aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-dom.cc
blob: f7f8b7308773a2c80d1fd44089115980fbe31497 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
/* SSA Dominator optimizations for trees
   Copyright (C) 2001-2023 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "cfganal.h"
#include "cfgloop.h"
#include "gimple-iterator.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "tree-inline.h"
#include "tree-cfg.h"
#include "tree-into-ssa.h"
#include "domwalk.h"
#include "tree-ssa-propagate.h"
#include "tree-ssa-threadupdate.h"
#include "tree-ssa-scopedtables.h"
#include "tree-ssa-threadedge.h"
#include "tree-ssa-dom.h"
#include "gimplify.h"
#include "tree-cfgcleanup.h"
#include "dbgcnt.h"
#include "alloc-pool.h"
#include "tree-vrp.h"
#include "vr-values.h"
#include "gimple-range.h"
#include "gimple-range-path.h"
#include "alias.h"

/* This file implements optimizations on the dominator tree.  */

/* Structure for recording edge equivalences.

   Computing and storing the edge equivalences instead of creating
   them on-demand can save significant amounts of time, particularly
   for pathological cases involving switch statements.

   These structures live for a single iteration of the dominator
   optimizer in the edge's AUX field.  At the end of an iteration we
   free each of these structures.  */
class edge_info
{
 public:
  typedef std::pair <tree, tree> equiv_pair;
  edge_info (edge);
  ~edge_info ();

  /* Record a simple LHS = RHS equivalence.  This may trigger
     calls to derive_equivalences.  */
  void record_simple_equiv (tree, tree);

  /* If traversing this edge creates simple equivalences, we store
     them as LHS/RHS pairs within this vector.  */
  vec<equiv_pair> simple_equivalences;

  /* Traversing an edge may also indicate one or more particular conditions
     are true or false.  */
  vec<cond_equivalence> cond_equivalences;

 private:
  /* Derive equivalences by walking the use-def chains.  */
  void derive_equivalences (tree, tree, int);
};

/* Track whether or not we have changed the control flow graph.  */
static bool cfg_altered;

/* Bitmap of blocks that have had EH statements cleaned.  We should
   remove their dead edges eventually.  */
static bitmap need_eh_cleanup;
static vec<gimple *> need_noreturn_fixup;

/* Statistics for dominator optimizations.  */
struct opt_stats_d
{
  long num_stmts;
  long num_exprs_considered;
  long num_re;
  long num_const_prop;
  long num_copy_prop;
};

static struct opt_stats_d opt_stats;

/* Local functions.  */
static void record_equality (tree, tree, class const_and_copies *);
static void record_equivalences_from_phis (basic_block);
static void record_equivalences_from_incoming_edge (basic_block,
						    class const_and_copies *,
						    class avail_exprs_stack *,
						    bitmap blocks_on_stack);
static void eliminate_redundant_computations (gimple_stmt_iterator *,
					      class const_and_copies *,
					      class avail_exprs_stack *);
static void record_equivalences_from_stmt (gimple *, int,
					   class avail_exprs_stack *);
static void dump_dominator_optimization_stats (FILE *file,
					       hash_table<expr_elt_hasher> *);
static void record_temporary_equivalences (edge, class const_and_copies *,
					   class avail_exprs_stack *, bitmap);

/* Constructor for EDGE_INFO.  An EDGE_INFO instance is always
   associated with an edge E.  */

edge_info::edge_info (edge e)
{
  /* Free the old one associated with E, if it exists and
     associate our new object with E.  */
  free_dom_edge_info (e);
  e->aux = this;

  /* And initialize the embedded vectors.  */
  simple_equivalences = vNULL;
  cond_equivalences = vNULL;
}

/* Destructor just needs to release the vectors.  */

edge_info::~edge_info (void)
{
  this->cond_equivalences.release ();
  this->simple_equivalences.release ();
}

/* NAME is known to have the value VALUE, which must be a constant.

   Walk through its use-def chain to see if there are other equivalences
   we might be able to derive.

   RECURSION_LIMIT controls how far back we recurse through the use-def
   chains.  */

void
edge_info::derive_equivalences (tree name, tree value, int recursion_limit)
{
  if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST)
    return;

  /* This records the equivalence for the toplevel object.  Do
     this before checking the recursion limit.  */
  simple_equivalences.safe_push (equiv_pair (name, value));

  /* Limit how far up the use-def chains we are willing to walk.  */
  if (recursion_limit == 0)
    return;

  /* We can walk up the use-def chains to potentially find more
     equivalences.  */
  gimple *def_stmt = SSA_NAME_DEF_STMT (name);
  if (is_gimple_assign (def_stmt))
    {
      enum tree_code code = gimple_assign_rhs_code (def_stmt);
      switch (code)
	{
	/* If the result of an OR is zero, then its operands are, too.  */
	case BIT_IOR_EXPR:
	  if (integer_zerop (value))
	    {
	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
	      tree rhs2 = gimple_assign_rhs2 (def_stmt);

	      value = build_zero_cst (TREE_TYPE (rhs1));
	      derive_equivalences (rhs1, value, recursion_limit - 1);
	      value = build_zero_cst (TREE_TYPE (rhs2));
	      derive_equivalences (rhs2, value, recursion_limit - 1);
	    }
	  break;

	/* If the result of an AND is nonzero, then its operands are, too.  */
	case BIT_AND_EXPR:
	  if (!integer_zerop (value))
	    {
	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
	      tree rhs2 = gimple_assign_rhs2 (def_stmt);

	      /* If either operand has a boolean range, then we
		 know its value must be one, otherwise we just know it
		 is nonzero.  The former is clearly useful, I haven't
		 seen cases where the latter is helpful yet.  */
	      if (TREE_CODE (rhs1) == SSA_NAME)
		{
		  if (ssa_name_has_boolean_range (rhs1))
		    {
		      value = build_one_cst (TREE_TYPE (rhs1));
		      derive_equivalences (rhs1, value, recursion_limit - 1);
		    }
		}
	      if (TREE_CODE (rhs2) == SSA_NAME)
		{
		  if (ssa_name_has_boolean_range (rhs2))
		    {
		      value = build_one_cst (TREE_TYPE (rhs2));
		      derive_equivalences (rhs2, value, recursion_limit - 1);
		    }
		}
	    }
	  break;

	/* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
	   set via a widening type conversion, then we may be able to record
	   additional equivalences.  */
	CASE_CONVERT:
	  {
	    tree rhs = gimple_assign_rhs1 (def_stmt);
	    tree rhs_type = TREE_TYPE (rhs);
	    if (INTEGRAL_TYPE_P (rhs_type)
		&& (TYPE_PRECISION (TREE_TYPE (name))
		    >= TYPE_PRECISION (rhs_type))
		&& int_fits_type_p (value, rhs_type))
	      derive_equivalences (rhs,
				   fold_convert (rhs_type, value),
				   recursion_limit - 1);
	    break;
	  }

	/* We can invert the operation of these codes trivially if
	   one of the RHS operands is a constant to produce a known
	   value for the other RHS operand.  */
	case POINTER_PLUS_EXPR:
	case PLUS_EXPR:
	  {
	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
	    tree rhs2 = gimple_assign_rhs2 (def_stmt);

	    /* If either argument is a constant, then we can compute
	       a constant value for the nonconstant argument.  */
	    if (TREE_CODE (rhs1) == INTEGER_CST
		&& TREE_CODE (rhs2) == SSA_NAME)
	      derive_equivalences (rhs2,
				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
						value, rhs1),
				   recursion_limit - 1);
	    else if (TREE_CODE (rhs2) == INTEGER_CST
		     && TREE_CODE (rhs1) == SSA_NAME)
	      derive_equivalences (rhs1,
				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
						value, rhs2),
				   recursion_limit - 1);
	    break;
	  }

	/* If one of the operands is a constant, then we can compute
	   the value of the other operand.  If both operands are
	   SSA_NAMEs, then they must be equal if the result is zero.  */
	case MINUS_EXPR:
	  {
	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
	    tree rhs2 = gimple_assign_rhs2 (def_stmt);

	    /* If either argument is a constant, then we can compute
	       a constant value for the nonconstant argument.  */
	    if (TREE_CODE (rhs1) == INTEGER_CST
		&& TREE_CODE (rhs2) == SSA_NAME)
	      derive_equivalences (rhs2,
				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
						rhs1, value),
				   recursion_limit - 1);
	    else if (TREE_CODE (rhs2) == INTEGER_CST
		     && TREE_CODE (rhs1) == SSA_NAME)
	      derive_equivalences (rhs1,
				   fold_binary (PLUS_EXPR, TREE_TYPE (rhs1),
						value, rhs2),
				   recursion_limit - 1);
	    else if (integer_zerop (value))
	      {
		tree cond = build2 (EQ_EXPR, boolean_type_node,
				    gimple_assign_rhs1 (def_stmt),
				    gimple_assign_rhs2 (def_stmt));
		tree inverted = invert_truthvalue (cond);
		record_conditions (&this->cond_equivalences, cond, inverted);
	      }
	    break;
	  }

	case EQ_EXPR:
	case NE_EXPR:
	  {
	    if ((code == EQ_EXPR && integer_onep (value))
		|| (code == NE_EXPR && integer_zerop (value)))
	      {
		tree rhs1 = gimple_assign_rhs1 (def_stmt);
		tree rhs2 = gimple_assign_rhs2 (def_stmt);

		/* If either argument is a constant, then record the
		   other argument as being the same as that constant.

		   If neither operand is a constant, then we have a
		   conditional name == name equivalence.  */
		if (TREE_CODE (rhs1) == INTEGER_CST)
		  derive_equivalences (rhs2, rhs1, recursion_limit - 1);
		else if (TREE_CODE (rhs2) == INTEGER_CST)
		  derive_equivalences (rhs1, rhs2, recursion_limit - 1);
	      }
	    else
	      {
		tree cond = build2 (code, boolean_type_node,
				    gimple_assign_rhs1 (def_stmt),
				    gimple_assign_rhs2 (def_stmt));
		tree inverted = invert_truthvalue (cond);
		if (integer_zerop (value))
		  std::swap (cond, inverted);
		record_conditions (&this->cond_equivalences, cond, inverted);
	      }
	    break;
	  }

	/* For BIT_NOT and NEGATE, we can just apply the operation to the
	   VALUE to get the new equivalence.  It will always be a constant
	   so we can recurse.  */
	case BIT_NOT_EXPR:
	case NEGATE_EXPR:
	  {
	    tree rhs = gimple_assign_rhs1 (def_stmt);
	    tree res;
	    /* If this is a NOT and the operand has a boolean range, then we
	       know its value must be zero or one.  We are not supposed to
	       have a BIT_NOT_EXPR for boolean types with precision > 1 in
	       the general case, see e.g. the handling of TRUTH_NOT_EXPR in
	       the gimplifier, but it can be generated by match.pd out of
	       a BIT_XOR_EXPR wrapped in a BIT_AND_EXPR.  Now the handling
	       of BIT_AND_EXPR above already forces a specific semantics for
	       boolean types with precision > 1 so we must do the same here,
	       otherwise we could change the semantics of TRUTH_NOT_EXPR for
	       boolean types with precision > 1.  */
	    if (code == BIT_NOT_EXPR
		&& TREE_CODE (rhs) == SSA_NAME
		&& ssa_name_has_boolean_range (rhs))
	      {
		if ((TREE_INT_CST_LOW (value) & 1) == 0)
		  res = build_one_cst (TREE_TYPE (rhs));
		else
		  res = build_zero_cst (TREE_TYPE (rhs));
	      }
	    else
	      res = fold_build1 (code, TREE_TYPE (rhs), value);
	    derive_equivalences (rhs, res, recursion_limit - 1);
	    break;
	  }

	default:
	  {
	    if (TREE_CODE_CLASS (code) == tcc_comparison)
	      {
		tree cond = build2 (code, boolean_type_node,
				    gimple_assign_rhs1 (def_stmt),
				    gimple_assign_rhs2 (def_stmt));
		tree inverted = invert_truthvalue (cond);
		if (integer_zerop (value))
		  std::swap (cond, inverted);
		record_conditions (&this->cond_equivalences, cond, inverted);
		break;
	      }
	    break;
	  }
	}
    }
}

void
edge_info::record_simple_equiv (tree lhs, tree rhs)
{
  /* If the RHS is a constant, then we may be able to derive
     further equivalences.  Else just record the name = name
     equivalence.  */
  if (TREE_CODE (rhs) == INTEGER_CST)
    derive_equivalences (lhs, rhs, 4);
  else
    simple_equivalences.safe_push (equiv_pair (lhs, rhs));
}

/* Free the edge_info data attached to E, if it exists and
   clear e->aux.  */

void
free_dom_edge_info (edge e)
{
  class edge_info *edge_info = (class edge_info *)e->aux;

  if (edge_info)
    delete edge_info;
  e->aux = NULL;
}

/* Free all EDGE_INFO structures associated with edges in the CFG.
   If a particular edge can be threaded, copy the redirection
   target from the EDGE_INFO structure into the edge's AUX field
   as required by code to update the CFG and SSA graph for
   jump threading.  */

static void
free_all_edge_infos (void)
{
  basic_block bb;
  edge_iterator ei;
  edge e;

  FOR_EACH_BB_FN (bb, cfun)
    {
      FOR_EACH_EDGE (e, ei, bb->preds)
	free_dom_edge_info (e);
    }
}

/* Return TRUE if BB has precisely two preds, one of which
   is a backedge from a forwarder block where the forwarder
   block is a direct successor of BB.  Being a forwarder
   block, it has no side effects other than transfer of
   control.  Otherwise return FALSE.  */

static bool
single_block_loop_p (basic_block bb)
{
  /* Two preds.  */
  if (EDGE_COUNT (bb->preds) != 2)
    return false;

  /* One and only one of the edges must be marked with
     EDGE_DFS_BACK.  */
  basic_block pred = NULL;
  unsigned int count = 0;
  if (EDGE_PRED (bb, 0)->flags & EDGE_DFS_BACK)
    {
      pred = EDGE_PRED (bb, 0)->src;
      count++;
    }
  if (EDGE_PRED (bb, 1)->flags & EDGE_DFS_BACK)
    {
      pred = EDGE_PRED (bb, 1)->src;
      count++;
    }

  if (count != 1)
    return false;

  /* Now examine PRED.  It should have a single predecessor which
     is BB and a single successor that is also BB.  */
  if (EDGE_COUNT (pred->preds) != 1
      || EDGE_COUNT (pred->succs) != 1
      || EDGE_PRED (pred, 0)->src != bb
      || EDGE_SUCC (pred, 0)->dest != bb)
    return false;

  /* This looks good from a CFG standpoint.  Now look at the guts
     of PRED.  Basically we want to verify there are no PHI nodes
     and no real statements.  */
  if (! gimple_seq_empty_p (phi_nodes (pred)))
    return false;

  gimple_stmt_iterator gsi;
  for (gsi = gsi_last_bb (pred); !gsi_end_p (gsi); gsi_prev (&gsi))
    {
      gimple *stmt = gsi_stmt (gsi);

      switch (gimple_code (stmt))
	{
	  case GIMPLE_LABEL:
	    if (DECL_NONLOCAL (gimple_label_label (as_a <glabel *> (stmt))))
	      return false;
	    break;

	  case GIMPLE_DEBUG:
	    break;

	  default:
	    return false;
	}
    }

  return true;
}

/* We have finished optimizing BB, record any information implied by
   taking a specific outgoing edge from BB.  */

static void
record_edge_info (basic_block bb)
{
  gimple_stmt_iterator gsi = gsi_last_bb (bb);
  class edge_info *edge_info;

  /* Free all the outgoing edge info data associated with
     BB's outgoing edges.  */
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, bb->succs)
    free_dom_edge_info (e);

  if (! gsi_end_p (gsi))
    {
      gimple *stmt = gsi_stmt (gsi);
      location_t loc = gimple_location (stmt);

      if (gimple_code (stmt) == GIMPLE_SWITCH)
	{
	  gswitch *switch_stmt = as_a <gswitch *> (stmt);
	  tree index = gimple_switch_index (switch_stmt);

	  if (TREE_CODE (index) == SSA_NAME)
	    {
	      int i;
              int n_labels = gimple_switch_num_labels (switch_stmt);
	      tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));

	      for (i = 0; i < n_labels; i++)
		{
		  tree label = gimple_switch_label (switch_stmt, i);
		  basic_block target_bb
		    = label_to_block (cfun, CASE_LABEL (label));
		  if (CASE_HIGH (label)
		      || !CASE_LOW (label)
		      || info[target_bb->index])
		    info[target_bb->index] = error_mark_node;
		  else
		    info[target_bb->index] = label;
		}

	      FOR_EACH_EDGE (e, ei, bb->succs)
		{
		  basic_block target_bb = e->dest;
		  tree label = info[target_bb->index];

		  if (label != NULL && label != error_mark_node)
		    {
		      tree x = fold_convert_loc (loc, TREE_TYPE (index),
						 CASE_LOW (label));
		      edge_info = new class edge_info (e);
		      edge_info->record_simple_equiv (index, x);
		    }
		}
	      free (info);
	    }
	}

      /* A COND_EXPR may create equivalences too.  */
      if (gimple_code (stmt) == GIMPLE_COND)
	{
	  edge true_edge;
	  edge false_edge;

          tree op0 = gimple_cond_lhs (stmt);
          tree op1 = gimple_cond_rhs (stmt);
          enum tree_code code = gimple_cond_code (stmt);

	  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);

          /* Special case comparing booleans against a constant as we
             know the value of OP0 on both arms of the branch.  i.e., we
             can record an equivalence for OP0 rather than COND. 

	     However, don't do this if the constant isn't zero or one.
	     Such conditionals will get optimized more thoroughly during
	     the domwalk.  */
	  if ((code == EQ_EXPR || code == NE_EXPR)
	      && TREE_CODE (op0) == SSA_NAME
	      && ssa_name_has_boolean_range (op0)
	      && is_gimple_min_invariant (op1)
	      && (integer_zerop (op1) || integer_onep (op1)))
            {
	      tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
	      tree false_val = constant_boolean_node (false, TREE_TYPE (op0));

              if (code == EQ_EXPR)
                {
		  edge_info = new class edge_info (true_edge);
		  edge_info->record_simple_equiv (op0,
						  (integer_zerop (op1)
						   ? false_val : true_val));
		  edge_info = new class edge_info (false_edge);
		  edge_info->record_simple_equiv (op0,
						  (integer_zerop (op1)
						   ? true_val : false_val));
                }
              else
                {
		  edge_info = new class edge_info (true_edge);
		  edge_info->record_simple_equiv (op0,
						  (integer_zerop (op1)
						   ? true_val : false_val));
		  edge_info = new class edge_info (false_edge);
		  edge_info->record_simple_equiv (op0,
						  (integer_zerop (op1)
						   ? false_val : true_val));
                }
            }
	  /* This can show up in the IL as a result of copy propagation
	     it will eventually be canonicalized, but we have to cope
	     with this case within the pass.  */
          else if (is_gimple_min_invariant (op0)
                   && TREE_CODE (op1) == SSA_NAME)
            {
              tree cond = build2 (code, boolean_type_node, op0, op1);
              tree inverted = invert_truthvalue_loc (loc, cond);
	      bool can_infer_simple_equiv
		= !(HONOR_SIGNED_ZEROS (op0) && real_maybe_zerop (op0))
		  && !DECIMAL_FLOAT_MODE_P (element_mode (TREE_TYPE (op0)));
	      class edge_info *edge_info;

	      edge_info = new class edge_info (true_edge);
              record_conditions (&edge_info->cond_equivalences, cond, inverted);

              if (can_infer_simple_equiv && code == EQ_EXPR)
		edge_info->record_simple_equiv (op1, op0);

	      edge_info = new class edge_info (false_edge);
              record_conditions (&edge_info->cond_equivalences, inverted, cond);

              if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
		edge_info->record_simple_equiv (op1, op0);
            }

          else if (TREE_CODE (op0) == SSA_NAME
                   && (TREE_CODE (op1) == SSA_NAME
                       || is_gimple_min_invariant (op1)))
            {
              tree cond = build2 (code, boolean_type_node, op0, op1);
              tree inverted = invert_truthvalue_loc (loc, cond);
	      bool can_infer_simple_equiv
		= !(HONOR_SIGNED_ZEROS (op1) && real_maybe_zerop (op1))
		  && !DECIMAL_FLOAT_MODE_P (element_mode (TREE_TYPE (op1)));
	      class edge_info *edge_info;

	      edge_info = new class edge_info (true_edge);
              record_conditions (&edge_info->cond_equivalences, cond, inverted);

              if (can_infer_simple_equiv && code == EQ_EXPR)
		edge_info->record_simple_equiv (op0, op1);

	      edge_info = new class edge_info (false_edge);
              record_conditions (&edge_info->cond_equivalences, inverted, cond);

              if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
		edge_info->record_simple_equiv (op0, op1);
            }

	  /* If this block is a single block loop, then we may be able to
	     record some equivalences on the loop's exit edge.  */
	  if (single_block_loop_p (bb))
	    {
	      /* We know it's a single block loop.  Now look at the loop
		 exit condition.  What we're looking for is whether or not
		 the exit condition is loop invariant which we can detect
		 by checking if all the SSA_NAMEs referenced are defined
		 outside the loop.  */
	      if ((TREE_CODE (op0) != SSA_NAME
		   || gimple_bb (SSA_NAME_DEF_STMT (op0)) != bb)
		  && (TREE_CODE (op1) != SSA_NAME
		      || gimple_bb (SSA_NAME_DEF_STMT (op1)) != bb))
		{
		  /* At this point we know the exit condition is loop
		     invariant.  The only way to get out of the loop is
		     if it never traverses the backedge to begin with.  This
		     implies that any PHI nodes create equivalances that we
		     can attach to the loop exit edge.  */
		  bool alternative
		    = (EDGE_PRED (bb, 0)->flags & EDGE_DFS_BACK) ? 1 : 0;

		  gphi_iterator gsi;
		  for (gsi = gsi_start_phis (bb);
		       !gsi_end_p (gsi);
		       gsi_next (&gsi))
		    {
		      /* Now get the EDGE_INFO class so we can append
			 it to our list.  We want the successor edge
			 where the destination is not the source of
			 an incoming edge.  */
		      gphi *phi = gsi.phi ();
		      tree src = PHI_ARG_DEF (phi, alternative);
		      tree dst = PHI_RESULT (phi);

		      /* If the other alternative is the same as the result,
			 then this is a degenerate and can be ignored.  */
		      if (dst == PHI_ARG_DEF (phi, !alternative))
			continue;

		      if (EDGE_SUCC (bb, 0)->dest
			  != EDGE_PRED (bb, !alternative)->src)
			edge_info = (class edge_info *)EDGE_SUCC (bb, 0)->aux;
		      else
			edge_info = (class edge_info *)EDGE_SUCC (bb, 1)->aux;

		      /* Note that since this processing is done independently
			 of other edge equivalency processing, we may not
			 have an EDGE_INFO structure set up yet.  */
		      if (edge_info == NULL)
			edge_info = new class edge_info (false_edge);
		      edge_info->record_simple_equiv (dst, src);
		    }
		}
	    }
        }
    }
}

class dom_jt_state : public jt_state
{
public:
  dom_jt_state (const_and_copies *copies, avail_exprs_stack *avails)
    : m_copies (copies), m_avails (avails)
  {
    bitmap_tree_view (m_blocks_on_stack);
  }
  void push (edge e) override
  {
    m_copies->push_marker ();
    m_avails->push_marker ();
    jt_state::push (e);
  }
  void pop () override
  {
    m_copies->pop_to_marker ();
    m_avails->pop_to_marker ();
    jt_state::pop ();
  }
  void register_equivs_edge (edge e) override
  {
    record_temporary_equivalences (e, m_copies, m_avails, m_blocks_on_stack);
  }
  void register_equiv (tree dest, tree src, bool update) override;
  bitmap get_blocks_on_stack () { return m_blocks_on_stack; }
private:
  const_and_copies *m_copies;
  avail_exprs_stack *m_avails;
  /* Set of blocks on the stack, to be used for medium-fast
     dominance queries in back_propagate_equivalences.  */
  auto_bitmap m_blocks_on_stack;
};

void
dom_jt_state::register_equiv (tree dest, tree src, bool)
{
  m_copies->record_const_or_copy (dest, src);
}

class dom_jt_simplifier : public hybrid_jt_simplifier
{
public:
  dom_jt_simplifier (avail_exprs_stack *avails, gimple_ranger *ranger,
		     path_range_query *query)
    : hybrid_jt_simplifier (ranger, query), m_avails (avails) { }

private:
  tree simplify (gimple *, gimple *, basic_block, jt_state *) override;
  avail_exprs_stack *m_avails;
};

tree
dom_jt_simplifier::simplify (gimple *stmt, gimple *within_stmt,
			     basic_block bb, jt_state *state)
{
  /* First see if the conditional is in the hash table.  */
  tree cached_lhs =  m_avails->lookup_avail_expr (stmt, false, true);
  if (cached_lhs)
    return cached_lhs;

  /* Otherwise call the ranger if possible.  */
  if (state)
    return hybrid_jt_simplifier::simplify (stmt, within_stmt, bb, state);

  return NULL;
}

class dom_opt_dom_walker : public dom_walker
{
public:
  dom_opt_dom_walker (cdi_direction direction,
		      jump_threader *threader,
		      dom_jt_state *state,
		      gimple_ranger *ranger,
		      const_and_copies *const_and_copies,
		      avail_exprs_stack *avail_exprs_stack)
    : dom_walker (direction, REACHABLE_BLOCKS)
    {
      m_ranger = ranger;
      m_state = state;
      m_dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
					integer_zero_node, NULL, NULL);
      m_const_and_copies = const_and_copies;
      m_avail_exprs_stack = avail_exprs_stack;
      m_threader = threader;
    }

  edge before_dom_children (basic_block) final override;
  void after_dom_children (basic_block) final override;

private:

  /* Unwindable equivalences, both const/copy and expression varieties.  */
  class const_and_copies *m_const_and_copies;
  class avail_exprs_stack *m_avail_exprs_stack;

  /* Dummy condition to avoid creating lots of throw away statements.  */
  gcond *m_dummy_cond;

  /* Optimize a single statement within a basic block using the
     various tables mantained by DOM.  Returns the taken edge if
     the statement is a conditional with a statically determined
     value.  */
  edge optimize_stmt (basic_block, gimple_stmt_iterator *, bool *);

  void set_global_ranges_from_unreachable_edges (basic_block);

  void test_for_singularity (gimple *, avail_exprs_stack *);
  edge fold_cond (gcond *cond);

  jump_threader *m_threader;
  gimple_ranger *m_ranger;
  dom_jt_state *m_state;
};

/* Jump threading, redundancy elimination and const/copy propagation.

   This pass may expose new symbols that need to be renamed into SSA.  For
   every new symbol exposed, its corresponding bit will be set in
   VARS_TO_RENAME.  */

namespace {

const pass_data pass_data_dominator =
{
  GIMPLE_PASS, /* type */
  "dom", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
};

class pass_dominator : public gimple_opt_pass
{
public:
  pass_dominator (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_dominator, ctxt),
      may_peel_loop_headers_p (false)
  {}

  /* opt_pass methods: */
  opt_pass * clone () final override { return new pass_dominator (m_ctxt); }
  void set_pass_param (unsigned int n, bool param) final override
    {
      gcc_assert (n == 0);
      may_peel_loop_headers_p = param;
    }
  bool gate (function *) final override { return flag_tree_dom != 0; }
  unsigned int execute (function *) final override;

 private:
  /* This flag is used to prevent loops from being peeled repeatedly in jump
     threading; it will be removed once we preserve loop structures throughout
     the compilation -- we will be able to mark the affected loops directly in
     jump threading, and avoid peeling them next time.  */
  bool may_peel_loop_headers_p;
}; // class pass_dominator

unsigned int
pass_dominator::execute (function *fun)
{
  memset (&opt_stats, 0, sizeof (opt_stats));

  /* Create our hash tables.  */
  hash_table<expr_elt_hasher> *avail_exprs
    = new hash_table<expr_elt_hasher> (1024);
  class avail_exprs_stack *avail_exprs_stack
    = new class avail_exprs_stack (avail_exprs);
  class const_and_copies *const_and_copies = new class const_and_copies ();
  need_eh_cleanup = BITMAP_ALLOC (NULL);
  need_noreturn_fixup.create (0);

  calculate_dominance_info (CDI_DOMINATORS);
  cfg_altered = false;

  /* We need to know loop structures in order to avoid destroying them
     in jump threading.  Note that we still can e.g. thread through loop
     headers to an exit edge, or through loop header to the loop body, assuming
     that we update the loop info.

     TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
     to several overly conservative bail-outs in jump threading, case
     gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
     missing.  We should improve jump threading in future then
     LOOPS_HAVE_PREHEADERS won't be needed here.  */
  loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES
		       | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);

  /* We need accurate information regarding back edges in the CFG
     for jump threading; this may include back edges that are not part of
     a single loop.  */
  mark_dfs_back_edges ();

  /* We want to create the edge info structures before the dominator walk
     so that they'll be in place for the jump threader, particularly when
     threading through a join block.

     The conditions will be lazily updated with global equivalences as
     we reach them during the dominator walk.  */
  basic_block bb;
  FOR_EACH_BB_FN (bb, fun)
    record_edge_info (bb);

  /* Recursively walk the dominator tree optimizing statements.  */
  gimple_ranger *ranger = enable_ranger (fun);
  path_range_query path_query (*ranger);
  dom_jt_simplifier simplifier (avail_exprs_stack, ranger, &path_query);
  dom_jt_state state (const_and_copies, avail_exprs_stack);
  jump_threader threader (&simplifier, &state);
  dom_opt_dom_walker walker (CDI_DOMINATORS,
			     &threader,
			     &state,
			     ranger,
			     const_and_copies,
			     avail_exprs_stack);
  walker.walk (fun->cfg->x_entry_block_ptr);

  ranger->export_global_ranges ();
  disable_ranger (fun);

  /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
     edge.  When found, remove jump threads which contain any outgoing
     edge from the affected block.  */
  if (cfg_altered)
    {
      FOR_EACH_BB_FN (bb, fun)
	{
	  edge_iterator ei;
	  edge e;

	  /* First see if there are any edges without EDGE_EXECUTABLE
	     set.  */
	  bool found = false;
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    {
	      if ((e->flags & EDGE_EXECUTABLE) == 0)
		{
		  found = true;
		  break;
		}
	    }

	  /* If there were any such edges found, then remove jump threads
	     containing any edge leaving BB.  */
	  if (found)
	    FOR_EACH_EDGE (e, ei, bb->succs)
	      threader.remove_jump_threads_including (e);
	}
    }

  {
    gimple_stmt_iterator gsi;
    basic_block bb;
    FOR_EACH_BB_FN (bb, fun)
      {
	for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	  update_stmt_if_modified (gsi_stmt (gsi));
      }
  }

  /* If we exposed any new variables, go ahead and put them into
     SSA form now, before we handle jump threading.  This simplifies
     interactions between rewriting of _DECL nodes into SSA form
     and rewriting SSA_NAME nodes into SSA form after block
     duplication and CFG manipulation.  */
  update_ssa (TODO_update_ssa);

  free_all_edge_infos ();

  /* Thread jumps, creating duplicate blocks as needed.  */
  cfg_altered |= threader.thread_through_all_blocks (may_peel_loop_headers_p);

  if (cfg_altered)
    free_dominance_info (CDI_DOMINATORS);

  /* Removal of statements may make some EH edges dead.  Purge
     such edges from the CFG as needed.  */
  if (!bitmap_empty_p (need_eh_cleanup))
    {
      unsigned i;
      bitmap_iterator bi;

      /* Jump threading may have created forwarder blocks from blocks
	 needing EH cleanup; the new successor of these blocks, which
	 has inherited from the original block, needs the cleanup.
	 Don't clear bits in the bitmap, as that can break the bitmap
	 iterator.  */
      EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
	{
	  basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
	  if (bb == NULL)
	    continue;
	  while (single_succ_p (bb)
		 && (single_succ_edge (bb)->flags
		     & (EDGE_EH|EDGE_DFS_BACK)) == 0)
	    bb = single_succ (bb);
	  if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
	    continue;
	  if ((unsigned) bb->index != i)
	    bitmap_set_bit (need_eh_cleanup, bb->index);
	}

      gimple_purge_all_dead_eh_edges (need_eh_cleanup);
      bitmap_clear (need_eh_cleanup);
    }

  /* Fixup stmts that became noreturn calls.  This may require splitting
     blocks and thus isn't possible during the dominator walk or before
     jump threading finished.  Do this in reverse order so we don't
     inadvertedly remove a stmt we want to fixup by visiting a dominating
     now noreturn call first.  */
  while (!need_noreturn_fixup.is_empty ())
    {
      gimple *stmt = need_noreturn_fixup.pop ();
      if (dump_file && dump_flags & TDF_DETAILS)
	{
	  fprintf (dump_file, "Fixing up noreturn call ");
	  print_gimple_stmt (dump_file, stmt, 0);
	  fprintf (dump_file, "\n");
	}
      fixup_noreturn_call (stmt);
    }

  statistics_counter_event (fun, "Redundant expressions eliminated",
			    opt_stats.num_re);
  statistics_counter_event (fun, "Constants propagated",
			    opt_stats.num_const_prop);
  statistics_counter_event (fun, "Copies propagated",
			    opt_stats.num_copy_prop);

  /* Debugging dumps.  */
  if (dump_file && (dump_flags & TDF_STATS))
    dump_dominator_optimization_stats (dump_file, avail_exprs);

  loop_optimizer_finalize ();

  /* Delete our main hashtable.  */
  delete avail_exprs;
  avail_exprs = NULL;

  /* Free asserted bitmaps and stacks.  */
  BITMAP_FREE (need_eh_cleanup);
  need_noreturn_fixup.release ();
  delete avail_exprs_stack;
  delete const_and_copies;

  return 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_dominator (gcc::context *ctxt)
{
  return new pass_dominator (ctxt);
}

/* Valueize hook for gimple_fold_stmt_to_constant_1.  */

static tree
dom_valueize (tree t)
{
  if (TREE_CODE (t) == SSA_NAME)
    {
      tree tem = SSA_NAME_VALUE (t);
      if (tem)
	return tem;
    }
  return t;
}

/* We have just found an equivalence for LHS on an edge E.
   Look backwards to other uses of LHS and see if we can derive
   additional equivalences that are valid on edge E.  */
static void
back_propagate_equivalences (tree lhs, edge e,
			     class const_and_copies *const_and_copies,
			     bitmap domby)
{
  use_operand_p use_p;
  imm_use_iterator iter;
  basic_block dest = e->dest;
  bool domok = (dom_info_state (CDI_DOMINATORS) == DOM_OK);

  /* Iterate over the uses of LHS to see if any dominate E->dest.
     If so, they may create useful equivalences too.

     ???  If the code gets re-organized to a worklist to catch more
     indirect opportunities and it is made to handle PHIs then this
     should only consider use_stmts in basic-blocks we have already visited.  */
  FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
    {
      gimple *use_stmt = USE_STMT (use_p);

      /* Often the use is in DEST, which we trivially know we can't use.
	 This is cheaper than the dominator set tests below.  */
      if (dest == gimple_bb (use_stmt))
	continue;

      /* Filter out statements that can never produce a useful
	 equivalence.  */
      tree lhs2 = gimple_get_lhs (use_stmt);
      if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME)
	continue;

      if (domok)
	{
	  if (!dominated_by_p (CDI_DOMINATORS, dest, gimple_bb (use_stmt)))
	    continue;
	}
      else
	{
	  /* We can use the set of BBs on the stack from a domwalk
	     for a medium fast way to query dominance.  Profiling
	     has shown non-fast query dominance tests here can be fairly
	     expensive.  */
	  /* This tests if USE_STMT does not dominate DEST.  */
	  if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index))
	    continue;
	}

      /* At this point USE_STMT dominates DEST and may result in a
	 useful equivalence.  Try to simplify its RHS to a constant
	 or SSA_NAME.  */
      tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
						 no_follow_ssa_edges);
      if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res)))
	record_equality (lhs2, res, const_and_copies);
    }
}

/* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
   by traversing edge E (which are cached in E->aux).

   Callers are responsible for managing the unwinding markers.  */
static void
record_temporary_equivalences (edge e,
			       class const_and_copies *const_and_copies,
			       class avail_exprs_stack *avail_exprs_stack,
			       bitmap blocks_on_stack)
{
  int i;
  class edge_info *edge_info = (class edge_info *) e->aux;

  /* If we have info associated with this edge, record it into
     our equivalence tables.  */
  if (edge_info)
    {
      cond_equivalence *eq;
      /* If we have 0 = COND or 1 = COND equivalences, record them
	 into our expression hash tables.  */
      for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
	avail_exprs_stack->record_cond (eq);

      edge_info::equiv_pair *seq;
      for (i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
	{
	  tree lhs = seq->first;
	  if (!lhs || TREE_CODE (lhs) != SSA_NAME)
	    continue;

	  /* Record the simple NAME = VALUE equivalence.  */
	  tree rhs = seq->second;

	  /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is
	     cheaper to compute than the other, then set up the equivalence
	     such that we replace the expensive one with the cheap one.

	     If they are the same cost to compute, then do not record
	     anything.  */
	  if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
	    {
	      gimple *rhs_def = SSA_NAME_DEF_STMT (rhs);
	      int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights);

	      gimple *lhs_def = SSA_NAME_DEF_STMT (lhs);
	      int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights);

	      if (rhs_cost > lhs_cost)
	        record_equality (rhs, lhs, const_and_copies);
	      else if (rhs_cost < lhs_cost)
	        record_equality (lhs, rhs, const_and_copies);
	    }
	  else
	    record_equality (lhs, rhs, const_and_copies);


	  /* Any equivalence found for LHS may result in additional
	     equivalences for other uses of LHS that we have already
	     processed.  */
	  back_propagate_equivalences (lhs, e, const_and_copies,
				       blocks_on_stack);
	}
    }
}

/* PHI nodes can create equivalences too.

   Ignoring any alternatives which are the same as the result, if
   all the alternatives are equal, then the PHI node creates an
   equivalence.  */

static void
record_equivalences_from_phis (basic_block bb)
{
  gphi_iterator gsi;

  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
    {
      gphi *phi = gsi.phi ();

      /* We might eliminate the PHI, so advance GSI now.  */
      gsi_next (&gsi);

      tree lhs = gimple_phi_result (phi);
      tree rhs = NULL;
      size_t i;

      for (i = 0; i < gimple_phi_num_args (phi); i++)
	{
	  tree t = gimple_phi_arg_def (phi, i);

	  /* Ignore alternatives which are the same as our LHS.  Since
	     LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
	     can simply compare pointers.  */
	  if (lhs == t)
	    continue;

	  /* If the associated edge is not marked as executable, then it
	     can be ignored.  */
	  if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
	    continue;

	  t = dom_valueize (t);

	  /* If T is an SSA_NAME and its associated edge is a backedge,
	     then quit as we cannot utilize this equivalence.  */
	  if (TREE_CODE (t) == SSA_NAME
	      && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK))
	    break;

	  /* If we have not processed an alternative yet, then set
	     RHS to this alternative.  */
	  if (rhs == NULL)
	    rhs = t;
	  /* If we have processed an alternative (stored in RHS), then
	     see if it is equal to this one.  If it isn't, then stop
	     the search.  */
	  else if (! operand_equal_for_phi_arg_p (rhs, t))
	    break;
	}

      /* If we had no interesting alternatives, then all the RHS alternatives
	 must have been the same as LHS.  */
      if (!rhs)
	rhs = lhs;

      /* If we managed to iterate through each PHI alternative without
	 breaking out of the loop, then we have a PHI which may create
	 a useful equivalence.  We do not need to record unwind data for
	 this, since this is a true assignment and not an equivalence
	 inferred from a comparison.  All uses of this ssa name are dominated
	 by this assignment, so unwinding just costs time and space.  */
      if (i == gimple_phi_num_args (phi))
	{
	  if (may_propagate_copy (lhs, rhs))
	    set_ssa_name_value (lhs, rhs);
	  else if (virtual_operand_p (lhs))
	    {
	      gimple *use_stmt;
	      imm_use_iterator iter;
	      use_operand_p use_p;
	      /* For virtual operands we have to propagate into all uses as
	         otherwise we will create overlapping life-ranges.  */
	      FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
	        FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
	          SET_USE (use_p, rhs);
	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
	        SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
	      gimple_stmt_iterator tmp_gsi = gsi_for_stmt (phi);
	      remove_phi_node (&tmp_gsi, true);
	    }
	}
    }
}

/* Return true if all uses of NAME are dominated by STMT or feed STMT
   via a chain of single immediate uses.  */

static bool
all_uses_feed_or_dominated_by_stmt (tree name, gimple *stmt)
{
  use_operand_p use_p, use2_p;
  imm_use_iterator iter;
  basic_block stmt_bb = gimple_bb (stmt);

  FOR_EACH_IMM_USE_FAST (use_p, iter, name)
    {
      gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
      if (use_stmt == stmt
	  || is_gimple_debug (use_stmt)
	  || (gimple_bb (use_stmt) != stmt_bb
	      && dominated_by_p (CDI_DOMINATORS,
				 gimple_bb (use_stmt), stmt_bb)))
	continue;
      while (use_stmt != stmt
	     && is_gimple_assign (use_stmt)
	     && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
	     && single_imm_use (gimple_assign_lhs (use_stmt),
				&use2_p, &use_stmt2))
	use_stmt = use_stmt2;
      if (use_stmt != stmt)
	return false;
    }
  return true;
}

/* Handle
   _4 = x_3 & 31;
   if (_4 != 0)
     goto <bb 6>;
   else
     goto <bb 7>;
   <bb 6>:
   __builtin_unreachable ();
   <bb 7>:

   If x_3 has no other immediate uses (checked by caller), var is the
   x_3 var, we can clear low 5 bits from the non-zero bitmask.  */

static void
maybe_set_nonzero_bits (edge e, tree var)
{
  basic_block cond_bb = e->src;
  gcond *cond = safe_dyn_cast <gcond *> (*gsi_last_bb (cond_bb));
  tree cst;

  if (cond == NULL
      || gimple_cond_code (cond) != ((e->flags & EDGE_TRUE_VALUE)
				     ? EQ_EXPR : NE_EXPR)
      || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
      || !integer_zerop (gimple_cond_rhs (cond)))
    return;

  gimple *stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
  if (!is_gimple_assign (stmt)
      || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
      || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
    return;
  if (gimple_assign_rhs1 (stmt) != var)
    {
      gimple *stmt2;

      if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
	return;
      stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
      if (!gimple_assign_cast_p (stmt2)
	  || gimple_assign_rhs1 (stmt2) != var
	  || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
	  || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
			      != TYPE_PRECISION (TREE_TYPE (var))))
	return;
    }
  cst = gimple_assign_rhs2 (stmt);
  if (POINTER_TYPE_P (TREE_TYPE (var)))
    {
      struct ptr_info_def *pi = SSA_NAME_PTR_INFO (var);
      if (pi && pi->misalign)
	return;
      wide_int w = wi::bit_not (wi::to_wide (cst));
      unsigned int bits = wi::ctz (w);
      if (bits == 0 || bits >= HOST_BITS_PER_INT)
	return;
      unsigned int align = 1U << bits;
      if (pi == NULL || pi->align < align)
	set_ptr_info_alignment (get_ptr_info (var), align, 0);
    }
  else
    set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var),
					    wi::to_wide (cst)));
}

/* Set global ranges that can be determined from the C->M edge:

   <bb C>:
   ...
   if (something)
     goto <bb N>;
   else
     goto <bb M>;
   <bb N>:
   __builtin_unreachable ();
   <bb M>:
*/

void
dom_opt_dom_walker::set_global_ranges_from_unreachable_edges (basic_block bb)
{
  edge pred_e = single_pred_edge_ignoring_loop_edges (bb, false);
  if (!pred_e)
    return;

  gimple *stmt = *gsi_last_bb (pred_e->src);
  if (!stmt
      || gimple_code (stmt) != GIMPLE_COND
      || !assert_unreachable_fallthru_edge_p (pred_e))
    return;

  tree name;
  gori_compute &gori = m_ranger->gori ();
  FOR_EACH_GORI_EXPORT_NAME (gori, pred_e->src, name)
    if (all_uses_feed_or_dominated_by_stmt (name, stmt)
	// The condition must post-dominate the definition point.
	&& (SSA_NAME_IS_DEFAULT_DEF (name)
	    || (gimple_bb (SSA_NAME_DEF_STMT (name))
		== pred_e->src)))
      {
	Value_Range r (TREE_TYPE (name));

	if (m_ranger->range_on_edge (r, pred_e, name)
	    && !r.varying_p ()
	    && !r.undefined_p ())
	  {
	    set_range_info (name, r);
	    maybe_set_nonzero_bits (pred_e, name);
	  }
      }
}

/* Record any equivalences created by the incoming edge to BB into
   CONST_AND_COPIES and AVAIL_EXPRS_STACK.  If BB has more than one
   incoming edge, then no equivalence is created.  */

static void
record_equivalences_from_incoming_edge (basic_block bb,
    class const_and_copies *const_and_copies,
    class avail_exprs_stack *avail_exprs_stack,
    bitmap blocks_on_stack)
{
  edge e;
  basic_block parent;

  /* If our parent block ended with a control statement, then we may be
     able to record some equivalences based on which outgoing edge from
     the parent was followed.  */
  parent = get_immediate_dominator (CDI_DOMINATORS, bb);

  e = single_pred_edge_ignoring_loop_edges (bb, true);

  /* If we had a single incoming edge from our parent block, then enter
     any data associated with the edge into our tables.  */
  if (e && e->src == parent)
    record_temporary_equivalences (e, const_and_copies, avail_exprs_stack,
				   blocks_on_stack);
}

/* Dump statistics for the hash table HTAB.  */

static void
htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
{
  fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
	   (long) htab.size (),
	   (long) htab.elements (),
	   htab.collisions ());
}

/* Dump SSA statistics on FILE.  */

static void
dump_dominator_optimization_stats (FILE *file,
				   hash_table<expr_elt_hasher> *avail_exprs)
{
  fprintf (file, "Total number of statements:                   %6ld\n\n",
	   opt_stats.num_stmts);
  fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
           opt_stats.num_exprs_considered);

  fprintf (file, "\nHash table statistics:\n");

  fprintf (file, "    avail_exprs: ");
  htab_statistics (file, *avail_exprs);
}


/* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
   This constrains the cases in which we may treat this as assignment.  */

static void
record_equality (tree x, tree y, class const_and_copies *const_and_copies)
{
  tree prev_x = NULL, prev_y = NULL;

  if (tree_swap_operands_p (x, y))
    std::swap (x, y);

  /* Most of the time tree_swap_operands_p does what we want.  But there
     are cases where we know one operand is better for copy propagation than
     the other.  Given no other code cares about ordering of equality
     comparison operators for that purpose, we just handle the special cases
     here.  */
  if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
    {
      /* If one operand is a single use operand, then make it
	 X.  This will preserve its single use properly and if this
	 conditional is eliminated, the computation of X can be
	 eliminated as well.  */
      if (has_single_use (y) && ! has_single_use (x))
	std::swap (x, y);
    }
  if (TREE_CODE (x) == SSA_NAME)
    prev_x = SSA_NAME_VALUE (x);
  if (TREE_CODE (y) == SSA_NAME)
    prev_y = SSA_NAME_VALUE (y);

  /* If one of the previous values is invariant, or invariant in more loops
     (by depth), then use that.
     Otherwise it doesn't matter which value we choose, just so
     long as we canonicalize on one value.  */
  if (is_gimple_min_invariant (y))
    ;
  else if (is_gimple_min_invariant (x))
    prev_x = x, x = y, y = prev_x, prev_x = prev_y;
  else if (prev_x && is_gimple_min_invariant (prev_x))
    x = y, y = prev_x, prev_x = prev_y;
  else if (prev_y)
    y = prev_y;

  /* After the swapping, we must have one SSA_NAME.  */
  if (TREE_CODE (x) != SSA_NAME)
    return;

  /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
     variable compared against zero.  If we're honoring signed zeros,
     then we cannot record this value unless we know that the value is
     nonzero.  */
  if (HONOR_SIGNED_ZEROS (x)
      && (TREE_CODE (y) != REAL_CST
	  || real_equal (&dconst0, &TREE_REAL_CST (y))))
    return;

  const_and_copies->record_const_or_copy (x, y, prev_x);
}

/* Returns true when STMT is a simple iv increment.  It detects the
   following situation:

   i_1 = phi (..., i_k)
   [...]
   i_j = i_{j-1}  for each j : 2 <= j <= k-1
   [...]
   i_k = i_{k-1} +/- ...  */

bool
simple_iv_increment_p (gimple *stmt)
{
  enum tree_code code;
  tree lhs, preinc;
  gimple *phi;
  size_t i;

  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return false;

  lhs = gimple_assign_lhs (stmt);
  if (TREE_CODE (lhs) != SSA_NAME)
    return false;

  code = gimple_assign_rhs_code (stmt);
  if (code != PLUS_EXPR
      && code != MINUS_EXPR
      && code != POINTER_PLUS_EXPR)
    return false;

  preinc = gimple_assign_rhs1 (stmt);
  if (TREE_CODE (preinc) != SSA_NAME)
    return false;

  phi = SSA_NAME_DEF_STMT (preinc);
  while (gimple_code (phi) != GIMPLE_PHI)
    {
      /* Follow trivial copies, but not the DEF used in a back edge,
	 so that we don't prevent coalescing.  */
      if (!gimple_assign_ssa_name_copy_p (phi))
	return false;
      preinc = gimple_assign_rhs1 (phi);
      phi = SSA_NAME_DEF_STMT (preinc);
    }

  for (i = 0; i < gimple_phi_num_args (phi); i++)
    if (gimple_phi_arg_def (phi, i) == lhs)
      return true;

  return false;
}

/* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
   successors of BB.  */

static void
cprop_into_successor_phis (basic_block bb,
			   class const_and_copies *const_and_copies)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      int indx;
      gphi_iterator gsi;

      /* If this is an abnormal edge, then we do not want to copy propagate
	 into the PHI alternative associated with this edge.  */
      if (e->flags & EDGE_ABNORMAL)
	continue;

      gsi = gsi_start_phis (e->dest);
      if (gsi_end_p (gsi))
	continue;

      /* We may have an equivalence associated with this edge.  While
	 we cannot propagate it into non-dominated blocks, we can
	 propagate them into PHIs in non-dominated blocks.  */

      /* Push the unwind marker so we can reset the const and copies
	 table back to its original state after processing this edge.  */
      const_and_copies->push_marker ();

      /* Extract and record any simple NAME = VALUE equivalences.

	 Don't bother with [01] = COND equivalences, they're not useful
	 here.  */
      class edge_info *edge_info = (class edge_info *) e->aux;

      if (edge_info)
	{
	  edge_info::equiv_pair *seq;
	  for (int i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
	    {
	      tree lhs = seq->first;
	      tree rhs = seq->second;

	      if (lhs && TREE_CODE (lhs) == SSA_NAME)
		const_and_copies->record_const_or_copy (lhs, rhs);
	    }

	}

      indx = e->dest_idx;
      for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  tree new_val;
	  use_operand_p orig_p;
	  tree orig_val;
          gphi *phi = gsi.phi ();

	  /* The alternative may be associated with a constant, so verify
	     it is an SSA_NAME before doing anything with it.  */
	  orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
	  orig_val = get_use_from_ptr (orig_p);
	  if (TREE_CODE (orig_val) != SSA_NAME)
	    continue;

	  /* If we have *ORIG_P in our constant/copy table, then replace
	     ORIG_P with its value in our constant/copy table.  */
	  new_val = SSA_NAME_VALUE (orig_val);
	  if (new_val
	      && new_val != orig_val
	      && may_propagate_copy (orig_val, new_val))
	    propagate_value (orig_p, new_val);
	}

      const_and_copies->pop_to_marker ();
    }
}

edge
dom_opt_dom_walker::before_dom_children (basic_block bb)
{
  gimple_stmt_iterator gsi;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);

  /* Push a marker on the stacks of local information so that we know how
     far to unwind when we finalize this block.  */
  m_avail_exprs_stack->push_marker ();
  m_const_and_copies->push_marker ();
  bitmap_set_bit (m_state->get_blocks_on_stack (), bb->index);

  record_equivalences_from_incoming_edge (bb, m_const_and_copies,
					  m_avail_exprs_stack,
					  m_state->get_blocks_on_stack ());
  set_global_ranges_from_unreachable_edges (bb);

  /* PHI nodes can create equivalences too.  */
  record_equivalences_from_phis (bb);

  /* Create equivalences from redundant PHIs.  PHIs are only truly
     redundant when they exist in the same block, so push another
     marker and unwind right afterwards.  */
  m_avail_exprs_stack->push_marker ();
  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    eliminate_redundant_computations (&gsi, m_const_and_copies,
				      m_avail_exprs_stack);
  m_avail_exprs_stack->pop_to_marker ();

  edge taken_edge = NULL;
  /* Initialize visited flag ahead of us, it has undefined state on
     pass entry.  */
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    gimple_set_visited (gsi_stmt (gsi), false);
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
    {
      /* Do not optimize a stmt twice, substitution might end up with
         _3 = _3 which is not valid.  */
      if (gimple_visited_p (gsi_stmt (gsi)))
	{
	  gsi_next (&gsi);
	  continue;
	}

      bool removed_p = false;
      taken_edge = this->optimize_stmt (bb, &gsi, &removed_p);
      if (!removed_p)
	gimple_set_visited (gsi_stmt (gsi), true);

      /* Go back and visit stmts inserted by folding after substituting
	 into the stmt at gsi.  */
      if (gsi_end_p (gsi))
	{
	  gcc_checking_assert (removed_p);
	  gsi = gsi_last_bb (bb);
	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)))
	    gsi_prev (&gsi);
	}
      else
	{
	  do
	    {
	      gsi_prev (&gsi);
	    }
	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)));
	}
      if (gsi_end_p (gsi))
	gsi = gsi_start_bb (bb);
      else
	gsi_next (&gsi);
    }

  /* Now prepare to process dominated blocks.  */
  record_edge_info (bb);
  cprop_into_successor_phis (bb, m_const_and_copies);
  if (taken_edge && !dbg_cnt (dom_unreachable_edges))
    return NULL;

  return taken_edge;
}

/* We have finished processing the dominator children of BB, perform
   any finalization actions in preparation for leaving this node in
   the dominator tree.  */

void
dom_opt_dom_walker::after_dom_children (basic_block bb)
{
  m_threader->thread_outgoing_edges (bb);
  bitmap_clear_bit (m_state->get_blocks_on_stack (), bb->index);
  m_avail_exprs_stack->pop_to_marker ();
  m_const_and_copies->pop_to_marker ();
}

/* Search for redundant computations in STMT.  If any are found, then
   replace them with the variable holding the result of the computation.

   If safe, record this expression into AVAIL_EXPRS_STACK and
   CONST_AND_COPIES.  */

static void
eliminate_redundant_computations (gimple_stmt_iterator* gsi,
				  class const_and_copies *const_and_copies,
				  class avail_exprs_stack *avail_exprs_stack)
{
  tree expr_type;
  tree cached_lhs;
  tree def;
  bool insert = true;
  bool assigns_var_p = false;

  gimple *stmt = gsi_stmt (*gsi);

  if (gimple_code (stmt) == GIMPLE_PHI)
    def = gimple_phi_result (stmt);
  else
    def = gimple_get_lhs (stmt);

  /* Certain expressions on the RHS can be optimized away, but cannot
     themselves be entered into the hash tables.  */
  if (! def
      || TREE_CODE (def) != SSA_NAME
      || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
      || gimple_vdef (stmt)
      /* Do not record equivalences for increments of ivs.  This would create
	 overlapping live ranges for a very questionable gain.  */
      || simple_iv_increment_p (stmt))
    insert = false;

  /* Check if the expression has been computed before.  */
  cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true);

  opt_stats.num_exprs_considered++;

  /* Get the type of the expression we are trying to optimize.  */
  if (is_gimple_assign (stmt))
    {
      expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
      assigns_var_p = true;
    }
  else if (gimple_code (stmt) == GIMPLE_COND)
    expr_type = boolean_type_node;
  else if (is_gimple_call (stmt))
    {
      gcc_assert (gimple_call_lhs (stmt));
      expr_type = TREE_TYPE (gimple_call_lhs (stmt));
      assigns_var_p = true;
    }
  else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
    expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
  else if (gimple_code (stmt) == GIMPLE_PHI)
    /* We can't propagate into a phi, so the logic below doesn't apply.
       Instead record an equivalence between the cached LHS and the
       PHI result of this statement, provided they are in the same block.
       This should be sufficient to kill the redundant phi.  */
    {
      if (def && cached_lhs)
	const_and_copies->record_const_or_copy (def, cached_lhs);
      return;
    }
  else
    gcc_unreachable ();

  if (!cached_lhs)
    return;

  /* It is safe to ignore types here since we have already done
     type checking in the hashing and equality routines.  In fact
     type checking here merely gets in the way of constant
     propagation.  Also, make sure that it is safe to propagate
     CACHED_LHS into the expression in STMT.  */
  if ((TREE_CODE (cached_lhs) != SSA_NAME
       && (assigns_var_p
           || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
      || may_propagate_copy_into_stmt (stmt, cached_lhs))
  {
      gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
			   || is_gimple_min_invariant (cached_lhs));

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  Replaced redundant expr '");
	  print_gimple_expr (dump_file, stmt, 0, dump_flags);
	  fprintf (dump_file, "' with '");
	  print_generic_expr (dump_file, cached_lhs, dump_flags);
          fprintf (dump_file, "'\n");
	}

      opt_stats.num_re++;

      if (assigns_var_p
	  && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
	cached_lhs = fold_convert (expr_type, cached_lhs);

      propagate_tree_value_into_stmt (gsi, cached_lhs);

      /* Since it is always necessary to mark the result as modified,
         perhaps we should move this into propagate_tree_value_into_stmt
         itself.  */
      gimple_set_modified (gsi_stmt (*gsi), true);
  }
}

/* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
   the available expressions table or the const_and_copies table.
   Detect and record those equivalences into AVAIL_EXPRS_STACK. 

   We handle only very simple copy equivalences here.  The heavy
   lifing is done by eliminate_redundant_computations.  */

static void
record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
			       class avail_exprs_stack *avail_exprs_stack)
{
  tree lhs;
  enum tree_code lhs_code;

  gcc_assert (is_gimple_assign (stmt));

  lhs = gimple_assign_lhs (stmt);
  lhs_code = TREE_CODE (lhs);

  if (lhs_code == SSA_NAME
      && gimple_assign_single_p (stmt))
    {
      tree rhs = gimple_assign_rhs1 (stmt);

      /* If the RHS of the assignment is a constant or another variable that
	 may be propagated, register it in the CONST_AND_COPIES table.  We
	 do not need to record unwind data for this, since this is a true
	 assignment and not an equivalence inferred from a comparison.  All
	 uses of this ssa name are dominated by this assignment, so unwinding
	 just costs time and space.  */
      if (may_optimize_p
	  && (TREE_CODE (rhs) == SSA_NAME
	      || is_gimple_min_invariant (rhs)))
	{
	  rhs = dom_valueize (rhs);

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "==== ASGN ");
	      print_generic_expr (dump_file, lhs);
	      fprintf (dump_file, " = ");
	      print_generic_expr (dump_file, rhs);
	      fprintf (dump_file, "\n");
	    }

	  set_ssa_name_value (lhs, rhs);
	}
    }

  /* Make sure we can propagate &x + CST.  */
  if (lhs_code == SSA_NAME
      && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
      && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
      && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
    {
      tree op0 = gimple_assign_rhs1 (stmt);
      tree op1 = gimple_assign_rhs2 (stmt);
      tree new_rhs
	= build1 (ADDR_EXPR, TREE_TYPE (op0),
		  fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)),
			       unshare_expr (op0), fold_convert (ptr_type_node,
								 op1)));
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "==== ASGN ");
	  print_generic_expr (dump_file, lhs);
	  fprintf (dump_file, " = ");
	  print_generic_expr (dump_file, new_rhs);
	  fprintf (dump_file, "\n");
	}

      set_ssa_name_value (lhs, new_rhs);
    }

  /* A memory store, even an aliased store, creates a useful
     equivalence.  By exchanging the LHS and RHS, creating suitable
     vops and recording the result in the available expression table,
     we may be able to expose more redundant loads.  */
  if (!gimple_has_volatile_ops (stmt)
      && gimple_references_memory_p (stmt)
      && gimple_assign_single_p (stmt)
      && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
	  || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
      && !is_gimple_reg (lhs))
    {
      tree rhs = gimple_assign_rhs1 (stmt);
      gassign *new_stmt;

      /* Build a new statement with the RHS and LHS exchanged.  */
      if (TREE_CODE (rhs) == SSA_NAME)
        {
          /* NOTE tuples.  The call to gimple_build_assign below replaced
             a call to build_gimple_modify_stmt, which did not set the
             SSA_NAME_DEF_STMT on the LHS of the assignment.  Doing so
             may cause an SSA validation failure, as the LHS may be a
             default-initialized name and should have no definition.  I'm
             a bit dubious of this, as the artificial statement that we
             generate here may in fact be ill-formed, but it is simply
             used as an internal device in this pass, and never becomes
             part of the CFG.  */
	  gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
          new_stmt = gimple_build_assign (rhs, lhs);
          SSA_NAME_DEF_STMT (rhs) = defstmt;
        }
      else
        new_stmt = gimple_build_assign (rhs, lhs);

      gimple_set_vuse (new_stmt, gimple_vdef (stmt));

      /* Finally enter the statement into the available expression
	 table.  */
      avail_exprs_stack->lookup_avail_expr (new_stmt, true, true);
    }
}

/* Replace *OP_P in STMT with any known equivalent value for *OP_P from
   CONST_AND_COPIES.  */

static void
cprop_operand (gimple *stmt, use_operand_p op_p, range_query *query)
{
  tree val;
  tree op = USE_FROM_PTR (op_p);

  /* If the operand has a known constant value or it is known to be a
     copy of some other variable, use the value or copy stored in
     CONST_AND_COPIES.  */
  val = SSA_NAME_VALUE (op);
  if (!val)
    {
      Value_Range r (TREE_TYPE (op));
      tree single;
      if (query->range_of_expr (r, op, stmt) && r.singleton_p (&single))
	val = single;
    }

  if (val && val != op)
    {
      /* Do not replace hard register operands in asm statements.  */
      if (gimple_code (stmt) == GIMPLE_ASM
	  && !may_propagate_copy_into_asm (op))
	return;

      /* Certain operands are not allowed to be copy propagated due
	 to their interaction with exception handling and some GCC
	 extensions.  */
      if (!may_propagate_copy (op, val))
	return;

      /* Do not propagate copies into BIVs.
         See PR23821 and PR62217 for how this can disturb IV and
	 number of iteration analysis.  */
      if (TREE_CODE (val) != INTEGER_CST)
	{
	  gimple *def = SSA_NAME_DEF_STMT (op);
	  if (gimple_code (def) == GIMPLE_PHI
	      && gimple_bb (def)->loop_father->header == gimple_bb (def))
	    return;
	}

      /* Dump details.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  Replaced '");
	  print_generic_expr (dump_file, op, dump_flags);
	  fprintf (dump_file, "' with %s '",
		   (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
	  print_generic_expr (dump_file, val, dump_flags);
	  fprintf (dump_file, "'\n");
	}

      if (TREE_CODE (val) != SSA_NAME)
	opt_stats.num_const_prop++;
      else
	opt_stats.num_copy_prop++;

      propagate_value (op_p, val);

      /* And note that we modified this statement.  This is now
	 safe, even if we changed virtual operands since we will
	 rescan the statement and rewrite its operands again.  */
      gimple_set_modified (stmt, true);
    }
}

/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
   known value for that SSA_NAME (or NULL if no value is known).

   Propagate values from CONST_AND_COPIES into the uses, vuses and
   vdef_ops of STMT.  */

static void
cprop_into_stmt (gimple *stmt, range_query *query)
{
  use_operand_p op_p;
  ssa_op_iter iter;
  tree last_copy_propagated_op = NULL;

  FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
    {
      tree old_op = USE_FROM_PTR (op_p);

      /* If we have A = B and B = A in the copy propagation tables
	 (due to an equality comparison), avoid substituting B for A
	 then A for B in the trivially discovered cases.   This allows
	 optimization of statements were A and B appear as input
	 operands.  */
      if (old_op != last_copy_propagated_op)
	{
	  cprop_operand (stmt, op_p, query);

	  tree new_op = USE_FROM_PTR (op_p);
	  if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME)
	    last_copy_propagated_op = new_op;
	}
    }
}

/* If STMT contains a relational test, try to convert it into an
   equality test if there is only a single value which can ever
   make the test true.

   For example, if the expression hash table contains:

    TRUE = (i <= 1)

   And we have a test within statement of i >= 1, then we can safely
   rewrite the test as i == 1 since there only a single value where
   the test is true.

   This is similar to code in VRP.  */

void
dom_opt_dom_walker::test_for_singularity (gimple *stmt,
					  avail_exprs_stack *avail_exprs_stack)
{
  /* We want to support gimple conditionals as well as assignments
     where the RHS contains a conditional.  */
  if (is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND)
    {
      enum tree_code code = ERROR_MARK;
      tree lhs, rhs;

      /* Extract the condition of interest from both forms we support.  */
      if (is_gimple_assign (stmt))
	{
	  code = gimple_assign_rhs_code (stmt);
	  lhs = gimple_assign_rhs1 (stmt);
	  rhs = gimple_assign_rhs2 (stmt);
	}
      else if (gimple_code (stmt) == GIMPLE_COND)
	{
	  code = gimple_cond_code (as_a <gcond *> (stmt));
	  lhs = gimple_cond_lhs (as_a <gcond *> (stmt));
	  rhs = gimple_cond_rhs (as_a <gcond *> (stmt));
	}

      /* We're looking for a relational test using LE/GE.  Also note we can
	 canonicalize LT/GT tests against constants into LE/GT tests.  */
      if (code == LE_EXPR || code == GE_EXPR
	  || ((code == LT_EXPR || code == GT_EXPR)
	       && TREE_CODE (rhs) == INTEGER_CST))
	{
	  /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR.  */
	  if (code == LT_EXPR)
	    rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs),
			       rhs, build_int_cst (TREE_TYPE (rhs), 1));

	  if (code == GT_EXPR)
	    rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs),
			       rhs, build_int_cst (TREE_TYPE (rhs), 1));

	  /* Determine the code we want to check for in the hash table.  */
	  enum tree_code test_code;
	  if (code == GE_EXPR || code == GT_EXPR)
	    test_code = LE_EXPR;
	  else
	    test_code = GE_EXPR;

	  /* Update the dummy statement so we can query the hash tables.  */
	  gimple_cond_set_code (m_dummy_cond, test_code);
	  gimple_cond_set_lhs (m_dummy_cond, lhs);
	  gimple_cond_set_rhs (m_dummy_cond, rhs);
	  tree cached_lhs
	    = avail_exprs_stack->lookup_avail_expr (m_dummy_cond,
						    false, false);

	  /* If the lookup returned 1 (true), then the expression we
	     queried was in the hash table.  As a result there is only
	     one value that makes the original conditional true.  Update
	     STMT accordingly.  */
	  if (cached_lhs && integer_onep (cached_lhs))
	    {
	      if (is_gimple_assign (stmt))
		{
		  gimple_assign_set_rhs_code (stmt, EQ_EXPR);
		  gimple_assign_set_rhs2 (stmt, rhs);
		  gimple_set_modified (stmt, true);
		}
	      else
		{
		  gimple_set_modified (stmt, true);
		  gimple_cond_set_code (as_a <gcond *> (stmt), EQ_EXPR);
		  gimple_cond_set_rhs (as_a <gcond *> (stmt), rhs);
		  gimple_set_modified (stmt, true);
		}
	    }
	}
    }
}

/* If STMT is a comparison of two uniform vectors reduce it to a comparison
   of scalar objects, otherwise leave STMT unchanged.  */

static void
reduce_vector_comparison_to_scalar_comparison (gimple *stmt)
{
  if (gimple_code (stmt) == GIMPLE_COND)
    {
      tree lhs = gimple_cond_lhs (stmt);
      tree rhs = gimple_cond_rhs (stmt);

      /* We may have a vector comparison where both arms are uniform
	 vectors.  If so, we can simplify the vector comparison down
	 to a scalar comparison.  */
      if (VECTOR_TYPE_P (TREE_TYPE (lhs))
	  && VECTOR_TYPE_P (TREE_TYPE (rhs)))
	{
	  /* If either operand is an SSA_NAME, then look back to its
	     defining statement to try and get at a suitable source.  */
	  if (TREE_CODE (rhs) == SSA_NAME)
	    {
	      gimple *def_stmt = SSA_NAME_DEF_STMT (rhs);
	      if (gimple_assign_single_p (def_stmt))
		rhs = gimple_assign_rhs1 (def_stmt);
	    }

	  if (TREE_CODE (lhs) == SSA_NAME)
	    {
	      gimple *def_stmt = SSA_NAME_DEF_STMT (lhs);
	      if (gimple_assign_single_p (def_stmt))
		lhs = gimple_assign_rhs1 (def_stmt);
	    }

	  /* Now see if they are both uniform vectors and if so replace
	     the vector comparison with a scalar comparison.  */
	  tree rhs_elem = rhs ? uniform_vector_p (rhs) : NULL_TREE;
	  tree lhs_elem = lhs ? uniform_vector_p (lhs) : NULL_TREE;
	  if (rhs_elem && lhs_elem)
	    {
	      if (dump_file && dump_flags & TDF_DETAILS)
		{
		  fprintf (dump_file, "Reducing vector comparison: ");
		  print_gimple_stmt (dump_file, stmt, 0);
		}

	      gimple_cond_set_rhs (as_a <gcond *>(stmt), rhs_elem);
	      gimple_cond_set_lhs (as_a <gcond *>(stmt), lhs_elem);
	      gimple_set_modified (stmt, true);

	      if (dump_file && dump_flags & TDF_DETAILS)
		{
		  fprintf (dump_file, "To scalar equivalent: ");
		  print_gimple_stmt (dump_file, stmt, 0);
		  fprintf (dump_file, "\n");
		}
	    }
	}
    }
}

/* If possible, rewrite the conditional as TRUE or FALSE, and return
   the taken edge.  Otherwise, return NULL.  */

edge
dom_opt_dom_walker::fold_cond (gcond *cond)
{
  simplify_using_ranges simplify (m_ranger);
  if (simplify.fold_cond (cond))
    {
      basic_block bb = gimple_bb (cond);
      if (gimple_cond_true_p (cond))
	return find_taken_edge (bb, boolean_true_node);
      if (gimple_cond_false_p (cond))
	return find_taken_edge (bb, boolean_false_node);
    }
  return NULL;
}

/* Optimize the statement in block BB pointed to by iterator SI.

   We try to perform some simplistic global redundancy elimination and
   constant propagation:

   1- To detect global redundancy, we keep track of expressions that have
      been computed in this block and its dominators.  If we find that the
      same expression is computed more than once, we eliminate repeated
      computations by using the target of the first one.

   2- Constant values and copy assignments.  This is used to do very
      simplistic constant and copy propagation.  When a constant or copy
      assignment is found, we map the value on the RHS of the assignment to
      the variable in the LHS in the CONST_AND_COPIES table.

   3- Very simple redundant store elimination is performed.

   4- We can simplify a condition to a constant or from a relational
      condition to an equality condition.  */

edge
dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator *si,
				   bool *removed_p)
{
  gimple *stmt, *old_stmt;
  bool may_optimize_p;
  bool modified_p = false;
  bool was_noreturn;
  edge retval = NULL;

  old_stmt = stmt = gsi_stmt (*si);
  was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Optimizing statement ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
    }

  /* STMT may be a comparison of uniform vectors that we can simplify
     down to a comparison of scalars.  Do that transformation first
     so that all the scalar optimizations from here onward apply.  */
  reduce_vector_comparison_to_scalar_comparison (stmt);

  update_stmt_if_modified (stmt);
  opt_stats.num_stmts++;

  /* Const/copy propagate into USES, VUSES and the RHS of VDEFs.  */
  cprop_into_stmt (stmt, m_ranger);

  /* If the statement has been modified with constant replacements,
     fold its RHS before checking for redundant computations.  */
  if (gimple_modified_p (stmt))
    {
      tree rhs = NULL;

      /* Try to fold the statement making sure that STMT is kept
	 up to date.  */
      if (fold_stmt (si))
	{
	  stmt = gsi_stmt (*si);
	  gimple_set_modified (stmt, true);

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "  Folded to: ");
	      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	    }
	}

      /* We only need to consider cases that can yield a gimple operand.  */
      if (gimple_assign_single_p (stmt))
        rhs = gimple_assign_rhs1 (stmt);
      else if (gimple_code (stmt) == GIMPLE_GOTO)
        rhs = gimple_goto_dest (stmt);
      else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
        /* This should never be an ADDR_EXPR.  */
        rhs = gimple_switch_index (swtch_stmt);

      if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
        recompute_tree_invariant_for_addr_expr (rhs);

      /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
	 even if fold_stmt updated the stmt already and thus cleared
	 gimple_modified_p flag on it.  */
      modified_p = true;
    }

  /* Check for redundant computations.  Do this optimization only
     for assignments that have no volatile ops and conditionals.  */
  may_optimize_p = (!gimple_has_side_effects (stmt)
                    && (is_gimple_assign (stmt)
                        || (is_gimple_call (stmt)
                            && gimple_call_lhs (stmt) != NULL_TREE)
                        || gimple_code (stmt) == GIMPLE_COND
                        || gimple_code (stmt) == GIMPLE_SWITCH));

  if (may_optimize_p)
    {
      if (gimple_code (stmt) == GIMPLE_CALL)
	{
	  /* Resolve __builtin_constant_p.  If it hasn't been
	     folded to integer_one_node by now, it's fairly
	     certain that the value simply isn't constant.  */
	  tree callee = gimple_call_fndecl (stmt);
	  if (callee
	      && fndecl_built_in_p (callee, BUILT_IN_CONSTANT_P))
	    {
	      propagate_tree_value_into_stmt (si, integer_zero_node);
	      stmt = gsi_stmt (*si);
	    }
	}

      if (gimple_code (stmt) == GIMPLE_COND)
	{
	  tree lhs = gimple_cond_lhs (stmt);
	  tree rhs = gimple_cond_rhs (stmt);

	  /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
	     then this conditional is computable at compile time.  We can just
	     shove either 0 or 1 into the LHS, mark the statement as modified
	     and all the right things will just happen below.

	     Note this would apply to any case where LHS has a range
	     narrower than its type implies and RHS is outside that
	     narrower range.  Future work.  */
	  if (TREE_CODE (lhs) == SSA_NAME
	      && ssa_name_has_boolean_range (lhs)
	      && TREE_CODE (rhs) == INTEGER_CST
	      && ! (integer_zerop (rhs) || integer_onep (rhs)))
	    {
	      gimple_cond_set_lhs (as_a <gcond *> (stmt),
				   fold_convert (TREE_TYPE (lhs),
						 integer_zero_node));
	      gimple_set_modified (stmt, true);
	    }
	  else if (TREE_CODE (lhs) == SSA_NAME)
	    {
	      /* Exploiting EVRP data is not yet fully integrated into DOM
		 but we need to do something for this case to avoid regressing
		 udr4.f90 and new1.C which have unexecutable blocks with
		 undefined behavior that get diagnosed if they're left in the
		 IL because we've attached range information to new
		 SSA_NAMES.  */
	      update_stmt_if_modified (stmt);
	      edge taken_edge = fold_cond (as_a <gcond *> (stmt));
	      if (taken_edge)
		{
		  gimple_set_modified (stmt, true);
		  update_stmt (stmt);
		  cfg_altered = true;
		  return taken_edge;
		}
	    }
	}

      update_stmt_if_modified (stmt);
      eliminate_redundant_computations (si, m_const_and_copies,
					m_avail_exprs_stack);
      stmt = gsi_stmt (*si);

      /* Perform simple redundant store elimination.  */
      if (gimple_assign_single_p (stmt)
	  && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
	{
	  tree lhs = gimple_assign_lhs (stmt);
	  tree rhs = gimple_assign_rhs1 (stmt);
	  tree cached_lhs;
	  gassign *new_stmt;
	  rhs = dom_valueize (rhs);
	  /* Build a new statement with the RHS and LHS exchanged.  */
	  if (TREE_CODE (rhs) == SSA_NAME)
	    {
	      gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
	      new_stmt = gimple_build_assign (rhs, lhs);
	      SSA_NAME_DEF_STMT (rhs) = defstmt;
	    }
	  else
	    new_stmt = gimple_build_assign (rhs, lhs);
	  gimple_set_vuse (new_stmt, gimple_vuse (stmt));
	  expr_hash_elt *elt = NULL;
	  cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false,
							       false, &elt);
	  if (cached_lhs
	      && operand_equal_p (rhs, cached_lhs, 0)
	      && refs_same_for_tbaa_p (elt->expr ()->kind == EXPR_SINGLE
				       ? elt->expr ()->ops.single.rhs
				       : NULL_TREE, lhs))
	    {
	      basic_block bb = gimple_bb (stmt);
	      unlink_stmt_vdef (stmt);
	      if (gsi_remove (si, true))
		{
		  bitmap_set_bit (need_eh_cleanup, bb->index);
		  if (dump_file && (dump_flags & TDF_DETAILS))
		    fprintf (dump_file, "  Flagged to clear EH edges.\n");
		}
	      release_defs (stmt);
	      *removed_p = true;
	      return retval;
	    }
	}

      /* If this statement was not redundant, we may still be able to simplify
	 it, which may in turn allow other part of DOM or other passes to do
	 a better job.  */
      test_for_singularity (stmt, m_avail_exprs_stack);
    }

  /* Record any additional equivalences created by this statement.  */
  if (is_gimple_assign (stmt))
    record_equivalences_from_stmt (stmt, may_optimize_p, m_avail_exprs_stack);

  /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
     know where it goes.  */
  if (gimple_modified_p (stmt) || modified_p)
    {
      tree val = NULL;

      if (gimple_code (stmt) == GIMPLE_COND)
        val = fold_binary_loc (gimple_location (stmt),
			       gimple_cond_code (stmt), boolean_type_node,
			       gimple_cond_lhs (stmt),
			       gimple_cond_rhs (stmt));
      else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
	val = gimple_switch_index (swtch_stmt);

      if (val && TREE_CODE (val) == INTEGER_CST)
	{
	  retval = find_taken_edge (bb, val);
	  if (retval)
	    {
	      /* Fix the condition to be either true or false.  */
	      if (gimple_code (stmt) == GIMPLE_COND)
		{
		  if (integer_zerop (val))
		    gimple_cond_make_false (as_a <gcond *> (stmt));
		  else if (integer_onep (val))
		    gimple_cond_make_true (as_a <gcond *> (stmt));
		  else
		    gcc_unreachable ();

		  gimple_set_modified (stmt, true);
		}

	      /* Further simplifications may be possible.  */
	      cfg_altered = true;
	    }
	}

      update_stmt_if_modified (stmt);

      /* If we simplified a statement in such a way as to be shown that it
	 cannot trap, update the eh information and the cfg to match.  */
      if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
	{
	  bitmap_set_bit (need_eh_cleanup, bb->index);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "  Flagged to clear EH edges.\n");
	}

      if (!was_noreturn
	  && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
	need_noreturn_fixup.safe_push (stmt);
    }
  return retval;
}