aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-dse.c
blob: 70c8b073359a75ff9ec7e5c7f32b21c96310bb59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
/* Dead store elimination
   Copyright (C) 2004-2017 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-dfa.h"
#include "domwalk.h"
#include "tree-cfgcleanup.h"
#include "params.h"
#include "alias.h"

/* This file implements dead store elimination.

   A dead store is a store into a memory location which will later be
   overwritten by another store without any intervening loads.  In this
   case the earlier store can be deleted.

   In our SSA + virtual operand world we use immediate uses of virtual
   operands to detect dead stores.  If a store's virtual definition
   is used precisely once by a later store to the same location which
   post dominates the first store, then the first store is dead.

   The single use of the store's virtual definition ensures that
   there are no intervening aliased loads and the requirement that
   the second load post dominate the first ensures that if the earlier
   store executes, then the later stores will execute before the function
   exits.

   It may help to think of this as first moving the earlier store to
   the point immediately before the later store.  Again, the single
   use of the virtual definition and the post-dominance relationship
   ensure that such movement would be safe.  Clearly if there are
   back to back stores, then the second is redundant.

   Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
   may also help in understanding this code since it discusses the
   relationship between dead store and redundant load elimination.  In
   fact, they are the same transformation applied to different views of
   the CFG.  */


/* Bitmap of blocks that have had EH statements cleaned.  We should
   remove their dead edges eventually.  */
static bitmap need_eh_cleanup;

/* Return value from dse_classify_store */
enum dse_store_status
{
  DSE_STORE_LIVE,
  DSE_STORE_MAYBE_PARTIAL_DEAD,
  DSE_STORE_DEAD
};

/* STMT is a statement that may write into memory.  Analyze it and
   initialize WRITE to describe how STMT affects memory.

   Return TRUE if the the statement was analyzed, FALSE otherwise.

   It is always safe to return FALSE.  But typically better optimziation
   can be achieved by analyzing more statements.  */

static bool
initialize_ao_ref_for_dse (gimple *stmt, ao_ref *write)
{
  /* It's advantageous to handle certain mem* functions.  */
  if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
    {
      switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
	{
	  case BUILT_IN_MEMCPY:
	  case BUILT_IN_MEMMOVE:
	  case BUILT_IN_MEMSET:
	    {
	      tree size = NULL_TREE;
	      if (gimple_call_num_args (stmt) == 3)
		size = gimple_call_arg (stmt, 2);
	      tree ptr = gimple_call_arg (stmt, 0);
	      ao_ref_init_from_ptr_and_size (write, ptr, size);
	      return true;
	    }
	  default:
	    break;
	}
    }
  else if (is_gimple_assign (stmt))
    {
      ao_ref_init (write, gimple_assign_lhs (stmt));
      return true;
    }
  return false;
}

/* Given REF from the the alias oracle, return TRUE if it is a valid
   memory reference for dead store elimination, false otherwise.

   In particular, the reference must have a known base, known maximum
   size, start at a byte offset and have a size that is one or more
   bytes.  */

static bool
valid_ao_ref_for_dse (ao_ref *ref)
{
  return (ao_ref_base (ref)
	  && ref->max_size != -1
	  && ref->size != 0
	  && ref->max_size == ref->size
	  && (ref->offset % BITS_PER_UNIT) == 0
	  && (ref->size % BITS_PER_UNIT) == 0
	  && (ref->size != -1));
}

/* Normalize COPY (an ao_ref) relative to REF.  Essentially when we are
   done COPY will only refer bytes found within REF.

   We have already verified that COPY intersects at least one
   byte with REF.  */

static void
normalize_ref (ao_ref *copy, ao_ref *ref)
{
  /* If COPY starts before REF, then reset the beginning of
     COPY to match REF and decrease the size of COPY by the
     number of bytes removed from COPY.  */
  if (copy->offset < ref->offset)
    {
      copy->size -= (ref->offset - copy->offset);
      copy->offset = ref->offset;
    }

  /* If COPY extends beyond REF, chop off its size appropriately.  */
  if (copy->offset + copy->size > ref->offset + ref->size)
    copy->size -= (copy->offset + copy->size - (ref->offset + ref->size));
}

/* Clear any bytes written by STMT from the bitmap LIVE_BYTES.  The base
   address written by STMT must match the one found in REF, which must
   have its base address previously initialized.

   This routine must be conservative.  If we don't know the offset or
   actual size written, assume nothing was written.  */

static void
clear_bytes_written_by (sbitmap live_bytes, gimple *stmt, ao_ref *ref)
{
  ao_ref write;
  if (!initialize_ao_ref_for_dse (stmt, &write))
    return;

  /* Verify we have the same base memory address, the write
     has a known size and overlaps with REF.  */
  if (valid_ao_ref_for_dse (&write)
      && operand_equal_p (write.base, ref->base, OEP_ADDRESS_OF)
      && write.size == write.max_size
      && ((write.offset < ref->offset
	   && write.offset + write.size > ref->offset)
	  || (write.offset >= ref->offset
	      && write.offset < ref->offset + ref->size)))
    {
      normalize_ref (&write, ref);
      bitmap_clear_range (live_bytes,
			  (write.offset - ref->offset) / BITS_PER_UNIT,
			  write.size / BITS_PER_UNIT);
    }
}

/* REF is a memory write.  Extract relevant information from it and
   initialize the LIVE_BYTES bitmap.  If successful, return TRUE.
   Otherwise return FALSE.  */

static bool
setup_live_bytes_from_ref (ao_ref *ref, sbitmap live_bytes)
{
  if (valid_ao_ref_for_dse (ref)
      && (ref->size / BITS_PER_UNIT
	  <= PARAM_VALUE (PARAM_DSE_MAX_OBJECT_SIZE)))
    {
      bitmap_clear (live_bytes);
      bitmap_set_range (live_bytes, 0, ref->size / BITS_PER_UNIT);
      return true;
    }
  return false;
}

/* Compute the number of elements that we can trim from the head and
   tail of ORIG resulting in a bitmap that is a superset of LIVE.

   Store the number of elements trimmed from the head and tail in
   TRIM_HEAD and TRIM_TAIL.

   STMT is the statement being trimmed and is used for debugging dump
   output only.  */

static void
compute_trims (ao_ref *ref, sbitmap live, int *trim_head, int *trim_tail,
	       gimple *stmt)
{
  /* We use sbitmaps biased such that ref->offset is bit zero and the bitmap
     extends through ref->size.  So we know that in the original bitmap
     bits 0..ref->size were true.  We don't actually need the bitmap, just
     the REF to compute the trims.  */

  /* Now identify how much, if any of the tail we can chop off.  */
  int last_orig = (ref->size / BITS_PER_UNIT) - 1;
  int last_live = bitmap_last_set_bit (live);
  *trim_tail = (last_orig - last_live) & ~0x1;

  /* Identify how much, if any of the head we can chop off.  */
  int first_orig = 0;
  int first_live = bitmap_first_set_bit (live);
  *trim_head = (first_live - first_orig) & ~0x1;

  if ((*trim_head || *trim_tail)
      && dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "  Trimming statement (head = %d, tail = %d): ",
	       *trim_head, *trim_tail);
      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
      fprintf (dump_file, "\n");
    }
}

/* STMT initializes an object from COMPLEX_CST where one or more of the
   bytes written may be dead stores.  REF is a representation of the
   memory written.  LIVE is the bitmap of stores that are actually live.

   Attempt to rewrite STMT so that only the real or imaginary part of
   the object is actually stored.  */

static void
maybe_trim_complex_store (ao_ref *ref, sbitmap live, gimple *stmt)
{
  int trim_head, trim_tail;
  compute_trims (ref, live, &trim_head, &trim_tail, stmt);

  /* The amount of data trimmed from the head or tail must be at
     least half the size of the object to ensure we're trimming
     the entire real or imaginary half.  By writing things this
     way we avoid more O(n) bitmap operations.  */
  if (trim_tail * 2 >= ref->size / BITS_PER_UNIT)
    {
      /* TREE_REALPART is live */
      tree x = TREE_REALPART (gimple_assign_rhs1 (stmt));
      tree y = gimple_assign_lhs (stmt);
      y = build1 (REALPART_EXPR, TREE_TYPE (x), y);
      gimple_assign_set_lhs (stmt, y);
      gimple_assign_set_rhs1 (stmt, x);
    }
  else if (trim_head * 2 >= ref->size / BITS_PER_UNIT)
    {
      /* TREE_IMAGPART is live */
      tree x = TREE_IMAGPART (gimple_assign_rhs1 (stmt));
      tree y = gimple_assign_lhs (stmt);
      y = build1 (IMAGPART_EXPR, TREE_TYPE (x), y);
      gimple_assign_set_lhs (stmt, y);
      gimple_assign_set_rhs1 (stmt, x);
    }

  /* Other cases indicate parts of both the real and imag subobjects
     are live.  We do not try to optimize those cases.  */
}

/* STMT initializes an object using a CONSTRUCTOR where one or more of the
   bytes written are dead stores.  ORIG is the bitmap of bytes stored by
   STMT.  LIVE is the bitmap of stores that are actually live.

   Attempt to rewrite STMT so that only the real or imaginary part of
   the object is actually stored.

   The most common case for getting here is a CONSTRUCTOR with no elements
   being used to zero initialize an object.  We do not try to handle other
   cases as those would force us to fully cover the object with the
   CONSTRUCTOR node except for the components that are dead.  */

static void
maybe_trim_constructor_store (ao_ref *ref, sbitmap live, gimple *stmt)
{
  tree ctor = gimple_assign_rhs1 (stmt);

  /* This is the only case we currently handle.  It actually seems to
     catch most cases of actual interest.  */
  gcc_assert (CONSTRUCTOR_NELTS (ctor) == 0);

  int head_trim = 0;
  int tail_trim = 0;
  compute_trims (ref, live, &head_trim, &tail_trim, stmt);

  /* Now we want to replace the constructor initializer
     with memset (object + head_trim, 0, size - head_trim - tail_trim).  */
  if (head_trim || tail_trim)
    {
      /* We want &lhs for the MEM_REF expression.  */
      tree lhs_addr = build_fold_addr_expr (gimple_assign_lhs (stmt));

      if (! is_gimple_min_invariant (lhs_addr))
	return;

      /* The number of bytes for the new constructor.  */
      int count = (ref->size / BITS_PER_UNIT) - head_trim - tail_trim;

      /* And the new type for the CONSTRUCTOR.  Essentially it's just
	 a char array large enough to cover the non-trimmed parts of
	 the original CONSTRUCTOR.  Note we want explicit bounds here
	 so that we know how many bytes to clear when expanding the
	 CONSTRUCTOR.  */
      tree type = build_array_type_nelts (char_type_node, count);

      /* Build a suitable alias type rather than using alias set zero
	 to avoid pessimizing.  */
      tree alias_type = reference_alias_ptr_type (gimple_assign_lhs (stmt));

      /* Build a MEM_REF representing the whole accessed area, starting
	 at the first byte not trimmed.  */
      tree exp = fold_build2 (MEM_REF, type, lhs_addr,
			      build_int_cst (alias_type, head_trim));

      /* Now update STMT with a new RHS and LHS.  */
      gimple_assign_set_lhs (stmt, exp);
      gimple_assign_set_rhs1 (stmt, build_constructor (type, NULL));
    }
}

/* STMT is a memcpy, memmove or memset.  Decrement the number of bytes
   copied/set by DECREMENT.  */
static void
decrement_count (gimple *stmt, int decrement)
{
  tree *countp = gimple_call_arg_ptr (stmt, 2);
  gcc_assert (TREE_CODE (*countp) == INTEGER_CST);
  *countp = wide_int_to_tree (TREE_TYPE (*countp), (TREE_INT_CST_LOW (*countp)
						    - decrement));

}

static void
increment_start_addr (gimple *stmt, tree *where, int increment)
{
  if (TREE_CODE (*where) == SSA_NAME)
    {
      tree tem = make_ssa_name (TREE_TYPE (*where));
      gassign *newop
        = gimple_build_assign (tem, POINTER_PLUS_EXPR, *where,
			       build_int_cst (sizetype, increment));
      gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
      gsi_insert_before (&gsi, newop, GSI_SAME_STMT);
      *where = tem;
      update_stmt (gsi_stmt (gsi));
      return;
    }

  *where = build_fold_addr_expr (fold_build2 (MEM_REF, char_type_node,
                                             *where,
                                             build_int_cst (ptr_type_node,
                                                            increment)));
}

/* STMT is builtin call that writes bytes in bitmap ORIG, some bytes are dead
   (ORIG & ~NEW) and need not be stored.  Try to rewrite STMT to reduce
   the amount of data it actually writes.

   Right now we only support trimming from the head or the tail of the
   memory region.  In theory we could split the mem* call, but it's
   likely of marginal value.  */

static void
maybe_trim_memstar_call (ao_ref *ref, sbitmap live, gimple *stmt)
{
  switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
    {
    case BUILT_IN_MEMCPY:
    case BUILT_IN_MEMMOVE:
      {
	int head_trim, tail_trim;
	compute_trims (ref, live, &head_trim, &tail_trim, stmt);

	/* Tail trimming is easy, we can just reduce the count.  */
        if (tail_trim)
	  decrement_count (stmt, tail_trim);

	/* Head trimming requires adjusting all the arguments.  */
        if (head_trim)
          {
	    tree *dst = gimple_call_arg_ptr (stmt, 0);
	    increment_start_addr (stmt, dst, head_trim);
	    tree *src = gimple_call_arg_ptr (stmt, 1);
	    increment_start_addr (stmt, src, head_trim);
	    decrement_count (stmt, head_trim);
	  }
        break;
      }

    case BUILT_IN_MEMSET:
      {
	int head_trim, tail_trim;
	compute_trims (ref, live, &head_trim, &tail_trim, stmt);

	/* Tail trimming is easy, we can just reduce the count.  */
        if (tail_trim)
	  decrement_count (stmt, tail_trim);

	/* Head trimming requires adjusting all the arguments.  */
        if (head_trim)
          {
	    tree *dst = gimple_call_arg_ptr (stmt, 0);
	    increment_start_addr (stmt, dst, head_trim);
	    decrement_count (stmt, head_trim);
	  }
	break;
      }

      default:
	break;
    }
}

/* STMT is a memory write where one or more bytes written are dead
   stores.  ORIG is the bitmap of bytes stored by STMT.  LIVE is the
   bitmap of stores that are actually live.

   Attempt to rewrite STMT so that it writes fewer memory locations.  Right
   now we only support trimming at the start or end of the memory region.
   It's not clear how much there is to be gained by trimming from the middle
   of the region.  */

static void
maybe_trim_partially_dead_store (ao_ref *ref, sbitmap live, gimple *stmt)
{
  if (is_gimple_assign (stmt)
      && TREE_CODE (gimple_assign_lhs (stmt)) != TARGET_MEM_REF)
    {
      switch (gimple_assign_rhs_code (stmt))
	{
	case CONSTRUCTOR:
	  maybe_trim_constructor_store (ref, live, stmt);
	  break;
	case COMPLEX_CST:
	  maybe_trim_complex_store (ref, live, stmt);
	  break;
	default:
	  break;
	}
    }
}

/* A helper of dse_optimize_stmt.
   Given a GIMPLE_ASSIGN in STMT that writes to REF, find a candidate
   statement *USE_STMT that may prove STMT to be dead.
   Return TRUE if the above conditions are met, otherwise FALSE.  */

static dse_store_status
dse_classify_store (ao_ref *ref, gimple *stmt, gimple **use_stmt,
		    bool byte_tracking_enabled, sbitmap live_bytes)
{
  gimple *temp;
  unsigned cnt = 0;

  *use_stmt = NULL;

  /* Find the first dominated statement that clobbers (part of) the
     memory stmt stores to with no intermediate statement that may use
     part of the memory stmt stores.  That is, find a store that may
     prove stmt to be a dead store.  */
  temp = stmt;
  do
    {
      gimple *use_stmt, *defvar_def;
      imm_use_iterator ui;
      bool fail = false;
      tree defvar;

      /* Limit stmt walking to be linear in the number of possibly
         dead stores.  */
      if (++cnt > 256)
	return DSE_STORE_LIVE;

      if (gimple_code (temp) == GIMPLE_PHI)
	defvar = PHI_RESULT (temp);
      else
	defvar = gimple_vdef (temp);
      defvar_def = temp;
      temp = NULL;
      FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar)
	{
	  cnt++;

	  /* If we ever reach our DSE candidate stmt again fail.  We
	     cannot handle dead stores in loops.  */
	  if (use_stmt == stmt)
	    {
	      fail = true;
	      BREAK_FROM_IMM_USE_STMT (ui);
	    }
	  /* In simple cases we can look through PHI nodes, but we
	     have to be careful with loops and with memory references
	     containing operands that are also operands of PHI nodes.
	     See gcc.c-torture/execute/20051110-*.c.  */
	  else if (gimple_code (use_stmt) == GIMPLE_PHI)
	    {
	      if (temp
		  /* Make sure we are not in a loop latch block.  */
		  || gimple_bb (stmt) == gimple_bb (use_stmt)
		  || dominated_by_p (CDI_DOMINATORS,
				     gimple_bb (stmt), gimple_bb (use_stmt))
		  /* We can look through PHIs to regions post-dominating
		     the DSE candidate stmt.  */
		  || !dominated_by_p (CDI_POST_DOMINATORS,
				      gimple_bb (stmt), gimple_bb (use_stmt)))
		{
		  fail = true;
		  BREAK_FROM_IMM_USE_STMT (ui);
		}
	      /* Do not consider the PHI as use if it dominates the
	         stmt defining the virtual operand we are processing,
		 we have processed it already in this case.  */
	      if (gimple_bb (defvar_def) != gimple_bb (use_stmt)
		  && !dominated_by_p (CDI_DOMINATORS,
				      gimple_bb (defvar_def),
				      gimple_bb (use_stmt)))
		temp = use_stmt;
	    }
	  /* If the statement is a use the store is not dead.  */
	  else if (ref_maybe_used_by_stmt_p (use_stmt, ref))
	    {
	      fail = true;
	      BREAK_FROM_IMM_USE_STMT (ui);
	    }
	  /* If this is a store, remember it or bail out if we have
	     multiple ones (the will be in different CFG parts then).  */
	  else if (gimple_vdef (use_stmt))
	    {
	      if (temp)
		{
		  fail = true;
		  BREAK_FROM_IMM_USE_STMT (ui);
		}
	      temp = use_stmt;
	    }
	}

      if (fail)
	{
	  /* STMT might be partially dead and we may be able to reduce
	     how many memory locations it stores into.  */
	  if (byte_tracking_enabled && !gimple_clobber_p (stmt))
	    return DSE_STORE_MAYBE_PARTIAL_DEAD;
	  return DSE_STORE_LIVE;
	}

      /* If we didn't find any definition this means the store is dead
         if it isn't a store to global reachable memory.  In this case
	 just pretend the stmt makes itself dead.  Otherwise fail.  */
      if (!temp)
	{
	  if (ref_may_alias_global_p (ref))
	    return DSE_STORE_LIVE;

	  temp = stmt;
	  break;
	}

      if (byte_tracking_enabled && temp)
	clear_bytes_written_by (live_bytes, temp, ref);
    }
  /* Continue walking until we reach a full kill as a single statement
     or there are no more live bytes.  */
  while (!stmt_kills_ref_p (temp, ref)
	 && !(byte_tracking_enabled && bitmap_empty_p (live_bytes)));

  *use_stmt = temp;
  return DSE_STORE_DEAD;
}


class dse_dom_walker : public dom_walker
{
public:
  dse_dom_walker (cdi_direction direction)
    : dom_walker (direction),
    m_live_bytes (PARAM_VALUE (PARAM_DSE_MAX_OBJECT_SIZE)),
    m_byte_tracking_enabled (false) {}

  virtual edge before_dom_children (basic_block);

private:
  auto_sbitmap m_live_bytes;
  bool m_byte_tracking_enabled;
  void dse_optimize_stmt (gimple_stmt_iterator *);
};

/* Delete a dead call at GSI, which is mem* call of some kind.  */
static void
delete_dead_call (gimple_stmt_iterator *gsi)
{
  gimple *stmt = gsi_stmt (*gsi);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "  Deleted dead call: ");
      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
      fprintf (dump_file, "\n");
    }

  tree lhs = gimple_call_lhs (stmt);
  if (lhs)
    {
      tree ptr = gimple_call_arg (stmt, 0);
      gimple *new_stmt = gimple_build_assign (lhs, ptr);
      unlink_stmt_vdef (stmt);
      if (gsi_replace (gsi, new_stmt, true))
        bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
    }
  else
    {
      /* Then we need to fix the operand of the consuming stmt.  */
      unlink_stmt_vdef (stmt);

      /* Remove the dead store.  */
      if (gsi_remove (gsi, true))
	bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
      release_defs (stmt);
    }
}

/* Delete a dead store at GSI, which is a gimple assignment. */

static void
delete_dead_assignment (gimple_stmt_iterator *gsi)
{
  gimple *stmt = gsi_stmt (*gsi);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "  Deleted dead store: ");
      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
      fprintf (dump_file, "\n");
    }

  /* Then we need to fix the operand of the consuming stmt.  */
  unlink_stmt_vdef (stmt);

  /* Remove the dead store.  */
  basic_block bb = gimple_bb (stmt);
  if (gsi_remove (gsi, true))
    bitmap_set_bit (need_eh_cleanup, bb->index);

  /* And release any SSA_NAMEs set in this statement back to the
     SSA_NAME manager.  */
  release_defs (stmt);
}

/* Attempt to eliminate dead stores in the statement referenced by BSI.

   A dead store is a store into a memory location which will later be
   overwritten by another store without any intervening loads.  In this
   case the earlier store can be deleted.

   In our SSA + virtual operand world we use immediate uses of virtual
   operands to detect dead stores.  If a store's virtual definition
   is used precisely once by a later store to the same location which
   post dominates the first store, then the first store is dead.  */

void
dse_dom_walker::dse_optimize_stmt (gimple_stmt_iterator *gsi)
{
  gimple *stmt = gsi_stmt (*gsi);

  /* If this statement has no virtual defs, then there is nothing
     to do.  */
  if (!gimple_vdef (stmt))
    return;

  /* Don't return early on *this_2(D) ={v} {CLOBBER}.  */
  if (gimple_has_volatile_ops (stmt)
      && (!gimple_clobber_p (stmt)
	  || TREE_CODE (gimple_assign_lhs (stmt)) != MEM_REF))
    return;

  ao_ref ref;
  if (!initialize_ao_ref_for_dse (stmt, &ref))
    return;

  /* We know we have virtual definitions.  We can handle assignments and
     some builtin calls.  */
  if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
    {
      switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
	{
	  case BUILT_IN_MEMCPY:
	  case BUILT_IN_MEMMOVE:
	  case BUILT_IN_MEMSET:
	    {
	      /* Occasionally calls with an explicit length of zero
		 show up in the IL.  It's pointless to do analysis
		 on them, they're trivially dead.  */
	      tree size = gimple_call_arg (stmt, 2);
	      if (integer_zerop (size))
		{
		  delete_dead_call (gsi);
		  return;
		}

	      gimple *use_stmt;
	      enum dse_store_status store_status;
	      m_byte_tracking_enabled
		= setup_live_bytes_from_ref (&ref, m_live_bytes);
	      store_status = dse_classify_store (&ref, stmt, &use_stmt,
						 m_byte_tracking_enabled,
						 m_live_bytes);
	      if (store_status == DSE_STORE_LIVE)
		return;

	      if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
		{
		  maybe_trim_memstar_call (&ref, m_live_bytes, stmt);
		  return;
		}

	      if (store_status == DSE_STORE_DEAD)
		delete_dead_call (gsi);
	      return;
	    }

	  default:
	    return;
	}
    }

  if (is_gimple_assign (stmt))
    {
      gimple *use_stmt;

      /* Self-assignments are zombies.  */
      if (operand_equal_p (gimple_assign_rhs1 (stmt),
			   gimple_assign_lhs (stmt), 0))
	use_stmt = stmt;
      else
	{
	  m_byte_tracking_enabled
	    = setup_live_bytes_from_ref (&ref, m_live_bytes);
	  enum dse_store_status store_status;
	  store_status = dse_classify_store (&ref, stmt, &use_stmt,
					     m_byte_tracking_enabled,
					     m_live_bytes);
	  if (store_status == DSE_STORE_LIVE)
	    return;

	  if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
	    {
	      maybe_trim_partially_dead_store (&ref, m_live_bytes, stmt);
	      return;
	    }
	}

      /* Now we know that use_stmt kills the LHS of stmt.  */

      /* But only remove *this_2(D) ={v} {CLOBBER} if killed by
	 another clobber stmt.  */
      if (gimple_clobber_p (stmt)
	  && !gimple_clobber_p (use_stmt))
	return;

      delete_dead_assignment (gsi);
    }
}

edge
dse_dom_walker::before_dom_children (basic_block bb)
{
  gimple_stmt_iterator gsi;

  for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
    {
      dse_optimize_stmt (&gsi);
      if (gsi_end_p (gsi))
	gsi = gsi_last_bb (bb);
      else
	gsi_prev (&gsi);
    }
  return NULL;
}

namespace {

const pass_data pass_data_dse =
{
  GIMPLE_PASS, /* type */
  "dse", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_DSE, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_dse : public gimple_opt_pass
{
public:
  pass_dse (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_dse, ctxt)
  {}

  /* opt_pass methods: */
  opt_pass * clone () { return new pass_dse (m_ctxt); }
  virtual bool gate (function *) { return flag_tree_dse != 0; }
  virtual unsigned int execute (function *);

}; // class pass_dse

unsigned int
pass_dse::execute (function *fun)
{
  need_eh_cleanup = BITMAP_ALLOC (NULL);

  renumber_gimple_stmt_uids ();

  /* We might consider making this a property of each pass so that it
     can be [re]computed on an as-needed basis.  Particularly since
     this pass could be seen as an extension of DCE which needs post
     dominators.  */
  calculate_dominance_info (CDI_POST_DOMINATORS);
  calculate_dominance_info (CDI_DOMINATORS);

  /* Dead store elimination is fundamentally a walk of the post-dominator
     tree and a backwards walk of statements within each block.  */
  dse_dom_walker (CDI_POST_DOMINATORS).walk (fun->cfg->x_exit_block_ptr);

  /* Removal of stores may make some EH edges dead.  Purge such edges from
     the CFG as needed.  */
  if (!bitmap_empty_p (need_eh_cleanup))
    {
      gimple_purge_all_dead_eh_edges (need_eh_cleanup);
      cleanup_tree_cfg ();
    }

  BITMAP_FREE (need_eh_cleanup);

  /* For now, just wipe the post-dominator information.  */
  free_dominance_info (CDI_POST_DOMINATORS);
  return 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_dse (gcc::context *ctxt)
{
  return new pass_dse (ctxt);
}