1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
|
/* Coalesce SSA_NAMES together for the out-of-ssa pass.
Copyright (C) 2004-2023 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "memmodel.h"
#include "tm_p.h"
#include "ssa.h"
#include "tree-ssa.h"
#include "tree-pretty-print.h"
#include "diagnostic-core.h"
#include "dumpfile.h"
#include "gimple-iterator.h"
#include "tree-ssa-live.h"
#include "tree-ssa-coalesce.h"
#include "explow.h"
#include "tree-dfa.h"
#include "stor-layout.h"
#include "gimple-lower-bitint.h"
/* This set of routines implements a coalesce_list. This is an object which
is used to track pairs of ssa_names which are desirable to coalesce
together to avoid copies. Costs are associated with each pair, and when
all desired information has been collected, the object can be used to
order the pairs for processing. */
/* This structure defines a pair entry. */
struct coalesce_pair
{
int first_element;
int second_element;
int cost;
/* A count of the number of unique partitions this pair would conflict
with if coalescing was successful. This is the secondary sort key,
given two pairs with equal costs, we will prefer the pair with a smaller
conflict set.
This is lazily initialized when we discover two coalescing pairs have
the same primary cost.
Note this is not updated and propagated as pairs are coalesced. */
int conflict_count;
/* The order in which coalescing pairs are discovered is recorded in this
field, which is used as the final tie breaker when sorting coalesce
pairs. */
int index;
};
/* This represents a conflict graph. Implemented as an array of bitmaps.
A full matrix is used for conflicts rather than just upper triangular form.
this makes it much simpler and faster to perform conflict merges. */
struct ssa_conflicts
{
bitmap_obstack obstack; /* A place to allocate our bitmaps. */
vec<bitmap> conflicts;
};
/* The narrow API of the qsort comparison function doesn't allow easy
access to additional arguments. So we have two globals (ick) to hold
the data we need. They're initialized before the call to qsort and
wiped immediately after. */
static ssa_conflicts *conflicts_;
static var_map map_;
/* Coalesce pair hashtable helpers. */
struct coalesce_pair_hasher : nofree_ptr_hash <coalesce_pair>
{
static inline hashval_t hash (const coalesce_pair *);
static inline bool equal (const coalesce_pair *, const coalesce_pair *);
};
/* Hash function for coalesce list. Calculate hash for PAIR. */
inline hashval_t
coalesce_pair_hasher::hash (const coalesce_pair *pair)
{
hashval_t a = (hashval_t)(pair->first_element);
hashval_t b = (hashval_t)(pair->second_element);
return b * (b - 1) / 2 + a;
}
/* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
returning TRUE if the two pairs are equivalent. */
inline bool
coalesce_pair_hasher::equal (const coalesce_pair *p1, const coalesce_pair *p2)
{
return (p1->first_element == p2->first_element
&& p1->second_element == p2->second_element);
}
typedef hash_table<coalesce_pair_hasher> coalesce_table_type;
typedef coalesce_table_type::iterator coalesce_iterator_type;
struct cost_one_pair
{
int first_element;
int second_element;
cost_one_pair *next;
};
/* This structure maintains the list of coalesce pairs. */
struct coalesce_list
{
coalesce_table_type *list; /* Hash table. */
coalesce_pair **sorted; /* List when sorted. */
int num_sorted; /* Number in the sorted list. */
cost_one_pair *cost_one_list;/* Single use coalesces with cost 1. */
obstack ob;
};
#define NO_BEST_COALESCE -1
#define MUST_COALESCE_COST INT_MAX
/* Return cost of execution of copy instruction with FREQUENCY. */
static inline int
coalesce_cost (int frequency, bool optimize_for_size)
{
/* Base costs on BB frequencies bounded by 1. */
int cost = frequency;
if (!cost)
cost = 1;
if (optimize_for_size)
cost = 1;
return cost;
}
/* Return the cost of executing a copy instruction in basic block BB. */
static inline int
coalesce_cost_bb (basic_block bb)
{
return coalesce_cost (bb->count.to_frequency (cfun),
optimize_bb_for_size_p (bb));
}
/* Return the cost of executing a copy instruction on edge E. */
static inline int
coalesce_cost_edge (edge e)
{
int mult = 1;
/* Inserting copy on critical edge costs more than inserting it elsewhere. */
if (EDGE_CRITICAL_P (e))
mult = 2;
if (e->flags & EDGE_ABNORMAL)
return MUST_COALESCE_COST;
if (e->flags & EDGE_EH)
{
edge e2;
edge_iterator ei;
FOR_EACH_EDGE (e2, ei, e->dest->preds)
if (e2 != e)
{
/* Putting code on EH edge that leads to BB
with multiple predecestors imply splitting of
edge too. */
if (mult < 2)
mult = 2;
/* If there are multiple EH predecestors, we
also copy EH regions and produce separate
landing pad. This is expensive. */
if (e2->flags & EDGE_EH)
{
mult = 5;
break;
}
}
}
return coalesce_cost (EDGE_FREQUENCY (e),
optimize_edge_for_size_p (e)) * mult;
}
/* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
2 elements via P1 and P2. 1 is returned by the function if there is a pair,
NO_BEST_COALESCE is returned if there aren't any. */
static inline int
pop_cost_one_pair (coalesce_list *cl, int *p1, int *p2)
{
cost_one_pair *ptr;
ptr = cl->cost_one_list;
if (!ptr)
return NO_BEST_COALESCE;
*p1 = ptr->first_element;
*p2 = ptr->second_element;
cl->cost_one_list = ptr->next;
return 1;
}
/* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
2 elements via P1 and P2. Their calculated cost is returned by the function.
NO_BEST_COALESCE is returned if the coalesce list is empty. */
static inline int
pop_best_coalesce (coalesce_list *cl, int *p1, int *p2)
{
coalesce_pair *node;
int ret;
if (cl->sorted == NULL)
return pop_cost_one_pair (cl, p1, p2);
if (cl->num_sorted == 0)
return pop_cost_one_pair (cl, p1, p2);
node = cl->sorted[--(cl->num_sorted)];
*p1 = node->first_element;
*p2 = node->second_element;
ret = node->cost;
return ret;
}
/* Create a new empty coalesce list object and return it. */
static inline coalesce_list *
create_coalesce_list (void)
{
coalesce_list *list;
unsigned size = num_ssa_names * 3;
if (size < 40)
size = 40;
list = (coalesce_list *) xmalloc (sizeof (struct coalesce_list));
list->list = new coalesce_table_type (size);
list->sorted = NULL;
list->num_sorted = 0;
list->cost_one_list = NULL;
gcc_obstack_init (&list->ob);
return list;
}
/* Delete coalesce list CL. */
static inline void
delete_coalesce_list (coalesce_list *cl)
{
gcc_assert (cl->cost_one_list == NULL);
delete cl->list;
cl->list = NULL;
free (cl->sorted);
gcc_assert (cl->num_sorted == 0);
obstack_free (&cl->ob, NULL);
free (cl);
}
/* Return the number of unique coalesce pairs in CL. */
static inline int
num_coalesce_pairs (coalesce_list *cl)
{
return cl->list->elements ();
}
/* Find a matching coalesce pair object in CL for the pair P1 and P2. If
one isn't found, return NULL if CREATE is false, otherwise create a new
coalesce pair object and return it. */
static coalesce_pair *
find_coalesce_pair (coalesce_list *cl, int p1, int p2, bool create)
{
struct coalesce_pair p;
coalesce_pair **slot;
unsigned int hash;
/* Normalize so that p1 is the smaller value. */
if (p2 < p1)
{
p.first_element = p2;
p.second_element = p1;
}
else
{
p.first_element = p1;
p.second_element = p2;
}
hash = coalesce_pair_hasher::hash (&p);
slot = cl->list->find_slot_with_hash (&p, hash, create ? INSERT : NO_INSERT);
if (!slot)
return NULL;
if (!*slot)
{
struct coalesce_pair * pair = XOBNEW (&cl->ob, struct coalesce_pair);
gcc_assert (cl->sorted == NULL);
pair->first_element = p.first_element;
pair->second_element = p.second_element;
pair->cost = 0;
pair->index = num_coalesce_pairs (cl);
pair->conflict_count = 0;
*slot = pair;
}
return (struct coalesce_pair *) *slot;
}
static inline void
add_cost_one_coalesce (coalesce_list *cl, int p1, int p2)
{
cost_one_pair *pair;
pair = XOBNEW (&cl->ob, cost_one_pair);
pair->first_element = p1;
pair->second_element = p2;
pair->next = cl->cost_one_list;
cl->cost_one_list = pair;
}
/* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
static inline void
add_coalesce (coalesce_list *cl, int p1, int p2, int value)
{
coalesce_pair *node;
gcc_assert (cl->sorted == NULL);
if (p1 == p2)
return;
node = find_coalesce_pair (cl, p1, p2, true);
/* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
if (node->cost < MUST_COALESCE_COST - 1)
{
if (value < MUST_COALESCE_COST - 1)
node->cost += value;
else
node->cost = value;
}
}
/* Compute and record how many unique conflicts would exist for the
representative partition for each coalesce pair in CL.
CONFLICTS is the conflict graph and MAP is the current partition view. */
static void
initialize_conflict_count (coalesce_pair *p,
ssa_conflicts *conflicts,
var_map map)
{
int p1 = var_to_partition (map, ssa_name (p->first_element));
int p2 = var_to_partition (map, ssa_name (p->second_element));
/* 4 cases. If both P1 and P2 have conflicts, then build their
union and count the members. Else handle the degenerate cases
in the obvious ways. */
if (conflicts->conflicts[p1] && conflicts->conflicts[p2])
p->conflict_count = bitmap_count_unique_bits (conflicts->conflicts[p1],
conflicts->conflicts[p2]);
else if (conflicts->conflicts[p1])
p->conflict_count = bitmap_count_bits (conflicts->conflicts[p1]);
else if (conflicts->conflicts[p2])
p->conflict_count = bitmap_count_bits (conflicts->conflicts[p2]);
else
p->conflict_count = 0;
}
/* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
static int
compare_pairs (const void *p1, const void *p2)
{
coalesce_pair *const *const pp1 = (coalesce_pair *const *) p1;
coalesce_pair *const *const pp2 = (coalesce_pair *const *) p2;
int result;
result = (* pp1)->cost - (* pp2)->cost;
/* We use the size of the resulting conflict set as the secondary sort key.
Given two equal costing coalesce pairs, we want to prefer the pair that
has the smaller conflict set. */
if (result == 0)
{
if (flag_expensive_optimizations)
{
/* Lazily initialize the conflict counts as it's fairly expensive
to compute. */
if ((*pp2)->conflict_count == 0)
initialize_conflict_count (*pp2, conflicts_, map_);
if ((*pp1)->conflict_count == 0)
initialize_conflict_count (*pp1, conflicts_, map_);
result = (*pp2)->conflict_count - (*pp1)->conflict_count;
}
/* And if everything else is equal, then sort based on which
coalesce pair was found first. */
if (result == 0)
result = (*pp2)->index - (*pp1)->index;
}
return result;
}
/* Iterate over CL using ITER, returning values in PAIR. */
#define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
FOR_EACH_HASH_TABLE_ELEMENT (*(CL)->list, (PAIR), coalesce_pair_p, (ITER))
/* Prepare CL for removal of preferred pairs. When finished they are sorted
in order from most important coalesce to least important. */
static void
sort_coalesce_list (coalesce_list *cl, ssa_conflicts *conflicts, var_map map)
{
unsigned x, num;
coalesce_pair *p;
coalesce_iterator_type ppi;
gcc_assert (cl->sorted == NULL);
num = num_coalesce_pairs (cl);
cl->num_sorted = num;
if (num == 0)
return;
/* Allocate a vector for the pair pointers. */
cl->sorted = XNEWVEC (coalesce_pair *, num);
/* Populate the vector with pointers to the pairs. */
x = 0;
FOR_EACH_PARTITION_PAIR (p, ppi, cl)
cl->sorted[x++] = p;
gcc_assert (x == num);
/* Already sorted. */
if (num == 1)
return;
/* We don't want to depend on qsort_r, so we have to stuff away
additional data into globals so it can be referenced in
compare_pairs. */
conflicts_ = conflicts;
map_ = map;
qsort (cl->sorted, num, sizeof (coalesce_pair *), compare_pairs);
conflicts_ = NULL;
map_ = NULL;
}
/* Send debug info for coalesce list CL to file F. */
static void
dump_coalesce_list (FILE *f, coalesce_list *cl)
{
coalesce_pair *node;
coalesce_iterator_type ppi;
int x;
tree var;
if (cl->sorted == NULL)
{
fprintf (f, "Coalesce List:\n");
FOR_EACH_PARTITION_PAIR (node, ppi, cl)
{
tree var1 = ssa_name (node->first_element);
tree var2 = ssa_name (node->second_element);
print_generic_expr (f, var1, TDF_SLIM);
fprintf (f, " <-> ");
print_generic_expr (f, var2, TDF_SLIM);
fprintf (f, " (%1d, %1d), ", node->cost, node->conflict_count);
fprintf (f, "\n");
}
}
else
{
fprintf (f, "Sorted Coalesce list:\n");
for (x = cl->num_sorted - 1 ; x >=0; x--)
{
node = cl->sorted[x];
fprintf (f, "(%d, %d) ", node->cost, node->conflict_count);
var = ssa_name (node->first_element);
print_generic_expr (f, var, TDF_SLIM);
fprintf (f, " <-> ");
var = ssa_name (node->second_element);
print_generic_expr (f, var, TDF_SLIM);
fprintf (f, "\n");
}
}
}
/* Return an empty new conflict graph for SIZE elements. */
static inline ssa_conflicts *
ssa_conflicts_new (unsigned size)
{
ssa_conflicts *ptr;
ptr = XNEW (ssa_conflicts);
bitmap_obstack_initialize (&ptr->obstack);
ptr->conflicts.create (size);
ptr->conflicts.safe_grow_cleared (size, true);
return ptr;
}
/* Free storage for conflict graph PTR. */
static inline void
ssa_conflicts_delete (ssa_conflicts *ptr)
{
bitmap_obstack_release (&ptr->obstack);
ptr->conflicts.release ();
free (ptr);
}
/* Test if elements X and Y conflict in graph PTR. */
static inline bool
ssa_conflicts_test_p (ssa_conflicts *ptr, unsigned x, unsigned y)
{
bitmap bx = ptr->conflicts[x];
bitmap by = ptr->conflicts[y];
gcc_checking_assert (x != y);
if (bx)
/* Avoid the lookup if Y has no conflicts. */
return by ? bitmap_bit_p (bx, y) : false;
else
return false;
}
/* Add a conflict with Y to the bitmap for X in graph PTR. */
static inline void
ssa_conflicts_add_one (ssa_conflicts *ptr, unsigned x, unsigned y)
{
bitmap bx = ptr->conflicts[x];
/* If there are no conflicts yet, allocate the bitmap and set bit. */
if (! bx)
bx = ptr->conflicts[x] = BITMAP_ALLOC (&ptr->obstack);
bitmap_set_bit (bx, y);
}
/* Add conflicts between X and Y in graph PTR. */
static inline void
ssa_conflicts_add (ssa_conflicts *ptr, unsigned x, unsigned y)
{
gcc_checking_assert (x != y);
ssa_conflicts_add_one (ptr, x, y);
ssa_conflicts_add_one (ptr, y, x);
}
/* Merge all Y's conflict into X in graph PTR. */
static inline void
ssa_conflicts_merge (ssa_conflicts *ptr, unsigned x, unsigned y)
{
unsigned z;
bitmap_iterator bi;
bitmap bx = ptr->conflicts[x];
bitmap by = ptr->conflicts[y];
gcc_checking_assert (x != y);
if (! by)
return;
/* Add a conflict between X and every one Y has. If the bitmap doesn't
exist, then it has already been coalesced, and we don't need to add a
conflict. */
EXECUTE_IF_SET_IN_BITMAP (by, 0, z, bi)
{
bitmap bz = ptr->conflicts[z];
if (bz)
{
bool was_there = bitmap_clear_bit (bz, y);
gcc_checking_assert (was_there);
bitmap_set_bit (bz, x);
}
}
if (bx)
{
/* If X has conflicts, add Y's to X. */
bitmap_ior_into (bx, by);
BITMAP_FREE (by);
ptr->conflicts[y] = NULL;
}
else
{
/* If X has no conflicts, simply use Y's. */
ptr->conflicts[x] = by;
ptr->conflicts[y] = NULL;
}
}
/* Dump a conflicts graph. */
static void
ssa_conflicts_dump (FILE *file, ssa_conflicts *ptr)
{
unsigned x;
bitmap b;
fprintf (file, "\nConflict graph:\n");
FOR_EACH_VEC_ELT (ptr->conflicts, x, b)
if (b)
{
fprintf (file, "%d: ", x);
dump_bitmap (file, b);
}
}
/* This structure is used to efficiently record the current status of live
SSA_NAMES when building a conflict graph.
LIVE_BASE_VAR has a bit set for each base variable which has at least one
ssa version live.
LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
index, and is used to track what partitions of each base variable are
live. This makes it easy to add conflicts between just live partitions
with the same base variable.
The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
marked as being live. This delays clearing of these bitmaps until
they are actually needed again. */
class live_track
{
public:
bitmap_obstack obstack; /* A place to allocate our bitmaps. */
bitmap_head live_base_var; /* Indicates if a basevar is live. */
bitmap_head *live_base_partitions; /* Live partitions for each basevar. */
var_map map; /* Var_map being used for partition mapping. */
};
/* This routine will create a new live track structure based on the partitions
in MAP. */
static live_track *
new_live_track (var_map map)
{
live_track *ptr;
int lim, x;
/* Make sure there is a partition view in place. */
gcc_assert (map->partition_to_base_index != NULL);
ptr = XNEW (live_track);
ptr->map = map;
lim = num_basevars (map);
bitmap_obstack_initialize (&ptr->obstack);
ptr->live_base_partitions = XNEWVEC (bitmap_head, lim);
bitmap_initialize (&ptr->live_base_var, &ptr->obstack);
for (x = 0; x < lim; x++)
bitmap_initialize (&ptr->live_base_partitions[x], &ptr->obstack);
return ptr;
}
/* This routine will free the memory associated with PTR. */
static void
delete_live_track (live_track *ptr)
{
bitmap_obstack_release (&ptr->obstack);
XDELETEVEC (ptr->live_base_partitions);
XDELETE (ptr);
}
/* This function will remove PARTITION from the live list in PTR. */
static inline void
live_track_remove_partition (live_track *ptr, int partition)
{
int root;
root = basevar_index (ptr->map, partition);
bitmap_clear_bit (&ptr->live_base_partitions[root], partition);
/* If the element list is empty, make the base variable not live either. */
if (bitmap_empty_p (&ptr->live_base_partitions[root]))
bitmap_clear_bit (&ptr->live_base_var, root);
}
/* This function will adds PARTITION to the live list in PTR. */
static inline void
live_track_add_partition (live_track *ptr, int partition)
{
int root;
root = basevar_index (ptr->map, partition);
/* If this base var wasn't live before, it is now. Clear the element list
since it was delayed until needed. */
if (bitmap_set_bit (&ptr->live_base_var, root))
bitmap_clear (&ptr->live_base_partitions[root]);
bitmap_set_bit (&ptr->live_base_partitions[root], partition);
}
/* Clear the live bit for VAR in PTR. */
static inline void
live_track_clear_var (live_track *ptr, tree var)
{
int p;
p = var_to_partition (ptr->map, var);
if (p != NO_PARTITION)
live_track_remove_partition (ptr, p);
}
/* Return TRUE if VAR is live in PTR. */
static inline bool
live_track_live_p (live_track *ptr, tree var)
{
int p, root;
p = var_to_partition (ptr->map, var);
if (p != NO_PARTITION)
{
root = basevar_index (ptr->map, p);
if (bitmap_bit_p (&ptr->live_base_var, root))
return bitmap_bit_p (&ptr->live_base_partitions[root], p);
}
return false;
}
/* This routine will add USE to PTR. USE will be marked as live in both the
ssa live map and the live bitmap for the root of USE. */
static inline void
live_track_process_use (live_track *ptr, tree use)
{
int p;
p = var_to_partition (ptr->map, use);
if (p == NO_PARTITION)
return;
/* Mark as live in the appropriate live list. */
live_track_add_partition (ptr, p);
}
/* This routine will process a DEF in PTR. DEF will be removed from the live
lists, and if there are any other live partitions with the same base
variable, conflicts will be added to GRAPH. */
static inline void
live_track_process_def (live_track *ptr, tree def, ssa_conflicts *graph)
{
int p, root;
bitmap b;
unsigned x;
bitmap_iterator bi;
p = var_to_partition (ptr->map, def);
if (p == NO_PARTITION)
return;
/* Clear the liveness bit. */
live_track_remove_partition (ptr, p);
/* If the bitmap isn't empty now, conflicts need to be added. */
root = basevar_index (ptr->map, p);
if (bitmap_bit_p (&ptr->live_base_var, root))
{
b = &ptr->live_base_partitions[root];
EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
ssa_conflicts_add (graph, p, x);
}
}
/* Initialize PTR with the partitions set in INIT. */
static inline void
live_track_init (live_track *ptr, bitmap init)
{
unsigned p;
bitmap_iterator bi;
/* Mark all live on exit partitions. */
EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
live_track_add_partition (ptr, p);
}
/* This routine will clear all live partitions in PTR. */
static inline void
live_track_clear_base_vars (live_track *ptr)
{
/* Simply clear the live base list. Anything marked as live in the element
lists will be cleared later if/when the base variable ever comes alive
again. */
bitmap_clear (&ptr->live_base_var);
}
/* Build a conflict graph based on LIVEINFO. Any partitions which are in the
partition view of the var_map liveinfo is based on get entries in the
conflict graph. Only conflicts between ssa_name partitions with the same
base variable are added. */
static ssa_conflicts *
build_ssa_conflict_graph (tree_live_info_p liveinfo)
{
ssa_conflicts *graph;
var_map map;
basic_block bb;
ssa_op_iter iter;
live_track *live;
basic_block entry;
/* If inter-variable coalescing is enabled, we may attempt to
coalesce variables from different base variables, including
different parameters, so we have to make sure default defs live
at the entry block conflict with each other. */
if (flag_tree_coalesce_vars)
entry = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
else
entry = NULL;
map = live_var_map (liveinfo);
graph = ssa_conflicts_new (num_var_partitions (map));
live = new_live_track (map);
for (unsigned i = 0; liveinfo->map->vec_bbs.iterate (i, &bb); ++i)
{
/* Start with live on exit temporaries. */
live_track_init (live, live_on_exit (liveinfo, bb));
for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
gsi_prev (&gsi))
{
tree var;
gimple *stmt = gsi_stmt (gsi);
/* A copy between 2 partitions does not introduce an interference
by itself. If they did, you would never be able to coalesce
two things which are copied. If the two variables really do
conflict, they will conflict elsewhere in the program.
This is handled by simply removing the SRC of the copy from the
live list, and processing the stmt normally. */
if (is_gimple_assign (stmt))
{
tree lhs = gimple_assign_lhs (stmt);
tree rhs1 = gimple_assign_rhs1 (stmt);
if (gimple_assign_copy_p (stmt)
&& TREE_CODE (lhs) == SSA_NAME
&& TREE_CODE (rhs1) == SSA_NAME)
live_track_clear_var (live, rhs1);
}
else if (is_gimple_debug (stmt))
continue;
if (map->bitint)
{
build_bitint_stmt_ssa_conflicts (stmt, live, graph, map->bitint,
live_track_process_def,
live_track_process_use);
continue;
}
/* For stmts with more than one SSA_NAME definition pretend all the
SSA_NAME outputs but the first one are live at this point, so
that conflicts are added in between all those even when they are
actually not really live after the asm, because expansion might
copy those into pseudos after the asm and if multiple outputs
share the same partition, it might overwrite those that should
be live. E.g.
asm volatile (".." : "=r" (a) : "=r" (b) : "0" (a), "1" (a));
return a;
See PR70593. */
bool first = true;
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
if (first)
first = false;
else
live_track_process_use (live, var);
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
live_track_process_def (live, var, graph);
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
live_track_process_use (live, var);
}
/* If result of a PHI is unused, looping over the statements will not
record any conflicts since the def was never live. Since the PHI node
is going to be translated out of SSA form, it will insert a copy.
There must be a conflict recorded between the result of the PHI and
any variables that are live. Otherwise the out-of-ssa translation
may create incorrect code. */
for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
tree result = PHI_RESULT (phi);
if (virtual_operand_p (result))
continue;
if (live_track_live_p (live, result))
live_track_process_def (live, result, graph);
}
/* Pretend there are defs for params' default defs at the start
of the (post-)entry block. This will prevent PARM_DECLs from
coalescing into the same partition. Although RESULT_DECLs'
default defs don't have a useful initial value, we have to
prevent them from coalescing with PARM_DECLs' default defs
too, otherwise assign_parms would attempt to assign different
RTL to the same partition. */
if (bb == entry)
{
unsigned i;
tree var;
FOR_EACH_SSA_NAME (i, var, cfun)
{
if (!SSA_NAME_IS_DEFAULT_DEF (var)
|| !SSA_NAME_VAR (var)
|| VAR_P (SSA_NAME_VAR (var)))
continue;
live_track_process_def (live, var, graph);
/* Process a use too, so that it remains live and
conflicts with other parms' default defs, even unused
ones. */
live_track_process_use (live, var);
}
}
live_track_clear_base_vars (live);
}
delete_live_track (live);
return graph;
}
/* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
static inline void
fail_abnormal_edge_coalesce (int x, int y)
{
fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
fprintf (stderr, " which are marked as MUST COALESCE.\n");
print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
fprintf (stderr, " and ");
print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
internal_error ("SSA corruption");
}
/* If VAR is an SSA_NAME associated with a PARM_DECL or a RESULT_DECL,
and the DECL's default def is unused (i.e., it was introduced by
create_default_def for out-of-ssa), mark VAR and the default def for
coalescing. */
static void
coalesce_with_default (tree var, coalesce_list *cl, bitmap used_in_copy)
{
if (SSA_NAME_IS_DEFAULT_DEF (var)
|| !SSA_NAME_VAR (var)
|| VAR_P (SSA_NAME_VAR (var)))
return;
tree ssa = ssa_default_def (cfun, SSA_NAME_VAR (var));
if (!has_zero_uses (ssa))
return;
add_cost_one_coalesce (cl, SSA_NAME_VERSION (ssa), SSA_NAME_VERSION (var));
bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
/* Default defs will have their used_in_copy bits set at the beginning of
populate_coalesce_list_for_outofssa. */
}
/* Given var_map MAP for a region, this function creates and returns a coalesce
list as well as recording related ssa names in USED_IN_COPIES for use later
in the out-of-ssa or live range computation process. */
static coalesce_list *
create_coalesce_list_for_region (var_map map, bitmap used_in_copy)
{
gimple_stmt_iterator gsi;
basic_block bb;
coalesce_list *cl = create_coalesce_list ();
gimple *stmt;
int v1, v2, cost;
for (unsigned j = 0; map->vec_bbs.iterate (j, &bb); ++j)
{
tree arg;
for (gphi_iterator gpi = gsi_start_phis (bb);
!gsi_end_p (gpi);
gsi_next (&gpi))
{
gphi *phi = gpi.phi ();
size_t i;
int ver;
tree res;
bool saw_copy = false;
res = gimple_phi_result (phi);
if (virtual_operand_p (res))
continue;
ver = SSA_NAME_VERSION (res);
if (map->bitint && !bitmap_bit_p (map->bitint, ver))
continue;
/* Register ssa_names and coalesces between the args and the result
of all PHI. */
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
edge e = gimple_phi_arg_edge (phi, i);
arg = PHI_ARG_DEF (phi, i);
if (TREE_CODE (arg) != SSA_NAME)
continue;
if (gimple_can_coalesce_p (arg, res)
|| (e->flags & EDGE_ABNORMAL))
{
saw_copy = true;
bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
if ((e->flags & EDGE_ABNORMAL) == 0)
{
int cost = coalesce_cost_edge (e);
if (cost == 1 && has_single_use (arg))
add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
else
add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
}
}
}
if (saw_copy)
bitmap_set_bit (used_in_copy, ver);
}
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
continue;
/* Check for copy coalesces. */
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
{
tree lhs = gimple_assign_lhs (stmt);
tree rhs1 = gimple_assign_rhs1 (stmt);
if (gimple_assign_ssa_name_copy_p (stmt)
&& gimple_can_coalesce_p (lhs, rhs1))
{
v1 = SSA_NAME_VERSION (lhs);
v2 = SSA_NAME_VERSION (rhs1);
if (map->bitint && !bitmap_bit_p (map->bitint, v1))
break;
cost = coalesce_cost_bb (bb);
add_coalesce (cl, v1, v2, cost);
bitmap_set_bit (used_in_copy, v1);
bitmap_set_bit (used_in_copy, v2);
}
}
break;
case GIMPLE_RETURN:
{
tree res = DECL_RESULT (current_function_decl);
if (VOID_TYPE_P (TREE_TYPE (res))
|| !is_gimple_reg (res))
break;
tree rhs1 = gimple_return_retval (as_a <greturn *> (stmt));
if (!rhs1)
break;
tree lhs = ssa_default_def (cfun, res);
if (map->bitint && !lhs)
break;
gcc_assert (lhs);
if (TREE_CODE (rhs1) == SSA_NAME
&& gimple_can_coalesce_p (lhs, rhs1))
{
v1 = SSA_NAME_VERSION (lhs);
v2 = SSA_NAME_VERSION (rhs1);
if (map->bitint && !bitmap_bit_p (map->bitint, v1))
break;
cost = coalesce_cost_bb (bb);
add_coalesce (cl, v1, v2, cost);
bitmap_set_bit (used_in_copy, v1);
bitmap_set_bit (used_in_copy, v2);
}
break;
}
case GIMPLE_ASM:
{
gasm *asm_stmt = as_a <gasm *> (stmt);
unsigned long noutputs, i;
unsigned long ninputs;
tree *outputs, link;
noutputs = gimple_asm_noutputs (asm_stmt);
ninputs = gimple_asm_ninputs (asm_stmt);
outputs = (tree *) alloca (noutputs * sizeof (tree));
for (i = 0; i < noutputs; ++i)
{
link = gimple_asm_output_op (asm_stmt, i);
outputs[i] = TREE_VALUE (link);
}
for (i = 0; i < ninputs; ++i)
{
const char *constraint;
tree input;
char *end;
unsigned long match;
link = gimple_asm_input_op (asm_stmt, i);
constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
input = TREE_VALUE (link);
if (TREE_CODE (input) != SSA_NAME)
continue;
match = strtoul (constraint, &end, 10);
if (match >= noutputs || end == constraint)
continue;
if (TREE_CODE (outputs[match]) != SSA_NAME)
continue;
v1 = SSA_NAME_VERSION (outputs[match]);
v2 = SSA_NAME_VERSION (input);
if (map->bitint && !bitmap_bit_p (map->bitint, v1))
continue;
if (gimple_can_coalesce_p (outputs[match], input))
{
cost = coalesce_cost (REG_BR_PROB_BASE,
optimize_bb_for_size_p (bb));
add_coalesce (cl, v1, v2, cost);
bitmap_set_bit (used_in_copy, v1);
bitmap_set_bit (used_in_copy, v2);
}
}
break;
}
default:
break;
}
}
}
return cl;
}
/* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
struct ssa_name_var_hash : nofree_ptr_hash <tree_node>
{
static inline hashval_t hash (const tree_node *);
static inline int equal (const tree_node *, const tree_node *);
};
inline hashval_t
ssa_name_var_hash::hash (const_tree n)
{
return DECL_UID (SSA_NAME_VAR (n));
}
inline int
ssa_name_var_hash::equal (const tree_node *n1, const tree_node *n2)
{
return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
}
/* This function populates coalesce list CL as well as recording related ssa
names in USED_IN_COPIES for use later in the out-of-ssa process. */
static void
populate_coalesce_list_for_outofssa (coalesce_list *cl, bitmap used_in_copy)
{
tree var;
tree first;
int v1, v2, cost;
unsigned i;
/* Process result decls and live on entry variables for entry into the
coalesce list. */
first = NULL_TREE;
FOR_EACH_SSA_NAME (i, var, cfun)
{
if (!virtual_operand_p (var))
{
coalesce_with_default (var, cl, used_in_copy);
/* Add coalesces between all the result decls. */
if (SSA_NAME_VAR (var)
&& TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
{
bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
if (first == NULL_TREE)
first = var;
else
{
gcc_assert (gimple_can_coalesce_p (var, first));
v1 = SSA_NAME_VERSION (first);
v2 = SSA_NAME_VERSION (var);
cost = coalesce_cost_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
add_coalesce (cl, v1, v2, cost);
}
}
/* Mark any default_def variables as being in the coalesce list
since they will have to be coalesced with the base variable. If
not marked as present, they won't be in the coalesce view. */
if (SSA_NAME_IS_DEFAULT_DEF (var)
&& (!has_zero_uses (var)
|| (SSA_NAME_VAR (var)
&& !VAR_P (SSA_NAME_VAR (var)))))
bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
}
}
/* If this optimization is disabled, we need to coalesce all the
names originating from the same SSA_NAME_VAR so debug info
remains undisturbed. */
if (!flag_tree_coalesce_vars)
{
tree a;
hash_table<ssa_name_var_hash> ssa_name_hash (10);
FOR_EACH_SSA_NAME (i, a, cfun)
{
if (SSA_NAME_VAR (a)
&& !DECL_IGNORED_P (SSA_NAME_VAR (a))
&& (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)
|| !VAR_P (SSA_NAME_VAR (a))))
{
tree *slot = ssa_name_hash.find_slot (a, INSERT);
if (!*slot)
*slot = a;
else
{
/* If the variable is a PARM_DECL or a RESULT_DECL, we
_require_ that all the names originating from it be
coalesced, because there must be a single partition
containing all the names so that it can be assigned
the canonical RTL location of the DECL safely.
If in_lto_p, a function could have been compiled
originally with optimizations and only the link
performed at -O0, so we can't actually require it. */
const int cost
= (VAR_P (SSA_NAME_VAR (a)) || in_lto_p)
? MUST_COALESCE_COST - 1 : MUST_COALESCE_COST;
add_coalesce (cl, SSA_NAME_VERSION (a),
SSA_NAME_VERSION (*slot), cost);
bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (a));
bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (*slot));
}
}
}
}
}
/* Attempt to coalesce ssa versions X and Y together using the partition
mapping in MAP and checking conflicts in GRAPH. Output any debug info to
DEBUG, if it is nun-NULL. */
static inline bool
attempt_coalesce (var_map map, ssa_conflicts *graph, int x, int y,
FILE *debug)
{
int z;
tree var1, var2;
int p1, p2;
p1 = var_to_partition (map, ssa_name (x));
p2 = var_to_partition (map, ssa_name (y));
if (debug)
{
fprintf (debug, "(%d)", x);
print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
fprintf (debug, " & (%d)", y);
print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
}
if (p1 == p2)
{
if (debug)
fprintf (debug, ": Already Coalesced.\n");
return true;
}
if (debug)
fprintf (debug, " [map: %d, %d] ", p1, p2);
if (!ssa_conflicts_test_p (graph, p1, p2))
{
var1 = partition_to_var (map, p1);
var2 = partition_to_var (map, p2);
z = var_union (map, var1, var2);
if (z == NO_PARTITION)
{
if (debug)
fprintf (debug, ": Unable to perform partition union.\n");
return false;
}
/* z is the new combined partition. Remove the other partition from
the list, and merge the conflicts. */
if (z == p1)
ssa_conflicts_merge (graph, p1, p2);
else
ssa_conflicts_merge (graph, p2, p1);
if (debug)
fprintf (debug, ": Success -> %d\n", z);
return true;
}
if (debug)
fprintf (debug, ": Fail due to conflict\n");
return false;
}
/* Attempt to Coalesce partitions in MAP which occur in the list CL using
GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
static void
coalesce_partitions (var_map map, ssa_conflicts *graph, coalesce_list *cl,
FILE *debug)
{
int x = 0, y = 0;
tree var1, var2;
int cost;
basic_block bb;
edge e;
edge_iterator ei;
/* First, coalesce all the copies across abnormal edges. These are not placed
in the coalesce list because they do not need to be sorted, and simply
consume extra memory/compilation time in large programs. */
FOR_EACH_BB_FN (bb, cfun)
{
FOR_EACH_EDGE (e, ei, bb->preds)
if (e->flags & EDGE_ABNORMAL)
{
gphi_iterator gsi;
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
tree res = PHI_RESULT (phi);
if (virtual_operand_p (res))
continue;
tree arg = PHI_ARG_DEF (phi, e->dest_idx);
if (SSA_NAME_IS_DEFAULT_DEF (arg)
&& (!SSA_NAME_VAR (arg)
|| TREE_CODE (SSA_NAME_VAR (arg)) != PARM_DECL))
continue;
int v1 = SSA_NAME_VERSION (res);
int v2 = SSA_NAME_VERSION (arg);
if (debug)
fprintf (debug, "Abnormal coalesce: ");
if (!attempt_coalesce (map, graph, v1, v2, debug))
fail_abnormal_edge_coalesce (v1, v2);
}
}
}
/* Now process the items in the coalesce list. */
while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
{
var1 = ssa_name (x);
var2 = ssa_name (y);
/* Assert the coalesces have the same base variable. */
gcc_assert (gimple_can_coalesce_p (var1, var2));
if (debug)
fprintf (debug, "Coalesce list: ");
attempt_coalesce (map, graph, x, y, debug);
}
}
/* Output partition map MAP with coalescing plan PART to file F. */
void
dump_part_var_map (FILE *f, partition part, var_map map)
{
int t;
unsigned x, y;
int p;
fprintf (f, "\nCoalescible Partition map \n\n");
for (x = 0; x < map->num_partitions; x++)
{
if (map->view_to_partition != NULL)
p = map->view_to_partition[x];
else
p = x;
if (ssa_name (p) == NULL_TREE
|| virtual_operand_p (ssa_name (p)))
continue;
t = 0;
for (y = 1; y < num_ssa_names; y++)
{
tree var = version_to_var (map, y);
if (!var)
continue;
int q = var_to_partition (map, var);
p = partition_find (part, q);
gcc_assert (map->partition_to_base_index[q]
== map->partition_to_base_index[p]);
if (p == (int)x)
{
if (t++ == 0)
{
fprintf (f, "Partition %d, base %d (", x,
map->partition_to_base_index[q]);
print_generic_expr (f, partition_to_var (map, q), TDF_SLIM);
fprintf (f, " - ");
}
fprintf (f, "%d ", y);
}
}
if (t != 0)
fprintf (f, ")\n");
}
fprintf (f, "\n");
}
/* Given SSA_NAMEs NAME1 and NAME2, return true if they are candidates for
coalescing together, false otherwise.
This must stay consistent with compute_samebase_partition_bases and
compute_optimized_partition_bases. */
bool
gimple_can_coalesce_p (tree name1, tree name2)
{
/* First check the SSA_NAME's associated DECL. Without
optimization, we only want to coalesce if they have the same DECL
or both have no associated DECL. */
tree var1 = SSA_NAME_VAR (name1);
tree var2 = SSA_NAME_VAR (name2);
var1 = (var1 && (!VAR_P (var1) || !DECL_IGNORED_P (var1))) ? var1 : NULL_TREE;
var2 = (var2 && (!VAR_P (var2) || !DECL_IGNORED_P (var2))) ? var2 : NULL_TREE;
if (var1 != var2 && !flag_tree_coalesce_vars)
return false;
/* Now check the types. If the types are the same, then we should
try to coalesce V1 and V2. */
tree t1 = TREE_TYPE (name1);
tree t2 = TREE_TYPE (name2);
if (t1 == t2)
{
check_modes:
/* If the base variables are the same, we're good: none of the
other tests below could possibly fail. */
var1 = SSA_NAME_VAR (name1);
var2 = SSA_NAME_VAR (name2);
if (var1 == var2)
return true;
/* We don't want to coalesce two SSA names if one of the base
variables is supposed to be a register while the other is
supposed to be on the stack. Anonymous SSA names most often
take registers, but when not optimizing, user variables
should go on the stack, so coalescing them with the anonymous
variable as the partition leader would end up assigning the
user variable to a register. Don't do that! */
bool reg1 = use_register_for_decl (name1);
bool reg2 = use_register_for_decl (name2);
if (reg1 != reg2)
return false;
/* Check that the promoted modes and unsignedness are the same.
We don't want to coalesce if the promoted modes would be
different, or if they would sign-extend differently. Only
PARM_DECLs and RESULT_DECLs have different promotion rules,
so skip the test if both are variables, or both are anonymous
SSA_NAMEs. */
int unsigned1, unsigned2;
return ((!var1 || VAR_P (var1)) && (!var2 || VAR_P (var2)))
|| ((promote_ssa_mode (name1, &unsigned1)
== promote_ssa_mode (name2, &unsigned2))
&& unsigned1 == unsigned2);
}
/* If alignment requirements are different, we can't coalesce. */
if (MINIMUM_ALIGNMENT (t1,
var1 ? DECL_MODE (var1) : TYPE_MODE (t1),
var1 ? LOCAL_DECL_ALIGNMENT (var1) : TYPE_ALIGN (t1))
!= MINIMUM_ALIGNMENT (t2,
var2 ? DECL_MODE (var2) : TYPE_MODE (t2),
var2 ? LOCAL_DECL_ALIGNMENT (var2) : TYPE_ALIGN (t2)))
return false;
/* If the types are not the same, see whether they are compatible. This
(for example) allows coalescing when the types are fundamentally the
same, but just have different names. */
if (types_compatible_p (t1, t2))
goto check_modes;
return false;
}
/* Fill in MAP's partition_to_base_index, with one index for each
partition of SSA names USED_IN_COPIES and related by CL coalesce
possibilities. This must match gimple_can_coalesce_p in the
optimized case. */
static void
compute_optimized_partition_bases (var_map map, bitmap used_in_copies,
coalesce_list *cl)
{
int parts = num_var_partitions (map);
partition tentative = partition_new (parts);
/* Partition the SSA versions so that, for each coalescible
pair, both of its members are in the same partition in
TENTATIVE. */
gcc_assert (!cl->sorted);
coalesce_pair *node;
coalesce_iterator_type ppi;
FOR_EACH_PARTITION_PAIR (node, ppi, cl)
{
tree v1 = ssa_name (node->first_element);
int p1 = partition_find (tentative, var_to_partition (map, v1));
tree v2 = ssa_name (node->second_element);
int p2 = partition_find (tentative, var_to_partition (map, v2));
if (p1 == p2)
continue;
partition_union (tentative, p1, p2);
}
/* We have to deal with cost one pairs too. */
for (cost_one_pair *co = cl->cost_one_list; co; co = co->next)
{
tree v1 = ssa_name (co->first_element);
int p1 = partition_find (tentative, var_to_partition (map, v1));
tree v2 = ssa_name (co->second_element);
int p2 = partition_find (tentative, var_to_partition (map, v2));
if (p1 == p2)
continue;
partition_union (tentative, p1, p2);
}
/* And also with abnormal edges. */
basic_block bb;
edge e;
unsigned i;
edge_iterator ei;
for (i = 0; map->vec_bbs.iterate (i, &bb); ++i)
{
FOR_EACH_EDGE (e, ei, bb->preds)
if (e->flags & EDGE_ABNORMAL)
{
gphi_iterator gsi;
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
tree res = PHI_RESULT (phi);
if (virtual_operand_p (res))
continue;
tree arg = PHI_ARG_DEF (phi, e->dest_idx);
if (SSA_NAME_IS_DEFAULT_DEF (arg)
&& (!SSA_NAME_VAR (arg)
|| TREE_CODE (SSA_NAME_VAR (arg)) != PARM_DECL))
continue;
int p1 = partition_find (tentative, var_to_partition (map, res));
int p2 = partition_find (tentative, var_to_partition (map, arg));
if (p1 == p2)
continue;
partition_union (tentative, p1, p2);
}
}
}
if (map->bitint
&& flag_tree_coalesce_vars
&& (optimize > 1 || parts < 500))
for (i = 0; i < (unsigned) parts; ++i)
{
tree s1 = partition_to_var (map, i);
int p1 = partition_find (tentative, i);
for (unsigned j = i + 1; j < (unsigned) parts; ++j)
{
tree s2 = partition_to_var (map, j);
if (s1 == s2)
continue;
if (tree_int_cst_equal (TYPE_SIZE (TREE_TYPE (s1)),
TYPE_SIZE (TREE_TYPE (s2))))
{
int p2 = partition_find (tentative, j);
if (p1 == p2)
continue;
partition_union (tentative, p1, p2);
if (partition_find (tentative, i) != p1)
break;
}
}
}
map->partition_to_base_index = XCNEWVEC (int, parts);
auto_vec<unsigned int> index_map (parts);
if (parts)
index_map.quick_grow (parts);
const unsigned no_part = -1;
unsigned count = parts;
while (count)
index_map[--count] = no_part;
/* Initialize MAP's mapping from partition to base index, using
as base indices an enumeration of the TENTATIVE partitions in
which each SSA version ended up, so that we compute conflicts
between all SSA versions that ended up in the same potential
coalesce partition. */
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (used_in_copies, 0, i, bi)
{
int pidx = var_to_partition (map, ssa_name (i));
int base = partition_find (tentative, pidx);
if (index_map[base] != no_part)
continue;
index_map[base] = count++;
}
map->num_basevars = count;
EXECUTE_IF_SET_IN_BITMAP (used_in_copies, 0, i, bi)
{
int pidx = var_to_partition (map, ssa_name (i));
int base = partition_find (tentative, pidx);
gcc_assert (index_map[base] < count);
map->partition_to_base_index[pidx] = index_map[base];
}
if (dump_file && (dump_flags & TDF_DETAILS))
dump_part_var_map (dump_file, tentative, map);
partition_delete (tentative);
}
/* For the bitint lowering pass, try harder. Partitions which contain
SSA_NAME default def of a PARM_DECL or have RESULT_DECL need to have
compatible types because they will use that RESULT_DECL or PARM_DECL.
Other partitions can have even incompatible _BitInt types, as long
as they have the same size - those will use VAR_DECLs which are just
arrays of the limbs. */
static void
coalesce_bitint (var_map map, ssa_conflicts *graph)
{
unsigned n = num_var_partitions (map);
if (optimize <= 1 && n > 500)
return;
bool try_same_size = false;
FILE *debug_file = (dump_flags & TDF_DETAILS) ? dump_file : NULL;
for (unsigned i = 0; i < n; ++i)
{
tree s1 = partition_to_var (map, i);
if ((unsigned) var_to_partition (map, s1) != i)
continue;
int v1 = SSA_NAME_VERSION (s1);
for (unsigned j = i + 1; j < n; ++j)
{
tree s2 = partition_to_var (map, j);
if (s1 == s2 || (unsigned) var_to_partition (map, s2) != j)
continue;
if (!types_compatible_p (TREE_TYPE (s1), TREE_TYPE (s2)))
{
if (!try_same_size
&& tree_int_cst_equal (TYPE_SIZE (TREE_TYPE (s1)),
TYPE_SIZE (TREE_TYPE (s2))))
try_same_size = true;
continue;
}
int v2 = SSA_NAME_VERSION (s2);
if (attempt_coalesce (map, graph, v1, v2, debug_file)
&& partition_to_var (map, i) != s1)
break;
}
}
if (!try_same_size)
return;
unsigned i;
bitmap_iterator bi;
bitmap same_type = NULL;
EXECUTE_IF_SET_IN_BITMAP (map->bitint, 0, i, bi)
{
tree s = ssa_name (i);
if (!SSA_NAME_VAR (s))
continue;
if (TREE_CODE (SSA_NAME_VAR (s)) != RESULT_DECL
&& (TREE_CODE (SSA_NAME_VAR (s)) != PARM_DECL
|| !SSA_NAME_IS_DEFAULT_DEF (s)))
continue;
if (same_type == NULL)
same_type = BITMAP_ALLOC (NULL);
int p = var_to_partition (map, s);
bitmap_set_bit (same_type, p);
}
for (i = 0; i < n; ++i)
{
if (same_type && bitmap_bit_p (same_type, i))
continue;
tree s1 = partition_to_var (map, i);
if ((unsigned) var_to_partition (map, s1) != i)
continue;
int v1 = SSA_NAME_VERSION (s1);
for (unsigned j = i + 1; j < n; ++j)
{
if (same_type && bitmap_bit_p (same_type, j))
continue;
tree s2 = partition_to_var (map, j);
if (s1 == s2 || (unsigned) var_to_partition (map, s2) != j)
continue;
if (!tree_int_cst_equal (TYPE_SIZE (TREE_TYPE (s1)),
TYPE_SIZE (TREE_TYPE (s2))))
continue;
int v2 = SSA_NAME_VERSION (s2);
if (attempt_coalesce (map, graph, v1, v2, debug_file)
&& partition_to_var (map, i) != s1)
break;
}
}
BITMAP_FREE (same_type);
}
/* Given an initial var_map MAP, coalesce variables and return a partition map
with the resulting coalesce. Note that this function is called in either
live range computation context or out-of-ssa context, indicated by MAP. */
extern void
coalesce_ssa_name (var_map map)
{
tree_live_info_p liveinfo;
ssa_conflicts *graph;
coalesce_list *cl;
auto_bitmap used_in_copies;
bitmap_tree_view (used_in_copies);
cl = create_coalesce_list_for_region (map, used_in_copies);
if (map->outofssa_p)
populate_coalesce_list_for_outofssa (cl, used_in_copies);
bitmap_list_view (used_in_copies);
if (map->bitint)
bitmap_ior_into (used_in_copies, map->bitint);
if (dump_file && (dump_flags & TDF_DETAILS))
dump_var_map (dump_file, map);
partition_view_bitmap (map, used_in_copies);
compute_optimized_partition_bases (map, used_in_copies, cl);
if (num_var_partitions (map) < 1)
{
delete_coalesce_list (cl);
return;
}
if (dump_file && (dump_flags & TDF_DETAILS))
dump_var_map (dump_file, map);
liveinfo = calculate_live_ranges (map, false);
if (dump_file && (dump_flags & TDF_DETAILS))
dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
/* Build a conflict graph. */
graph = build_ssa_conflict_graph (liveinfo);
delete_tree_live_info (liveinfo);
if (dump_file && (dump_flags & TDF_DETAILS))
ssa_conflicts_dump (dump_file, graph);
sort_coalesce_list (cl, graph, map);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nAfter sorting:\n");
dump_coalesce_list (dump_file, cl);
}
/* First, coalesce all live on entry variables to their base variable.
This will ensure the first use is coming from the correct location. */
if (dump_file && (dump_flags & TDF_DETAILS))
dump_var_map (dump_file, map);
/* Now coalesce everything in the list. */
coalesce_partitions (map, graph, cl,
((dump_flags & TDF_DETAILS) ? dump_file : NULL));
delete_coalesce_list (cl);
if (map->bitint && flag_tree_coalesce_vars)
coalesce_bitint (map, graph);
ssa_conflicts_delete (graph);
}
|