR_EACH_IMM_USE_STMT (use_stmt, ui, ptr)
	    used |= walk_stmt_load_store_ops (use_stmt, &data,
					      maybe_set_dependence_info,
					      maybe_set_dependence_info);
	  if (used)
	    {
	      /* Add all subvars to the set of restrict pointed-to set.  */
	      for (unsigned sv = restrict_var->head; sv != 0;
		   sv = get_varinfo (sv)->next)
		bitmap_set_bit (rvars, sv);
	      varinfo_t escaped = get_varinfo (var_rep[escaped_id]);
	      if (bitmap_bit_p (escaped->solution, restrict_var->id))
		escaped_p = true;
	    }
	}
    }

  if (clique != 0)
    {
      /* Assign the BASE id zero to all accesses not based on a restrict
	 pointer.  That way they get disambiguated against restrict
	 accesses but not against each other.  */
      /* ???  For restricts derived from globals (thus not incoming
	 parameters) we can't restrict scoping properly thus the following
	 is too aggressive there.  For now we have excluded those globals from
	 getting into the MR_DEPENDENCE machinery.  */
      vls_data data = { clique, escaped_p, rvars };
      basic_block bb;
      FOR_EACH_BB_FN (bb, cfun)
	for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
	     !gsi_end_p (gsi); gsi_next (&gsi))
	  {
	    gimple *stmt = gsi_stmt (gsi);
	    walk_stmt_load_store_ops (stmt, &data,
				      visit_loadstore, visit_loadstore);
	  }
    }

  BITMAP_FREE (rvars);
}


/* Compute points-to information for every SSA_NAME pointer in the
   current function and compute the transitive closure of escaped
   variables to re-initialize the call-clobber states of local variables.  */

unsigned int
compute_may_aliases (void)
{
  if (cfun->gimple_df->ipa_pta)
    {
      if (dump_file)
	{
	  fprintf (dump_file, "\nNot re-computing points-to information "
		   "because IPA points-to information is available.\n\n");

	  /* But still dump what we have remaining it.  */
	  if (dump_flags & (TDF_DETAILS|TDF_ALIAS))
	    dump_alias_info (dump_file);
	}

      return 0;
    }

  /* For each pointer P_i, determine the sets of variables that P_i may
     point-to.  Compute the reachability set of escaped and call-used
     variables.  */
  compute_points_to_sets ();

  /* Debugging dumps.  */
  if (dump_file && (dump_flags & (TDF_DETAILS|TDF_ALIAS)))
    dump_alias_info (dump_file);

  /* Compute restrict-based memory disambiguations.  */
  compute_dependence_clique ();

  /* Deallocate memory used by aliasing data structures and the internal
     points-to solution.  */
  delete_points_to_sets ();

  gcc_assert (!need_ssa_update_p (cfun));

  return 0;
}

/* A dummy pass to cause points-to information to be computed via
   TODO_rebuild_alias.  */

namespace {

const pass_data pass_data_build_alias =
{
  GIMPLE_PASS, /* type */
  "alias", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_rebuild_alias, /* todo_flags_finish */
};

class pass_build_alias : public gimple_opt_pass
{
public:
  pass_build_alias (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_build_alias, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *) final override { return flag_tree_pta; }

}; // class pass_build_alias

} // anon namespace

gimple_opt_pass *
make_pass_build_alias (gcc::context *ctxt)
{
  return new pass_build_alias (ctxt);
}

/* A dummy pass to cause points-to information to be computed via
   TODO_rebuild_alias.  */

namespace {

const pass_data pass_data_build_ealias =
{
  GIMPLE_PASS, /* type */
  "ealias", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_rebuild_alias, /* todo_flags_finish */
};

class pass_build_ealias : public gimple_opt_pass
{
public:
  pass_build_ealias (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_build_ealias, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *) final override { return flag_tree_pta; }

}; // class pass_build_ealias

} // anon namespace

gimple_opt_pass *
make_pass_build_ealias (gcc::context *ctxt)
{
  return new pass_build_ealias (ctxt);
}


/* IPA PTA solutions for ESCAPED.  */
struct pt_solution ipa_escaped_pt
  = { true, false, false, false, false, false,
      false, false, false, false, false, NULL };


/* Execute the driver for IPA PTA.  */
static unsigned int
ipa_pta_execute (void)
{
  struct cgraph_node *node;

  in_ipa_mode = 1;

  init_alias_vars ();

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      symtab->dump (dump_file);
      fprintf (dump_file, "\n");
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Generating generic constraints\n\n");
      dump_constraints (dump_file, 0);
      fprintf (dump_file, "\n");
    }

  ipa_build_constraints ();

  /* From the constraints compute the points-to sets.  */
  solve_constraints ();

  if (dump_file && (dump_flags & TDF_STATS))
    dump_sa_stats (dump_file);

  if (dump_file && (dump_flags & TDF_DETAILS))
    dump_sa_points_to_info (dump_file);

  /* Now post-process solutions to handle locals from different
     runtime instantiations coming in through recursive invocations.  */
  unsigned shadow_var_cnt = 0;
  for (unsigned i = 1; i < varmap.length (); ++i)
    {
      varinfo_t fi = get_varinfo (i);
      if (fi->is_fn_info
	  && fi->decl)
	/* Automatic variables pointed to by their containing functions
	   parameters need this treatment.  */
	for (varinfo_t ai = first_vi_for_offset (fi, fi_parm_base);
	     ai; ai = vi_next (ai))
	  {
	    varinfo_t vi = get_varinfo (var_rep[ai->id]);
	    bitmap_iterator bi;
	    unsigned j;
	    EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, j, bi)
	      {
		varinfo_t pt = get_varinfo (j);
		if (pt->shadow_var_uid == 0
		    && pt->decl
		    && auto_var_in_fn_p (pt->decl, fi->decl))
		  {
		    pt->shadow_var_uid = allocate_decl_uid ();
		    shadow_var_cnt++;
		  }
	      }
	  }
      /* As well as global variables which are another way of passing
	 arguments to recursive invocations.  */
      else if (fi->is_global_var)
	{
	  for (varinfo_t ai = fi; ai; ai = vi_next (ai))
	    {
	      varinfo_t vi = get_varinfo (var_rep[ai->id]);
	      bitmap_iterator bi;
	      unsigned j;
	      EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, j, bi)
		{
		  varinfo_t pt = get_varinfo (j);
		  if (pt->shadow_var_uid == 0
		      && pt->decl
		      && auto_var_p (pt->decl))
		    {
		      pt->shadow_var_uid = allocate_decl_uid ();
		      shadow_var_cnt++;
		    }
		}
	    }
	}
    }
  if (shadow_var_cnt && dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Allocated %u shadow variables for locals "
	     "maybe leaking into recursive invocations of their containing "
	     "functions\n", shadow_var_cnt);

  /* Compute the global points-to sets for ESCAPED.
     ???  Note that the computed escape set is not correct
     for the whole unit as we fail to consider graph edges to
     externally visible functions.  */
  ipa_escaped_pt = find_what_var_points_to (NULL, get_varinfo (escaped_id));

  /* Make sure the ESCAPED solution (which is used as placeholder in
     other solutions) does not reference itself.  This simplifies
     points-to solution queries.  */
  ipa_escaped_pt.ipa_escaped = 0;

  /* Assign the points-to sets to the SSA names in the unit.  */
  FOR_EACH_DEFINED_FUNCTION (node)
    {
      tree ptr;
      struct function *fn;
      unsigned i;
      basic_block bb;

      /* Nodes without a body in this partition are not interesting.  */
      if (!node->has_gimple_body_p ()
	  || node->in_other_partition
	  || node->clone_of)
	continue;

      fn = DECL_STRUCT_FUNCTION (node->decl);

      /* Compute the points-to sets for pointer SSA_NAMEs.  */
      FOR_EACH_VEC_ELT (*fn->gimple_df->ssa_names, i, ptr)
	{
	  if (ptr
	      && POINTER_TYPE_P (TREE_TYPE (ptr)))
	    find_what_p_points_to (node->decl, ptr);
	}

      /* Compute the call-use and call-clobber sets for indirect calls
	 and calls to external functions.  */
      FOR_EACH_BB_FN (bb, fn)
	{
	  gimple_stmt_iterator gsi;

	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	    {
	      gcall *stmt;
	      struct pt_solution *pt;
	      varinfo_t vi, fi;
	      tree decl;

	      stmt = dyn_cast <gcall *> (gsi_stmt (gsi));
	      if (!stmt)
		continue;

	      /* Handle direct calls to functions with body.  */
	      decl = gimple_call_fndecl (stmt);

	      {
		tree called_decl = NULL_TREE;
		if (gimple_call_builtin_p (stmt, BUILT_IN_GOMP_PARALLEL))
		  called_decl = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
		else if (gimple_call_builtin_p (stmt, BUILT_IN_GOACC_PARALLEL))
		  called_decl = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);

		if (called_decl != NULL_TREE
		    && !fndecl_maybe_in_other_partition (called_decl))
		  decl = called_decl;
	      }

	      if (decl
		  && (fi = lookup_vi_for_tree (decl))
		  && fi->is_fn_info)
		{
		  *gimple_call_clobber_set (stmt)
		     = find_what_var_points_to
			 (node->decl, first_vi_for_offset (fi, fi_clobbers));
		  *gimple_call_use_set (stmt)
		     = find_what_var_points_to
			 (node->decl, first_vi_for_offset (fi, fi_uses));
		}
	      /* Handle direct calls to external functions.  */
	      else if (decl && (!fi || fi->decl))
		{
		  pt = gimple_call_use_set (stmt);
		  if (gimple_call_flags (stmt) & ECF_CONST)
		    memset (pt, 0, sizeof (struct pt_solution));
		  else if ((vi = lookup_call_use_vi (stmt)) != NULL)
		    {
		      *pt = find_what_var_points_to (node->decl, vi);
		      /* Escaped (and thus nonlocal) variables are always
			 implicitly used by calls.  */
		      /* ???  ESCAPED can be empty even though NONLOCAL
			 always escaped.  */
		      pt->nonlocal = 1;
		      pt->ipa_escaped = 1;
		    }
		  else
		    {
		      /* If there is nothing special about this call then
			 we have made everything that is used also escape.  */
		      *pt = ipa_escaped_pt;
		      pt->nonlocal = 1;
		    }

		  pt = gimple_call_clobber_set (stmt);
		  if (gimple_call_flags (stmt) &
		      (ECF_CONST|ECF_PURE|ECF_NOVOPS))
		    memset (pt, 0, sizeof (struct pt_solution));
		  else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
		    {
		      *pt = find_what_var_points_to (node->decl, vi);
		      /* Escaped (and thus nonlocal) variables are always
			 implicitly clobbered by calls.  */
		      /* ???  ESCAPED can be empty even though NONLOCAL
			 always escaped.  */
		      pt->nonlocal = 1;
		      pt->ipa_escaped = 1;
		    }
		  else
		    {
		      /* If there is nothing special about this call then
			 we have made everything that is used also escape.  */
		      *pt = ipa_escaped_pt;
		      pt->nonlocal = 1;
		    }
		}
	      /* Handle indirect calls.  */
	      else if ((fi = get_fi_for_callee (stmt)))
		{
		  /* We need to accumulate all clobbers/uses of all possible
		     callees.  */
		  fi = get_varinfo (var_rep[fi->id]);
		  /* If we cannot constrain the set of functions we'll end up
		     calling we end up using/clobbering everything.  */
		  if (bitmap_bit_p (fi->solution, anything_id)
		      || bitmap_bit_p (fi->solution, nonlocal_id)
		      || bitmap_bit_p (fi->solution, escaped_id))
		    {
		      pt_solution_reset (gimple_call_clobber_set (stmt));
		      pt_solution_reset (gimple_call_use_set (stmt));
		    }
		  else
		    {
		      bitmap_iterator bi;
		      unsigned i;
		      struct pt_solution *uses, *clobbers;

		      uses = gimple_call_use_set (stmt);
		      clobbers = gimple_call_clobber_set (stmt);
		      memset (uses, 0, sizeof (struct pt_solution));
		      memset (clobbers, 0, sizeof (struct pt_solution));
		      EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
			{
			  struct pt_solution sol;

			  vi = get_varinfo (i);
			  if (!vi->is_fn_info)
			    {
			      /* ???  We could be more precise here?  */
			      uses->nonlocal = 1;
			      uses->ipa_escaped = 1;
			      clobbers->nonlocal = 1;
			      clobbers->ipa_escaped = 1;
			      continue;
			    }

			  if (!uses->anything)
			    {
			      sol = find_what_var_points_to
				      (node->decl,
				       first_vi_for_offset (vi, fi_uses));
			      pt_solution_ior_into (uses, &sol);
			    }
			  if (!clobbers->anything)
			    {
			      sol = find_what_var_points_to
				      (node->decl,
				       first_vi_for_offset (vi, fi_clobbers));
			      pt_solution_ior_into (clobbers, &sol);
			    }
			}
		    }
		}
	      else
		gcc_unreachable ();
	    }
	}

      fn->gimple_df->ipa_pta = true;

      /* We have to re-set the final-solution cache after each function
	 because what is a "global" is dependent on function context.  */
      final_solutions->empty ();
      obstack_free (&final_solutions_obstack, NULL);
      gcc_obstack_init (&final_solutions_obstack);
    }

  delete_points_to_sets ();

  in_ipa_mode = 0;

  return 0;
}

namespace {

const pass_data pass_data_ipa_pta =
{
  SIMPLE_IPA_PASS, /* type */
  "pta", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_IPA_PTA, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_ipa_pta : public simple_ipa_opt_pass
{
public:
  pass_ipa_pta (gcc::context *ctxt)
    : simple_ipa_opt_pass (pass_data_ipa_pta, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *) final override
    {
      return (optimize
	      && flag_ipa_pta
	      /* Don't bother doing anything if the program has errors.  */
	      && !seen_error ());
    }

  opt_pass * clone () final override { return new pass_ipa_pta (m_ctxt); }

  unsigned int execute (function *) final override
  {
    return ipa_pta_execute ();
  }

}; // class pass_ipa_pta

} // anon namespace

simple_ipa_opt_pass *
make_pass_ipa_pta (gcc::context *ctxt)
{
  return new pass_ipa_pta (ctxt);
}