1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
|
/* Conditional constant propagation pass for the GNU compiler.
Copyright (C) 2000-2021 Free Software Foundation, Inc.
Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Conditional constant propagation (CCP) is based on the SSA
propagation engine (tree-ssa-propagate.c). Constant assignments of
the form VAR = CST are propagated from the assignments into uses of
VAR, which in turn may generate new constants. The simulation uses
a four level lattice to keep track of constant values associated
with SSA names. Given an SSA name V_i, it may take one of the
following values:
UNINITIALIZED -> the initial state of the value. This value
is replaced with a correct initial value
the first time the value is used, so the
rest of the pass does not need to care about
it. Using this value simplifies initialization
of the pass, and prevents us from needlessly
scanning statements that are never reached.
UNDEFINED -> V_i is a local variable whose definition
has not been processed yet. Therefore we
don't yet know if its value is a constant
or not.
CONSTANT -> V_i has been found to hold a constant
value C.
VARYING -> V_i cannot take a constant value, or if it
does, it is not possible to determine it
at compile time.
The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
1- In ccp_visit_stmt, we are interested in assignments whose RHS
evaluates into a constant and conditional jumps whose predicate
evaluates into a boolean true or false. When an assignment of
the form V_i = CONST is found, V_i's lattice value is set to
CONSTANT and CONST is associated with it. This causes the
propagation engine to add all the SSA edges coming out the
assignment into the worklists, so that statements that use V_i
can be visited.
If the statement is a conditional with a constant predicate, we
mark the outgoing edges as executable or not executable
depending on the predicate's value. This is then used when
visiting PHI nodes to know when a PHI argument can be ignored.
2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
same constant C, then the LHS of the PHI is set to C. This
evaluation is known as the "meet operation". Since one of the
goals of this evaluation is to optimistically return constant
values as often as possible, it uses two main short cuts:
- If an argument is flowing in through a non-executable edge, it
is ignored. This is useful in cases like this:
if (PRED)
a_9 = 3;
else
a_10 = 100;
a_11 = PHI (a_9, a_10)
If PRED is known to always evaluate to false, then we can
assume that a_11 will always take its value from a_10, meaning
that instead of consider it VARYING (a_9 and a_10 have
different values), we can consider it CONSTANT 100.
- If an argument has an UNDEFINED value, then it does not affect
the outcome of the meet operation. If a variable V_i has an
UNDEFINED value, it means that either its defining statement
hasn't been visited yet or V_i has no defining statement, in
which case the original symbol 'V' is being used
uninitialized. Since 'V' is a local variable, the compiler
may assume any initial value for it.
After propagation, every variable V_i that ends up with a lattice
value of CONSTANT will have the associated constant value in the
array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
final substitution and folding.
This algorithm uses wide-ints at the max precision of the target.
This means that, with one uninteresting exception, variables with
UNSIGNED types never go to VARYING because the bits above the
precision of the type of the variable are always zero. The
uninteresting case is a variable of UNSIGNED type that has the
maximum precision of the target. Such variables can go to VARYING,
but this causes no loss of infomation since these variables will
never be extended.
References:
Constant propagation with conditional branches,
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
Building an Optimizing Compiler,
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
Advanced Compiler Design and Implementation,
Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-propagate.h"
#include "dbgcnt.h"
#include "builtins.h"
#include "cfgloop.h"
#include "stor-layout.h"
#include "optabs-query.h"
#include "tree-ssa-ccp.h"
#include "tree-dfa.h"
#include "diagnostic-core.h"
#include "stringpool.h"
#include "attribs.h"
#include "tree-vector-builder.h"
#include "cgraph.h"
#include "alloc-pool.h"
#include "symbol-summary.h"
#include "ipa-utils.h"
#include "ipa-prop.h"
/* Possible lattice values. */
typedef enum
{
UNINITIALIZED,
UNDEFINED,
CONSTANT,
VARYING
} ccp_lattice_t;
class ccp_prop_value_t {
public:
/* Lattice value. */
ccp_lattice_t lattice_val;
/* Propagated value. */
tree value;
/* Mask that applies to the propagated value during CCP. For X
with a CONSTANT lattice value X & ~mask == value & ~mask. The
zero bits in the mask cover constant values. The ones mean no
information. */
widest_int mask;
};
class ccp_propagate : public ssa_propagation_engine
{
public:
enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
};
/* Array of propagated constant values. After propagation,
CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
the constant is held in an SSA name representing a memory store
(i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
memory reference used to store (i.e., the LHS of the assignment
doing the store). */
static ccp_prop_value_t *const_val;
static unsigned n_const_val;
static void canonicalize_value (ccp_prop_value_t *);
static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
/* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
static void
dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
{
switch (val.lattice_val)
{
case UNINITIALIZED:
fprintf (outf, "%sUNINITIALIZED", prefix);
break;
case UNDEFINED:
fprintf (outf, "%sUNDEFINED", prefix);
break;
case VARYING:
fprintf (outf, "%sVARYING", prefix);
break;
case CONSTANT:
if (TREE_CODE (val.value) != INTEGER_CST
|| val.mask == 0)
{
fprintf (outf, "%sCONSTANT ", prefix);
print_generic_expr (outf, val.value, dump_flags);
}
else
{
widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
val.mask);
fprintf (outf, "%sCONSTANT ", prefix);
print_hex (cval, outf);
fprintf (outf, " (");
print_hex (val.mask, outf);
fprintf (outf, ")");
}
break;
default:
gcc_unreachable ();
}
}
/* Print lattice value VAL to stderr. */
void debug_lattice_value (ccp_prop_value_t val);
DEBUG_FUNCTION void
debug_lattice_value (ccp_prop_value_t val)
{
dump_lattice_value (stderr, "", val);
fprintf (stderr, "\n");
}
/* Extend NONZERO_BITS to a full mask, based on sgn. */
static widest_int
extend_mask (const wide_int &nonzero_bits, signop sgn)
{
return widest_int::from (nonzero_bits, sgn);
}
/* Compute a default value for variable VAR and store it in the
CONST_VAL array. The following rules are used to get default
values:
1- Global and static variables that are declared constant are
considered CONSTANT.
2- Any other value is considered UNDEFINED. This is useful when
considering PHI nodes. PHI arguments that are undefined do not
change the constant value of the PHI node, which allows for more
constants to be propagated.
3- Variables defined by statements other than assignments and PHI
nodes are considered VARYING.
4- Initial values of variables that are not GIMPLE registers are
considered VARYING. */
static ccp_prop_value_t
get_default_value (tree var)
{
ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
gimple *stmt;
stmt = SSA_NAME_DEF_STMT (var);
if (gimple_nop_p (stmt))
{
/* Variables defined by an empty statement are those used
before being initialized. If VAR is a local variable, we
can assume initially that it is UNDEFINED, otherwise we must
consider it VARYING. */
if (!virtual_operand_p (var)
&& SSA_NAME_VAR (var)
&& TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
val.lattice_val = UNDEFINED;
else
{
val.lattice_val = VARYING;
val.mask = -1;
if (flag_tree_bit_ccp)
{
wide_int nonzero_bits = get_nonzero_bits (var);
tree value;
widest_int mask;
if (SSA_NAME_VAR (var)
&& TREE_CODE (SSA_NAME_VAR (var)) == PARM_DECL
&& ipcp_get_parm_bits (SSA_NAME_VAR (var), &value, &mask))
{
val.lattice_val = CONSTANT;
val.value = value;
widest_int ipa_value = wi::to_widest (value);
/* Unknown bits from IPA CP must be equal to zero. */
gcc_assert (wi::bit_and (ipa_value, mask) == 0);
val.mask = mask;
if (nonzero_bits != -1)
val.mask &= extend_mask (nonzero_bits,
TYPE_SIGN (TREE_TYPE (var)));
}
else if (nonzero_bits != -1)
{
val.lattice_val = CONSTANT;
val.value = build_zero_cst (TREE_TYPE (var));
val.mask = extend_mask (nonzero_bits,
TYPE_SIGN (TREE_TYPE (var)));
}
}
}
}
else if (is_gimple_assign (stmt))
{
tree cst;
if (gimple_assign_single_p (stmt)
&& DECL_P (gimple_assign_rhs1 (stmt))
&& (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
{
val.lattice_val = CONSTANT;
val.value = cst;
}
else
{
/* Any other variable defined by an assignment is considered
UNDEFINED. */
val.lattice_val = UNDEFINED;
}
}
else if ((is_gimple_call (stmt)
&& gimple_call_lhs (stmt) != NULL_TREE)
|| gimple_code (stmt) == GIMPLE_PHI)
{
/* A variable defined by a call or a PHI node is considered
UNDEFINED. */
val.lattice_val = UNDEFINED;
}
else
{
/* Otherwise, VAR will never take on a constant value. */
val.lattice_val = VARYING;
val.mask = -1;
}
return val;
}
/* Get the constant value associated with variable VAR. */
static inline ccp_prop_value_t *
get_value (tree var)
{
ccp_prop_value_t *val;
if (const_val == NULL
|| SSA_NAME_VERSION (var) >= n_const_val)
return NULL;
val = &const_val[SSA_NAME_VERSION (var)];
if (val->lattice_val == UNINITIALIZED)
*val = get_default_value (var);
canonicalize_value (val);
return val;
}
/* Return the constant tree value associated with VAR. */
static inline tree
get_constant_value (tree var)
{
ccp_prop_value_t *val;
if (TREE_CODE (var) != SSA_NAME)
{
if (is_gimple_min_invariant (var))
return var;
return NULL_TREE;
}
val = get_value (var);
if (val
&& val->lattice_val == CONSTANT
&& (TREE_CODE (val->value) != INTEGER_CST
|| val->mask == 0))
return val->value;
return NULL_TREE;
}
/* Sets the value associated with VAR to VARYING. */
static inline void
set_value_varying (tree var)
{
ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
val->lattice_val = VARYING;
val->value = NULL_TREE;
val->mask = -1;
}
/* For integer constants, make sure to drop TREE_OVERFLOW. */
static void
canonicalize_value (ccp_prop_value_t *val)
{
if (val->lattice_val != CONSTANT)
return;
if (TREE_OVERFLOW_P (val->value))
val->value = drop_tree_overflow (val->value);
}
/* Return whether the lattice transition is valid. */
static bool
valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
{
/* Lattice transitions must always be monotonically increasing in
value. */
if (old_val.lattice_val < new_val.lattice_val)
return true;
if (old_val.lattice_val != new_val.lattice_val)
return false;
if (!old_val.value && !new_val.value)
return true;
/* Now both lattice values are CONSTANT. */
/* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
when only a single copy edge is executable. */
if (TREE_CODE (old_val.value) == SSA_NAME
&& TREE_CODE (new_val.value) == SSA_NAME)
return true;
/* Allow transitioning from a constant to a copy. */
if (is_gimple_min_invariant (old_val.value)
&& TREE_CODE (new_val.value) == SSA_NAME)
return true;
/* Allow transitioning from PHI <&x, not executable> == &x
to PHI <&x, &y> == common alignment. */
if (TREE_CODE (old_val.value) != INTEGER_CST
&& TREE_CODE (new_val.value) == INTEGER_CST)
return true;
/* Bit-lattices have to agree in the still valid bits. */
if (TREE_CODE (old_val.value) == INTEGER_CST
&& TREE_CODE (new_val.value) == INTEGER_CST)
return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
== wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
/* Otherwise constant values have to agree. */
if (operand_equal_p (old_val.value, new_val.value, 0))
return true;
/* At least the kinds and types should agree now. */
if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
|| !types_compatible_p (TREE_TYPE (old_val.value),
TREE_TYPE (new_val.value)))
return false;
/* For floats and !HONOR_NANS allow transitions from (partial) NaN
to non-NaN. */
tree type = TREE_TYPE (new_val.value);
if (SCALAR_FLOAT_TYPE_P (type)
&& !HONOR_NANS (type))
{
if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
return true;
}
else if (VECTOR_FLOAT_TYPE_P (type)
&& !HONOR_NANS (type))
{
unsigned int count
= tree_vector_builder::binary_encoded_nelts (old_val.value,
new_val.value);
for (unsigned int i = 0; i < count; ++i)
if (!REAL_VALUE_ISNAN
(TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
&& !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
return false;
return true;
}
else if (COMPLEX_FLOAT_TYPE_P (type)
&& !HONOR_NANS (type))
{
if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
&& !operand_equal_p (TREE_REALPART (old_val.value),
TREE_REALPART (new_val.value), 0))
return false;
if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
&& !operand_equal_p (TREE_IMAGPART (old_val.value),
TREE_IMAGPART (new_val.value), 0))
return false;
return true;
}
return false;
}
/* Set the value for variable VAR to NEW_VAL. Return true if the new
value is different from VAR's previous value. */
static bool
set_lattice_value (tree var, ccp_prop_value_t *new_val)
{
/* We can deal with old UNINITIALIZED values just fine here. */
ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
canonicalize_value (new_val);
/* We have to be careful to not go up the bitwise lattice
represented by the mask. Instead of dropping to VARYING
use the meet operator to retain a conservative value.
Missed optimizations like PR65851 makes this necessary.
It also ensures we converge to a stable lattice solution. */
if (old_val->lattice_val != UNINITIALIZED)
ccp_lattice_meet (new_val, old_val);
gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
/* If *OLD_VAL and NEW_VAL are the same, return false to inform the
caller that this was a non-transition. */
if (old_val->lattice_val != new_val->lattice_val
|| (new_val->lattice_val == CONSTANT
&& (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
|| (TREE_CODE (new_val->value) == INTEGER_CST
&& (new_val->mask != old_val->mask
|| (wi::bit_and_not (wi::to_widest (old_val->value),
new_val->mask)
!= wi::bit_and_not (wi::to_widest (new_val->value),
new_val->mask))))
|| (TREE_CODE (new_val->value) != INTEGER_CST
&& !operand_equal_p (new_val->value, old_val->value, 0)))))
{
/* ??? We would like to delay creation of INTEGER_CSTs from
partially constants here. */
if (dump_file && (dump_flags & TDF_DETAILS))
{
dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
fprintf (dump_file, ". Adding SSA edges to worklist.\n");
}
*old_val = *new_val;
gcc_assert (new_val->lattice_val != UNINITIALIZED);
return true;
}
return false;
}
static ccp_prop_value_t get_value_for_expr (tree, bool);
static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
signop, int, const widest_int &, const widest_int &,
signop, int, const widest_int &, const widest_int &);
/* Return a widest_int that can be used for bitwise simplifications
from VAL. */
static widest_int
value_to_wide_int (ccp_prop_value_t val)
{
if (val.value
&& TREE_CODE (val.value) == INTEGER_CST)
return wi::to_widest (val.value);
return 0;
}
/* Return the value for the address expression EXPR based on alignment
information. */
static ccp_prop_value_t
get_value_from_alignment (tree expr)
{
tree type = TREE_TYPE (expr);
ccp_prop_value_t val;
unsigned HOST_WIDE_INT bitpos;
unsigned int align;
gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
get_pointer_alignment_1 (expr, &align, &bitpos);
val.mask = wi::bit_and_not
(POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
? wi::mask <widest_int> (TYPE_PRECISION (type), false)
: -1,
align / BITS_PER_UNIT - 1);
val.lattice_val
= wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
if (val.lattice_val == CONSTANT)
val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
else
val.value = NULL_TREE;
return val;
}
/* Return the value for the tree operand EXPR. If FOR_BITS_P is true
return constant bits extracted from alignment information for
invariant addresses. */
static ccp_prop_value_t
get_value_for_expr (tree expr, bool for_bits_p)
{
ccp_prop_value_t val;
if (TREE_CODE (expr) == SSA_NAME)
{
ccp_prop_value_t *val_ = get_value (expr);
if (val_)
val = *val_;
else
{
val.lattice_val = VARYING;
val.value = NULL_TREE;
val.mask = -1;
}
if (for_bits_p
&& val.lattice_val == CONSTANT)
{
if (TREE_CODE (val.value) == ADDR_EXPR)
val = get_value_from_alignment (val.value);
else if (TREE_CODE (val.value) != INTEGER_CST)
{
val.lattice_val = VARYING;
val.value = NULL_TREE;
val.mask = -1;
}
}
/* Fall back to a copy value. */
if (!for_bits_p
&& val.lattice_val == VARYING
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
{
val.lattice_val = CONSTANT;
val.value = expr;
val.mask = -1;
}
}
else if (is_gimple_min_invariant (expr)
&& (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
{
val.lattice_val = CONSTANT;
val.value = expr;
val.mask = 0;
canonicalize_value (&val);
}
else if (TREE_CODE (expr) == ADDR_EXPR)
val = get_value_from_alignment (expr);
else
{
val.lattice_val = VARYING;
val.mask = -1;
val.value = NULL_TREE;
}
if (val.lattice_val == VARYING
&& TYPE_UNSIGNED (TREE_TYPE (expr)))
val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
return val;
}
/* Return the likely CCP lattice value for STMT.
If STMT has no operands, then return CONSTANT.
Else if undefinedness of operands of STMT cause its value to be
undefined, then return UNDEFINED.
Else if any operands of STMT are constants, then return CONSTANT.
Else return VARYING. */
static ccp_lattice_t
likely_value (gimple *stmt)
{
bool has_constant_operand, has_undefined_operand, all_undefined_operands;
bool has_nsa_operand;
tree use;
ssa_op_iter iter;
unsigned i;
enum gimple_code code = gimple_code (stmt);
/* This function appears to be called only for assignments, calls,
conditionals, and switches, due to the logic in visit_stmt. */
gcc_assert (code == GIMPLE_ASSIGN
|| code == GIMPLE_CALL
|| code == GIMPLE_COND
|| code == GIMPLE_SWITCH);
/* If the statement has volatile operands, it won't fold to a
constant value. */
if (gimple_has_volatile_ops (stmt))
return VARYING;
/* Arrive here for more complex cases. */
has_constant_operand = false;
has_undefined_operand = false;
all_undefined_operands = true;
has_nsa_operand = false;
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
{
ccp_prop_value_t *val = get_value (use);
if (val && val->lattice_val == UNDEFINED)
has_undefined_operand = true;
else
all_undefined_operands = false;
if (val && val->lattice_val == CONSTANT)
has_constant_operand = true;
if (SSA_NAME_IS_DEFAULT_DEF (use)
|| !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
has_nsa_operand = true;
}
/* There may be constants in regular rhs operands. For calls we
have to ignore lhs, fndecl and static chain, otherwise only
the lhs. */
for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
i < gimple_num_ops (stmt); ++i)
{
tree op = gimple_op (stmt, i);
if (!op || TREE_CODE (op) == SSA_NAME)
continue;
if (is_gimple_min_invariant (op))
has_constant_operand = true;
}
if (has_constant_operand)
all_undefined_operands = false;
if (has_undefined_operand
&& code == GIMPLE_CALL
&& gimple_call_internal_p (stmt))
switch (gimple_call_internal_fn (stmt))
{
/* These 3 builtins use the first argument just as a magic
way how to find out a decl uid. */
case IFN_GOMP_SIMD_LANE:
case IFN_GOMP_SIMD_VF:
case IFN_GOMP_SIMD_LAST_LANE:
has_undefined_operand = false;
break;
default:
break;
}
/* If the operation combines operands like COMPLEX_EXPR make sure to
not mark the result UNDEFINED if only one part of the result is
undefined. */
if (has_undefined_operand && all_undefined_operands)
return UNDEFINED;
else if (code == GIMPLE_ASSIGN && has_undefined_operand)
{
switch (gimple_assign_rhs_code (stmt))
{
/* Unary operators are handled with all_undefined_operands. */
case PLUS_EXPR:
case MINUS_EXPR:
case POINTER_PLUS_EXPR:
case BIT_XOR_EXPR:
/* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
Not bitwise operators, one VARYING operand may specify the
result completely.
Not logical operators for the same reason, apart from XOR.
Not COMPLEX_EXPR as one VARYING operand makes the result partly
not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
the undefined operand may be promoted. */
return UNDEFINED;
case ADDR_EXPR:
/* If any part of an address is UNDEFINED, like the index
of an ARRAY_EXPR, then treat the result as UNDEFINED. */
return UNDEFINED;
default:
;
}
}
/* If there was an UNDEFINED operand but the result may be not UNDEFINED
fall back to CONSTANT. During iteration UNDEFINED may still drop
to CONSTANT. */
if (has_undefined_operand)
return CONSTANT;
/* We do not consider virtual operands here -- load from read-only
memory may have only VARYING virtual operands, but still be
constant. Also we can combine the stmt with definitions from
operands whose definitions are not simulated again. */
if (has_constant_operand
|| has_nsa_operand
|| gimple_references_memory_p (stmt))
return CONSTANT;
return VARYING;
}
/* Returns true if STMT cannot be constant. */
static bool
surely_varying_stmt_p (gimple *stmt)
{
/* If the statement has operands that we cannot handle, it cannot be
constant. */
if (gimple_has_volatile_ops (stmt))
return true;
/* If it is a call and does not return a value or is not a
builtin and not an indirect call or a call to function with
assume_aligned/alloc_align attribute, it is varying. */
if (is_gimple_call (stmt))
{
tree fndecl, fntype = gimple_call_fntype (stmt);
if (!gimple_call_lhs (stmt)
|| ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
&& !fndecl_built_in_p (fndecl)
&& !lookup_attribute ("assume_aligned",
TYPE_ATTRIBUTES (fntype))
&& !lookup_attribute ("alloc_align",
TYPE_ATTRIBUTES (fntype))))
return true;
}
/* Any other store operation is not interesting. */
else if (gimple_vdef (stmt))
return true;
/* Anything other than assignments and conditional jumps are not
interesting for CCP. */
if (gimple_code (stmt) != GIMPLE_ASSIGN
&& gimple_code (stmt) != GIMPLE_COND
&& gimple_code (stmt) != GIMPLE_SWITCH
&& gimple_code (stmt) != GIMPLE_CALL)
return true;
return false;
}
/* Initialize local data structures for CCP. */
static void
ccp_initialize (void)
{
basic_block bb;
n_const_val = num_ssa_names;
const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
/* Initialize simulation flags for PHI nodes and statements. */
FOR_EACH_BB_FN (bb, cfun)
{
gimple_stmt_iterator i;
for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
{
gimple *stmt = gsi_stmt (i);
bool is_varying;
/* If the statement is a control insn, then we do not
want to avoid simulating the statement once. Failure
to do so means that those edges will never get added. */
if (stmt_ends_bb_p (stmt))
is_varying = false;
else
is_varying = surely_varying_stmt_p (stmt);
if (is_varying)
{
tree def;
ssa_op_iter iter;
/* If the statement will not produce a constant, mark
all its outputs VARYING. */
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
set_value_varying (def);
}
prop_set_simulate_again (stmt, !is_varying);
}
}
/* Now process PHI nodes. We never clear the simulate_again flag on
phi nodes, since we do not know which edges are executable yet,
except for phi nodes for virtual operands when we do not do store ccp. */
FOR_EACH_BB_FN (bb, cfun)
{
gphi_iterator i;
for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
{
gphi *phi = i.phi ();
if (virtual_operand_p (gimple_phi_result (phi)))
prop_set_simulate_again (phi, false);
else
prop_set_simulate_again (phi, true);
}
}
}
/* Debug count support. Reset the values of ssa names
VARYING when the total number ssa names analyzed is
beyond the debug count specified. */
static void
do_dbg_cnt (void)
{
unsigned i;
for (i = 0; i < num_ssa_names; i++)
{
if (!dbg_cnt (ccp))
{
const_val[i].lattice_val = VARYING;
const_val[i].mask = -1;
const_val[i].value = NULL_TREE;
}
}
}
/* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
class ccp_folder : public substitute_and_fold_engine
{
public:
tree value_of_expr (tree, gimple *) FINAL OVERRIDE;
bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
};
/* This method just wraps GET_CONSTANT_VALUE for now. Over time
naked calls to GET_CONSTANT_VALUE should be eliminated in favor
of calling member functions. */
tree
ccp_folder::value_of_expr (tree op, gimple *)
{
return get_constant_value (op);
}
/* Do final substitution of propagated values, cleanup the flowgraph and
free allocated storage. If NONZERO_P, record nonzero bits.
Return TRUE when something was optimized. */
static bool
ccp_finalize (bool nonzero_p)
{
bool something_changed;
unsigned i;
tree name;
do_dbg_cnt ();
/* Derive alignment and misalignment information from partially
constant pointers in the lattice or nonzero bits from partially
constant integers. */
FOR_EACH_SSA_NAME (i, name, cfun)
{
ccp_prop_value_t *val;
unsigned int tem, align;
if (!POINTER_TYPE_P (TREE_TYPE (name))
&& (!INTEGRAL_TYPE_P (TREE_TYPE (name))
/* Don't record nonzero bits before IPA to avoid
using too much memory. */
|| !nonzero_p))
continue;
val = get_value (name);
if (val->lattice_val != CONSTANT
|| TREE_CODE (val->value) != INTEGER_CST
|| val->mask == 0)
continue;
if (POINTER_TYPE_P (TREE_TYPE (name)))
{
/* Trailing mask bits specify the alignment, trailing value
bits the misalignment. */
tem = val->mask.to_uhwi ();
align = least_bit_hwi (tem);
if (align > 1)
set_ptr_info_alignment (get_ptr_info (name), align,
(TREE_INT_CST_LOW (val->value)
& (align - 1)));
}
else
{
unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
wide_int nonzero_bits
= (wide_int::from (val->mask, precision, UNSIGNED)
| wi::to_wide (val->value));
nonzero_bits &= get_nonzero_bits (name);
set_nonzero_bits (name, nonzero_bits);
}
}
/* Perform substitutions based on the known constant values. */
class ccp_folder ccp_folder;
something_changed = ccp_folder.substitute_and_fold ();
free (const_val);
const_val = NULL;
return something_changed;
}
/* Compute the meet operator between *VAL1 and *VAL2. Store the result
in VAL1.
any M UNDEFINED = any
any M VARYING = VARYING
Ci M Cj = Ci if (i == j)
Ci M Cj = VARYING if (i != j)
*/
static void
ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
{
if (val1->lattice_val == UNDEFINED
/* For UNDEFINED M SSA we can't always SSA because its definition
may not dominate the PHI node. Doing optimistic copy propagation
also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
&& (val2->lattice_val != CONSTANT
|| TREE_CODE (val2->value) != SSA_NAME))
{
/* UNDEFINED M any = any */
*val1 = *val2;
}
else if (val2->lattice_val == UNDEFINED
/* See above. */
&& (val1->lattice_val != CONSTANT
|| TREE_CODE (val1->value) != SSA_NAME))
{
/* any M UNDEFINED = any
Nothing to do. VAL1 already contains the value we want. */
;
}
else if (val1->lattice_val == VARYING
|| val2->lattice_val == VARYING)
{
/* any M VARYING = VARYING. */
val1->lattice_val = VARYING;
val1->mask = -1;
val1->value = NULL_TREE;
}
else if (val1->lattice_val == CONSTANT
&& val2->lattice_val == CONSTANT
&& TREE_CODE (val1->value) == INTEGER_CST
&& TREE_CODE (val2->value) == INTEGER_CST)
{
/* Ci M Cj = Ci if (i == j)
Ci M Cj = VARYING if (i != j)
For INTEGER_CSTs mask unequal bits. If no equal bits remain,
drop to varying. */
val1->mask = (val1->mask | val2->mask
| (wi::to_widest (val1->value)
^ wi::to_widest (val2->value)));
if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
{
val1->lattice_val = VARYING;
val1->value = NULL_TREE;
}
}
else if (val1->lattice_val == CONSTANT
&& val2->lattice_val == CONSTANT
&& operand_equal_p (val1->value, val2->value, 0))
{
/* Ci M Cj = Ci if (i == j)
Ci M Cj = VARYING if (i != j)
VAL1 already contains the value we want for equivalent values. */
}
else if (val1->lattice_val == CONSTANT
&& val2->lattice_val == CONSTANT
&& (TREE_CODE (val1->value) == ADDR_EXPR
|| TREE_CODE (val2->value) == ADDR_EXPR))
{
/* When not equal addresses are involved try meeting for
alignment. */
ccp_prop_value_t tem = *val2;
if (TREE_CODE (val1->value) == ADDR_EXPR)
*val1 = get_value_for_expr (val1->value, true);
if (TREE_CODE (val2->value) == ADDR_EXPR)
tem = get_value_for_expr (val2->value, true);
ccp_lattice_meet (val1, &tem);
}
else
{
/* Any other combination is VARYING. */
val1->lattice_val = VARYING;
val1->mask = -1;
val1->value = NULL_TREE;
}
}
/* Loop through the PHI_NODE's parameters for BLOCK and compare their
lattice values to determine PHI_NODE's lattice value. The value of a
PHI node is determined calling ccp_lattice_meet with all the arguments
of the PHI node that are incoming via executable edges. */
enum ssa_prop_result
ccp_propagate::visit_phi (gphi *phi)
{
unsigned i;
ccp_prop_value_t new_val;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nVisiting PHI node: ");
print_gimple_stmt (dump_file, phi, 0, dump_flags);
}
new_val.lattice_val = UNDEFINED;
new_val.value = NULL_TREE;
new_val.mask = 0;
bool first = true;
bool non_exec_edge = false;
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
/* Compute the meet operator over all the PHI arguments flowing
through executable edges. */
edge e = gimple_phi_arg_edge (phi, i);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"\tArgument #%d (%d -> %d %sexecutable)\n",
i, e->src->index, e->dest->index,
(e->flags & EDGE_EXECUTABLE) ? "" : "not ");
}
/* If the incoming edge is executable, Compute the meet operator for
the existing value of the PHI node and the current PHI argument. */
if (e->flags & EDGE_EXECUTABLE)
{
tree arg = gimple_phi_arg (phi, i)->def;
ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
if (first)
{
new_val = arg_val;
first = false;
}
else
ccp_lattice_meet (&new_val, &arg_val);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\t");
print_generic_expr (dump_file, arg, dump_flags);
dump_lattice_value (dump_file, "\tValue: ", arg_val);
fprintf (dump_file, "\n");
}
if (new_val.lattice_val == VARYING)
break;
}
else
non_exec_edge = true;
}
/* In case there were non-executable edges and the value is a copy
make sure its definition dominates the PHI node. */
if (non_exec_edge
&& new_val.lattice_val == CONSTANT
&& TREE_CODE (new_val.value) == SSA_NAME
&& ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
&& ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
{
new_val.lattice_val = VARYING;
new_val.value = NULL_TREE;
new_val.mask = -1;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
fprintf (dump_file, "\n\n");
}
/* Make the transition to the new value. */
if (set_lattice_value (gimple_phi_result (phi), &new_val))
{
if (new_val.lattice_val == VARYING)
return SSA_PROP_VARYING;
else
return SSA_PROP_INTERESTING;
}
else
return SSA_PROP_NOT_INTERESTING;
}
/* Return the constant value for OP or OP otherwise. */
static tree
valueize_op (tree op)
{
if (TREE_CODE (op) == SSA_NAME)
{
tree tem = get_constant_value (op);
if (tem)
return tem;
}
return op;
}
/* Return the constant value for OP, but signal to not follow SSA
edges if the definition may be simulated again. */
static tree
valueize_op_1 (tree op)
{
if (TREE_CODE (op) == SSA_NAME)
{
/* If the definition may be simulated again we cannot follow
this SSA edge as the SSA propagator does not necessarily
re-visit the use. */
gimple *def_stmt = SSA_NAME_DEF_STMT (op);
if (!gimple_nop_p (def_stmt)
&& prop_simulate_again_p (def_stmt))
return NULL_TREE;
tree tem = get_constant_value (op);
if (tem)
return tem;
}
return op;
}
/* CCP specific front-end to the non-destructive constant folding
routines.
Attempt to simplify the RHS of STMT knowing that one or more
operands are constants.
If simplification is possible, return the simplified RHS,
otherwise return the original RHS or NULL_TREE. */
static tree
ccp_fold (gimple *stmt)
{
location_t loc = gimple_location (stmt);
switch (gimple_code (stmt))
{
case GIMPLE_COND:
{
/* Handle comparison operators that can appear in GIMPLE form. */
tree op0 = valueize_op (gimple_cond_lhs (stmt));
tree op1 = valueize_op (gimple_cond_rhs (stmt));
enum tree_code code = gimple_cond_code (stmt);
return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
}
case GIMPLE_SWITCH:
{
/* Return the constant switch index. */
return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
}
case GIMPLE_ASSIGN:
case GIMPLE_CALL:
return gimple_fold_stmt_to_constant_1 (stmt,
valueize_op, valueize_op_1);
default:
gcc_unreachable ();
}
}
/* Determine the minimum and maximum values, *MIN and *MAX respectively,
represented by the mask pair VAL and MASK with signedness SGN and
precision PRECISION. */
void
value_mask_to_min_max (widest_int *min, widest_int *max,
const widest_int &val, const widest_int &mask,
signop sgn, int precision)
{
*min = wi::bit_and_not (val, mask);
*max = val | mask;
if (sgn == SIGNED && wi::neg_p (mask))
{
widest_int sign_bit = wi::lshift (1, precision - 1);
*min ^= sign_bit;
*max ^= sign_bit;
/* MAX is zero extended, and MIN is sign extended. */
*min = wi::ext (*min, precision, sgn);
*max = wi::ext (*max, precision, sgn);
}
}
/* Apply the operation CODE in type TYPE to the value, mask pair
RVAL and RMASK representing a value of type RTYPE and set
the value, mask pair *VAL and *MASK to the result. */
void
bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
widest_int *val, widest_int *mask,
signop rtype_sgn, int rtype_precision,
const widest_int &rval, const widest_int &rmask)
{
switch (code)
{
case BIT_NOT_EXPR:
*mask = rmask;
*val = ~rval;
break;
case NEGATE_EXPR:
{
widest_int temv, temm;
/* Return ~rval + 1. */
bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
type_sgn, type_precision, rval, rmask);
bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
type_sgn, type_precision, temv, temm,
type_sgn, type_precision, 1, 0);
break;
}
CASE_CONVERT:
{
/* First extend mask and value according to the original type. */
*mask = wi::ext (rmask, rtype_precision, rtype_sgn);
*val = wi::ext (rval, rtype_precision, rtype_sgn);
/* Then extend mask and value according to the target type. */
*mask = wi::ext (*mask, type_precision, type_sgn);
*val = wi::ext (*val, type_precision, type_sgn);
break;
}
case ABS_EXPR:
case ABSU_EXPR:
if (wi::sext (rmask, rtype_precision) == -1)
*mask = -1;
else if (wi::neg_p (rmask))
{
/* Result is either rval or -rval. */
widest_int temv, temm;
bit_value_unop (NEGATE_EXPR, rtype_sgn, rtype_precision, &temv,
&temm, type_sgn, type_precision, rval, rmask);
temm |= (rmask | (rval ^ temv));
/* Extend the result. */
*mask = wi::ext (temm, type_precision, type_sgn);
*val = wi::ext (temv, type_precision, type_sgn);
}
else if (wi::neg_p (rval))
{
bit_value_unop (NEGATE_EXPR, type_sgn, type_precision, val, mask,
type_sgn, type_precision, rval, rmask);
}
else
{
*mask = rmask;
*val = rval;
}
break;
default:
*mask = -1;
break;
}
}
/* Determine the mask pair *VAL and *MASK from multiplying the
argument mask pair RVAL, RMASK by the unsigned constant C. */
void
bit_value_mult_const (signop sgn, int width,
widest_int *val, widest_int *mask,
const widest_int &rval, const widest_int &rmask,
widest_int c)
{
widest_int sum_mask = 0;
/* Ensure rval_lo only contains known bits. */
widest_int rval_lo = wi::bit_and_not (rval, rmask);
if (rval_lo != 0)
{
/* General case (some bits of multiplicand are known set). */
widest_int sum_val = 0;
while (c != 0)
{
/* Determine the lowest bit set in the multiplier. */
int bitpos = wi::ctz (c);
widest_int term_mask = rmask << bitpos;
widest_int term_val = rval_lo << bitpos;
/* sum += term. */
widest_int lo = sum_val + term_val;
widest_int hi = (sum_val | sum_mask) + (term_val | term_mask);
sum_mask |= term_mask | (lo ^ hi);
sum_val = lo;
/* Clear this bit in the multiplier. */
c ^= wi::lshift (1, bitpos);
}
/* Correctly extend the result value. */
*val = wi::ext (sum_val, width, sgn);
}
else
{
/* Special case (no bits of multiplicand are known set). */
while (c != 0)
{
/* Determine the lowest bit set in the multiplier. */
int bitpos = wi::ctz (c);
widest_int term_mask = rmask << bitpos;
/* sum += term. */
widest_int hi = sum_mask + term_mask;
sum_mask |= term_mask | hi;
/* Clear this bit in the multiplier. */
c ^= wi::lshift (1, bitpos);
}
*val = 0;
}
/* Correctly extend the result mask. */
*mask = wi::ext (sum_mask, width, sgn);
}
/* Fill up to MAX values in the BITS array with values representing
each of the non-zero bits in the value X. Returns the number of
bits in X (capped at the maximum value MAX). For example, an X
value 11, places 1, 2 and 8 in BITS and returns the value 3. */
unsigned int
get_individual_bits (widest_int *bits, widest_int x, unsigned int max)
{
unsigned int count = 0;
while (count < max && x != 0)
{
int bitpos = wi::ctz (x);
bits[count] = wi::lshift (1, bitpos);
x ^= bits[count];
count++;
}
return count;
}
/* Array of 2^N - 1 values representing the bits flipped between
consecutive Gray codes. This is used to efficiently enumerate
all permutations on N bits using XOR. */
static const unsigned char gray_code_bit_flips[63] = {
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5,
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
/* Apply the operation CODE in type TYPE to the value, mask pairs
R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
void
bit_value_binop (enum tree_code code, signop sgn, int width,
widest_int *val, widest_int *mask,
signop r1type_sgn, int r1type_precision,
const widest_int &r1val, const widest_int &r1mask,
signop r2type_sgn, int r2type_precision ATTRIBUTE_UNUSED,
const widest_int &r2val, const widest_int &r2mask)
{
bool swap_p = false;
/* Assume we'll get a constant result. Use an initial non varying
value, we fall back to varying in the end if necessary. */
*mask = -1;
/* Ensure that VAL is initialized (to any value). */
*val = 0;
switch (code)
{
case BIT_AND_EXPR:
/* The mask is constant where there is a known not
set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
*mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
*val = r1val & r2val;
break;
case BIT_IOR_EXPR:
/* The mask is constant where there is a known
set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
*mask = wi::bit_and_not (r1mask | r2mask,
wi::bit_and_not (r1val, r1mask)
| wi::bit_and_not (r2val, r2mask));
*val = r1val | r2val;
break;
case BIT_XOR_EXPR:
/* m1 | m2 */
*mask = r1mask | r2mask;
*val = r1val ^ r2val;
break;
case LROTATE_EXPR:
case RROTATE_EXPR:
if (r2mask == 0)
{
widest_int shift = r2val;
if (shift == 0)
{
*mask = r1mask;
*val = r1val;
}
else
{
if (wi::neg_p (shift, r2type_sgn))
{
shift = -shift;
if (code == RROTATE_EXPR)
code = LROTATE_EXPR;
else
code = RROTATE_EXPR;
}
if (code == RROTATE_EXPR)
{
*mask = wi::rrotate (r1mask, shift, width);
*val = wi::rrotate (r1val, shift, width);
}
else
{
*mask = wi::lrotate (r1mask, shift, width);
*val = wi::lrotate (r1val, shift, width);
}
}
}
else if (wi::ltu_p (r2val | r2mask, width)
&& wi::popcount (r2mask) <= 4)
{
widest_int bits[4];
widest_int res_val, res_mask;
widest_int tmp_val, tmp_mask;
widest_int shift = wi::bit_and_not (r2val, r2mask);
unsigned int bit_count = get_individual_bits (bits, r2mask, 4);
unsigned int count = (1 << bit_count) - 1;
/* Initialize result to rotate by smallest value of shift. */
if (code == RROTATE_EXPR)
{
res_mask = wi::rrotate (r1mask, shift, width);
res_val = wi::rrotate (r1val, shift, width);
}
else
{
res_mask = wi::lrotate (r1mask, shift, width);
res_val = wi::lrotate (r1val, shift, width);
}
/* Iterate through the remaining values of shift. */
for (unsigned int i=0; i<count; i++)
{
shift ^= bits[gray_code_bit_flips[i]];
if (code == RROTATE_EXPR)
{
tmp_mask = wi::rrotate (r1mask, shift, width);
tmp_val = wi::rrotate (r1val, shift, width);
}
else
{
tmp_mask = wi::lrotate (r1mask, shift, width);
tmp_val = wi::lrotate (r1val, shift, width);
}
/* Accumulate the result. */
res_mask |= tmp_mask | (res_val ^ tmp_val);
}
*val = wi::bit_and_not (res_val, res_mask);
*mask = res_mask;
}
break;
case LSHIFT_EXPR:
case RSHIFT_EXPR:
/* ??? We can handle partially known shift counts if we know
its sign. That way we can tell that (x << (y | 8)) & 255
is zero. */
if (r2mask == 0)
{
widest_int shift = r2val;
if (shift == 0)
{
*mask = r1mask;
*val = r1val;
}
else
{
if (wi::neg_p (shift, r2type_sgn))
break;
if (code == RSHIFT_EXPR)
{
*mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
*val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
}
else
{
*mask = wi::ext (r1mask << shift, width, sgn);
*val = wi::ext (r1val << shift, width, sgn);
}
}
}
else if (wi::ltu_p (r2val | r2mask, width))
{
if (wi::popcount (r2mask) <= 4)
{
widest_int bits[4];
widest_int arg_val, arg_mask;
widest_int res_val, res_mask;
widest_int tmp_val, tmp_mask;
widest_int shift = wi::bit_and_not (r2val, r2mask);
unsigned int bit_count = get_individual_bits (bits, r2mask, 4);
unsigned int count = (1 << bit_count) - 1;
/* Initialize result to shift by smallest value of shift. */
if (code == RSHIFT_EXPR)
{
arg_mask = wi::ext (r1mask, width, sgn);
arg_val = wi::ext (r1val, width, sgn);
res_mask = wi::rshift (arg_mask, shift, sgn);
res_val = wi::rshift (arg_val, shift, sgn);
}
else
{
arg_mask = r1mask;
arg_val = r1val;
res_mask = arg_mask << shift;
res_val = arg_val << shift;
}
/* Iterate through the remaining values of shift. */
for (unsigned int i=0; i<count; i++)
{
shift ^= bits[gray_code_bit_flips[i]];
if (code == RSHIFT_EXPR)
{
tmp_mask = wi::rshift (arg_mask, shift, sgn);
tmp_val = wi::rshift (arg_val, shift, sgn);
}
else
{
tmp_mask = arg_mask << shift;
tmp_val = arg_val << shift;
}
/* Accumulate the result. */
res_mask |= tmp_mask | (res_val ^ tmp_val);
}
res_mask = wi::ext (res_mask, width, sgn);
res_val = wi::ext (res_val, width, sgn);
*val = wi::bit_and_not (res_val, res_mask);
*mask = res_mask;
}
else if ((r1val | r1mask) == 0)
{
/* Handle shifts of zero to avoid undefined wi::ctz below. */
*mask = 0;
*val = 0;
}
else if (code == LSHIFT_EXPR)
{
widest_int tmp = wi::mask <widest_int> (width, false);
tmp <<= wi::ctz (r1val | r1mask);
tmp <<= wi::bit_and_not (r2val, r2mask);
*mask = wi::ext (tmp, width, sgn);
*val = 0;
}
else if (!wi::neg_p (r1val | r1mask, sgn))
{
/* Logical right shift, or zero sign bit. */
widest_int arg = r1val | r1mask;
int lzcount = wi::clz (arg);
if (lzcount)
lzcount -= wi::get_precision (arg) - width;
widest_int tmp = wi::mask <widest_int> (width, false);
tmp = wi::lrshift (tmp, lzcount);
tmp = wi::lrshift (tmp, wi::bit_and_not (r2val, r2mask));
*mask = wi::ext (tmp, width, sgn);
*val = 0;
}
else if (!wi::neg_p (r1mask))
{
/* Arithmetic right shift with set sign bit. */
widest_int arg = wi::bit_and_not (r1val, r1mask);
int sbcount = wi::clrsb (arg);
sbcount -= wi::get_precision (arg) - width;
widest_int tmp = wi::mask <widest_int> (width, false);
tmp = wi::lrshift (tmp, sbcount);
tmp = wi::lrshift (tmp, wi::bit_and_not (r2val, r2mask));
*mask = wi::sext (tmp, width);
tmp = wi::bit_not (tmp);
*val = wi::sext (tmp, width);
}
}
break;
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
{
/* Do the addition with unknown bits set to zero, to give carry-ins of
zero wherever possible. */
widest_int lo = (wi::bit_and_not (r1val, r1mask)
+ wi::bit_and_not (r2val, r2mask));
lo = wi::ext (lo, width, sgn);
/* Do the addition with unknown bits set to one, to give carry-ins of
one wherever possible. */
widest_int hi = (r1val | r1mask) + (r2val | r2mask);
hi = wi::ext (hi, width, sgn);
/* Each bit in the result is known if (a) the corresponding bits in
both inputs are known, and (b) the carry-in to that bit position
is known. We can check condition (b) by seeing if we got the same
result with minimised carries as with maximised carries. */
*mask = r1mask | r2mask | (lo ^ hi);
*mask = wi::ext (*mask, width, sgn);
/* It shouldn't matter whether we choose lo or hi here. */
*val = lo;
break;
}
case MINUS_EXPR:
case POINTER_DIFF_EXPR:
{
/* Subtraction is derived from the addition algorithm above. */
widest_int lo = wi::bit_and_not (r1val, r1mask) - (r2val | r2mask);
lo = wi::ext (lo, width, sgn);
widest_int hi = (r1val | r1mask) - wi::bit_and_not (r2val, r2mask);
hi = wi::ext (hi, width, sgn);
*mask = r1mask | r2mask | (lo ^ hi);
*mask = wi::ext (*mask, width, sgn);
*val = lo;
break;
}
case MULT_EXPR:
if (r2mask == 0
&& !wi::neg_p (r2val, sgn)
&& (flag_expensive_optimizations || wi::popcount (r2val) < 8))
bit_value_mult_const (sgn, width, val, mask, r1val, r1mask, r2val);
else if (r1mask == 0
&& !wi::neg_p (r1val, sgn)
&& (flag_expensive_optimizations || wi::popcount (r1val) < 8))
bit_value_mult_const (sgn, width, val, mask, r2val, r2mask, r1val);
else
{
/* Just track trailing zeros in both operands and transfer
them to the other. */
int r1tz = wi::ctz (r1val | r1mask);
int r2tz = wi::ctz (r2val | r2mask);
if (r1tz + r2tz >= width)
{
*mask = 0;
*val = 0;
}
else if (r1tz + r2tz > 0)
{
*mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
width, sgn);
*val = 0;
}
}
break;
case EQ_EXPR:
case NE_EXPR:
{
widest_int m = r1mask | r2mask;
if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
{
*mask = 0;
*val = ((code == EQ_EXPR) ? 0 : 1);
}
else
{
/* We know the result of a comparison is always one or zero. */
*mask = 1;
*val = 0;
}
break;
}
case GE_EXPR:
case GT_EXPR:
swap_p = true;
code = swap_tree_comparison (code);
/* Fall through. */
case LT_EXPR:
case LE_EXPR:
{
widest_int min1, max1, min2, max2;
int minmax, maxmin;
const widest_int &o1val = swap_p ? r2val : r1val;
const widest_int &o1mask = swap_p ? r2mask : r1mask;
const widest_int &o2val = swap_p ? r1val : r2val;
const widest_int &o2mask = swap_p ? r1mask : r2mask;
value_mask_to_min_max (&min1, &max1, o1val, o1mask,
r1type_sgn, r1type_precision);
value_mask_to_min_max (&min2, &max2, o2val, o2mask,
r1type_sgn, r1type_precision);
/* For comparisons the signedness is in the comparison operands. */
/* Do a cross comparison of the max/min pairs. */
maxmin = wi::cmp (max1, min2, r1type_sgn);
minmax = wi::cmp (min1, max2, r1type_sgn);
if (maxmin < (code == LE_EXPR ? 1: 0)) /* o1 < or <= o2. */
{
*mask = 0;
*val = 1;
}
else if (minmax > (code == LT_EXPR ? -1 : 0)) /* o1 >= or > o2. */
{
*mask = 0;
*val = 0;
}
else if (maxmin == minmax) /* o1 and o2 are equal. */
{
/* This probably should never happen as we'd have
folded the thing during fully constant value folding. */
*mask = 0;
*val = (code == LE_EXPR ? 1 : 0);
}
else
{
/* We know the result of a comparison is always one or zero. */
*mask = 1;
*val = 0;
}
break;
}
case MIN_EXPR:
case MAX_EXPR:
{
widest_int min1, max1, min2, max2;
value_mask_to_min_max (&min1, &max1, r1val, r1mask, sgn, width);
value_mask_to_min_max (&min2, &max2, r2val, r2mask, sgn, width);
if (wi::cmp (max1, min2, sgn) <= 0) /* r1 is less than r2. */
{
if (code == MIN_EXPR)
{
*mask = r1mask;
*val = r1val;
}
else
{
*mask = r2mask;
*val = r2val;
}
}
else if (wi::cmp (min1, max2, sgn) >= 0) /* r2 is less than r1. */
{
if (code == MIN_EXPR)
{
*mask = r2mask;
*val = r2val;
}
else
{
*mask = r1mask;
*val = r1val;
}
}
else
{
/* The result is either r1 or r2. */
*mask = r1mask | r2mask | (r1val ^ r2val);
*val = r1val;
}
break;
}
case TRUNC_MOD_EXPR:
{
widest_int r1max = r1val | r1mask;
widest_int r2max = r2val | r2mask;
if (sgn == UNSIGNED
|| (!wi::neg_p (r1max) && !wi::neg_p (r2max)))
{
/* Confirm R2 has some bits set, to avoid division by zero. */
widest_int r2min = wi::bit_and_not (r2val, r2mask);
if (r2min != 0)
{
/* R1 % R2 is R1 if R1 is always less than R2. */
if (wi::ltu_p (r1max, r2min))
{
*mask = r1mask;
*val = r1val;
}
else
{
/* R1 % R2 is always less than the maximum of R2. */
unsigned int lzcount = wi::clz (r2max);
unsigned int bits = wi::get_precision (r2max) - lzcount;
if (r2max == wi::lshift (1, bits))
bits--;
*mask = wi::mask <widest_int> (bits, false);
*val = 0;
}
}
}
}
break;
case TRUNC_DIV_EXPR:
{
widest_int r1max = r1val | r1mask;
widest_int r2max = r2val | r2mask;
if (sgn == UNSIGNED
|| (!wi::neg_p (r1max) && !wi::neg_p (r2max)))
{
/* Confirm R2 has some bits set, to avoid division by zero. */
widest_int r2min = wi::bit_and_not (r2val, r2mask);
if (r2min != 0)
{
/* R1 / R2 is zero if R1 is always less than R2. */
if (wi::ltu_p (r1max, r2min))
{
*mask = 0;
*val = 0;
}
else
{
widest_int upper = wi::udiv_trunc (r1max, r2min);
unsigned int lzcount = wi::clz (upper);
unsigned int bits = wi::get_precision (upper) - lzcount;
*mask = wi::mask <widest_int> (bits, false);
*val = 0;
}
}
}
}
break;
default:;
}
}
/* Return the propagation value when applying the operation CODE to
the value RHS yielding type TYPE. */
static ccp_prop_value_t
bit_value_unop (enum tree_code code, tree type, tree rhs)
{
ccp_prop_value_t rval = get_value_for_expr (rhs, true);
widest_int value, mask;
ccp_prop_value_t val;
if (rval.lattice_val == UNDEFINED)
return rval;
gcc_assert ((rval.lattice_val == CONSTANT
&& TREE_CODE (rval.value) == INTEGER_CST)
|| wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
value_to_wide_int (rval), rval.mask);
if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
{
val.lattice_val = CONSTANT;
val.mask = mask;
/* ??? Delay building trees here. */
val.value = wide_int_to_tree (type, value);
}
else
{
val.lattice_val = VARYING;
val.value = NULL_TREE;
val.mask = -1;
}
return val;
}
/* Return the propagation value when applying the operation CODE to
the values RHS1 and RHS2 yielding type TYPE. */
static ccp_prop_value_t
bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
{
ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
widest_int value, mask;
ccp_prop_value_t val;
if (r1val.lattice_val == UNDEFINED
|| r2val.lattice_val == UNDEFINED)
{
val.lattice_val = VARYING;
val.value = NULL_TREE;
val.mask = -1;
return val;
}
gcc_assert ((r1val.lattice_val == CONSTANT
&& TREE_CODE (r1val.value) == INTEGER_CST)
|| wi::sext (r1val.mask,
TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
gcc_assert ((r2val.lattice_val == CONSTANT
&& TREE_CODE (r2val.value) == INTEGER_CST)
|| wi::sext (r2val.mask,
TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
value_to_wide_int (r1val), r1val.mask,
TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
value_to_wide_int (r2val), r2val.mask);
/* (x * x) & 2 == 0. */
if (code == MULT_EXPR && rhs1 == rhs2 && TYPE_PRECISION (type) > 1)
{
widest_int m = 2;
if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
value = wi::bit_and_not (value, m);
else
value = 0;
mask = wi::bit_and_not (mask, m);
}
if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
{
val.lattice_val = CONSTANT;
val.mask = mask;
/* ??? Delay building trees here. */
val.value = wide_int_to_tree (type, value);
}
else
{
val.lattice_val = VARYING;
val.value = NULL_TREE;
val.mask = -1;
}
return val;
}
/* Return the propagation value for __builtin_assume_aligned
and functions with assume_aligned or alloc_aligned attribute.
For __builtin_assume_aligned, ATTR is NULL_TREE,
for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
is false, for alloc_aligned attribute ATTR is non-NULL and
ALLOC_ALIGNED is true. */
static ccp_prop_value_t
bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
bool alloc_aligned)
{
tree align, misalign = NULL_TREE, type;
unsigned HOST_WIDE_INT aligni, misaligni = 0;
ccp_prop_value_t alignval;
widest_int value, mask;
ccp_prop_value_t val;
if (attr == NULL_TREE)
{
tree ptr = gimple_call_arg (stmt, 0);
type = TREE_TYPE (ptr);
ptrval = get_value_for_expr (ptr, true);
}
else
{
tree lhs = gimple_call_lhs (stmt);
type = TREE_TYPE (lhs);
}
if (ptrval.lattice_val == UNDEFINED)
return ptrval;
gcc_assert ((ptrval.lattice_val == CONSTANT
&& TREE_CODE (ptrval.value) == INTEGER_CST)
|| wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
if (attr == NULL_TREE)
{
/* Get aligni and misaligni from __builtin_assume_aligned. */
align = gimple_call_arg (stmt, 1);
if (!tree_fits_uhwi_p (align))
return ptrval;
aligni = tree_to_uhwi (align);
if (gimple_call_num_args (stmt) > 2)
{
misalign = gimple_call_arg (stmt, 2);
if (!tree_fits_uhwi_p (misalign))
return ptrval;
misaligni = tree_to_uhwi (misalign);
}
}
else
{
/* Get aligni and misaligni from assume_aligned or
alloc_align attributes. */
if (TREE_VALUE (attr) == NULL_TREE)
return ptrval;
attr = TREE_VALUE (attr);
align = TREE_VALUE (attr);
if (!tree_fits_uhwi_p (align))
return ptrval;
aligni = tree_to_uhwi (align);
if (alloc_aligned)
{
if (aligni == 0 || aligni > gimple_call_num_args (stmt))
return ptrval;
align = gimple_call_arg (stmt, aligni - 1);
if (!tree_fits_uhwi_p (align))
return ptrval;
aligni = tree_to_uhwi (align);
}
else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
{
misalign = TREE_VALUE (TREE_CHAIN (attr));
if (!tree_fits_uhwi_p (misalign))
return ptrval;
misaligni = tree_to_uhwi (misalign);
}
}
if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
return ptrval;
align = build_int_cst_type (type, -aligni);
alignval = get_value_for_expr (align, true);
bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
{
val.lattice_val = CONSTANT;
val.mask = mask;
gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
value |= misaligni;
/* ??? Delay building trees here. */
val.value = wide_int_to_tree (type, value);
}
else
{
val.lattice_val = VARYING;
val.value = NULL_TREE;
val.mask = -1;
}
return val;
}
/* Evaluate statement STMT.
Valid only for assignments, calls, conditionals, and switches. */
static ccp_prop_value_t
evaluate_stmt (gimple *stmt)
{
ccp_prop_value_t val;
tree simplified = NULL_TREE;
ccp_lattice_t likelyvalue = likely_value (stmt);
bool is_constant = false;
unsigned int align;
bool ignore_return_flags = false;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "which is likely ");
switch (likelyvalue)
{
case CONSTANT:
fprintf (dump_file, "CONSTANT");
break;
case UNDEFINED:
fprintf (dump_file, "UNDEFINED");
break;
case VARYING:
fprintf (dump_file, "VARYING");
break;
default:;
}
fprintf (dump_file, "\n");
}
/* If the statement is likely to have a CONSTANT result, then try
to fold the statement to determine the constant value. */
/* FIXME. This is the only place that we call ccp_fold.
Since likely_value never returns CONSTANT for calls, we will
not attempt to fold them, including builtins that may profit. */
if (likelyvalue == CONSTANT)
{
fold_defer_overflow_warnings ();
simplified = ccp_fold (stmt);
if (simplified
&& TREE_CODE (simplified) == SSA_NAME)
{
/* We may not use values of something that may be simulated again,
see valueize_op_1. */
if (SSA_NAME_IS_DEFAULT_DEF (simplified)
|| ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
{
ccp_prop_value_t *val = get_value (simplified);
if (val && val->lattice_val != VARYING)
{
fold_undefer_overflow_warnings (true, stmt, 0);
return *val;
}
}
else
/* We may also not place a non-valueized copy in the lattice
as that might become stale if we never re-visit this stmt. */
simplified = NULL_TREE;
}
is_constant = simplified && is_gimple_min_invariant (simplified);
fold_undefer_overflow_warnings (is_constant, stmt, 0);
if (is_constant)
{
/* The statement produced a constant value. */
val.lattice_val = CONSTANT;
val.value = simplified;
val.mask = 0;
return val;
}
}
/* If the statement is likely to have a VARYING result, then do not
bother folding the statement. */
else if (likelyvalue == VARYING)
{
enum gimple_code code = gimple_code (stmt);
if (code == GIMPLE_ASSIGN)
{
enum tree_code subcode = gimple_assign_rhs_code (stmt);
/* Other cases cannot satisfy is_gimple_min_invariant
without folding. */
if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
simplified = gimple_assign_rhs1 (stmt);
}
else if (code == GIMPLE_SWITCH)
simplified = gimple_switch_index (as_a <gswitch *> (stmt));
else
/* These cannot satisfy is_gimple_min_invariant without folding. */
gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
is_constant = simplified && is_gimple_min_invariant (simplified);
if (is_constant)
{
/* The statement produced a constant value. */
val.lattice_val = CONSTANT;
val.value = simplified;
val.mask = 0;
}
}
/* If the statement result is likely UNDEFINED, make it so. */
else if (likelyvalue == UNDEFINED)
{
val.lattice_val = UNDEFINED;
val.value = NULL_TREE;
val.mask = 0;
return val;
}
/* Resort to simplification for bitwise tracking. */
if (flag_tree_bit_ccp
&& (likelyvalue == CONSTANT || is_gimple_call (stmt)
|| (gimple_assign_single_p (stmt)
&& gimple_assign_rhs_code (stmt) == ADDR_EXPR))
&& !is_constant)
{
enum gimple_code code = gimple_code (stmt);
val.lattice_val = VARYING;
val.value = NULL_TREE;
val.mask = -1;
if (code == GIMPLE_ASSIGN)
{
enum tree_code subcode = gimple_assign_rhs_code (stmt);
tree rhs1 = gimple_assign_rhs1 (stmt);
tree lhs = gimple_assign_lhs (stmt);
if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|| POINTER_TYPE_P (TREE_TYPE (lhs)))
&& (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|| POINTER_TYPE_P (TREE_TYPE (rhs1))))
switch (get_gimple_rhs_class (subcode))
{
case GIMPLE_SINGLE_RHS:
val = get_value_for_expr (rhs1, true);
break;
case GIMPLE_UNARY_RHS:
val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
break;
case GIMPLE_BINARY_RHS:
val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
gimple_assign_rhs2 (stmt));
break;
default:;
}
}
else if (code == GIMPLE_COND)
{
enum tree_code code = gimple_cond_code (stmt);
tree rhs1 = gimple_cond_lhs (stmt);
tree rhs2 = gimple_cond_rhs (stmt);
if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|| POINTER_TYPE_P (TREE_TYPE (rhs1)))
val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
}
else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
{
tree fndecl = gimple_call_fndecl (stmt);
switch (DECL_FUNCTION_CODE (fndecl))
{
case BUILT_IN_MALLOC:
case BUILT_IN_REALLOC:
case BUILT_IN_CALLOC:
case BUILT_IN_STRDUP:
case BUILT_IN_STRNDUP:
val.lattice_val = CONSTANT;
val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
/ BITS_PER_UNIT - 1);
break;
CASE_BUILT_IN_ALLOCA:
align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
? BIGGEST_ALIGNMENT
: TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
val.lattice_val = CONSTANT;
val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
break;
case BUILT_IN_ASSUME_ALIGNED:
val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
ignore_return_flags = true;
break;
case BUILT_IN_ALIGNED_ALLOC:
case BUILT_IN_GOMP_ALLOC:
{
tree align = get_constant_value (gimple_call_arg (stmt, 0));
if (align
&& tree_fits_uhwi_p (align))
{
unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
if (aligni > 1
/* align must be power-of-two */
&& (aligni & (aligni - 1)) == 0)
{
val.lattice_val = CONSTANT;
val.value = build_int_cst (ptr_type_node, 0);
val.mask = -aligni;
}
}
break;
}
case BUILT_IN_BSWAP16:
case BUILT_IN_BSWAP32:
case BUILT_IN_BSWAP64:
case BUILT_IN_BSWAP128:
val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
if (val.lattice_val == UNDEFINED)
break;
else if (val.lattice_val == CONSTANT
&& val.value
&& TREE_CODE (val.value) == INTEGER_CST)
{
tree type = TREE_TYPE (gimple_call_lhs (stmt));
int prec = TYPE_PRECISION (type);
wide_int wval = wi::to_wide (val.value);
val.value
= wide_int_to_tree (type,
wide_int::from (wval, prec,
UNSIGNED).bswap ());
val.mask
= widest_int::from (wide_int::from (val.mask, prec,
UNSIGNED).bswap (),
UNSIGNED);
if (wi::sext (val.mask, prec) != -1)
break;
}
val.lattice_val = VARYING;
val.value = NULL_TREE;
val.mask = -1;
break;
default:;
}
}
if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
{
tree fntype = gimple_call_fntype (stmt);
if (fntype)
{
tree attrs = lookup_attribute ("assume_aligned",
TYPE_ATTRIBUTES (fntype));
if (attrs)
val = bit_value_assume_aligned (stmt, attrs, val, false);
attrs = lookup_attribute ("alloc_align",
TYPE_ATTRIBUTES (fntype));
if (attrs)
val = bit_value_assume_aligned (stmt, attrs, val, true);
}
int flags = ignore_return_flags
? 0 : gimple_call_return_flags (as_a <gcall *> (stmt));
if (flags & ERF_RETURNS_ARG
&& (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
{
val = get_value_for_expr
(gimple_call_arg (stmt,
flags & ERF_RETURN_ARG_MASK), true);
}
}
is_constant = (val.lattice_val == CONSTANT);
}
if (flag_tree_bit_ccp
&& ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
|| !is_constant)
&& gimple_get_lhs (stmt)
&& TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
{
tree lhs = gimple_get_lhs (stmt);
wide_int nonzero_bits = get_nonzero_bits (lhs);
if (nonzero_bits != -1)
{
if (!is_constant)
{
val.lattice_val = CONSTANT;
val.value = build_zero_cst (TREE_TYPE (lhs));
val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
is_constant = true;
}
else
{
if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
val.value = wide_int_to_tree (TREE_TYPE (lhs),
nonzero_bits
& wi::to_wide (val.value));
if (nonzero_bits == 0)
val.mask = 0;
else
val.mask = val.mask & extend_mask (nonzero_bits,
TYPE_SIGN (TREE_TYPE (lhs)));
}
}
}
/* The statement produced a nonconstant value. */
if (!is_constant)
{
/* The statement produced a copy. */
if (simplified && TREE_CODE (simplified) == SSA_NAME
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
{
val.lattice_val = CONSTANT;
val.value = simplified;
val.mask = -1;
}
/* The statement is VARYING. */
else
{
val.lattice_val = VARYING;
val.value = NULL_TREE;
val.mask = -1;
}
}
return val;
}
typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
/* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
static void
insert_clobber_before_stack_restore (tree saved_val, tree var,
gimple_htab **visited)
{
gimple *stmt;
gassign *clobber_stmt;
tree clobber;
imm_use_iterator iter;
gimple_stmt_iterator i;
gimple **slot;
FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
{
clobber = build_clobber (TREE_TYPE (var));
clobber_stmt = gimple_build_assign (var, clobber);
i = gsi_for_stmt (stmt);
gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
}
else if (gimple_code (stmt) == GIMPLE_PHI)
{
if (!*visited)
*visited = new gimple_htab (10);
slot = (*visited)->find_slot (stmt, INSERT);
if (*slot != NULL)
continue;
*slot = stmt;
insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
visited);
}
else if (gimple_assign_ssa_name_copy_p (stmt))
insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
visited);
}
/* Advance the iterator to the previous non-debug gimple statement in the same
or dominating basic block. */
static inline void
gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
{
basic_block dom;
gsi_prev_nondebug (i);
while (gsi_end_p (*i))
{
dom = get_immediate_dominator (CDI_DOMINATORS, gsi_bb (*i));
if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
return;
*i = gsi_last_bb (dom);
}
}
/* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
It is possible that BUILT_IN_STACK_SAVE cannot be found in a dominator when
a previous pass (such as DOM) duplicated it along multiple paths to a BB.
In that case the function gives up without inserting the clobbers. */
static void
insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
{
gimple *stmt;
tree saved_val;
gimple_htab *visited = NULL;
for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
{
stmt = gsi_stmt (i);
if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
continue;
saved_val = gimple_call_lhs (stmt);
if (saved_val == NULL_TREE)
continue;
insert_clobber_before_stack_restore (saved_val, var, &visited);
break;
}
delete visited;
}
/* Detects a __builtin_alloca_with_align with constant size argument. Declares
fixed-size array and returns the address, if found, otherwise returns
NULL_TREE. */
static tree
fold_builtin_alloca_with_align (gimple *stmt)
{
unsigned HOST_WIDE_INT size, threshold, n_elem;
tree lhs, arg, block, var, elem_type, array_type;
/* Get lhs. */
lhs = gimple_call_lhs (stmt);
if (lhs == NULL_TREE)
return NULL_TREE;
/* Detect constant argument. */
arg = get_constant_value (gimple_call_arg (stmt, 0));
if (arg == NULL_TREE
|| TREE_CODE (arg) != INTEGER_CST
|| !tree_fits_uhwi_p (arg))
return NULL_TREE;
size = tree_to_uhwi (arg);
/* Heuristic: don't fold large allocas. */
threshold = (unsigned HOST_WIDE_INT)param_large_stack_frame;
/* In case the alloca is located at function entry, it has the same lifetime
as a declared array, so we allow a larger size. */
block = gimple_block (stmt);
if (!(cfun->after_inlining
&& block
&& TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
threshold /= 10;
if (size > threshold)
return NULL_TREE;
/* We have to be able to move points-to info. We used to assert
that we can but IPA PTA might end up with two UIDs here
as it might need to handle more than one instance being
live at the same time. Instead of trying to detect this case
(using the first UID would be OK) just give up for now. */
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
unsigned uid = 0;
if (pi != NULL
&& !pi->pt.anything
&& !pt_solution_singleton_or_null_p (&pi->pt, &uid))
return NULL_TREE;
/* Declare array. */
elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
n_elem = size * 8 / BITS_PER_UNIT;
array_type = build_array_type_nelts (elem_type, n_elem);
if (tree ssa_name = SSA_NAME_IDENTIFIER (lhs))
{
/* Give the temporary a name derived from the name of the VLA
declaration so it can be referenced in diagnostics. */
const char *name = IDENTIFIER_POINTER (ssa_name);
var = create_tmp_var (array_type, name);
}
else
var = create_tmp_var (array_type);
if (gimple *lhsdef = SSA_NAME_DEF_STMT (lhs))
{
/* Set the temporary's location to that of the VLA declaration
so it can be pointed to in diagnostics. */
location_t loc = gimple_location (lhsdef);
DECL_SOURCE_LOCATION (var) = loc;
}
SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
if (uid != 0)
SET_DECL_PT_UID (var, uid);
/* Fold alloca to the address of the array. */
return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
}
/* Fold the stmt at *GSI with CCP specific information that propagating
and regular folding does not catch. */
bool
ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
switch (gimple_code (stmt))
{
case GIMPLE_COND:
{
gcond *cond_stmt = as_a <gcond *> (stmt);
ccp_prop_value_t val;
/* Statement evaluation will handle type mismatches in constants
more gracefully than the final propagation. This allows us to
fold more conditionals here. */
val = evaluate_stmt (stmt);
if (val.lattice_val != CONSTANT
|| val.mask != 0)
return false;
if (dump_file)
{
fprintf (dump_file, "Folding predicate ");
print_gimple_expr (dump_file, stmt, 0);
fprintf (dump_file, " to ");
print_generic_expr (dump_file, val.value);
fprintf (dump_file, "\n");
}
if (integer_zerop (val.value))
gimple_cond_make_false (cond_stmt);
else
gimple_cond_make_true (cond_stmt);
return true;
}
case GIMPLE_CALL:
{
tree lhs = gimple_call_lhs (stmt);
int flags = gimple_call_flags (stmt);
tree val;
tree argt;
bool changed = false;
unsigned i;
/* If the call was folded into a constant make sure it goes
away even if we cannot propagate into all uses because of
type issues. */
if (lhs
&& TREE_CODE (lhs) == SSA_NAME
&& (val = get_constant_value (lhs))
/* Don't optimize away calls that have side-effects. */
&& (flags & (ECF_CONST|ECF_PURE)) != 0
&& (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
{
tree new_rhs = unshare_expr (val);
if (!useless_type_conversion_p (TREE_TYPE (lhs),
TREE_TYPE (new_rhs)))
new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
gimplify_and_update_call_from_tree (gsi, new_rhs);
return true;
}
/* Internal calls provide no argument types, so the extra laxity
for normal calls does not apply. */
if (gimple_call_internal_p (stmt))
return false;
/* The heuristic of fold_builtin_alloca_with_align differs before and
after inlining, so we don't require the arg to be changed into a
constant for folding, but just to be constant. */
if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
|| gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
{
tree new_rhs = fold_builtin_alloca_with_align (stmt);
if (new_rhs)
{
gimplify_and_update_call_from_tree (gsi, new_rhs);
tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
insert_clobbers_for_var (*gsi, var);
return true;
}
}
/* If there's no extra info from an assume_aligned call,
drop it so it doesn't act as otherwise useless dataflow
barrier. */
if (gimple_call_builtin_p (stmt, BUILT_IN_ASSUME_ALIGNED))
{
tree ptr = gimple_call_arg (stmt, 0);
ccp_prop_value_t ptrval = get_value_for_expr (ptr, true);
if (ptrval.lattice_val == CONSTANT
&& TREE_CODE (ptrval.value) == INTEGER_CST
&& ptrval.mask != 0)
{
ccp_prop_value_t val
= bit_value_assume_aligned (stmt, NULL_TREE, ptrval, false);
unsigned int ptralign = least_bit_hwi (ptrval.mask.to_uhwi ());
unsigned int align = least_bit_hwi (val.mask.to_uhwi ());
if (ptralign == align
&& ((TREE_INT_CST_LOW (ptrval.value) & (align - 1))
== (TREE_INT_CST_LOW (val.value) & (align - 1))))
{
replace_call_with_value (gsi, ptr);
return true;
}
}
}
/* Propagate into the call arguments. Compared to replace_uses_in
this can use the argument slot types for type verification
instead of the current argument type. We also can safely
drop qualifiers here as we are dealing with constants anyway. */
argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
for (i = 0; i < gimple_call_num_args (stmt) && argt;
++i, argt = TREE_CHAIN (argt))
{
tree arg = gimple_call_arg (stmt, i);
if (TREE_CODE (arg) == SSA_NAME
&& (val = get_constant_value (arg))
&& useless_type_conversion_p
(TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
TYPE_MAIN_VARIANT (TREE_TYPE (val))))
{
gimple_call_set_arg (stmt, i, unshare_expr (val));
changed = true;
}
}
return changed;
}
case GIMPLE_ASSIGN:
{
tree lhs = gimple_assign_lhs (stmt);
tree val;
/* If we have a load that turned out to be constant replace it
as we cannot propagate into all uses in all cases. */
if (gimple_assign_single_p (stmt)
&& TREE_CODE (lhs) == SSA_NAME
&& (val = get_constant_value (lhs)))
{
tree rhs = unshare_expr (val);
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
gimple_assign_set_rhs_from_tree (gsi, rhs);
return true;
}
return false;
}
default:
return false;
}
}
/* Visit the assignment statement STMT. Set the value of its LHS to the
value computed by the RHS and store LHS in *OUTPUT_P. If STMT
creates virtual definitions, set the value of each new name to that
of the RHS (if we can derive a constant out of the RHS).
Value-returning call statements also perform an assignment, and
are handled here. */
static enum ssa_prop_result
visit_assignment (gimple *stmt, tree *output_p)
{
ccp_prop_value_t val;
enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
tree lhs = gimple_get_lhs (stmt);
if (TREE_CODE (lhs) == SSA_NAME)
{
/* Evaluate the statement, which could be
either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
val = evaluate_stmt (stmt);
/* If STMT is an assignment to an SSA_NAME, we only have one
value to set. */
if (set_lattice_value (lhs, &val))
{
*output_p = lhs;
if (val.lattice_val == VARYING)
retval = SSA_PROP_VARYING;
else
retval = SSA_PROP_INTERESTING;
}
}
return retval;
}
/* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
if it can determine which edge will be taken. Otherwise, return
SSA_PROP_VARYING. */
static enum ssa_prop_result
visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
{
ccp_prop_value_t val;
basic_block block;
block = gimple_bb (stmt);
val = evaluate_stmt (stmt);
if (val.lattice_val != CONSTANT
|| val.mask != 0)
return SSA_PROP_VARYING;
/* Find which edge out of the conditional block will be taken and add it
to the worklist. If no single edge can be determined statically,
return SSA_PROP_VARYING to feed all the outgoing edges to the
propagation engine. */
*taken_edge_p = find_taken_edge (block, val.value);
if (*taken_edge_p)
return SSA_PROP_INTERESTING;
else
return SSA_PROP_VARYING;
}
/* Evaluate statement STMT. If the statement produces an output value and
its evaluation changes the lattice value of its output, return
SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
output value.
If STMT is a conditional branch and we can determine its truth
value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
value, return SSA_PROP_VARYING. */
enum ssa_prop_result
ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
{
tree def;
ssa_op_iter iter;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nVisiting statement:\n");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
}
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
/* If the statement is an assignment that produces a single
output value, evaluate its RHS to see if the lattice value of
its output has changed. */
return visit_assignment (stmt, output_p);
case GIMPLE_CALL:
/* A value-returning call also performs an assignment. */
if (gimple_call_lhs (stmt) != NULL_TREE)
return visit_assignment (stmt, output_p);
break;
case GIMPLE_COND:
case GIMPLE_SWITCH:
/* If STMT is a conditional branch, see if we can determine
which branch will be taken. */
/* FIXME. It appears that we should be able to optimize
computed GOTOs here as well. */
return visit_cond_stmt (stmt, taken_edge_p);
default:
break;
}
/* Any other kind of statement is not interesting for constant
propagation and, therefore, not worth simulating. */
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
/* Definitions made by statements other than assignments to
SSA_NAMEs represent unknown modifications to their outputs.
Mark them VARYING. */
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
set_value_varying (def);
return SSA_PROP_VARYING;
}
/* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
record nonzero bits. */
static unsigned int
do_ssa_ccp (bool nonzero_p)
{
unsigned int todo = 0;
calculate_dominance_info (CDI_DOMINATORS);
ccp_initialize ();
class ccp_propagate ccp_propagate;
ccp_propagate.ssa_propagate ();
if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
{
todo = (TODO_cleanup_cfg | TODO_update_ssa);
/* ccp_finalize does not preserve loop-closed ssa. */
loops_state_clear (LOOP_CLOSED_SSA);
}
free_dominance_info (CDI_DOMINATORS);
return todo;
}
namespace {
const pass_data pass_data_ccp =
{
GIMPLE_PASS, /* type */
"ccp", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_CCP, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_address_taken, /* todo_flags_finish */
};
class pass_ccp : public gimple_opt_pass
{
public:
pass_ccp (gcc::context *ctxt)
: gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_ccp (m_ctxt); }
void set_pass_param (unsigned int n, bool param)
{
gcc_assert (n == 0);
nonzero_p = param;
}
virtual bool gate (function *) { return flag_tree_ccp != 0; }
virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
private:
/* Determines whether the pass instance records nonzero bits. */
bool nonzero_p;
}; // class pass_ccp
} // anon namespace
gimple_opt_pass *
make_pass_ccp (gcc::context *ctxt)
{
return new pass_ccp (ctxt);
}
/* Try to optimize out __builtin_stack_restore. Optimize it out
if there is another __builtin_stack_restore in the same basic
block and no calls or ASM_EXPRs are in between, or if this block's
only outgoing edge is to EXIT_BLOCK and there are no calls or
ASM_EXPRs after this __builtin_stack_restore. */
static tree
optimize_stack_restore (gimple_stmt_iterator i)
{
tree callee;
gimple *stmt;
basic_block bb = gsi_bb (i);
gimple *call = gsi_stmt (i);
if (gimple_code (call) != GIMPLE_CALL
|| gimple_call_num_args (call) != 1
|| TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
|| !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
return NULL_TREE;
for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
{
stmt = gsi_stmt (i);
if (gimple_code (stmt) == GIMPLE_ASM)
return NULL_TREE;
if (gimple_code (stmt) != GIMPLE_CALL)
continue;
callee = gimple_call_fndecl (stmt);
if (!callee
|| !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
/* All regular builtins are ok, just obviously not alloca. */
|| ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
return NULL_TREE;
if (fndecl_built_in_p (callee, BUILT_IN_STACK_RESTORE))
goto second_stack_restore;
}
if (!gsi_end_p (i))
return NULL_TREE;
/* Allow one successor of the exit block, or zero successors. */
switch (EDGE_COUNT (bb->succs))
{
case 0:
break;
case 1:
if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
return NULL_TREE;
break;
default:
return NULL_TREE;
}
second_stack_restore:
/* If there's exactly one use, then zap the call to __builtin_stack_save.
If there are multiple uses, then the last one should remove the call.
In any case, whether the call to __builtin_stack_save can be removed
or not is irrelevant to removing the call to __builtin_stack_restore. */
if (has_single_use (gimple_call_arg (call, 0)))
{
gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
if (is_gimple_call (stack_save))
{
callee = gimple_call_fndecl (stack_save);
if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
{
gimple_stmt_iterator stack_save_gsi;
tree rhs;
stack_save_gsi = gsi_for_stmt (stack_save);
rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
replace_call_with_value (&stack_save_gsi, rhs);
}
}
}
/* No effect, so the statement will be deleted. */
return integer_zero_node;
}
/* If va_list type is a simple pointer and nothing special is needed,
optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
__builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
pointer assignment. */
static tree
optimize_stdarg_builtin (gimple *call)
{
tree callee, lhs, rhs, cfun_va_list;
bool va_list_simple_ptr;
location_t loc = gimple_location (call);
callee = gimple_call_fndecl (call);
cfun_va_list = targetm.fn_abi_va_list (callee);
va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
&& (TREE_TYPE (cfun_va_list) == void_type_node
|| TREE_TYPE (cfun_va_list) == char_type_node);
switch (DECL_FUNCTION_CODE (callee))
{
case BUILT_IN_VA_START:
if (!va_list_simple_ptr
|| targetm.expand_builtin_va_start != NULL
|| !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
return NULL_TREE;
if (gimple_call_num_args (call) != 2)
return NULL_TREE;
lhs = gimple_call_arg (call, 0);
if (!POINTER_TYPE_P (TREE_TYPE (lhs))
|| TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
!= TYPE_MAIN_VARIANT (cfun_va_list))
return NULL_TREE;
lhs = build_fold_indirect_ref_loc (loc, lhs);
rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
1, integer_zero_node);
rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
case BUILT_IN_VA_COPY:
if (!va_list_simple_ptr)
return NULL_TREE;
if (gimple_call_num_args (call) != 2)
return NULL_TREE;
lhs = gimple_call_arg (call, 0);
if (!POINTER_TYPE_P (TREE_TYPE (lhs))
|| TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
!= TYPE_MAIN_VARIANT (cfun_va_list))
return NULL_TREE;
lhs = build_fold_indirect_ref_loc (loc, lhs);
rhs = gimple_call_arg (call, 1);
if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
!= TYPE_MAIN_VARIANT (cfun_va_list))
return NULL_TREE;
rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
case BUILT_IN_VA_END:
/* No effect, so the statement will be deleted. */
return integer_zero_node;
default:
gcc_unreachable ();
}
}
/* Attemp to make the block of __builtin_unreachable I unreachable by changing
the incoming jumps. Return true if at least one jump was changed. */
static bool
optimize_unreachable (gimple_stmt_iterator i)
{
basic_block bb = gsi_bb (i);
gimple_stmt_iterator gsi;
gimple *stmt;
edge_iterator ei;
edge e;
bool ret;
if (flag_sanitize & SANITIZE_UNREACHABLE)
return false;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
continue;
if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
{
/* Verify we do not need to preserve the label. */
if (FORCED_LABEL (gimple_label_label (label_stmt)))
return false;
continue;
}
/* Only handle the case that __builtin_unreachable is the first statement
in the block. We rely on DCE to remove stmts without side-effects
before __builtin_unreachable. */
if (gsi_stmt (gsi) != gsi_stmt (i))
return false;
}
ret = false;
FOR_EACH_EDGE (e, ei, bb->preds)
{
gsi = gsi_last_bb (e->src);
if (gsi_end_p (gsi))
continue;
stmt = gsi_stmt (gsi);
if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
{
if (e->flags & EDGE_TRUE_VALUE)
gimple_cond_make_false (cond_stmt);
else if (e->flags & EDGE_FALSE_VALUE)
gimple_cond_make_true (cond_stmt);
else
gcc_unreachable ();
update_stmt (cond_stmt);
}
else
{
/* Todo: handle other cases. Note that unreachable switch case
statements have already been removed. */
continue;
}
ret = true;
}
return ret;
}
/* Convert
_1 = __atomic_fetch_or_* (ptr_6, 1, _3);
_7 = ~_1;
_5 = (_Bool) _7;
to
_1 = __atomic_fetch_or_* (ptr_6, 1, _3);
_8 = _1 & 1;
_5 = _8 == 0;
and convert
_1 = __atomic_fetch_and_* (ptr_6, ~1, _3);
_7 = ~_1;
_4 = (_Bool) _7;
to
_1 = __atomic_fetch_and_* (ptr_6, ~1, _3);
_8 = _1 & 1;
_4 = (_Bool) _8;
USE_STMT is the gimplt statement which uses the return value of
__atomic_fetch_or_*. LHS is the return value of __atomic_fetch_or_*.
MASK is the mask passed to __atomic_fetch_or_*.
*/
static gimple *
convert_atomic_bit_not (enum internal_fn fn, gimple *use_stmt,
tree lhs, tree mask)
{
tree and_mask;
if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
{
/* MASK must be ~1. */
if (!operand_equal_p (build_int_cst (TREE_TYPE (lhs),
~HOST_WIDE_INT_1), mask, 0))
return nullptr;
and_mask = build_int_cst (TREE_TYPE (lhs), 1);
}
else
{
/* MASK must be 1. */
if (!operand_equal_p (build_int_cst (TREE_TYPE (lhs), 1), mask, 0))
return nullptr;
and_mask = mask;
}
tree use_lhs = gimple_assign_lhs (use_stmt);
use_operand_p use_p;
gimple *use_not_stmt;
if (!single_imm_use (use_lhs, &use_p, &use_not_stmt)
|| !is_gimple_assign (use_not_stmt))
return nullptr;
if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_not_stmt)))
return nullptr;
tree use_not_lhs = gimple_assign_lhs (use_not_stmt);
if (TREE_CODE (TREE_TYPE (use_not_lhs)) != BOOLEAN_TYPE)
return nullptr;
gimple_stmt_iterator gsi;
gsi = gsi_for_stmt (use_stmt);
gsi_remove (&gsi, true);
tree var = make_ssa_name (TREE_TYPE (lhs));
use_stmt = gimple_build_assign (var, BIT_AND_EXPR, lhs, and_mask);
gsi = gsi_for_stmt (use_not_stmt);
gsi_insert_before (&gsi, use_stmt, GSI_NEW_STMT);
lhs = gimple_assign_lhs (use_not_stmt);
gimple *g = gimple_build_assign (lhs, EQ_EXPR, var,
build_zero_cst (TREE_TYPE (mask)));
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
gsi = gsi_for_stmt (use_not_stmt);
gsi_remove (&gsi, true);
return use_stmt;
}
/* match.pd function to match atomic_bit_test_and pattern which
has nop_convert:
_1 = __atomic_fetch_or_4 (&v, 1, 0);
_2 = (int) _1;
_5 = _2 & 1;
*/
extern bool gimple_nop_atomic_bit_test_and_p (tree, tree *,
tree (*) (tree));
extern bool gimple_nop_convert (tree, tree*, tree (*) (tree));
/* Optimize
mask_2 = 1 << cnt_1;
_4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
_5 = _4 & mask_2;
to
_4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
_5 = _4;
If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
is passed instead of 0, and the builtin just returns a zero
or 1 value instead of the actual bit.
Similarly for __sync_fetch_and_or_* (without the ", _3" part
in there), and/or if mask_2 is a power of 2 constant.
Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
in that case. And similarly for and instead of or, except that
the second argument to the builtin needs to be one's complement
of the mask instead of mask. */
static void
optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
enum internal_fn fn, bool has_model_arg,
bool after)
{
gimple *call = gsi_stmt (*gsip);
tree lhs = gimple_call_lhs (call);
use_operand_p use_p;
gimple *use_stmt;
tree mask;
optab optab;
if (!flag_inline_atomics
|| optimize_debug
|| !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
|| !lhs
|| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
|| !single_imm_use (lhs, &use_p, &use_stmt)
|| !is_gimple_assign (use_stmt)
|| !gimple_vdef (call))
return;
switch (fn)
{
case IFN_ATOMIC_BIT_TEST_AND_SET:
optab = atomic_bit_test_and_set_optab;
break;
case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
optab = atomic_bit_test_and_complement_optab;
break;
case IFN_ATOMIC_BIT_TEST_AND_RESET:
optab = atomic_bit_test_and_reset_optab;
break;
default:
return;
}
tree bit = nullptr;
mask = gimple_call_arg (call, 1);
tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
if (rhs_code != BIT_AND_EXPR)
{
if (rhs_code != NOP_EXPR && rhs_code != BIT_NOT_EXPR)
return;
tree use_lhs = gimple_assign_lhs (use_stmt);
if (TREE_CODE (use_lhs) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
return;
tree use_rhs = gimple_assign_rhs1 (use_stmt);
if (lhs != use_rhs)
return;
if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs)))
== CODE_FOR_nothing)
return;
gimple *g;
gimple_stmt_iterator gsi;
tree var;
int ibit = -1;
if (rhs_code == BIT_NOT_EXPR)
{
g = convert_atomic_bit_not (fn, use_stmt, lhs, mask);
if (!g)
return;
use_stmt = g;
ibit = 0;
}
else if (TREE_CODE (TREE_TYPE (use_lhs)) == BOOLEAN_TYPE)
{
tree and_mask;
if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
{
/* MASK must be ~1. */
if (!operand_equal_p (build_int_cst (TREE_TYPE (lhs),
~HOST_WIDE_INT_1),
mask, 0))
return;
/* Convert
_1 = __atomic_fetch_and_* (ptr_6, ~1, _3);
_4 = (_Bool) _1;
to
_1 = __atomic_fetch_and_* (ptr_6, ~1, _3);
_5 = _1 & 1;
_4 = (_Bool) _5;
*/
and_mask = build_int_cst (TREE_TYPE (lhs), 1);
}
else
{
and_mask = build_int_cst (TREE_TYPE (lhs), 1);
if (!operand_equal_p (and_mask, mask, 0))
return;
/* Convert
_1 = __atomic_fetch_or_* (ptr_6, 1, _3);
_4 = (_Bool) _1;
to
_1 = __atomic_fetch_or_* (ptr_6, 1, _3);
_5 = _1 & 1;
_4 = (_Bool) _5;
*/
}
var = make_ssa_name (TREE_TYPE (use_rhs));
replace_uses_by (use_rhs, var);
g = gimple_build_assign (var, BIT_AND_EXPR, use_rhs,
and_mask);
gsi = gsi_for_stmt (use_stmt);
gsi_insert_before (&gsi, g, GSI_NEW_STMT);
use_stmt = g;
ibit = 0;
}
else if (TYPE_PRECISION (TREE_TYPE (use_lhs))
<= TYPE_PRECISION (TREE_TYPE (use_rhs)))
{
gimple *use_nop_stmt;
if (!single_imm_use (use_lhs, &use_p, &use_nop_stmt)
|| !is_gimple_assign (use_nop_stmt))
return;
tree use_nop_lhs = gimple_assign_lhs (use_nop_stmt);
rhs_code = gimple_assign_rhs_code (use_nop_stmt);
if (rhs_code != BIT_AND_EXPR)
{
if (TREE_CODE (use_nop_lhs) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_nop_lhs))
return;
if (rhs_code == BIT_NOT_EXPR)
{
g = convert_atomic_bit_not (fn, use_nop_stmt, lhs,
mask);
if (!g)
return;
/* Convert
_1 = __atomic_fetch_or_4 (ptr_6, 1, _3);
_2 = (int) _1;
_7 = ~_2;
_5 = (_Bool) _7;
to
_1 = __atomic_fetch_or_4 (ptr_6, ~1, _3);
_8 = _1 & 1;
_5 = _8 == 0;
and convert
_1 = __atomic_fetch_and_4 (ptr_6, ~1, _3);
_2 = (int) _1;
_7 = ~_2;
_5 = (_Bool) _7;
to
_1 = __atomic_fetch_and_4 (ptr_6, 1, _3);
_8 = _1 & 1;
_5 = _8 == 0;
*/
gsi = gsi_for_stmt (use_stmt);
gsi_remove (&gsi, true);
use_stmt = g;
ibit = 0;
}
else
{
if (TREE_CODE (TREE_TYPE (use_nop_lhs)) != BOOLEAN_TYPE)
return;
if (rhs_code != GE_EXPR && rhs_code != LT_EXPR)
return;
tree cmp_rhs1 = gimple_assign_rhs1 (use_nop_stmt);
if (use_lhs != cmp_rhs1)
return;
tree cmp_rhs2 = gimple_assign_rhs2 (use_nop_stmt);
if (!integer_zerop (cmp_rhs2))
return;
tree and_mask;
unsigned HOST_WIDE_INT bytes
= tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (use_rhs)));
ibit = bytes * BITS_PER_UNIT - 1;
unsigned HOST_WIDE_INT highest
= HOST_WIDE_INT_1U << ibit;
if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
{
/* Get the signed maximum of the USE_RHS type. */
and_mask = build_int_cst (TREE_TYPE (use_rhs),
highest - 1);
if (!operand_equal_p (and_mask, mask, 0))
return;
/* Convert
_1 = __atomic_fetch_and_4 (ptr_6, 0x7fffffff, _3);
_5 = (signed int) _1;
_4 = _5 < 0 or _5 >= 0;
to
_1 = __atomic_fetch_and_4 (ptr_6, 0x7fffffff, _3);
_6 = _1 & 0x80000000;
_4 = _6 != 0 or _6 == 0;
*/
and_mask = build_int_cst (TREE_TYPE (use_rhs),
highest);
}
else
{
/* Get the signed minimum of the USE_RHS type. */
and_mask = build_int_cst (TREE_TYPE (use_rhs),
highest);
if (!operand_equal_p (and_mask, mask, 0))
return;
/* Convert
_1 = __atomic_fetch_or_4 (ptr_6, 0x80000000, _3);
_5 = (signed int) _1;
_4 = _5 < 0 or _5 >= 0;
to
_1 = __atomic_fetch_or_4 (ptr_6, 0x80000000, _3);
_6 = _1 & 0x80000000;
_4 = _6 != 0 or _6 == 0;
*/
}
var = make_ssa_name (TREE_TYPE (use_rhs));
gsi = gsi_for_stmt (use_stmt);
gsi_remove (&gsi, true);
g = gimple_build_assign (var, BIT_AND_EXPR, use_rhs,
and_mask);
gsi = gsi_for_stmt (use_nop_stmt);
gsi_insert_before (&gsi, g, GSI_NEW_STMT);
use_stmt = g;
g = gimple_build_assign (use_nop_lhs,
(rhs_code == GE_EXPR
? EQ_EXPR : NE_EXPR),
var,
build_zero_cst (TREE_TYPE (use_rhs)));
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
gsi = gsi_for_stmt (use_nop_stmt);
gsi_remove (&gsi, true);
}
}
else
{
tree match_op[3];
gimple *g;
if (!gimple_nop_atomic_bit_test_and_p (use_nop_lhs,
&match_op[0], NULL)
|| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (match_op[2])
|| !single_imm_use (match_op[2], &use_p, &g)
|| !is_gimple_assign (g))
return;
mask = match_op[0];
if (TREE_CODE (match_op[1]) == INTEGER_CST)
{
ibit = tree_log2 (match_op[1]);
gcc_assert (ibit >= 0);
}
else
{
g = SSA_NAME_DEF_STMT (match_op[1]);
gcc_assert (is_gimple_assign (g));
bit = gimple_assign_rhs2 (g);
}
/* Convert
_1 = __atomic_fetch_or_4 (ptr_6, mask, _3);
_2 = (int) _1;
_5 = _2 & mask;
to
_1 = __atomic_fetch_or_4 (ptr_6, mask, _3);
_6 = _1 & mask;
_5 = (int) _6;
and convert
_1 = ~mask_7;
_2 = (unsigned int) _1;
_3 = __atomic_fetch_and_4 (ptr_6, _2, 0);
_4 = (int) _3;
_5 = _4 & mask_7;
to
_1 = __atomic_fetch_and_* (ptr_6, ~mask_7, _3);
_12 = _3 & mask_7;
_5 = (int) _12;
and Convert
_1 = __atomic_fetch_and_4 (ptr_6, ~mask, _3);
_2 = (short int) _1;
_5 = _2 & mask;
to
_1 = __atomic_fetch_and_4 (ptr_6, ~mask, _3);
_8 = _1 & mask;
_5 = (short int) _8;
*/
gimple_seq stmts = NULL;
match_op[1] = gimple_convert (&stmts,
TREE_TYPE (use_rhs),
match_op[1]);
var = gimple_build (&stmts, BIT_AND_EXPR,
TREE_TYPE (use_rhs), use_rhs, match_op[1]);
gsi = gsi_for_stmt (use_stmt);
gsi_remove (&gsi, true);
release_defs (use_stmt);
use_stmt = gimple_seq_last_stmt (stmts);
gsi = gsi_for_stmt (use_nop_stmt);
gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
gimple_assign_set_rhs_with_ops (&gsi, CONVERT_EXPR, var);
update_stmt (use_nop_stmt);
}
}
else
return;
if (!bit)
{
if (ibit < 0)
gcc_unreachable ();
bit = build_int_cst (TREE_TYPE (lhs), ibit);
}
}
else if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs)))
== CODE_FOR_nothing)
return;
tree use_lhs = gimple_assign_lhs (use_stmt);
if (!use_lhs)
return;
if (!bit)
{
if (TREE_CODE (mask) == INTEGER_CST)
{
if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
mask = fold_convert (TREE_TYPE (lhs), mask);
int ibit = tree_log2 (mask);
if (ibit < 0)
return;
bit = build_int_cst (TREE_TYPE (lhs), ibit);
}
else if (TREE_CODE (mask) == SSA_NAME)
{
gimple *g = SSA_NAME_DEF_STMT (mask);
tree match_op;
if (gimple_nop_convert (mask, &match_op, NULL))
{
mask = match_op;
if (TREE_CODE (mask) != SSA_NAME)
return;
g = SSA_NAME_DEF_STMT (mask);
}
if (!is_gimple_assign (g))
return;
if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
{
if (gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
return;
mask = gimple_assign_rhs1 (g);
if (TREE_CODE (mask) != SSA_NAME)
return;
g = SSA_NAME_DEF_STMT (mask);
}
rhs_code = gimple_assign_rhs_code (g);
if (rhs_code != LSHIFT_EXPR
|| !integer_onep (gimple_assign_rhs1 (g)))
return;
bit = gimple_assign_rhs2 (g);
}
else
return;
tree cmp_mask;
if (gimple_assign_rhs1 (use_stmt) == lhs)
cmp_mask = gimple_assign_rhs2 (use_stmt);
else
cmp_mask = gimple_assign_rhs1 (use_stmt);
tree match_op;
if (gimple_nop_convert (cmp_mask, &match_op, NULL))
cmp_mask = match_op;
if (!operand_equal_p (cmp_mask, mask, 0))
return;
}
bool use_bool = true;
bool has_debug_uses = false;
imm_use_iterator iter;
gimple *g;
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
use_bool = false;
FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
{
enum tree_code code = ERROR_MARK;
tree op0 = NULL_TREE, op1 = NULL_TREE;
if (is_gimple_debug (g))
{
has_debug_uses = true;
continue;
}
else if (is_gimple_assign (g))
switch (gimple_assign_rhs_code (g))
{
case COND_EXPR:
op1 = gimple_assign_rhs1 (g);
code = TREE_CODE (op1);
op0 = TREE_OPERAND (op1, 0);
op1 = TREE_OPERAND (op1, 1);
break;
case EQ_EXPR:
case NE_EXPR:
code = gimple_assign_rhs_code (g);
op0 = gimple_assign_rhs1 (g);
op1 = gimple_assign_rhs2 (g);
break;
default:
break;
}
else if (gimple_code (g) == GIMPLE_COND)
{
code = gimple_cond_code (g);
op0 = gimple_cond_lhs (g);
op1 = gimple_cond_rhs (g);
}
if ((code == EQ_EXPR || code == NE_EXPR)
&& op0 == use_lhs
&& integer_zerop (op1))
{
use_operand_p use_p;
int n = 0;
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
n++;
if (n == 1)
continue;
}
use_bool = false;
break;
}
tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
if (has_model_arg)
g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
bit, flag, gimple_call_arg (call, 2));
else
g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
bit, flag);
gimple_call_set_lhs (g, new_lhs);
gimple_set_location (g, gimple_location (call));
gimple_move_vops (g, call);
bool throws = stmt_can_throw_internal (cfun, call);
gimple_call_set_nothrow (as_a <gcall *> (g),
gimple_call_nothrow_p (as_a <gcall *> (call)));
gimple_stmt_iterator gsi = *gsip;
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
edge e = NULL;
if (throws)
{
maybe_clean_or_replace_eh_stmt (call, g);
if (after || (use_bool && has_debug_uses))
e = find_fallthru_edge (gsi_bb (gsi)->succs);
}
if (after)
{
/* The internal function returns the value of the specified bit
before the atomic operation. If we are interested in the value
of the specified bit after the atomic operation (makes only sense
for xor, otherwise the bit content is compile time known),
we need to invert the bit. */
tree mask_convert = mask;
gimple_seq stmts = NULL;
if (!use_bool)
mask_convert = gimple_convert (&stmts, TREE_TYPE (lhs), mask);
new_lhs = gimple_build (&stmts, BIT_XOR_EXPR, TREE_TYPE (lhs), new_lhs,
use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
: mask_convert);
if (throws)
{
gsi_insert_seq_on_edge_immediate (e, stmts);
gsi = gsi_for_stmt (gimple_seq_last (stmts));
}
else
gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
}
if (use_bool && has_debug_uses)
{
tree temp = NULL_TREE;
if (!throws || after || single_pred_p (e->dest))
{
temp = build_debug_expr_decl (TREE_TYPE (lhs));
tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
g = gimple_build_debug_bind (temp, t, g);
if (throws && !after)
{
gsi = gsi_after_labels (e->dest);
gsi_insert_before (&gsi, g, GSI_SAME_STMT);
}
else
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
}
FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
if (is_gimple_debug (g))
{
use_operand_p use_p;
if (temp == NULL_TREE)
gimple_debug_bind_reset_value (g);
else
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p, temp);
update_stmt (g);
}
}
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
= SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
replace_uses_by (use_lhs, new_lhs);
gsi = gsi_for_stmt (use_stmt);
gsi_remove (&gsi, true);
release_defs (use_stmt);
gsi_remove (gsip, true);
release_ssa_name (lhs);
}
/* Optimize
a = {};
b = a;
into
a = {};
b = {};
Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
static void
optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
{
gimple *stmt = gsi_stmt (*gsip);
if (gimple_has_volatile_ops (stmt))
return;
tree vuse = gimple_vuse (stmt);
if (vuse == NULL)
return;
gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
tree src2 = NULL_TREE, len2 = NULL_TREE;
poly_int64 offset, offset2;
tree val = integer_zero_node;
if (gimple_store_p (defstmt)
&& gimple_assign_single_p (defstmt)
&& TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
&& !gimple_clobber_p (defstmt))
src2 = gimple_assign_lhs (defstmt);
else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
&& TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
&& TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
{
src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
len2 = gimple_call_arg (defstmt, 2);
val = gimple_call_arg (defstmt, 1);
/* For non-0 val, we'd have to transform stmt from assignment
into memset (only if dest is addressable). */
if (!integer_zerop (val) && is_gimple_assign (stmt))
src2 = NULL_TREE;
}
if (src2 == NULL_TREE)
return;
if (len == NULL_TREE)
len = (TREE_CODE (src) == COMPONENT_REF
? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
: TYPE_SIZE_UNIT (TREE_TYPE (src)));
if (len2 == NULL_TREE)
len2 = (TREE_CODE (src2) == COMPONENT_REF
? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
: TYPE_SIZE_UNIT (TREE_TYPE (src2)));
if (len == NULL_TREE
|| !poly_int_tree_p (len)
|| len2 == NULL_TREE
|| !poly_int_tree_p (len2))
return;
src = get_addr_base_and_unit_offset (src, &offset);
src2 = get_addr_base_and_unit_offset (src2, &offset2);
if (src == NULL_TREE
|| src2 == NULL_TREE
|| maybe_lt (offset, offset2))
return;
if (!operand_equal_p (src, src2, 0))
return;
/* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
Make sure that
[ src + offset, src + offset + len - 1 ] is a subset of that. */
if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
wi::to_poly_offset (len2)))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Simplified\n ");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
fprintf (dump_file, "after previous\n ");
print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
}
/* For simplicity, don't change the kind of the stmt,
turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
into memset (&dest, val, len);
In theory we could change dest = src into memset if dest
is addressable (maybe beneficial if val is not 0), or
memcpy (&dest, &src, len) into dest = {} if len is the size
of dest, dest isn't volatile. */
if (is_gimple_assign (stmt))
{
tree ctor = build_constructor (TREE_TYPE (dest), NULL);
gimple_assign_set_rhs_from_tree (gsip, ctor);
update_stmt (stmt);
}
else /* If stmt is memcpy, transform it into memset. */
{
gcall *call = as_a <gcall *> (stmt);
tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
gimple_call_set_fndecl (call, fndecl);
gimple_call_set_fntype (call, TREE_TYPE (fndecl));
gimple_call_set_arg (call, 1, val);
update_stmt (stmt);
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "into\n ");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
}
}
/* A simple pass that attempts to fold all builtin functions. This pass
is run after we've propagated as many constants as we can. */
namespace {
const pass_data pass_data_fold_builtins =
{
GIMPLE_PASS, /* type */
"fab", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_fold_builtins : public gimple_opt_pass
{
public:
pass_fold_builtins (gcc::context *ctxt)
: gimple_opt_pass (pass_data_fold_builtins, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
virtual unsigned int execute (function *);
}; // class pass_fold_builtins
unsigned int
pass_fold_builtins::execute (function *fun)
{
bool cfg_changed = false;
basic_block bb;
unsigned int todoflags = 0;
FOR_EACH_BB_FN (bb, fun)
{
gimple_stmt_iterator i;
for (i = gsi_start_bb (bb); !gsi_end_p (i); )
{
gimple *stmt, *old_stmt;
tree callee;
enum built_in_function fcode;
stmt = gsi_stmt (i);
if (gimple_code (stmt) != GIMPLE_CALL)
{
/* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
after the last GIMPLE DSE they aren't needed and might
unnecessarily keep the SSA_NAMEs live. */
if (gimple_clobber_p (stmt))
{
tree lhs = gimple_assign_lhs (stmt);
if (TREE_CODE (lhs) == MEM_REF
&& TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
{
unlink_stmt_vdef (stmt);
gsi_remove (&i, true);
release_defs (stmt);
continue;
}
}
else if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
optimize_memcpy (&i, gimple_assign_lhs (stmt),
gimple_assign_rhs1 (stmt), NULL_TREE);
gsi_next (&i);
continue;
}
callee = gimple_call_fndecl (stmt);
if (!callee || !fndecl_built_in_p (callee, BUILT_IN_NORMAL))
{
gsi_next (&i);
continue;
}
fcode = DECL_FUNCTION_CODE (callee);
if (fold_stmt (&i))
;
else
{
tree result = NULL_TREE;
switch (DECL_FUNCTION_CODE (callee))
{
case BUILT_IN_CONSTANT_P:
/* Resolve __builtin_constant_p. If it hasn't been
folded to integer_one_node by now, it's fairly
certain that the value simply isn't constant. */
result = integer_zero_node;
break;
case BUILT_IN_ASSUME_ALIGNED:
/* Remove __builtin_assume_aligned. */
result = gimple_call_arg (stmt, 0);
break;
case BUILT_IN_STACK_RESTORE:
result = optimize_stack_restore (i);
if (result)
break;
gsi_next (&i);
continue;
case BUILT_IN_UNREACHABLE:
if (optimize_unreachable (i))
cfg_changed = true;
break;
case BUILT_IN_ATOMIC_FETCH_OR_1:
case BUILT_IN_ATOMIC_FETCH_OR_2:
case BUILT_IN_ATOMIC_FETCH_OR_4:
case BUILT_IN_ATOMIC_FETCH_OR_8:
case BUILT_IN_ATOMIC_FETCH_OR_16:
optimize_atomic_bit_test_and (&i,
IFN_ATOMIC_BIT_TEST_AND_SET,
true, false);
break;
case BUILT_IN_SYNC_FETCH_AND_OR_1:
case BUILT_IN_SYNC_FETCH_AND_OR_2:
case BUILT_IN_SYNC_FETCH_AND_OR_4:
case BUILT_IN_SYNC_FETCH_AND_OR_8:
case BUILT_IN_SYNC_FETCH_AND_OR_16:
optimize_atomic_bit_test_and (&i,
IFN_ATOMIC_BIT_TEST_AND_SET,
false, false);
break;
case BUILT_IN_ATOMIC_FETCH_XOR_1:
case BUILT_IN_ATOMIC_FETCH_XOR_2:
case BUILT_IN_ATOMIC_FETCH_XOR_4:
case BUILT_IN_ATOMIC_FETCH_XOR_8:
case BUILT_IN_ATOMIC_FETCH_XOR_16:
optimize_atomic_bit_test_and
(&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
break;
case BUILT_IN_SYNC_FETCH_AND_XOR_1:
case BUILT_IN_SYNC_FETCH_AND_XOR_2:
case BUILT_IN_SYNC_FETCH_AND_XOR_4:
case BUILT_IN_SYNC_FETCH_AND_XOR_8:
case BUILT_IN_SYNC_FETCH_AND_XOR_16:
optimize_atomic_bit_test_and
(&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
break;
case BUILT_IN_ATOMIC_XOR_FETCH_1:
case BUILT_IN_ATOMIC_XOR_FETCH_2:
case BUILT_IN_ATOMIC_XOR_FETCH_4:
case BUILT_IN_ATOMIC_XOR_FETCH_8:
case BUILT_IN_ATOMIC_XOR_FETCH_16:
optimize_atomic_bit_test_and
(&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
break;
case BUILT_IN_SYNC_XOR_AND_FETCH_1:
case BUILT_IN_SYNC_XOR_AND_FETCH_2:
case BUILT_IN_SYNC_XOR_AND_FETCH_4:
case BUILT_IN_SYNC_XOR_AND_FETCH_8:
case BUILT_IN_SYNC_XOR_AND_FETCH_16:
optimize_atomic_bit_test_and
(&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
break;
case BUILT_IN_ATOMIC_FETCH_AND_1:
case BUILT_IN_ATOMIC_FETCH_AND_2:
case BUILT_IN_ATOMIC_FETCH_AND_4:
case BUILT_IN_ATOMIC_FETCH_AND_8:
case BUILT_IN_ATOMIC_FETCH_AND_16:
optimize_atomic_bit_test_and (&i,
IFN_ATOMIC_BIT_TEST_AND_RESET,
true, false);
break;
case BUILT_IN_SYNC_FETCH_AND_AND_1:
case BUILT_IN_SYNC_FETCH_AND_AND_2:
case BUILT_IN_SYNC_FETCH_AND_AND_4:
case BUILT_IN_SYNC_FETCH_AND_AND_8:
case BUILT_IN_SYNC_FETCH_AND_AND_16:
optimize_atomic_bit_test_and (&i,
IFN_ATOMIC_BIT_TEST_AND_RESET,
false, false);
break;
case BUILT_IN_MEMCPY:
if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
&& TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
&& TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
&& TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
{
tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
tree len = gimple_call_arg (stmt, 2);
optimize_memcpy (&i, dest, src, len);
}
break;
case BUILT_IN_VA_START:
case BUILT_IN_VA_END:
case BUILT_IN_VA_COPY:
/* These shouldn't be folded before pass_stdarg. */
result = optimize_stdarg_builtin (stmt);
break;
default:;
}
if (!result)
{
gsi_next (&i);
continue;
}
gimplify_and_update_call_from_tree (&i, result);
}
todoflags |= TODO_update_address_taken;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Simplified\n ");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
}
old_stmt = stmt;
stmt = gsi_stmt (i);
update_stmt (stmt);
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
&& gimple_purge_dead_eh_edges (bb))
cfg_changed = true;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "to\n ");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
fprintf (dump_file, "\n");
}
/* Retry the same statement if it changed into another
builtin, there might be new opportunities now. */
if (gimple_code (stmt) != GIMPLE_CALL)
{
gsi_next (&i);
continue;
}
callee = gimple_call_fndecl (stmt);
if (!callee
|| !fndecl_built_in_p (callee, fcode))
gsi_next (&i);
}
}
/* Delete unreachable blocks. */
if (cfg_changed)
todoflags |= TODO_cleanup_cfg;
return todoflags;
}
} // anon namespace
gimple_opt_pass *
make_pass_fold_builtins (gcc::context *ctxt)
{
return new pass_fold_builtins (ctxt);
}
/* A simple pass that emits some warnings post IPA. */
namespace {
const pass_data pass_data_post_ipa_warn =
{
GIMPLE_PASS, /* type */
"post_ipa_warn", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_post_ipa_warn : public gimple_opt_pass
{
public:
pass_post_ipa_warn (gcc::context *ctxt)
: gimple_opt_pass (pass_data_post_ipa_warn, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_post_ipa_warn (m_ctxt); }
virtual bool gate (function *) { return warn_nonnull != 0; }
virtual unsigned int execute (function *);
}; // class pass_fold_builtins
unsigned int
pass_post_ipa_warn::execute (function *fun)
{
basic_block bb;
FOR_EACH_BB_FN (bb, fun)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (!is_gimple_call (stmt) || warning_suppressed_p (stmt, OPT_Wnonnull))
continue;
tree fntype = gimple_call_fntype (stmt);
bitmap nonnullargs = get_nonnull_args (fntype);
if (!nonnullargs)
continue;
tree fndecl = gimple_call_fndecl (stmt);
const bool closure = fndecl && DECL_LAMBDA_FUNCTION_P (fndecl);
for (unsigned i = 0; i < gimple_call_num_args (stmt); i++)
{
tree arg = gimple_call_arg (stmt, i);
if (TREE_CODE (TREE_TYPE (arg)) != POINTER_TYPE)
continue;
if (!integer_zerop (arg))
continue;
if (i == 0 && closure)
/* Avoid warning for the first argument to lambda functions. */
continue;
if (!bitmap_empty_p (nonnullargs)
&& !bitmap_bit_p (nonnullargs, i))
continue;
/* In C++ non-static member functions argument 0 refers
to the implicit this pointer. Use the same one-based
numbering for ordinary arguments. */
unsigned argno = TREE_CODE (fntype) == METHOD_TYPE ? i : i + 1;
location_t loc = (EXPR_HAS_LOCATION (arg)
? EXPR_LOCATION (arg)
: gimple_location (stmt));
auto_diagnostic_group d;
if (argno == 0)
{
if (warning_at (loc, OPT_Wnonnull,
"%qs pointer is null", "this")
&& fndecl)
inform (DECL_SOURCE_LOCATION (fndecl),
"in a call to non-static member function %qD",
fndecl);
continue;
}
if (!warning_at (loc, OPT_Wnonnull,
"argument %u null where non-null "
"expected", argno))
continue;
tree fndecl = gimple_call_fndecl (stmt);
if (fndecl && DECL_IS_UNDECLARED_BUILTIN (fndecl))
inform (loc, "in a call to built-in function %qD",
fndecl);
else if (fndecl)
inform (DECL_SOURCE_LOCATION (fndecl),
"in a call to function %qD declared %qs",
fndecl, "nonnull");
}
BITMAP_FREE (nonnullargs);
}
}
return 0;
}
} // anon namespace
gimple_opt_pass *
make_pass_post_ipa_warn (gcc::context *ctxt)
{
return new pass_post_ipa_warn (ctxt);
}
|