aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-sink.c
blob: c5d67840be3aba2b21cc275f2b20a15311610037 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
/* Code sinking for trees
   Copyright (C) 2001-2021 Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dan@dberlin.org>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "cfganal.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "cfgloop.h"
#include "tree-eh.h"

/* TODO:
   1. Sinking store only using scalar promotion (IE without moving the RHS):

   *q = p;
   p = p + 1;
   if (something)
     *q = <not p>;
   else
     y = *q;


   should become
   sinktemp = p;
   p = p + 1;
   if (something)
     *q = <not p>;
   else
   {
     *q = sinktemp;
     y = *q
   }
   Store copy propagation will take care of the store elimination above.


   2. Sinking using Partial Dead Code Elimination.  */


static struct
{
  /* The number of statements sunk down the flowgraph by code sinking.  */
  int sunk;

  /* The number of stores commoned and sunk down by store commoning.  */
  int commoned;
} sink_stats;


/* Given a PHI, and one of its arguments (DEF), find the edge for
   that argument and return it.  If the argument occurs twice in the PHI node,
   we return NULL.  */

static basic_block
find_bb_for_arg (gphi *phi, tree def)
{
  size_t i;
  bool foundone = false;
  basic_block result = NULL;
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    if (PHI_ARG_DEF (phi, i) == def)
      {
	if (foundone)
	  return NULL;
	foundone = true;
	result = gimple_phi_arg_edge (phi, i)->src;
      }
  return result;
}

/* When the first immediate use is in a statement, then return true if all
   immediate uses in IMM are in the same statement.
   We could also do the case where  the first immediate use is in a phi node,
   and all the other uses are in phis in the same basic block, but this
   requires some expensive checking later (you have to make sure no def/vdef
   in the statement occurs for multiple edges in the various phi nodes it's
   used in, so that you only have one place you can sink it to.  */

static bool
all_immediate_uses_same_place (def_operand_p def_p)
{
  tree var = DEF_FROM_PTR (def_p);
  imm_use_iterator imm_iter;
  use_operand_p use_p;

  gimple *firstuse = NULL;
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
    {
      if (is_gimple_debug (USE_STMT (use_p)))
	continue;
      if (firstuse == NULL)
	firstuse = USE_STMT (use_p);
      else
	if (firstuse != USE_STMT (use_p))
	  return false;
    }

  return true;
}

/* Find the nearest common dominator of all of the immediate uses in IMM.  */

static basic_block
nearest_common_dominator_of_uses (def_operand_p def_p, bool *debug_stmts)
{
  tree var = DEF_FROM_PTR (def_p);
  auto_bitmap blocks;
  basic_block commondom;
  unsigned int j;
  bitmap_iterator bi;
  imm_use_iterator imm_iter;
  use_operand_p use_p;

  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
    {
      gimple *usestmt = USE_STMT (use_p);
      basic_block useblock;

      if (gphi *phi = dyn_cast <gphi *> (usestmt))
	{
	  int idx = PHI_ARG_INDEX_FROM_USE (use_p);

	  useblock = gimple_phi_arg_edge (phi, idx)->src;
	}
      else if (is_gimple_debug (usestmt))
	{
	  *debug_stmts = true;
	  continue;
	}
      else
	{
	  useblock = gimple_bb (usestmt);
	}

      /* Short circuit. Nothing dominates the entry block.  */
      if (useblock == ENTRY_BLOCK_PTR_FOR_FN (cfun))
	return NULL;

      bitmap_set_bit (blocks, useblock->index);
    }
  commondom = BASIC_BLOCK_FOR_FN (cfun, bitmap_first_set_bit (blocks));
  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, j, bi)
    commondom = nearest_common_dominator (CDI_DOMINATORS, commondom,
					  BASIC_BLOCK_FOR_FN (cfun, j));
  return commondom;
}

/* Given EARLY_BB and LATE_BB, two blocks in a path through the dominator
   tree, return the best basic block between them (inclusive) to place
   statements.

   We want the most control dependent block in the shallowest loop nest.

   If the resulting block is in a shallower loop nest, then use it.  Else
   only use the resulting block if it has significantly lower execution
   frequency than EARLY_BB to avoid gratuitous statement movement.  We
   consider statements with VOPS more desirable to move.

   This pass would obviously benefit from PDO as it utilizes block
   frequencies.  It would also benefit from recomputing frequencies
   if profile data is not available since frequencies often get out
   of sync with reality.  */

static basic_block
select_best_block (basic_block early_bb,
		   basic_block late_bb,
		   gimple *stmt)
{
  basic_block best_bb = late_bb;
  basic_block temp_bb = late_bb;
  int threshold;

  while (temp_bb != early_bb)
    {
      /* If we've moved into a lower loop nest, then that becomes
	 our best block.  */
      if (bb_loop_depth (temp_bb) < bb_loop_depth (best_bb))
	best_bb = temp_bb;

      /* Walk up the dominator tree, hopefully we'll find a shallower
 	 loop nest.  */
      temp_bb = get_immediate_dominator (CDI_DOMINATORS, temp_bb);
    }

  /* If we found a shallower loop nest, then we always consider that
     a win.  This will always give us the most control dependent block
     within that loop nest.  */
  if (bb_loop_depth (best_bb) < bb_loop_depth (early_bb))
    return best_bb;

  /* Get the sinking threshold.  If the statement to be moved has memory
     operands, then increase the threshold by 7% as those are even more
     profitable to avoid, clamping at 100%.  */
  threshold = param_sink_frequency_threshold;
  if (gimple_vuse (stmt) || gimple_vdef (stmt))
    {
      threshold += 7;
      if (threshold > 100)
	threshold = 100;
    }

  /* If BEST_BB is at the same nesting level, then require it to have
     significantly lower execution frequency to avoid gratuitous movement.  */
  if (bb_loop_depth (best_bb) == bb_loop_depth (early_bb)
      /* If result of comparsion is unknown, prefer EARLY_BB.
	 Thus use !(...>=..) rather than (...<...)  */
      && !(best_bb->count.apply_scale (100, 1)
	   >= early_bb->count.apply_scale (threshold, 1)))
    return best_bb;

  /* No better block found, so return EARLY_BB, which happens to be the
     statement's original block.  */
  return early_bb;
}

/* Given a statement (STMT) and the basic block it is currently in (FROMBB),
   determine the location to sink the statement to, if any.
   Returns true if there is such location; in that case, TOGSI points to the
   statement before that STMT should be moved.  */

static bool
statement_sink_location (gimple *stmt, basic_block frombb,
			 gimple_stmt_iterator *togsi, bool *zero_uses_p)
{
  gimple *use;
  use_operand_p one_use = NULL_USE_OPERAND_P;
  basic_block sinkbb;
  use_operand_p use_p;
  def_operand_p def_p;
  ssa_op_iter iter;
  imm_use_iterator imm_iter;

  *zero_uses_p = false;

  /* We only can sink assignments and non-looping const/pure calls.  */
  int cf;
  if (!is_gimple_assign (stmt)
      && (!is_gimple_call (stmt)
	  || !((cf = gimple_call_flags (stmt)) & (ECF_CONST|ECF_PURE))
	  || (cf & ECF_LOOPING_CONST_OR_PURE)))
    return false;

  /* We only can sink stmts with a single definition.  */
  def_p = single_ssa_def_operand (stmt, SSA_OP_ALL_DEFS);
  if (def_p == NULL_DEF_OPERAND_P)
    return false;

  /* There are a few classes of things we can't or don't move, some because we
     don't have code to handle it, some because it's not profitable and some
     because it's not legal.

     We can't sink things that may be global stores, at least not without
     calculating a lot more information, because we may cause it to no longer
     be seen by an external routine that needs it depending on where it gets
     moved to.

     We can't sink statements that end basic blocks without splitting the
     incoming edge for the sink location to place it there.

     We can't sink statements that have volatile operands.

     We don't want to sink dead code, so anything with 0 immediate uses is not
     sunk.

     Don't sink BLKmode assignments if current function has any local explicit
     register variables, as BLKmode assignments may involve memcpy or memset
     calls or, on some targets, inline expansion thereof that sometimes need
     to use specific hard registers.

  */
  if (stmt_ends_bb_p (stmt)
      || gimple_has_side_effects (stmt)
      || (cfun->has_local_explicit_reg_vars
	  && TYPE_MODE (TREE_TYPE (gimple_get_lhs (stmt))) == BLKmode))
    return false;

  /* Return if there are no immediate uses of this stmt.  */
  if (has_zero_uses (DEF_FROM_PTR (def_p)))
    {
      *zero_uses_p = true;
      return false;
    }

  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (DEF_FROM_PTR (def_p)))
    return false;

  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
    {
      tree use = USE_FROM_PTR (use_p);
      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use))
	return false;
    }

  use = NULL;

  /* If stmt is a store the one and only use needs to be the VOP
     merging PHI node.  */
  if (virtual_operand_p (DEF_FROM_PTR (def_p)))
    {
      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
	{
	  gimple *use_stmt = USE_STMT (use_p);

	  /* A killing definition is not a use.  */
	  if ((gimple_has_lhs (use_stmt)
	       && operand_equal_p (gimple_get_lhs (stmt),
				   gimple_get_lhs (use_stmt), 0))
	      || stmt_kills_ref_p (use_stmt, gimple_get_lhs (stmt)))
	    {
	      /* If use_stmt is or might be a nop assignment then USE_STMT
	         acts as a use as well as definition.  */
	      if (stmt != use_stmt
		  && ref_maybe_used_by_stmt_p (use_stmt,
					       gimple_get_lhs (stmt)))
		return false;
	      continue;
	    }

	  if (gimple_code (use_stmt) != GIMPLE_PHI)
	    return false;

	  if (use
	      && use != use_stmt)
	    return false;

	  use = use_stmt;
	}
      if (!use)
	return false;
    }
  /* If all the immediate uses are not in the same place, find the nearest
     common dominator of all the immediate uses.  For PHI nodes, we have to
     find the nearest common dominator of all of the predecessor blocks, since
     that is where insertion would have to take place.  */
  else if (gimple_vuse (stmt)
	   || !all_immediate_uses_same_place (def_p))
    {
      bool debug_stmts = false;
      basic_block commondom = nearest_common_dominator_of_uses (def_p,
								&debug_stmts);

      if (commondom == frombb)
	return false;

      /* If this is a load then do not sink past any stores.
	 Look for virtual definitions in the path from frombb to the sink
	 location computed from the real uses and if found, adjust
	 that it a common dominator.  */
      if (gimple_vuse (stmt))
	{
	  /* Do not sink loads from hard registers.  */
	  if (gimple_assign_single_p (stmt)
	      && TREE_CODE (gimple_assign_rhs1 (stmt)) == VAR_DECL
	      && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
	    return false;

	  imm_use_iterator imm_iter;
	  use_operand_p use_p;
	  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_vuse (stmt))
	    {
	      gimple *use_stmt = USE_STMT (use_p);
	      basic_block bb = gimple_bb (use_stmt);
	      /* For PHI nodes the block we know sth about is the incoming block
		 with the use.  */
	      if (gimple_code (use_stmt) == GIMPLE_PHI)
		{
		  /* In case the PHI node post-dominates the current insert
		     location we can disregard it.  But make sure it is not
		     dominating it as well as can happen in a CFG cycle.  */
		  if (commondom != bb
		      && !dominated_by_p (CDI_DOMINATORS, commondom, bb)
		      && dominated_by_p (CDI_POST_DOMINATORS, commondom, bb)
		      /* If the blocks are possibly within the same irreducible
			 cycle the above check breaks down.  */
		      && !((bb->flags & commondom->flags & BB_IRREDUCIBLE_LOOP)
			   && bb->loop_father == commondom->loop_father)
		      && !((commondom->flags & BB_IRREDUCIBLE_LOOP)
			   && flow_loop_nested_p (commondom->loop_father,
						  bb->loop_father))
		      && !((bb->flags & BB_IRREDUCIBLE_LOOP)
			   && flow_loop_nested_p (bb->loop_father,
						  commondom->loop_father)))
		    continue;
		  bb = EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src;
		}
	      else if (!gimple_vdef (use_stmt))
		continue;
	      /* If the use is not dominated by the path entry it is not on
		 the path.  */
	      if (!dominated_by_p (CDI_DOMINATORS, bb, frombb))
		continue;
	      /* There is no easy way to disregard defs not on the path from
		 frombb to commondom so just consider them all.  */
	      commondom = nearest_common_dominator (CDI_DOMINATORS,
						    bb, commondom);
	      if (commondom == frombb)
		return false;
	    }
	}

      /* Our common dominator has to be dominated by frombb in order to be a
	 trivially safe place to put this statement, since it has multiple
	 uses.  */
      if (!dominated_by_p (CDI_DOMINATORS, commondom, frombb))
	return false;

      commondom = select_best_block (frombb, commondom, stmt);

      if (commondom == frombb)
	return false;	

      *togsi = gsi_after_labels (commondom);

      return true;
    }
  else
    {
      FOR_EACH_IMM_USE_FAST (one_use, imm_iter, DEF_FROM_PTR (def_p))
	{
	  if (is_gimple_debug (USE_STMT (one_use)))
	    continue;
	  break;
	}
      use = USE_STMT (one_use);

      if (gimple_code (use) != GIMPLE_PHI)
	{
	  sinkbb = select_best_block (frombb, gimple_bb (use), stmt);

	  if (sinkbb == frombb)
	    return false;

	  if (sinkbb == gimple_bb (use))
	    *togsi = gsi_for_stmt (use);
	  else
	    *togsi = gsi_after_labels (sinkbb);

	  return true;
	}
    }

  sinkbb = find_bb_for_arg (as_a <gphi *> (use), DEF_FROM_PTR (def_p));

  /* This can happen if there are multiple uses in a PHI.  */
  if (!sinkbb)
    return false;
  
  sinkbb = select_best_block (frombb, sinkbb, stmt);
  if (!sinkbb || sinkbb == frombb)
    return false;

  /* If the latch block is empty, don't make it non-empty by sinking
     something into it.  */
  if (sinkbb == frombb->loop_father->latch
      && empty_block_p (sinkbb))
    return false;

  *togsi = gsi_after_labels (sinkbb);

  return true;
}

/* Very simplistic code to sink common stores from the predecessor through
   our virtual PHI.  We do this before sinking stmts from BB as it might
   expose sinking opportunities of the merged stores.
   Once we have partial dead code elimination through sth like SSU-PRE this
   should be moved there.  */

static unsigned
sink_common_stores_to_bb (basic_block bb)
{
  unsigned todo = 0;
  gphi *phi;

  if (EDGE_COUNT (bb->preds) > 1
      && (phi = get_virtual_phi (bb)))
    {
      /* Repeat until no more common stores are found.  */
      while (1)
	{
	  gimple *first_store = NULL;
	  auto_vec <tree, 5> vdefs;
	  gimple_stmt_iterator gsi;

	  /* Search for common stores defined by all virtual PHI args.
	     ???  Common stores not present in all predecessors could
	     be handled by inserting a forwarder to sink to.  Generally
	     this involves deciding which stores to do this for if
	     multiple common stores are present for different sets of
	     predecessors.  See PR11832 for an interesting case.  */
	  for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
	    {
	      tree arg = gimple_phi_arg_def (phi, i);
	      gimple *def = SSA_NAME_DEF_STMT (arg);
	      if (! is_gimple_assign (def)
		  || stmt_can_throw_internal (cfun, def)
		  || (gimple_phi_arg_edge (phi, i)->flags & EDGE_ABNORMAL))
		{
		  /* ???  We could handle some cascading with the def being
		     another PHI.  We'd have to insert multiple PHIs for
		     the rhs then though (if they are not all equal).  */
		  first_store = NULL;
		  break;
		}
	      /* ???  Do not try to do anything fancy with aliasing, thus
		 do not sink across non-aliased loads (or even stores,
		 so different store order will make the sinking fail).  */
	      bool all_uses_on_phi = true;
	      imm_use_iterator iter;
	      use_operand_p use_p;
	      FOR_EACH_IMM_USE_FAST (use_p, iter, arg)
		if (USE_STMT (use_p) != phi)
		  {
		    all_uses_on_phi = false;
		    break;
		  }
	      if (! all_uses_on_phi)
		{
		  first_store = NULL;
		  break;
		}
	      /* Check all stores are to the same LHS.  */
	      if (! first_store)
		first_store = def;
	      /* ??? We could handle differing SSA uses in the LHS by inserting
		 PHIs for them.  */
	      else if (! operand_equal_p (gimple_assign_lhs (first_store),
					  gimple_assign_lhs (def), 0)
		       || (gimple_clobber_p (first_store)
			   != gimple_clobber_p (def)))
		{
		  first_store = NULL;
		  break;
		}
	      vdefs.safe_push (arg);
	    }
	  if (! first_store)
	    break;

	  /* Check if we need a PHI node to merge the stored values.  */
	  bool allsame = true;
	  if (!gimple_clobber_p (first_store))
	    for (unsigned i = 1; i < vdefs.length (); ++i)
	      {
		gimple *def = SSA_NAME_DEF_STMT (vdefs[i]);
		if (! operand_equal_p (gimple_assign_rhs1 (first_store),
				       gimple_assign_rhs1 (def), 0))
		  {
		    allsame = false;
		    break;
		  }
	      }

	  /* We cannot handle aggregate values if we need to merge them.  */
	  tree type = TREE_TYPE (gimple_assign_lhs (first_store));
	  if (! allsame
	      && ! is_gimple_reg_type (type))
	    break;

	  if (dump_enabled_p ())
	    {
	      dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
			       first_store,
			       "sinking common stores %sto ",
			       allsame ? "with same value " : "");
	      dump_generic_expr (MSG_OPTIMIZED_LOCATIONS, TDF_SLIM,
				 gimple_assign_lhs (first_store));
	      dump_printf (MSG_OPTIMIZED_LOCATIONS, "\n");
	    }

	  /* Insert a PHI to merge differing stored values if necessary.
	     Note that in general inserting PHIs isn't a very good idea as
	     it makes the job of coalescing and register allocation harder.
	     Even common SSA uses on the rhs/lhs might extend their lifetime
	     across multiple edges by this code motion which makes
	     register allocation harder.  */
	  tree from;
	  if (! allsame)
	    {
	      from = make_ssa_name (type);
	      gphi *newphi = create_phi_node (from, bb);
	      for (unsigned i = 0; i < vdefs.length (); ++i)
		{
		  gimple *def = SSA_NAME_DEF_STMT (vdefs[i]);
		  add_phi_arg (newphi, gimple_assign_rhs1 (def),
			       EDGE_PRED (bb, i), UNKNOWN_LOCATION);
		}
	    }
	  else
	    from = gimple_assign_rhs1 (first_store);

	  /* Remove all stores.  */
	  for (unsigned i = 0; i < vdefs.length (); ++i)
	    TREE_VISITED (vdefs[i]) = 1;
	  for (unsigned i = 0; i < vdefs.length (); ++i)
	    /* If we have more than one use of a VDEF on the PHI make sure
	       we remove the defining stmt only once.  */
	    if (TREE_VISITED (vdefs[i]))
	      {
		TREE_VISITED (vdefs[i]) = 0;
		gimple *def = SSA_NAME_DEF_STMT (vdefs[i]);
		gsi = gsi_for_stmt (def);
		unlink_stmt_vdef (def);
		gsi_remove (&gsi, true);
		release_defs (def);
	      }

	  /* Insert the first store at the beginning of the merge BB.  */
	  gimple_set_vdef (first_store, gimple_phi_result (phi));
	  SSA_NAME_DEF_STMT (gimple_vdef (first_store)) = first_store;
	  gimple_phi_set_result (phi, make_ssa_name (gimple_vop (cfun)));
	  gimple_set_vuse (first_store, gimple_phi_result (phi));
	  gimple_assign_set_rhs1 (first_store, from);
	  /* ???  Should we reset first_stores location?  */
	  gsi = gsi_after_labels (bb);
	  gsi_insert_before (&gsi, first_store, GSI_SAME_STMT);
	  sink_stats.commoned++;

	  todo |= TODO_cleanup_cfg;
	}

      /* We could now have empty predecessors that we could remove,
	 forming a proper CFG for further sinking.  Note that even
	 CFG cleanup doesn't do this fully at the moment and it
	 doesn't preserve post-dominators in the process either.
	 The mergephi pass might do it though.  gcc.dg/tree-ssa/ssa-sink-13.c
	 shows this nicely if you disable tail merging or (same effect)
	 make the stored values unequal.  */
    }

  return todo;
}

/* Perform code sinking on BB */

static unsigned
sink_code_in_bb (basic_block bb)
{
  basic_block son;
  gimple_stmt_iterator gsi;
  edge_iterator ei;
  edge e;
  bool last = true;
  unsigned todo = 0;

  /* Sink common stores from the predecessor through our virtual PHI.  */
  todo |= sink_common_stores_to_bb (bb);

  /* If this block doesn't dominate anything, there can't be any place to sink
     the statements to.  */
  if (first_dom_son (CDI_DOMINATORS, bb) == NULL)
    goto earlyout;

  /* We can't move things across abnormal edges, so don't try.  */
  FOR_EACH_EDGE (e, ei, bb->succs)
    if (e->flags & EDGE_ABNORMAL)
      goto earlyout;

  for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
    {
      gimple *stmt = gsi_stmt (gsi);
      gimple_stmt_iterator togsi;
      bool zero_uses_p;

      if (!statement_sink_location (stmt, bb, &togsi, &zero_uses_p))
	{
	  gimple_stmt_iterator saved = gsi;
	  if (!gsi_end_p (gsi))
	    gsi_prev (&gsi);
	  /* If we face a dead stmt remove it as it possibly blocks
	     sinking of uses.  */
	  if (zero_uses_p
	      && !gimple_vdef (stmt)
	      && (cfun->can_delete_dead_exceptions
		  || !stmt_could_throw_p (cfun, stmt)))
	    {
	      gsi_remove (&saved, true);
	      release_defs (stmt);
	    }
	  else
	    last = false;
	  continue;
	}
      if (dump_file)
	{
	  fprintf (dump_file, "Sinking ");
	  print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS);
	  fprintf (dump_file, " from bb %d to bb %d\n",
		   bb->index, (gsi_bb (togsi))->index);
	}

      /* Update virtual operands of statements in the path we
         do not sink to.  */
      if (gimple_vdef (stmt))
	{
	  imm_use_iterator iter;
	  use_operand_p use_p;
	  gimple *vuse_stmt;

	  FOR_EACH_IMM_USE_STMT (vuse_stmt, iter, gimple_vdef (stmt))
	    if (gimple_code (vuse_stmt) != GIMPLE_PHI)
	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
		SET_USE (use_p, gimple_vuse (stmt));
	}

      /* If this is the end of the basic block, we need to insert at the end
         of the basic block.  */
      if (gsi_end_p (togsi))
	gsi_move_to_bb_end (&gsi, gsi_bb (togsi));
      else
	gsi_move_before (&gsi, &togsi);

      sink_stats.sunk++;

      /* If we've just removed the last statement of the BB, the
	 gsi_end_p() test below would fail, but gsi_prev() would have
	 succeeded, and we want it to succeed.  So we keep track of
	 whether we're at the last statement and pick up the new last
	 statement.  */
      if (last)
	{
	  gsi = gsi_last_bb (bb);
	  continue;
	}

      last = false;
      if (!gsi_end_p (gsi))
	gsi_prev (&gsi);

    }
 earlyout:
  for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
       son;
       son = next_dom_son (CDI_POST_DOMINATORS, son))
    {
      todo |= sink_code_in_bb (son);
    }

  return todo;
}

/* Perform code sinking.
   This moves code down the flowgraph when we know it would be
   profitable to do so, or it wouldn't increase the number of
   executions of the statement.

   IE given

   a_1 = b + c;
   if (<something>)
   {
   }
   else
   {
     foo (&b, &c);
     a_5 = b + c;
   }
   a_6 = PHI (a_5, a_1);
   USE a_6.

   we'll transform this into:

   if (<something>)
   {
      a_1 = b + c;
   }
   else
   {
      foo (&b, &c);
      a_5 = b + c;
   }
   a_6 = PHI (a_5, a_1);
   USE a_6.

   Note that this reduces the number of computations of a = b + c to 1
   when we take the else edge, instead of 2.
*/
namespace {

const pass_data pass_data_sink_code =
{
  GIMPLE_PASS, /* type */
  "sink", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_SINK, /* tv_id */
  /* PROP_no_crit_edges is ensured by running split_edges_for_insertion in
     pass_data_sink_code::execute ().  */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_update_ssa, /* todo_flags_finish */
};

class pass_sink_code : public gimple_opt_pass
{
public:
  pass_sink_code (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_sink_code, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *) { return flag_tree_sink != 0; }
  virtual unsigned int execute (function *);
  opt_pass *clone (void) { return new pass_sink_code (m_ctxt); }

}; // class pass_sink_code

unsigned int
pass_sink_code::execute (function *fun)
{
  loop_optimizer_init (LOOPS_NORMAL);
  split_edges_for_insertion ();
  connect_infinite_loops_to_exit ();
  memset (&sink_stats, 0, sizeof (sink_stats));
  calculate_dominance_info (CDI_DOMINATORS);
  calculate_dominance_info (CDI_POST_DOMINATORS);
  unsigned todo = sink_code_in_bb (EXIT_BLOCK_PTR_FOR_FN (fun));
  statistics_counter_event (fun, "Sunk statements", sink_stats.sunk);
  statistics_counter_event (fun, "Commoned stores", sink_stats.commoned);
  free_dominance_info (CDI_POST_DOMINATORS);
  remove_fake_exit_edges ();
  loop_optimizer_finalize ();

  return todo;
}

} // anon namespace

gimple_opt_pass *
make_pass_sink_code (gcc::context *ctxt)
{
  return new pass_sink_code (ctxt);
}