aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-propagate.cc
blob: 472c4bcb5406b9369fe678430fa98d80da28da34 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
/* Generic SSA value propagation engine.
   Copyright (C) 2004-2023 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 3, or (at your option) any
   later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "dumpfile.h"
#include "gimple-iterator.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "tree-cfg.h"
#include "tree-ssa.h"
#include "tree-ssa-propagate.h"
#include "domwalk.h"
#include "cfgloop.h"
#include "tree-cfgcleanup.h"
#include "cfganal.h"

/* This file implements a generic value propagation engine based on
   the same propagation used by the SSA-CCP algorithm [1].

   Propagation is performed by simulating the execution of every
   statement that produces the value being propagated.  Simulation
   proceeds as follows:

   1- Initially, all edges of the CFG are marked not executable and
      the CFG worklist is seeded with all the statements in the entry
      basic block (block 0).

   2- Every statement S is simulated with a call to the call-back
      function SSA_PROP_VISIT_STMT.  This evaluation may produce 3
      results:

      	SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
	    interest and does not affect any of the work lists.
	    The statement may be simulated again if any of its input
	    operands change in future iterations of the simulator.

	SSA_PROP_VARYING: The value produced by S cannot be determined
	    at compile time.  Further simulation of S is not required.
	    If S is a conditional jump, all the outgoing edges for the
	    block are considered executable and added to the work
	    list.

	SSA_PROP_INTERESTING: S produces a value that can be computed
	    at compile time.  Its result can be propagated into the
	    statements that feed from S.  Furthermore, if S is a
	    conditional jump, only the edge known to be taken is added
	    to the work list.  Edges that are known not to execute are
	    never simulated.

   3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI.  The
      return value from SSA_PROP_VISIT_PHI has the same semantics as
      described in #2.

   4- Three work lists are kept.  Statements are only added to these
      lists if they produce one of SSA_PROP_INTERESTING or
      SSA_PROP_VARYING.

   	CFG_BLOCKS contains the list of blocks to be simulated.
	    Blocks are added to this list if their incoming edges are
	    found executable.

	SSA_EDGE_WORKLIST contains the list of statements that we 
	    need to revisit.

   5- Simulation terminates when all three work lists are drained.

   Before calling ssa_propagate, it is important to clear
   prop_simulate_again_p for all the statements in the program that
   should be simulated.  This initialization allows an implementation
   to specify which statements should never be simulated.

   It is also important to compute def-use information before calling
   ssa_propagate.

   References:

     [1] Constant propagation with conditional branches,
         Wegman and Zadeck, ACM TOPLAS 13(2):181-210.

     [2] Building an Optimizing Compiler,
	 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.

     [3] Advanced Compiler Design and Implementation,
	 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6  */

/* Worklists of control flow edge destinations.  This contains
   the CFG order number of the blocks so we can iterate in CFG
   order by visiting in bit-order.  We use two worklists to
   first make forward progress before iterating.  */
static bitmap cfg_blocks;
static bitmap cfg_blocks_back;
static int *bb_to_cfg_order;
static int *cfg_order_to_bb;

/* Worklists of SSA edges which will need reexamination as their
   definition has changed.  SSA edges are def-use edges in the SSA
   web.  For each D-U edge, we store the target statement or PHI node
   UID in a bitmap.  UIDs order stmts in execution order.  We use
   two worklists to first make forward progress before iterating.  */
static bitmap ssa_edge_worklist;
static bitmap ssa_edge_worklist_back;
static vec<gimple *> uid_to_stmt;

/* Current RPO index in the iteration.  */
static int curr_order;


/* We have just defined a new value for VAR.  If IS_VARYING is true,
   add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
   them to INTERESTING_SSA_EDGES.  */

static void
add_ssa_edge (tree var)
{
  imm_use_iterator iter;
  use_operand_p use_p;

  FOR_EACH_IMM_USE_FAST (use_p, iter, var)
    {
      gimple *use_stmt = USE_STMT (use_p);
      if (!prop_simulate_again_p (use_stmt))
	continue;

      /* If we did not yet simulate the block wait for this to happen
         and do not add the stmt to the SSA edge worklist.  */
      basic_block use_bb = gimple_bb (use_stmt);
      if (! (use_bb->flags & BB_VISITED))
	continue;

      /* If this is a use on a not yet executable edge do not bother to
	 queue it.  */
      if (gimple_code (use_stmt) == GIMPLE_PHI
	  && !(EDGE_PRED (use_bb, PHI_ARG_INDEX_FROM_USE (use_p))->flags
	       & EDGE_EXECUTABLE))
	continue;

      bitmap worklist;
      if (bb_to_cfg_order[gimple_bb (use_stmt)->index] < curr_order)
	worklist = ssa_edge_worklist_back;
      else
	worklist = ssa_edge_worklist;
      if (bitmap_set_bit (worklist, gimple_uid (use_stmt)))
	{
	  uid_to_stmt[gimple_uid (use_stmt)] = use_stmt;
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "ssa_edge_worklist: adding SSA use in ");
	      print_gimple_stmt (dump_file, use_stmt, 0, TDF_SLIM);
	    }
	}
    }
}


/* Add edge E to the control flow worklist.  */

static void
add_control_edge (edge e)
{
  basic_block bb = e->dest;
  if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
    return;

  /* If the edge had already been executed, skip it.  */
  if (e->flags & EDGE_EXECUTABLE)
    return;

  e->flags |= EDGE_EXECUTABLE;

  int bb_order = bb_to_cfg_order[bb->index];
  if (bb_order < curr_order)
    bitmap_set_bit (cfg_blocks_back, bb_order);
  else
    bitmap_set_bit (cfg_blocks, bb_order);

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Adding destination of edge (%d -> %d) to worklist\n",
	e->src->index, e->dest->index);
}


/* Simulate the execution of STMT and update the work lists accordingly.  */

void
ssa_propagation_engine::simulate_stmt (gimple *stmt)
{
  enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
  edge taken_edge = NULL;
  tree output_name = NULL_TREE;

  /* Pull the stmt off the SSA edge worklist.  */
  bitmap_clear_bit (ssa_edge_worklist, gimple_uid (stmt));

  /* Don't bother visiting statements that are already
     considered varying by the propagator.  */
  if (!prop_simulate_again_p (stmt))
    return;

  if (gimple_code (stmt) == GIMPLE_PHI)
    {
      val = visit_phi (as_a <gphi *> (stmt));
      output_name = gimple_phi_result (stmt);
    }
  else
    val = visit_stmt (stmt, &taken_edge, &output_name);

  if (val == SSA_PROP_VARYING)
    {
      prop_set_simulate_again (stmt, false);

      /* If the statement produced a new varying value, add the SSA
	 edges coming out of OUTPUT_NAME.  */
      if (output_name)
	add_ssa_edge (output_name);

      /* If STMT transfers control out of its basic block, add
	 all outgoing edges to the work list.  */
      if (stmt_ends_bb_p (stmt))
	{
	  edge e;
	  edge_iterator ei;
	  basic_block bb = gimple_bb (stmt);
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    add_control_edge (e);
	}
      return;
    }
  else if (val == SSA_PROP_INTERESTING)
    {
      /* If the statement produced new value, add the SSA edges coming
	 out of OUTPUT_NAME.  */
      if (output_name)
	add_ssa_edge (output_name);

      /* If we know which edge is going to be taken out of this block,
	 add it to the CFG work list.  */
      if (taken_edge)
	add_control_edge (taken_edge);
    }

  /* If there are no SSA uses on the stmt whose defs are simulated
     again then this stmt will be never visited again.  */
  bool has_simulate_again_uses = false;
  use_operand_p use_p;
  ssa_op_iter iter;
  if (gimple_code  (stmt) == GIMPLE_PHI)
    {
      edge_iterator ei;
      edge e;
      tree arg;
      FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
	if (!(e->flags & EDGE_EXECUTABLE)
	    || ((arg = PHI_ARG_DEF_FROM_EDGE (stmt, e))
		&& TREE_CODE (arg) == SSA_NAME
		&& !SSA_NAME_IS_DEFAULT_DEF (arg)
		&& prop_simulate_again_p (SSA_NAME_DEF_STMT (arg))))
	  {
	    has_simulate_again_uses = true;
	    break;
	  }
    }
  else
    FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
      {
	gimple *def_stmt = SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p));
	if (!gimple_nop_p (def_stmt)
	    && prop_simulate_again_p (def_stmt))
	  {
	    has_simulate_again_uses = true;
	    break;
	  }
      }
  if (!has_simulate_again_uses)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "marking stmt to be not simulated again\n");
      prop_set_simulate_again (stmt, false);
    }
}


/* Simulate the execution of BLOCK.  Evaluate the statement associated
   with each variable reference inside the block.  */

void
ssa_propagation_engine::simulate_block (basic_block block)
{
  gimple_stmt_iterator gsi;

  /* There is nothing to do for the exit block.  */
  if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
    return;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\nSimulating block %d\n", block->index);

  /* Always simulate PHI nodes, even if we have simulated this block
     before.  */
  for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
    simulate_stmt (gsi_stmt (gsi));

  /* If this is the first time we've simulated this block, then we
     must simulate each of its statements.  */
  if (! (block->flags & BB_VISITED))
    {
      gimple_stmt_iterator j;
      unsigned int normal_edge_count;
      edge e, normal_edge;
      edge_iterator ei;

      for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j))
	simulate_stmt (gsi_stmt (j));

      /* Note that we have simulated this block.  */
      block->flags |= BB_VISITED;

      /* We cannot predict when abnormal and EH edges will be executed, so
	 once a block is considered executable, we consider any
	 outgoing abnormal edges as executable.

	 TODO: This is not exactly true.  Simplifying statement might
	 prove it non-throwing and also computed goto can be handled
	 when destination is known.

	 At the same time, if this block has only one successor that is
	 reached by non-abnormal edges, then add that successor to the
	 worklist.  */
      normal_edge_count = 0;
      normal_edge = NULL;
      FOR_EACH_EDGE (e, ei, block->succs)
	{
	  if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
	    add_control_edge (e);
	  else
	    {
	      normal_edge_count++;
	      normal_edge = e;
	    }
	}

      if (normal_edge_count == 1)
	add_control_edge (normal_edge);
    }
}


/* Initialize local data structures and work lists.  */

static void
ssa_prop_init (void)
{
  edge e;
  edge_iterator ei;
  basic_block bb;

  /* Worklists of SSA edges.  */
  ssa_edge_worklist = BITMAP_ALLOC (NULL);
  ssa_edge_worklist_back = BITMAP_ALLOC (NULL);
  bitmap_tree_view (ssa_edge_worklist);
  bitmap_tree_view (ssa_edge_worklist_back);

  /* Worklist of basic-blocks.  */
  bb_to_cfg_order = XNEWVEC (int, last_basic_block_for_fn (cfun) + 1);
  cfg_order_to_bb = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
  int n = pre_and_rev_post_order_compute_fn (cfun, NULL,
					     cfg_order_to_bb, false);
  for (int i = 0; i < n; ++i)
    bb_to_cfg_order[cfg_order_to_bb[i]] = i;
  cfg_blocks = BITMAP_ALLOC (NULL);
  cfg_blocks_back = BITMAP_ALLOC (NULL);

  /* Initially assume that every edge in the CFG is not executable.
     (including the edges coming out of the entry block).  Mark blocks
     as not visited, blocks not yet visited will have all their statements
     simulated once an incoming edge gets executable.  */
  set_gimple_stmt_max_uid (cfun, 0);
  for (int i = 0; i < n; ++i)
    {
      gimple_stmt_iterator si;
      bb = BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb[i]);

      for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
	{
	  gimple *stmt = gsi_stmt (si);
	  gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
	}

      for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
	{
	  gimple *stmt = gsi_stmt (si);
	  gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
	}

      bb->flags &= ~BB_VISITED;
      FOR_EACH_EDGE (e, ei, bb->succs)
	e->flags &= ~EDGE_EXECUTABLE;
    }
  uid_to_stmt.safe_grow (gimple_stmt_max_uid (cfun), true);
}


/* Free allocated storage.  */

static void
ssa_prop_fini (void)
{
  BITMAP_FREE (cfg_blocks);
  BITMAP_FREE (cfg_blocks_back);
  free (bb_to_cfg_order);
  free (cfg_order_to_bb);
  BITMAP_FREE (ssa_edge_worklist);
  BITMAP_FREE (ssa_edge_worklist_back);
  uid_to_stmt.release ();
}


/* Entry point to the propagation engine.

   The VISIT_STMT virtual function is called for every statement
   visited and the VISIT_PHI virtual function is called for every PHI
   node visited.  */

void
ssa_propagation_engine::ssa_propagate (void)
{
  ssa_prop_init ();

  curr_order = 0;

  /* Iterate until the worklists are empty.  We iterate both blocks
     and stmts in RPO order, using sets of two worklists to first
     complete the current iteration before iterating over backedges.
     Seed the algorithm by adding the successors of the entry block to the
     edge worklist.  */
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
    {
      e->flags &= ~EDGE_EXECUTABLE;
      add_control_edge (e);
    }
  while (1)
    {
      int next_block_order = (bitmap_empty_p (cfg_blocks)
			      ? -1 : bitmap_first_set_bit (cfg_blocks));
      int next_stmt_uid = (bitmap_empty_p (ssa_edge_worklist)
			   ? -1 : bitmap_first_set_bit (ssa_edge_worklist));
      if (next_block_order == -1 && next_stmt_uid == -1)
	{
	  if (bitmap_empty_p (cfg_blocks_back)
	      && bitmap_empty_p (ssa_edge_worklist_back))
	    break;

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Regular worklists empty, now processing "
		     "backedge destinations\n");
	  std::swap (cfg_blocks, cfg_blocks_back);
	  std::swap (ssa_edge_worklist, ssa_edge_worklist_back);
	  continue;
	}

      int next_stmt_bb_order = -1;
      gimple *next_stmt = NULL;
      if (next_stmt_uid != -1)
	{
	  next_stmt = uid_to_stmt[next_stmt_uid];
	  next_stmt_bb_order = bb_to_cfg_order[gimple_bb (next_stmt)->index];
	}

      /* Pull the next block to simulate off the worklist if it comes first.  */
      if (next_block_order != -1
	  && (next_stmt_bb_order == -1
	      || next_block_order <= next_stmt_bb_order))
	{
	  curr_order = next_block_order;
	  bitmap_clear_bit (cfg_blocks, next_block_order);
	  basic_block bb
	    = BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb [next_block_order]);
	  simulate_block (bb);
	}
      /* Else simulate from the SSA edge worklist.  */
      else
	{
	  curr_order = next_stmt_bb_order;
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "\nSimulating statement: ");
	      print_gimple_stmt (dump_file, next_stmt, 0, dump_flags);
	    }
	  simulate_stmt (next_stmt);
	}
    }

  ssa_prop_fini ();
}

/* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
   is a non-volatile pointer dereference, a structure reference or a
   reference to a single _DECL.  Ignore volatile memory references
   because they are not interesting for the optimizers.  */

bool
stmt_makes_single_store (gimple *stmt)
{
  tree lhs;

  if (gimple_code (stmt) != GIMPLE_ASSIGN
      && gimple_code (stmt) != GIMPLE_CALL)
    return false;

  if (!gimple_vdef (stmt))
    return false;

  lhs = gimple_get_lhs (stmt);

  /* A call statement may have a null LHS.  */
  if (!lhs)
    return false;

  return (!TREE_THIS_VOLATILE (lhs)
          && (DECL_P (lhs)
	      || REFERENCE_CLASS_P (lhs)));
}


/* Propagation statistics.  */
struct prop_stats_d
{
  long num_const_prop;
  long num_copy_prop;
  long num_stmts_folded;
  long num_dce;
};

static struct prop_stats_d prop_stats;

/* Replace USE references in statement STMT with the values stored in
   PROP_VALUE. Return true if at least one reference was replaced.  */

bool
substitute_and_fold_engine::replace_uses_in (gimple *stmt)
{
  bool replaced = false;
  use_operand_p use;
  ssa_op_iter iter;

  FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
    {
      tree tuse = USE_FROM_PTR (use);
      tree val = value_of_expr (tuse, stmt);

      if (val == tuse || val == NULL_TREE)
	continue;

      if (gimple_code (stmt) == GIMPLE_ASM
	  && !may_propagate_copy_into_asm (tuse))
	continue;

      if (!may_propagate_copy (tuse, val))
	continue;

      if (TREE_CODE (val) != SSA_NAME)
	prop_stats.num_const_prop++;
      else
	prop_stats.num_copy_prop++;

      propagate_value (use, val);

      replaced = true;
    }

  return replaced;
}


/* Replace propagated values into all the arguments for PHI using the
   values from PROP_VALUE.  */

bool
substitute_and_fold_engine::replace_phi_args_in (gphi *phi)
{
  size_t i;
  bool replaced = false;

  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
      tree arg = gimple_phi_arg_def (phi, i);

      if (TREE_CODE (arg) == SSA_NAME)
	{
	  edge e = gimple_phi_arg_edge (phi, i);
	  tree val = value_on_edge (e, arg);

	  if (val && val != arg && may_propagate_copy (arg, val))
	    {
	      if (TREE_CODE (val) != SSA_NAME)
		prop_stats.num_const_prop++;
	      else
		prop_stats.num_copy_prop++;

	      propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
	      replaced = true;

	      /* If we propagated a copy and this argument flows
		 through an abnormal edge, update the replacement
		 accordingly.  */
	      if (TREE_CODE (val) == SSA_NAME
		  && e->flags & EDGE_ABNORMAL
		  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
		{
		  /* This can only occur for virtual operands, since
		     for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
		     would prevent replacement.  */
		  gcc_checking_assert (virtual_operand_p (val));
		  SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
		}
	    }
	}
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      if (!replaced)
	fprintf (dump_file, "No folding possible\n");
      else
	{
	  fprintf (dump_file, "Folded into: ");
	  print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
	  fprintf (dump_file, "\n");
	}
    }

  return replaced;
}


class substitute_and_fold_dom_walker : public dom_walker
{
public:
    substitute_and_fold_dom_walker (cdi_direction direction,
				    class substitute_and_fold_engine *engine)
	: dom_walker (direction),
          something_changed (false),
	  substitute_and_fold_engine (engine)
    {
      stmts_to_remove.create (0);
      stmts_to_fixup.create (0);
      need_eh_cleanup = BITMAP_ALLOC (NULL);
      need_ab_cleanup = BITMAP_ALLOC (NULL);
    }
    ~substitute_and_fold_dom_walker ()
    {
      stmts_to_remove.release ();
      stmts_to_fixup.release ();
      BITMAP_FREE (need_eh_cleanup);
      BITMAP_FREE (need_ab_cleanup);
    }

    edge before_dom_children (basic_block) final override;
    void after_dom_children (basic_block bb) final override
    {
      substitute_and_fold_engine->post_fold_bb (bb);
    }

    bool something_changed;
    vec<gimple *> stmts_to_remove;
    vec<gimple *> stmts_to_fixup;
    bitmap need_eh_cleanup;
    bitmap need_ab_cleanup;

    class substitute_and_fold_engine *substitute_and_fold_engine;

private:
    void foreach_new_stmt_in_bb (gimple_stmt_iterator old_gsi,
				 gimple_stmt_iterator new_gsi);
};

/* Call post_new_stmt for each new statement that has been added
   to the current BB.  OLD_GSI is the statement iterator before the BB
   changes ocurred.  NEW_GSI is the iterator which may contain new
   statements.  */

void
substitute_and_fold_dom_walker::foreach_new_stmt_in_bb
				(gimple_stmt_iterator old_gsi,
				 gimple_stmt_iterator new_gsi)
{
  basic_block bb = gsi_bb (new_gsi);
  if (gsi_end_p (old_gsi))
    old_gsi = gsi_start_bb (bb);
  else
    gsi_next (&old_gsi);
  while (gsi_stmt (old_gsi) != gsi_stmt (new_gsi))
    {
      gimple *stmt = gsi_stmt (old_gsi);
      substitute_and_fold_engine->post_new_stmt (stmt);
      gsi_next (&old_gsi);
    }
}

bool
substitute_and_fold_engine::propagate_into_phi_args (basic_block bb)
{
  edge e;
  edge_iterator ei;
  bool propagated = false;

  /* Visit BB successor PHI nodes and replace PHI args.  */
  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      for (gphi_iterator gpi = gsi_start_phis (e->dest);
	   !gsi_end_p (gpi); gsi_next (&gpi))
	{
	  gphi *phi = gpi.phi ();
	  use_operand_p use_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
	  tree arg = USE_FROM_PTR (use_p);
	  if (TREE_CODE (arg) != SSA_NAME
	      || virtual_operand_p (arg))
	    continue;
	  tree val = value_on_edge (e, arg);
	  if (val
	      && is_gimple_min_invariant (val)
	      && may_propagate_copy (arg, val))
	    {
	      propagate_value (use_p, val);
	      propagated = true;
	    }
	}
    }
  return propagated;
}

edge
substitute_and_fold_dom_walker::before_dom_children (basic_block bb)
{
  substitute_and_fold_engine->pre_fold_bb (bb);

  /* Propagate known values into PHI nodes.  */
  for (gphi_iterator i = gsi_start_phis (bb);
       !gsi_end_p (i);
       gsi_next (&i))
    {
      gphi *phi = i.phi ();
      tree res = gimple_phi_result (phi);
      if (virtual_operand_p (res))
	continue;
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Folding PHI node: ");
	  print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
	}
      if (res && TREE_CODE (res) == SSA_NAME)
	{
	  tree sprime = substitute_and_fold_engine->value_of_expr (res, phi);
	  if (sprime
	      && sprime != res
	      && may_propagate_copy (res, sprime))
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "Queued PHI for removal.  Folds to: ");
		  print_generic_expr (dump_file, sprime);
		  fprintf (dump_file, "\n");
		}
	      stmts_to_remove.safe_push (phi);
	      continue;
	    }
	}
      something_changed |= substitute_and_fold_engine->replace_phi_args_in (phi);
    }

  /* Propagate known values into stmts.  In some case it exposes
     more trivially deletable stmts to walk backward.  */
  for (gimple_stmt_iterator i = gsi_start_bb (bb);
       !gsi_end_p (i);
       gsi_next (&i))
    {
      bool did_replace;
      gimple *stmt = gsi_stmt (i);

      substitute_and_fold_engine->pre_fold_stmt (stmt);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Folding statement: ");
	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	}

      /* No point propagating into a stmt we have a value for we
         can propagate into all uses.  Mark it for removal instead.  */
      tree lhs = gimple_get_lhs (stmt);
      if (lhs && TREE_CODE (lhs) == SSA_NAME)
	{
	  tree sprime = substitute_and_fold_engine->value_of_stmt (stmt, lhs);
	  if (sprime
	      && sprime != lhs
	      && may_propagate_copy (lhs, sprime)
	      && !stmt_could_throw_p (cfun, stmt)
	      && !gimple_has_side_effects (stmt))
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "Queued stmt for removal.  Folds to: ");
		  print_generic_expr (dump_file, sprime);
		  fprintf (dump_file, "\n");
		}
	      stmts_to_remove.safe_push (stmt);
	      continue;
	    }
	}

      /* Replace the statement with its folded version and mark it
	 folded.  */
      did_replace = false;
      gimple *old_stmt = stmt;
      bool was_noreturn = false;
      bool can_make_abnormal_goto = false;
      if (is_gimple_call (stmt))
	{
	  was_noreturn = gimple_call_noreturn_p (stmt);
	  can_make_abnormal_goto = stmt_can_make_abnormal_goto (stmt);
	}

      /* Replace real uses in the statement.  */
      did_replace |= substitute_and_fold_engine->replace_uses_in (stmt);

      gimple_stmt_iterator prev_gsi = i;
      gsi_prev (&prev_gsi);

      /* If we made a replacement, fold the statement.  */
      if (did_replace)
	{
	  fold_stmt (&i, follow_single_use_edges);
	  stmt = gsi_stmt (i);
	  gimple_set_modified (stmt, true);
	}
      /* Also fold if we want to fold all statements.  */
      else if (substitute_and_fold_engine->fold_all_stmts
	  && fold_stmt (&i, follow_single_use_edges))
	{
	  did_replace = true;
	  stmt = gsi_stmt (i);
	  gimple_set_modified (stmt, true);
	}

      /* Some statements may be simplified using propagator
	 specific information.  Do this before propagating
	 into the stmt to not disturb pass specific information.  */
      update_stmt_if_modified (stmt);
      if (substitute_and_fold_engine->fold_stmt (&i))
	{
	  did_replace = true;
	  prop_stats.num_stmts_folded++;
	  stmt = gsi_stmt (i);
	  gimple_set_modified (stmt, true);
	}

      /* If this is a control statement the propagator left edges
         unexecuted on force the condition in a way consistent with
	 that.  See PR66945 for cases where the propagator can end
	 up with a different idea of a taken edge than folding
	 (once undefined behavior is involved).  */
      if (gimple_code (stmt) == GIMPLE_COND)
	{
	  if ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE)
	      ^ (EDGE_SUCC (bb, 1)->flags & EDGE_EXECUTABLE))
	    {
	      if (((EDGE_SUCC (bb, 0)->flags & EDGE_TRUE_VALUE) != 0)
		  == ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE) != 0))
		gimple_cond_make_true (as_a <gcond *> (stmt));
	      else
		gimple_cond_make_false (as_a <gcond *> (stmt));
	      gimple_set_modified (stmt, true);
	      did_replace = true;
	    }
	}

      /* Now cleanup.  */
      if (did_replace)
	{
	  foreach_new_stmt_in_bb (prev_gsi, i);

	  /* If we cleaned up EH information from the statement,
	     remove EH edges.  */
	  if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
	    bitmap_set_bit (need_eh_cleanup, bb->index);

	  /* If we turned a call with possible abnormal control transfer
	     into one that doesn't, remove abnormal edges.  */
	  if (can_make_abnormal_goto
	      && !stmt_can_make_abnormal_goto (stmt))
	    bitmap_set_bit (need_ab_cleanup, bb->index);

	  /* If we turned a not noreturn call into a noreturn one
	     schedule it for fixup.  */
	  if (!was_noreturn
	      && is_gimple_call (stmt)
	      && gimple_call_noreturn_p (stmt))
	    stmts_to_fixup.safe_push (stmt);

	  if (gimple_assign_single_p (stmt))
	    {
	      tree rhs = gimple_assign_rhs1 (stmt);

	      if (TREE_CODE (rhs) == ADDR_EXPR)
		recompute_tree_invariant_for_addr_expr (rhs);
	    }

	  /* Determine what needs to be done to update the SSA form.  */
	  update_stmt_if_modified (stmt);
	  if (!is_gimple_debug (stmt))
	    something_changed = true;
	}

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  if (did_replace)
	    {
	      fprintf (dump_file, "Folded into: ");
	      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	      fprintf (dump_file, "\n");
	    }
	  else
	    fprintf (dump_file, "Not folded\n");
	}
    }

  something_changed |= substitute_and_fold_engine->propagate_into_phi_args (bb);

  return NULL;
}



/* Perform final substitution and folding of propagated values.
   Process the whole function if BLOCK is null, otherwise only
   process the blocks that BLOCK dominates.  In the latter case,
   it is the caller's responsibility to ensure that dominator
   information is available and up-to-date.

   PROP_VALUE[I] contains the single value that should be substituted
   at every use of SSA name N_I.  If PROP_VALUE is NULL, no values are
   substituted.

   If FOLD_FN is non-NULL the function will be invoked on all statements
   before propagating values for pass specific simplification.

   DO_DCE is true if trivially dead stmts can be removed.

   If DO_DCE is true, the statements within a BB are walked from
   last to first element.  Otherwise we scan from first to last element.

   Return TRUE when something changed.  */

bool
substitute_and_fold_engine::substitute_and_fold (basic_block block)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\nSubstituting values and folding statements\n\n");

  memset (&prop_stats, 0, sizeof (prop_stats));

  /* Don't call calculate_dominance_info when iterating over a subgraph.
     Callers that are using the interface this way are likely to want to
     iterate over several disjoint subgraphs, and it would be expensive
     in enable-checking builds to revalidate the whole dominance tree
     each time.  */
  if (block)
    gcc_assert (dom_info_state (CDI_DOMINATORS));
  else
    calculate_dominance_info (CDI_DOMINATORS);
  substitute_and_fold_dom_walker walker (CDI_DOMINATORS, this);
  walker.walk (block ? block : ENTRY_BLOCK_PTR_FOR_FN (cfun));

  /* We cannot remove stmts during the BB walk, especially not release
     SSA names there as that destroys the lattice of our callers.
     Remove stmts in reverse order to make debug stmt creation possible.  */
  while (!walker.stmts_to_remove.is_empty ())
    {
      gimple *stmt = walker.stmts_to_remove.pop ();
      if (dump_file && dump_flags & TDF_DETAILS)
	{
	  fprintf (dump_file, "Removing dead stmt ");
	  print_gimple_stmt (dump_file, stmt, 0);
	  fprintf (dump_file, "\n");
	}
      prop_stats.num_dce++;
      gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
      if (gimple_code (stmt) == GIMPLE_PHI)
	remove_phi_node (&gsi, true);
      else
	{
	  unlink_stmt_vdef (stmt);
	  gsi_remove (&gsi, true);
	  release_defs (stmt);
	}
    }

  if (!bitmap_empty_p (walker.need_eh_cleanup))
    gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup);
  if (!bitmap_empty_p (walker.need_ab_cleanup))
    gimple_purge_all_dead_abnormal_call_edges (walker.need_ab_cleanup);

  /* Fixup stmts that became noreturn calls.  This may require splitting
     blocks and thus isn't possible during the dominator walk.  Do this
     in reverse order so we don't inadvertedly remove a stmt we want to
     fixup by visiting a dominating now noreturn call first.  */
  while (!walker.stmts_to_fixup.is_empty ())
    {
      gimple *stmt = walker.stmts_to_fixup.pop ();
      if (dump_file && dump_flags & TDF_DETAILS)
	{
	  fprintf (dump_file, "Fixing up noreturn call ");
	  print_gimple_stmt (dump_file, stmt, 0);
	  fprintf (dump_file, "\n");
	}
      fixup_noreturn_call (stmt);
    }

  statistics_counter_event (cfun, "Constants propagated",
			    prop_stats.num_const_prop);
  statistics_counter_event (cfun, "Copies propagated",
			    prop_stats.num_copy_prop);
  statistics_counter_event (cfun, "Statements folded",
			    prop_stats.num_stmts_folded);
  statistics_counter_event (cfun, "Statements deleted",
			    prop_stats.num_dce);

  return walker.something_changed;
}


/* Return true if we may propagate ORIG into DEST, false otherwise.
   If DEST_NOT_PHI_ARG_P is true then assume the propagation does
   not happen into a PHI argument which relaxes some constraints.  */

bool
may_propagate_copy (tree dest, tree orig, bool dest_not_phi_arg_p)
{
  tree type_d = TREE_TYPE (dest);
  tree type_o = TREE_TYPE (orig);

  /* If ORIG is a default definition which flows in from an abnormal edge
     then the copy can be propagated.  It is important that we do so to avoid
     uninitialized copies.  */
  if (TREE_CODE (orig) == SSA_NAME
      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig)
      && SSA_NAME_IS_DEFAULT_DEF (orig)
      && (SSA_NAME_VAR (orig) == NULL_TREE
	  || TREE_CODE (SSA_NAME_VAR (orig)) == VAR_DECL))
    ;
  /* Otherwise if ORIG just flows in from an abnormal edge then the copy cannot
     be propagated.  */
  else if (TREE_CODE (orig) == SSA_NAME
	   && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
    return false;
  /* Similarly if DEST flows in from an abnormal edge then the copy cannot be
     propagated.  If we know we do not propagate into a PHI argument this
     does not apply.  */
  else if (!dest_not_phi_arg_p
	   && TREE_CODE (dest) == SSA_NAME
	   && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest))
    return false;

  /* Do not copy between types for which we *do* need a conversion.  */
  if (!useless_type_conversion_p (type_d, type_o))
    return false;

  /* Generally propagating virtual operands is not ok as that may
     create overlapping life-ranges.  */
  if (TREE_CODE (dest) == SSA_NAME && virtual_operand_p (dest))
    return false;

  /* Anything else is OK.  */
  return true;
}

/* Like may_propagate_copy, but use as the destination expression
   the principal expression (typically, the RHS) contained in
   statement DEST.  This is more efficient when working with the
   gimple tuples representation.  */

bool
may_propagate_copy_into_stmt (gimple *dest, tree orig)
{
  tree type_d;
  tree type_o;

  /* If the statement is a switch or a single-rhs assignment,
     then the expression to be replaced by the propagation may
     be an SSA_NAME.  Fortunately, there is an explicit tree
     for the expression, so we delegate to may_propagate_copy.  */

  if (gimple_assign_single_p (dest))
    return may_propagate_copy (gimple_assign_rhs1 (dest), orig, true);
  else if (gswitch *dest_swtch = dyn_cast <gswitch *> (dest))
    return may_propagate_copy (gimple_switch_index (dest_swtch), orig, true);

  /* In other cases, the expression is not materialized, so there
     is no destination to pass to may_propagate_copy.  On the other
     hand, the expression cannot be an SSA_NAME, so the analysis
     is much simpler.  */

  if (TREE_CODE (orig) == SSA_NAME
      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
    return false;

  if (is_gimple_assign (dest))
    type_d = TREE_TYPE (gimple_assign_lhs (dest));
  else if (gimple_code (dest) == GIMPLE_COND)
    type_d = boolean_type_node;
  else if (is_gimple_call (dest)
           && gimple_call_lhs (dest) != NULL_TREE)
    type_d = TREE_TYPE (gimple_call_lhs (dest));
  else
    gcc_unreachable ();

  type_o = TREE_TYPE (orig);

  if (!useless_type_conversion_p (type_d, type_o))
    return false;

  return true;
}

/* Similarly, but we know that we're propagating into an ASM_EXPR.  */

bool
may_propagate_copy_into_asm (tree dest ATTRIBUTE_UNUSED)
{
  return true;
}


/* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).

   Use this version when not const/copy propagating values.  For example,
   PRE uses this version when building expressions as they would appear
   in specific blocks taking into account actions of PHI nodes.

   The statement in which an expression has been replaced should be
   folded using fold_stmt_inplace.  */

void
replace_exp (use_operand_p op_p, tree val)
{
  if (TREE_CODE (val) == SSA_NAME || CONSTANT_CLASS_P (val))
    SET_USE (op_p, val);
  else
    SET_USE (op_p, unshare_expr (val));
}


/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
   into the operand pointed to by OP_P.

   Use this version for const/copy propagation as it will perform additional
   checks to ensure validity of the const/copy propagation.  */

void
propagate_value (use_operand_p op_p, tree val)
{
  if (flag_checking)
    gcc_assert (may_propagate_copy (USE_FROM_PTR (op_p), val,
				    !is_a <gphi *> (USE_STMT (op_p))));
  replace_exp (op_p, val);
}


/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
   into the tree pointed to by OP_P.

   Use this version for const/copy propagation when SSA operands are not
   available.  It will perform the additional checks to ensure validity of
   the const/copy propagation, but will not update any operand information.
   Be sure to mark the stmt as modified.  */

void
propagate_tree_value (tree *op_p, tree val)
{
  if (TREE_CODE (val) == SSA_NAME)
    *op_p = val;
  else
    *op_p = unshare_expr (val);
}


/* Like propagate_tree_value, but use as the operand to replace
   the principal expression (typically, the RHS) contained in the
   statement referenced by iterator GSI.  Note that it is not
   always possible to update the statement in-place, so a new
   statement may be created to replace the original.  */

void
propagate_tree_value_into_stmt (gimple_stmt_iterator *gsi, tree val)
{
  gimple *stmt = gsi_stmt (*gsi);

  if (is_gimple_assign (stmt))
    {
      tree expr = NULL_TREE;
      if (gimple_assign_single_p (stmt))
        expr = gimple_assign_rhs1 (stmt);
      propagate_tree_value (&expr, val);
      gimple_assign_set_rhs_from_tree (gsi, expr);
    }
  else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
    {
      tree lhs = NULL_TREE;
      tree rhs = build_zero_cst (TREE_TYPE (val));
      propagate_tree_value (&lhs, val);
      gimple_cond_set_code (cond_stmt, NE_EXPR);
      gimple_cond_set_lhs (cond_stmt, lhs);
      gimple_cond_set_rhs (cond_stmt, rhs);
    }
  else if (is_gimple_call (stmt)
           && gimple_call_lhs (stmt) != NULL_TREE)
    {
      tree expr = NULL_TREE;
      propagate_tree_value (&expr, val);
      replace_call_with_value (gsi, expr);
    }
  else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
    propagate_tree_value (gimple_switch_index_ptr (swtch_stmt), val);
  else
    gcc_unreachable ();
}

/* Check exits of each loop in FUN, walk over loop closed PHIs in
   each exit basic block and propagate degenerate PHIs.  */

unsigned
clean_up_loop_closed_phi (function *fun)
{
  gphi *phi;
  tree rhs;
  tree lhs;
  gphi_iterator gsi;

  /* Avoid possibly quadratic work when scanning for loop exits across
   all loops of a nest.  */
  if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
    return 0;

  /* replace_uses_by might purge dead EH edges and we want it to also
     remove dominated blocks.  */
  calculate_dominance_info  (CDI_DOMINATORS);

  /* Walk over loop in function.  */
  for (auto loop : loops_list (fun, 0))
    {
      /* Check each exit edege of loop.  */
      auto_vec<edge> exits = get_loop_exit_edges (loop);
      for (edge e : exits)
	if (single_pred_p (e->dest))
	  /* Walk over loop-closed PHIs.  */
	  for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);)
	    {
	      phi = gsi.phi ();
	      rhs = gimple_phi_arg_def (phi, 0);
	      lhs = gimple_phi_result (phi);

	      if (virtual_operand_p (rhs))
		{
		  imm_use_iterator iter;
		  use_operand_p use_p;
		  gimple *stmt;

		  FOR_EACH_IMM_USE_STMT (stmt, iter, lhs)
		    FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
		      SET_USE (use_p, rhs);

		  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
		    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
		  remove_phi_node (&gsi, true);
		}
	      else if (may_propagate_copy (lhs, rhs))
		{
		  /* Dump details.  */
		  if (dump_file && (dump_flags & TDF_DETAILS))
		    {
		      fprintf (dump_file, "  Replacing '");
		      print_generic_expr (dump_file, lhs, dump_flags);
		      fprintf (dump_file, "' with '");
		      print_generic_expr (dump_file, rhs, dump_flags);
		      fprintf (dump_file, "'\n");
		    }

		  replace_uses_by (lhs, rhs);
		  remove_phi_node (&gsi, true);
		}
	      else
		gsi_next (&gsi);
	    }
    }

  return 0;
}