aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-alias.cc
blob: d434446a997ed34fa0d58278bfdae4967a0073ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
/* Alias analysis for trees.
   Copyright (C) 2004-2022 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "timevar.h"	/* for TV_ALIAS_STMT_WALK */
#include "ssa.h"
#include "cgraph.h"
#include "tree-pretty-print.h"
#include "alias.h"
#include "fold-const.h"
#include "langhooks.h"
#include "dumpfile.h"
#include "tree-eh.h"
#include "tree-dfa.h"
#include "ipa-reference.h"
#include "varasm.h"
#include "ipa-modref-tree.h"
#include "ipa-modref.h"
#include "attr-fnspec.h"
#include "errors.h"
#include "dbgcnt.h"
#include "gimple-pretty-print.h"
#include "print-tree.h"
#include "tree-ssa-alias-compare.h"
#include "builtins.h"

/* Broad overview of how alias analysis on gimple works:

   Statements clobbering or using memory are linked through the
   virtual operand factored use-def chain.  The virtual operand
   is unique per function, its symbol is accessible via gimple_vop (cfun).
   Virtual operands are used for efficiently walking memory statements
   in the gimple IL and are useful for things like value-numbering as
   a generation count for memory references.

   SSA_NAME pointers may have associated points-to information
   accessible via the SSA_NAME_PTR_INFO macro.  Flow-insensitive
   points-to information is (re-)computed by the TODO_rebuild_alias
   pass manager todo.  Points-to information is also used for more
   precise tracking of call-clobbered and call-used variables and
   related disambiguations.

   This file contains functions for disambiguating memory references,
   the so called alias-oracle and tools for walking of the gimple IL.

   The main alias-oracle entry-points are

   bool stmt_may_clobber_ref_p (gimple *, tree)

     This function queries if a statement may invalidate (parts of)
     the memory designated by the reference tree argument.

   bool ref_maybe_used_by_stmt_p (gimple *, tree)

     This function queries if a statement may need (parts of) the
     memory designated by the reference tree argument.

   There are variants of these functions that only handle the call
   part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
   Note that these do not disambiguate against a possible call lhs.

   bool refs_may_alias_p (tree, tree)

     This function tries to disambiguate two reference trees.

   bool ptr_deref_may_alias_global_p (tree)

     This function queries if dereferencing a pointer variable may
     alias global memory.

   More low-level disambiguators are available and documented in
   this file.  Low-level disambiguators dealing with points-to
   information are in tree-ssa-structalias.cc.  */

static int nonoverlapping_refs_since_match_p (tree, tree, tree, tree, bool);
static bool nonoverlapping_component_refs_p (const_tree, const_tree);

/* Query statistics for the different low-level disambiguators.
   A high-level query may trigger multiple of them.  */

static struct {
  unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
  unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
  unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
  unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
  unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
  unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
  unsigned HOST_WIDE_INT aliasing_component_refs_p_may_alias;
  unsigned HOST_WIDE_INT aliasing_component_refs_p_no_alias;
  unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_may_alias;
  unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_no_alias;
  unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_may_alias;
  unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_must_overlap;
  unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_no_alias;
  unsigned HOST_WIDE_INT stmt_kills_ref_p_no;
  unsigned HOST_WIDE_INT stmt_kills_ref_p_yes;
  unsigned HOST_WIDE_INT modref_use_may_alias;
  unsigned HOST_WIDE_INT modref_use_no_alias;
  unsigned HOST_WIDE_INT modref_clobber_may_alias;
  unsigned HOST_WIDE_INT modref_clobber_no_alias;
  unsigned HOST_WIDE_INT modref_kill_no;
  unsigned HOST_WIDE_INT modref_kill_yes;
  unsigned HOST_WIDE_INT modref_tests;
  unsigned HOST_WIDE_INT modref_baseptr_tests;
} alias_stats;

void
dump_alias_stats (FILE *s)
{
  fprintf (s, "\nAlias oracle query stats:\n");
  fprintf (s, "  refs_may_alias_p: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   alias_stats.refs_may_alias_p_no_alias,
	   alias_stats.refs_may_alias_p_no_alias
	   + alias_stats.refs_may_alias_p_may_alias);
  fprintf (s, "  ref_maybe_used_by_call_p: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   alias_stats.ref_maybe_used_by_call_p_no_alias,
	   alias_stats.refs_may_alias_p_no_alias
	   + alias_stats.ref_maybe_used_by_call_p_may_alias);
  fprintf (s, "  call_may_clobber_ref_p: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   alias_stats.call_may_clobber_ref_p_no_alias,
	   alias_stats.call_may_clobber_ref_p_no_alias
	   + alias_stats.call_may_clobber_ref_p_may_alias);
  fprintf (s, "  stmt_kills_ref_p: "
	   HOST_WIDE_INT_PRINT_DEC" kills, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   alias_stats.stmt_kills_ref_p_yes + alias_stats.modref_kill_yes,
	   alias_stats.stmt_kills_ref_p_yes + alias_stats.modref_kill_yes
	   + alias_stats.stmt_kills_ref_p_no + alias_stats.modref_kill_no);
  fprintf (s, "  nonoverlapping_component_refs_p: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   alias_stats.nonoverlapping_component_refs_p_no_alias,
	   alias_stats.nonoverlapping_component_refs_p_no_alias
	   + alias_stats.nonoverlapping_component_refs_p_may_alias);
  fprintf (s, "  nonoverlapping_refs_since_match_p: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" must overlaps, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   alias_stats.nonoverlapping_refs_since_match_p_no_alias,
	   alias_stats.nonoverlapping_refs_since_match_p_must_overlap,
	   alias_stats.nonoverlapping_refs_since_match_p_no_alias
	   + alias_stats.nonoverlapping_refs_since_match_p_may_alias
	   + alias_stats.nonoverlapping_refs_since_match_p_must_overlap);
  fprintf (s, "  aliasing_component_refs_p: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   alias_stats.aliasing_component_refs_p_no_alias,
	   alias_stats.aliasing_component_refs_p_no_alias
	   + alias_stats.aliasing_component_refs_p_may_alias);
  dump_alias_stats_in_alias_c (s);
  fprintf (s, "\nModref stats:\n");
  fprintf (s, "  modref kill: "
	   HOST_WIDE_INT_PRINT_DEC" kills, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   alias_stats.modref_kill_yes,
	   alias_stats.modref_kill_yes
	   + alias_stats.modref_kill_no);
  fprintf (s, "  modref use: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   alias_stats.modref_use_no_alias,
	   alias_stats.modref_use_no_alias
	   + alias_stats.modref_use_may_alias);
  fprintf (s, "  modref clobber: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n"
	   "  " HOST_WIDE_INT_PRINT_DEC" tbaa queries (%f per modref query)\n"
	   "  " HOST_WIDE_INT_PRINT_DEC" base compares (%f per modref query)\n",
	   alias_stats.modref_clobber_no_alias,
	   alias_stats.modref_clobber_no_alias
	   + alias_stats.modref_clobber_may_alias,
	   alias_stats.modref_tests,
	   ((double)alias_stats.modref_tests)
	   / (alias_stats.modref_clobber_no_alias
	      + alias_stats.modref_clobber_may_alias),
	   alias_stats.modref_baseptr_tests,
	   ((double)alias_stats.modref_baseptr_tests)
	   / (alias_stats.modref_clobber_no_alias
	      + alias_stats.modref_clobber_may_alias));
}


/* Return true, if dereferencing PTR may alias with a global variable.  */

bool
ptr_deref_may_alias_global_p (tree ptr)
{
  struct ptr_info_def *pi;

  /* If we end up with a pointer constant here that may point
     to global memory.  */
  if (TREE_CODE (ptr) != SSA_NAME)
    return true;

  pi = SSA_NAME_PTR_INFO (ptr);

  /* If we do not have points-to information for this variable,
     we have to punt.  */
  if (!pi)
    return true;

  /* ???  This does not use TBAA to prune globals ptr may not access.  */
  return pt_solution_includes_global (&pi->pt);
}

/* Return true if dereferencing PTR may alias DECL.
   The caller is responsible for applying TBAA to see if PTR
   may access DECL at all.  */

static bool
ptr_deref_may_alias_decl_p (tree ptr, tree decl)
{
  struct ptr_info_def *pi;

  /* Conversions are irrelevant for points-to information and
     data-dependence analysis can feed us those.  */
  STRIP_NOPS (ptr);

  /* Anything we do not explicilty handle aliases.  */
  if ((TREE_CODE (ptr) != SSA_NAME
       && TREE_CODE (ptr) != ADDR_EXPR
       && TREE_CODE (ptr) != POINTER_PLUS_EXPR)
      || !POINTER_TYPE_P (TREE_TYPE (ptr))
      || (!VAR_P (decl)
	  && TREE_CODE (decl) != PARM_DECL
	  && TREE_CODE (decl) != RESULT_DECL))
    return true;

  /* Disregard pointer offsetting.  */
  if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
    {
      do
	{
	  ptr = TREE_OPERAND (ptr, 0);
	}
      while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
      return ptr_deref_may_alias_decl_p (ptr, decl);
    }

  /* ADDR_EXPR pointers either just offset another pointer or directly
     specify the pointed-to set.  */
  if (TREE_CODE (ptr) == ADDR_EXPR)
    {
      tree base = get_base_address (TREE_OPERAND (ptr, 0));
      if (base
	  && (TREE_CODE (base) == MEM_REF
	      || TREE_CODE (base) == TARGET_MEM_REF))
	ptr = TREE_OPERAND (base, 0);
      else if (base
	       && DECL_P (base))
	return compare_base_decls (base, decl) != 0;
      else if (base
	       && CONSTANT_CLASS_P (base))
	return false;
      else
	return true;
    }

  /* Non-aliased variables cannot be pointed to.  */
  if (!may_be_aliased (decl))
    return false;

  /* If we do not have useful points-to information for this pointer
     we cannot disambiguate anything else.  */
  pi = SSA_NAME_PTR_INFO (ptr);
  if (!pi)
    return true;

  return pt_solution_includes (&pi->pt, decl);
}

/* Return true if dereferenced PTR1 and PTR2 may alias.
   The caller is responsible for applying TBAA to see if accesses
   through PTR1 and PTR2 may conflict at all.  */

bool
ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
{
  struct ptr_info_def *pi1, *pi2;

  /* Conversions are irrelevant for points-to information and
     data-dependence analysis can feed us those.  */
  STRIP_NOPS (ptr1);
  STRIP_NOPS (ptr2);

  /* Disregard pointer offsetting.  */
  if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
    {
      do
	{
	  ptr1 = TREE_OPERAND (ptr1, 0);
	}
      while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
      return ptr_derefs_may_alias_p (ptr1, ptr2);
    }
  if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
    {
      do
	{
	  ptr2 = TREE_OPERAND (ptr2, 0);
	}
      while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
      return ptr_derefs_may_alias_p (ptr1, ptr2);
    }

  /* ADDR_EXPR pointers either just offset another pointer or directly
     specify the pointed-to set.  */
  if (TREE_CODE (ptr1) == ADDR_EXPR)
    {
      tree base = get_base_address (TREE_OPERAND (ptr1, 0));
      if (base
	  && (TREE_CODE (base) == MEM_REF
	      || TREE_CODE (base) == TARGET_MEM_REF))
	return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
      else if (base
	       && DECL_P (base))
	return ptr_deref_may_alias_decl_p (ptr2, base);
      else
	return true;
    }
  if (TREE_CODE (ptr2) == ADDR_EXPR)
    {
      tree base = get_base_address (TREE_OPERAND (ptr2, 0));
      if (base
	  && (TREE_CODE (base) == MEM_REF
	      || TREE_CODE (base) == TARGET_MEM_REF))
	return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
      else if (base
	       && DECL_P (base))
	return ptr_deref_may_alias_decl_p (ptr1, base);
      else
	return true;
    }

  /* From here we require SSA name pointers.  Anything else aliases.  */
  if (TREE_CODE (ptr1) != SSA_NAME
      || TREE_CODE (ptr2) != SSA_NAME
      || !POINTER_TYPE_P (TREE_TYPE (ptr1))
      || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
    return true;

  /* We may end up with two empty points-to solutions for two same pointers.
     In this case we still want to say both pointers alias, so shortcut
     that here.  */
  if (ptr1 == ptr2)
    return true;

  /* If we do not have useful points-to information for either pointer
     we cannot disambiguate anything else.  */
  pi1 = SSA_NAME_PTR_INFO (ptr1);
  pi2 = SSA_NAME_PTR_INFO (ptr2);
  if (!pi1 || !pi2)
    return true;

  /* ???  This does not use TBAA to prune decls from the intersection
     that not both pointers may access.  */
  return pt_solutions_intersect (&pi1->pt, &pi2->pt);
}

/* Return true if dereferencing PTR may alias *REF.
   The caller is responsible for applying TBAA to see if PTR
   may access *REF at all.  */

static bool
ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
{
  tree base = ao_ref_base (ref);

  if (TREE_CODE (base) == MEM_REF
      || TREE_CODE (base) == TARGET_MEM_REF)
    return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
  else if (DECL_P (base))
    return ptr_deref_may_alias_decl_p (ptr, base);

  return true;
}

/* Returns true if PTR1 and PTR2 compare unequal because of points-to.  */

bool
ptrs_compare_unequal (tree ptr1, tree ptr2)
{
  /* First resolve the pointers down to a SSA name pointer base or
     a VAR_DECL, PARM_DECL or RESULT_DECL.  This explicitely does
     not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
     or STRING_CSTs which needs points-to adjustments to track them
     in the points-to sets.  */
  tree obj1 = NULL_TREE;
  tree obj2 = NULL_TREE;
  if (TREE_CODE (ptr1) == ADDR_EXPR)
    {
      tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
      if (! tem)
	return false;
      if (VAR_P (tem)
	  || TREE_CODE (tem) == PARM_DECL
	  || TREE_CODE (tem) == RESULT_DECL)
	obj1 = tem;
      else if (TREE_CODE (tem) == MEM_REF)
	ptr1 = TREE_OPERAND (tem, 0);
    }
  if (TREE_CODE (ptr2) == ADDR_EXPR)
    {
      tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
      if (! tem)
	return false;
      if (VAR_P (tem)
	  || TREE_CODE (tem) == PARM_DECL
	  || TREE_CODE (tem) == RESULT_DECL)
	obj2 = tem;
      else if (TREE_CODE (tem) == MEM_REF)
	ptr2 = TREE_OPERAND (tem, 0);
    }

  /* Canonicalize ptr vs. object.  */
  if (TREE_CODE (ptr1) == SSA_NAME && obj2)
    {
      std::swap (ptr1, ptr2);
      std::swap (obj1, obj2);
    }

  if (obj1 && obj2)
    /* Other code handles this correctly, no need to duplicate it here.  */;
  else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
    {
      struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
      /* We may not use restrict to optimize pointer comparisons.
         See PR71062.  So we have to assume that restrict-pointed-to
	 may be in fact obj1.  */
      if (!pi
	  || pi->pt.vars_contains_restrict
	  || pi->pt.vars_contains_interposable)
	return false;
      if (VAR_P (obj1)
	  && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
	{
	  varpool_node *node = varpool_node::get (obj1);
	  /* If obj1 may bind to NULL give up (see below).  */
	  if (! node
	      || ! node->nonzero_address ()
	      || ! decl_binds_to_current_def_p (obj1))
	    return false;
	}
      return !pt_solution_includes (&pi->pt, obj1);
    }

  /* ???  We'd like to handle ptr1 != NULL and ptr1 != ptr2
     but those require pt.null to be conservatively correct.  */

  return false;
}

/* Returns whether reference REF to BASE may refer to global memory.  */

static bool
ref_may_alias_global_p_1 (tree base)
{
  if (DECL_P (base))
    return is_global_var (base);
  else if (TREE_CODE (base) == MEM_REF
	   || TREE_CODE (base) == TARGET_MEM_REF)
    return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
  return true;
}

bool
ref_may_alias_global_p (ao_ref *ref)
{
  tree base = ao_ref_base (ref);
  return ref_may_alias_global_p_1 (base);
}

bool
ref_may_alias_global_p (tree ref)
{
  tree base = get_base_address (ref);
  return ref_may_alias_global_p_1 (base);
}

/* Return true whether STMT may clobber global memory.  */

bool
stmt_may_clobber_global_p (gimple *stmt)
{
  tree lhs;

  if (!gimple_vdef (stmt))
    return false;

  /* ???  We can ask the oracle whether an artificial pointer
     dereference with a pointer with points-to information covering
     all global memory (what about non-address taken memory?) maybe
     clobbered by this call.  As there is at the moment no convenient
     way of doing that without generating garbage do some manual
     checking instead.
     ???  We could make a NULL ao_ref argument to the various
     predicates special, meaning any global memory.  */

  switch (gimple_code (stmt))
    {
    case GIMPLE_ASSIGN:
      lhs = gimple_assign_lhs (stmt);
      return (TREE_CODE (lhs) != SSA_NAME
	      && ref_may_alias_global_p (lhs));
    case GIMPLE_CALL:
      return true;
    default:
      return true;
    }
}


/* Dump alias information on FILE.  */

void
dump_alias_info (FILE *file)
{
  unsigned i;
  tree ptr;
  const char *funcname
    = lang_hooks.decl_printable_name (current_function_decl, 2);
  tree var;

  fprintf (file, "\n\nAlias information for %s\n\n", funcname);

  fprintf (file, "Aliased symbols\n\n");

  FOR_EACH_LOCAL_DECL (cfun, i, var)
    {
      if (may_be_aliased (var))
	dump_variable (file, var);
    }

  fprintf (file, "\nCall clobber information\n");

  fprintf (file, "\nESCAPED");
  dump_points_to_solution (file, &cfun->gimple_df->escaped);

  fprintf (file, "\n\nFlow-insensitive points-to information\n\n");

  FOR_EACH_SSA_NAME (i, ptr, cfun)
    {
      struct ptr_info_def *pi;

      if (!POINTER_TYPE_P (TREE_TYPE (ptr))
	  || SSA_NAME_IN_FREE_LIST (ptr))
	continue;

      pi = SSA_NAME_PTR_INFO (ptr);
      if (pi)
	dump_points_to_info_for (file, ptr);
    }

  fprintf (file, "\n");
}


/* Dump alias information on stderr.  */

DEBUG_FUNCTION void
debug_alias_info (void)
{
  dump_alias_info (stderr);
}


/* Dump the points-to set *PT into FILE.  */

void
dump_points_to_solution (FILE *file, struct pt_solution *pt)
{
  if (pt->anything)
    fprintf (file, ", points-to anything");

  if (pt->nonlocal)
    fprintf (file, ", points-to non-local");

  if (pt->escaped)
    fprintf (file, ", points-to escaped");

  if (pt->ipa_escaped)
    fprintf (file, ", points-to unit escaped");

  if (pt->null)
    fprintf (file, ", points-to NULL");

  if (pt->vars)
    {
      fprintf (file, ", points-to vars: ");
      dump_decl_set (file, pt->vars);
      if (pt->vars_contains_nonlocal
	  || pt->vars_contains_escaped
	  || pt->vars_contains_escaped_heap
	  || pt->vars_contains_restrict)
	{
	  const char *comma = "";
	  fprintf (file, " (");
	  if (pt->vars_contains_nonlocal)
	    {
	      fprintf (file, "nonlocal");
	      comma = ", ";
	    }
	  if (pt->vars_contains_escaped)
	    {
	      fprintf (file, "%sescaped", comma);
	      comma = ", ";
	    }
	  if (pt->vars_contains_escaped_heap)
	    {
	      fprintf (file, "%sescaped heap", comma);
	      comma = ", ";
	    }
	  if (pt->vars_contains_restrict)
	    {
	      fprintf (file, "%srestrict", comma);
	      comma = ", ";
	    }
	  if (pt->vars_contains_interposable)
	    fprintf (file, "%sinterposable", comma);
	  fprintf (file, ")");
	}
    }
}


/* Unified dump function for pt_solution.  */

DEBUG_FUNCTION void
debug (pt_solution &ref)
{
  dump_points_to_solution (stderr, &ref);
}

DEBUG_FUNCTION void
debug (pt_solution *ptr)
{
  if (ptr)
    debug (*ptr);
  else
    fprintf (stderr, "<nil>\n");
}


/* Dump points-to information for SSA_NAME PTR into FILE.  */

void
dump_points_to_info_for (FILE *file, tree ptr)
{
  struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);

  print_generic_expr (file, ptr, dump_flags);

  if (pi)
    dump_points_to_solution (file, &pi->pt);
  else
    fprintf (file, ", points-to anything");

  fprintf (file, "\n");
}


/* Dump points-to information for VAR into stderr.  */

DEBUG_FUNCTION void
debug_points_to_info_for (tree var)
{
  dump_points_to_info_for (stderr, var);
}


/* Initializes the alias-oracle reference representation *R from REF.  */

void
ao_ref_init (ao_ref *r, tree ref)
{
  r->ref = ref;
  r->base = NULL_TREE;
  r->offset = 0;
  r->size = -1;
  r->max_size = -1;
  r->ref_alias_set = -1;
  r->base_alias_set = -1;
  r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
}

/* Returns the base object of the memory reference *REF.  */

tree
ao_ref_base (ao_ref *ref)
{
  bool reverse;

  if (ref->base)
    return ref->base;
  ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size,
				       &ref->max_size, &reverse);
  return ref->base;
}

/* Returns the base object alias set of the memory reference *REF.  */

alias_set_type
ao_ref_base_alias_set (ao_ref *ref)
{
  tree base_ref;
  if (ref->base_alias_set != -1)
    return ref->base_alias_set;
  if (!ref->ref)
    return 0;
  base_ref = ref->ref;
  if (TREE_CODE (base_ref) == WITH_SIZE_EXPR)
    base_ref = TREE_OPERAND (base_ref, 0);
  while (handled_component_p (base_ref))
    base_ref = TREE_OPERAND (base_ref, 0);
  ref->base_alias_set = get_alias_set (base_ref);
  return ref->base_alias_set;
}

/* Returns the reference alias set of the memory reference *REF.  */

alias_set_type
ao_ref_alias_set (ao_ref *ref)
{
  if (ref->ref_alias_set != -1)
    return ref->ref_alias_set;
  if (!ref->ref)
    return 0;
  ref->ref_alias_set = get_alias_set (ref->ref);
  return ref->ref_alias_set;
}

/* Returns a type satisfying
   get_deref_alias_set (type) == ao_ref_base_alias_set (REF).  */

tree
ao_ref_base_alias_ptr_type (ao_ref *ref)
{
  tree base_ref;

  if (!ref->ref)
    return NULL_TREE;
  base_ref = ref->ref;
  if (TREE_CODE (base_ref) == WITH_SIZE_EXPR)
    base_ref = TREE_OPERAND (base_ref, 0);
  while (handled_component_p (base_ref))
    base_ref = TREE_OPERAND (base_ref, 0);
  tree ret = reference_alias_ptr_type (base_ref);
  return ret;
}

/* Returns a type satisfying
   get_deref_alias_set (type) == ao_ref_alias_set (REF).  */

tree
ao_ref_alias_ptr_type (ao_ref *ref)
{
  if (!ref->ref)
    return NULL_TREE;
  tree ret = reference_alias_ptr_type (ref->ref);
  return ret;
}


/* Init an alias-oracle reference representation from a gimple pointer
   PTR a range specified by OFFSET, SIZE and MAX_SIZE under the assumption
   that RANGE_KNOWN is set.

   The access is assumed to be only to or after of the pointer target adjusted
   by the offset, not before it (even in the case RANGE_KNOWN is false).  */

void
ao_ref_init_from_ptr_and_range (ao_ref *ref, tree ptr,
				bool range_known,
				poly_int64 offset,
				poly_int64 size,
				poly_int64 max_size)
{
  poly_int64 t, extra_offset = 0;

  ref->ref = NULL_TREE;
  if (TREE_CODE (ptr) == SSA_NAME)
    {
      gimple *stmt = SSA_NAME_DEF_STMT (ptr);
      if (gimple_assign_single_p (stmt)
	  && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
	ptr = gimple_assign_rhs1 (stmt);
      else if (is_gimple_assign (stmt)
	       && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
	       && ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
	{
	  ptr = gimple_assign_rhs1 (stmt);
	  extra_offset *= BITS_PER_UNIT;
	}
    }

  if (TREE_CODE (ptr) == ADDR_EXPR)
    {
      ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
      if (ref->base)
	ref->offset = BITS_PER_UNIT * t;
      else
	{
	  range_known = false;
	  ref->offset = 0;
	  ref->base = get_base_address (TREE_OPERAND (ptr, 0));
	}
    }
  else
    {
      gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
      ref->base = build2 (MEM_REF, char_type_node,
			  ptr, null_pointer_node);
      ref->offset = 0;
    }
  ref->offset += extra_offset + offset;
  if (range_known)
    {
      ref->max_size = max_size;
      ref->size = size;
    }
  else
    ref->max_size = ref->size = -1;
  ref->ref_alias_set = 0;
  ref->base_alias_set = 0;
  ref->volatile_p = false;
}

/* Init an alias-oracle reference representation from a gimple pointer
   PTR and a gimple size SIZE in bytes.  If SIZE is NULL_TREE then the
   size is assumed to be unknown.  The access is assumed to be only
   to or after of the pointer target, not before it.  */

void
ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
{
  poly_int64 size_hwi;
  if (size
      && poly_int_tree_p (size, &size_hwi)
      && coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
    {
      size_hwi = size_hwi * BITS_PER_UNIT;
      ao_ref_init_from_ptr_and_range (ref, ptr, true, 0, size_hwi, size_hwi);
    }
  else
    ao_ref_init_from_ptr_and_range (ref, ptr, false, 0, -1, -1);
}

/* S1 and S2 are TYPE_SIZE or DECL_SIZE.  Compare them:
   Return -1 if S1 < S2
   Return 1 if S1 > S2
   Return 0 if equal or incomparable.  */

static int
compare_sizes (tree s1, tree s2)
{
  if (!s1 || !s2)
    return 0;

  poly_uint64 size1;
  poly_uint64 size2;

  if (!poly_int_tree_p (s1, &size1) || !poly_int_tree_p (s2, &size2))
    return 0;
  if (known_lt (size1, size2))
    return -1;
  if (known_lt (size2, size1))
    return 1;
  return 0;
}

/* Compare TYPE1 and TYPE2 by its size.
   Return -1 if size of TYPE1 < size of TYPE2
   Return 1 if size of TYPE1 > size of TYPE2
   Return 0 if types are of equal sizes or we can not compare them.  */

static int
compare_type_sizes (tree type1, tree type2)
{
  /* Be conservative for arrays and vectors.  We want to support partial
     overlap on int[3] and int[3] as tested in gcc.dg/torture/alias-2.c.  */
  while (TREE_CODE (type1) == ARRAY_TYPE
	 || TREE_CODE (type1) == VECTOR_TYPE)
    type1 = TREE_TYPE (type1);
  while (TREE_CODE (type2) == ARRAY_TYPE
	 || TREE_CODE (type2) == VECTOR_TYPE)
    type2 = TREE_TYPE (type2);
  return compare_sizes (TYPE_SIZE (type1), TYPE_SIZE (type2));
}

/* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
   purpose of TBAA.  Return 0 if they are distinct and -1 if we cannot
   decide.  */

static inline int
same_type_for_tbaa (tree type1, tree type2)
{
  type1 = TYPE_MAIN_VARIANT (type1);
  type2 = TYPE_MAIN_VARIANT (type2);

  /* Handle the most common case first.  */
  if (type1 == type2)
    return 1;

  /* If we would have to do structural comparison bail out.  */
  if (TYPE_STRUCTURAL_EQUALITY_P (type1)
      || TYPE_STRUCTURAL_EQUALITY_P (type2))
    return -1;

  /* Compare the canonical types.  */
  if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
    return 1;

  /* ??? Array types are not properly unified in all cases as we have
     spurious changes in the index types for example.  Removing this
     causes all sorts of problems with the Fortran frontend.  */
  if (TREE_CODE (type1) == ARRAY_TYPE
      && TREE_CODE (type2) == ARRAY_TYPE)
    return -1;

  /* ??? In Ada, an lvalue of an unconstrained type can be used to access an
     object of one of its constrained subtypes, e.g. when a function with an
     unconstrained parameter passed by reference is called on an object and
     inlined.  But, even in the case of a fixed size, type and subtypes are
     not equivalent enough as to share the same TYPE_CANONICAL, since this
     would mean that conversions between them are useless, whereas they are
     not (e.g. type and subtypes can have different modes).  So, in the end,
     they are only guaranteed to have the same alias set.  */
  alias_set_type set1 = get_alias_set (type1);
  alias_set_type set2 = get_alias_set (type2);
  if (set1 == set2)
    return -1;

  /* Pointers to void are considered compatible with all other pointers,
     so for two pointers see what the alias set resolution thinks.  */
  if (POINTER_TYPE_P (type1)
      && POINTER_TYPE_P (type2)
      && alias_sets_conflict_p (set1, set2))
    return -1;

  /* The types are known to be not equal.  */
  return 0;
}

/* Return true if TYPE is a composite type (i.e. we may apply one of handled
   components on it).  */

static bool
type_has_components_p (tree type)
{
  return AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)
	 || TREE_CODE (type) == COMPLEX_TYPE;
}

/* MATCH1 and MATCH2 which are part of access path of REF1 and REF2
   respectively are either pointing to same address or are completely
   disjoint. If PARTIAL_OVERLAP is true, assume that outermost arrays may
   just partly overlap.

   Try to disambiguate using the access path starting from the match
   and return false if there is no conflict.

   Helper for aliasing_component_refs_p.  */

static bool
aliasing_matching_component_refs_p (tree match1, tree ref1,
				    poly_int64 offset1, poly_int64 max_size1,
				    tree match2, tree ref2,
				    poly_int64 offset2, poly_int64 max_size2,
				    bool partial_overlap)
{
  poly_int64 offadj, sztmp, msztmp;
  bool reverse;

  if (!partial_overlap)
    {
      get_ref_base_and_extent (match2, &offadj, &sztmp, &msztmp, &reverse);
      offset2 -= offadj;
      get_ref_base_and_extent (match1, &offadj, &sztmp, &msztmp, &reverse);
      offset1 -= offadj;
      if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
	{
	  ++alias_stats.aliasing_component_refs_p_no_alias;
	  return false;
	}
    }

  int cmp = nonoverlapping_refs_since_match_p (match1, ref1, match2, ref2,
					       partial_overlap);
  if (cmp == 1
      || (cmp == -1 && nonoverlapping_component_refs_p (ref1, ref2)))
    {
      ++alias_stats.aliasing_component_refs_p_no_alias;
      return false;
    }
  ++alias_stats.aliasing_component_refs_p_may_alias;
  return true;
}

/* Return true if REF is reference to zero sized trailing array. I.e.
   struct foo {int bar; int array[0];} *fooptr;
   fooptr->array.  */

static bool
component_ref_to_zero_sized_trailing_array_p (tree ref)
{
  return (TREE_CODE (ref) == COMPONENT_REF
	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE
	  && (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (ref, 1)))
	      || integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (ref, 1)))))
	  && array_at_struct_end_p (ref));
}

/* Worker for aliasing_component_refs_p. Most parameters match parameters of
   aliasing_component_refs_p.

   Walk access path REF2 and try to find type matching TYPE1
   (which is a start of possibly aliasing access path REF1).
   If match is found, try to disambiguate.

   Return 0 for sucessful disambiguation.
   Return 1 if match was found but disambiguation failed
   Return -1 if there is no match.
   In this case MAYBE_MATCH is set to 0 if there is no type matching TYPE1
   in access patch REF2 and -1 if we are not sure.  */

static int
aliasing_component_refs_walk (tree ref1, tree type1, tree base1,
			      poly_int64 offset1, poly_int64 max_size1,
			      tree end_struct_ref1,
			      tree ref2, tree base2,
			      poly_int64 offset2, poly_int64 max_size2,
			      bool *maybe_match)
{
  tree ref = ref2;
  int same_p = 0;

  while (true)
    {
      /* We walk from inner type to the outer types. If type we see is
	 already too large to be part of type1, terminate the search.  */
      int cmp = compare_type_sizes (type1, TREE_TYPE (ref));

      if (cmp < 0
	  && (!end_struct_ref1
	      || compare_type_sizes (TREE_TYPE (end_struct_ref1),
				     TREE_TYPE (ref)) < 0))
	break;
      /* If types may be of same size, see if we can decide about their
	 equality.  */
      if (cmp == 0)
	{
	  same_p = same_type_for_tbaa (TREE_TYPE (ref), type1);
	  if (same_p == 1)
	    break;
	  /* In case we can't decide whether types are same try to
	     continue looking for the exact match.
	     Remember however that we possibly saw a match
	     to bypass the access path continuations tests we do later.  */
	  if (same_p == -1)
	    *maybe_match = true;
	}
      if (!handled_component_p (ref))
	break;
      ref = TREE_OPERAND (ref, 0);
    }
  if (same_p == 1)
    {
      bool partial_overlap = false;

      /* We assume that arrays can overlap by multiple of their elements
	 size as tested in gcc.dg/torture/alias-2.c.
	 This partial overlap happen only when both arrays are bases of
	 the access and not contained within another component ref.
	 To be safe we also assume partial overlap for VLAs. */
      if (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
	  && (!TYPE_SIZE (TREE_TYPE (base1))
	      || TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) != INTEGER_CST
	      || ref == base2))
	{
	  /* Setting maybe_match to true triggers
	     nonoverlapping_component_refs_p test later that still may do
	     useful disambiguation.  */
	  *maybe_match = true;
	  partial_overlap = true;
	}
      return aliasing_matching_component_refs_p (base1, ref1,
						 offset1, max_size1,
						 ref, ref2,
						 offset2, max_size2,
						 partial_overlap);
    }
  return -1;
}

/* Consider access path1 base1....ref1 and access path2 base2...ref2.
   Return true if they can be composed to single access path
   base1...ref1...base2...ref2.

   REF_TYPE1 if type of REF1.  END_STRUCT_PAST_END1 is true if there is
   a trailing array access after REF1 in the non-TBAA part of the access.
   REF1_ALIAS_SET is the alias set of REF1.

   BASE_TYPE2 is type of base2.  END_STRUCT_REF2 is non-NULL if there is
   a trailing array access in the TBAA part of access path2.
   BASE2_ALIAS_SET is the alias set of base2.  */

bool
access_path_may_continue_p (tree ref_type1, bool end_struct_past_end1,
			    alias_set_type ref1_alias_set,
			    tree base_type2, tree end_struct_ref2,
			    alias_set_type base2_alias_set)
{
  /* Access path can not continue past types with no components.  */
  if (!type_has_components_p (ref_type1))
    return false;

  /* If first access path ends by too small type to hold base of
     the second access path, typically paths can not continue.

     Punt if end_struct_past_end1 is true.  We want to support arbitrary
     type puning past first COMPONENT_REF to union because redundant store
     elimination depends on this, see PR92152.  For this reason we can not
     check size of the reference because types may partially overlap.  */
  if (!end_struct_past_end1)
    {
      if (compare_type_sizes (ref_type1, base_type2) < 0)
	return false;
      /* If the path2 contains trailing array access we can strenghten the check
	 to verify that also the size of element of the trailing array fits.
	 In fact we could check for offset + type_size, but we do not track
	 offsets and this is quite side case.  */
      if (end_struct_ref2
	  && compare_type_sizes (ref_type1, TREE_TYPE (end_struct_ref2)) < 0)
	return false;
    }
  return (base2_alias_set == ref1_alias_set
	  || alias_set_subset_of (base2_alias_set, ref1_alias_set));
}

/* Determine if the two component references REF1 and REF2 which are
   based on access types TYPE1 and TYPE2 and of which at least one is based
   on an indirect reference may alias.  
   REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
   are the respective alias sets.  */

static bool
aliasing_component_refs_p (tree ref1,
			   alias_set_type ref1_alias_set,
			   alias_set_type base1_alias_set,
			   poly_int64 offset1, poly_int64 max_size1,
			   tree ref2,
			   alias_set_type ref2_alias_set,
			   alias_set_type base2_alias_set,
			   poly_int64 offset2, poly_int64 max_size2)
{
  /* If one reference is a component references through pointers try to find a
     common base and apply offset based disambiguation.  This handles
     for example
       struct A { int i; int j; } *q;
       struct B { struct A a; int k; } *p;
     disambiguating q->i and p->a.j.  */
  tree base1, base2;
  tree type1, type2;
  bool maybe_match = false;
  tree end_struct_ref1 = NULL, end_struct_ref2 = NULL;
  bool end_struct_past_end1 = false;
  bool end_struct_past_end2 = false;

  /* Choose bases and base types to search for.
     The access path is as follows:
       base....end_of_tbaa_ref...actual_ref
     At one place in the access path may be a reference to zero sized or
     trailing array.

     We generally discard the segment after end_of_tbaa_ref however
     we need to be careful in case it contains zero sized or trailing array.
     These may happen after reference to union and in this case we need to
     not disambiguate type puning scenarios.

     We set:
	base1 to point to base

	ref1 to point to end_of_tbaa_ref

	end_struct_ref1 to point the trailing reference (if it exists
 	in range base....end_of_tbaa_ref

	end_struct_past_end1 is true if this trailing reference occurs in
	end_of_tbaa_ref...actual_ref.  */
  base1 = ref1;
  while (handled_component_p (base1))
    {
      /* Generally access paths are monotous in the size of object. The
	 exception are trailing arrays of structures. I.e.
	   struct a {int array[0];};
	 or
	   struct a {int array1[0]; int array[];};
	 Such struct has size 0 but accesses to a.array may have non-zero size.
	 In this case the size of TREE_TYPE (base1) is smaller than
	 size of TREE_TYPE (TREE_OPERAND (base1, 0)).

	 Because we compare sizes of arrays just by sizes of their elements,
	 we only need to care about zero sized array fields here.  */
      if (component_ref_to_zero_sized_trailing_array_p (base1))
	{
	  gcc_checking_assert (!end_struct_ref1);
          end_struct_ref1 = base1;
	}
      if (ends_tbaa_access_path_p (base1))
	{
	  ref1 = TREE_OPERAND (base1, 0);
	  if (end_struct_ref1)
	    {
	      end_struct_past_end1 = true;
	      end_struct_ref1 = NULL;
	    }
	}
      base1 = TREE_OPERAND (base1, 0);
    }
  type1 = TREE_TYPE (base1);
  base2 = ref2;
  while (handled_component_p (base2))
    {
      if (component_ref_to_zero_sized_trailing_array_p (base2))
	{
	  gcc_checking_assert (!end_struct_ref2);
	  end_struct_ref2 = base2;
	}
      if (ends_tbaa_access_path_p (base2))
	{
	  ref2 = TREE_OPERAND (base2, 0);
	  if (end_struct_ref2)
	    {
	      end_struct_past_end2 = true;
	      end_struct_ref2 = NULL;
	    }
	}
      base2 = TREE_OPERAND (base2, 0);
    }
  type2 = TREE_TYPE (base2);

  /* Now search for the type1 in the access path of ref2.  This
     would be a common base for doing offset based disambiguation on.
     This however only makes sense if type2 is big enough to hold type1.  */
  int cmp_outer = compare_type_sizes (type2, type1);

  /* If type2 is big enough to contain type1 walk its access path.
     We also need to care of arrays at the end of structs that may extend
     beyond the end of structure.  If this occurs in the TBAA part of the
     access path, we need to consider the increased type as well.  */
  if (cmp_outer >= 0
      || (end_struct_ref2
	  && compare_type_sizes (TREE_TYPE (end_struct_ref2), type1) >= 0))
    {
      int res = aliasing_component_refs_walk (ref1, type1, base1,
					      offset1, max_size1,
					      end_struct_ref1,
					      ref2, base2, offset2, max_size2,
					      &maybe_match);
      if (res != -1)
	return res;
    }

  /* If we didn't find a common base, try the other way around.  */
  if (cmp_outer <= 0 
      || (end_struct_ref1
	  && compare_type_sizes (TREE_TYPE (end_struct_ref1), type1) <= 0))
    {
      int res = aliasing_component_refs_walk (ref2, type2, base2,
					      offset2, max_size2,
					      end_struct_ref2,
					      ref1, base1, offset1, max_size1,
					      &maybe_match);
      if (res != -1)
	return res;
    }

  /* In the following code we make an assumption that the types in access
     paths do not overlap and thus accesses alias only if one path can be
     continuation of another.  If we was not able to decide about equivalence,
     we need to give up.  */
  if (maybe_match)
    {
      if (!nonoverlapping_component_refs_p (ref1, ref2))
	{
	  ++alias_stats.aliasing_component_refs_p_may_alias;
	  return true;
	}
      ++alias_stats.aliasing_component_refs_p_no_alias;
      return false;
    }

  if (access_path_may_continue_p (TREE_TYPE (ref1), end_struct_past_end1,
				  ref1_alias_set,
				  type2, end_struct_ref2,
				  base2_alias_set)
      || access_path_may_continue_p (TREE_TYPE (ref2), end_struct_past_end2,
				     ref2_alias_set,
				     type1, end_struct_ref1,
				     base1_alias_set))
    {
      ++alias_stats.aliasing_component_refs_p_may_alias;
      return true;
    }
  ++alias_stats.aliasing_component_refs_p_no_alias;
  return false;
}

/* FIELD1 and FIELD2 are two fields of component refs.  We assume
   that bases of both component refs are either equivalent or nonoverlapping.
   We do not assume that the containers of FIELD1 and FIELD2 are of the
   same type or size.

   Return 0 in case the base address of component_refs are same then 
   FIELD1 and FIELD2 have same address. Note that FIELD1 and FIELD2
   may not be of same type or size.

   Return 1 if FIELD1 and FIELD2 are non-overlapping.

   Return -1 otherwise.

   Main difference between 0 and -1 is to let
   nonoverlapping_component_refs_since_match_p discover the semantically
   equivalent part of the access path.

   Note that this function is used even with -fno-strict-aliasing
   and makes use of no TBAA assumptions.  */

static int
nonoverlapping_component_refs_p_1 (const_tree field1, const_tree field2)
{
  /* If both fields are of the same type, we could save hard work of
     comparing offsets.  */
  tree type1 = DECL_CONTEXT (field1);
  tree type2 = DECL_CONTEXT (field2);

  if (TREE_CODE (type1) == RECORD_TYPE
      && DECL_BIT_FIELD_REPRESENTATIVE (field1))
    field1 = DECL_BIT_FIELD_REPRESENTATIVE (field1);
  if (TREE_CODE (type2) == RECORD_TYPE
      && DECL_BIT_FIELD_REPRESENTATIVE (field2))
    field2 = DECL_BIT_FIELD_REPRESENTATIVE (field2);

  /* ??? Bitfields can overlap at RTL level so punt on them.
     FIXME: RTL expansion should be fixed by adjusting the access path
     when producing MEM_ATTRs for MEMs which are wider than 
     the bitfields similarly as done in set_mem_attrs_minus_bitpos.  */
  if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
    return -1;

  /* Assume that different FIELD_DECLs never overlap within a RECORD_TYPE.  */
  if (type1 == type2 && TREE_CODE (type1) == RECORD_TYPE)
    return field1 != field2;

  /* In common case the offsets and bit offsets will be the same.
     However if frontends do not agree on the alignment, they may be
     different even if they actually represent same address.
     Try the common case first and if that fails calcualte the
     actual bit offset.  */
  if (tree_int_cst_equal (DECL_FIELD_OFFSET (field1),
			  DECL_FIELD_OFFSET (field2))
      && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (field1),
			     DECL_FIELD_BIT_OFFSET (field2)))
    return 0;

  /* Note that it may be possible to use component_ref_field_offset
     which would provide offsets as trees. However constructing and folding
     trees is expensive and does not seem to be worth the compile time
     cost.  */

  poly_uint64 offset1, offset2;
  poly_uint64 bit_offset1, bit_offset2;

  if (poly_int_tree_p (DECL_FIELD_OFFSET (field1), &offset1)
      && poly_int_tree_p (DECL_FIELD_OFFSET (field2), &offset2)
      && poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field1), &bit_offset1)
      && poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field2), &bit_offset2))
    {
      offset1 = (offset1 << LOG2_BITS_PER_UNIT) + bit_offset1;
      offset2 = (offset2 << LOG2_BITS_PER_UNIT) + bit_offset2;

      if (known_eq (offset1, offset2))
	return 0;

      poly_uint64 size1, size2;

      if (poly_int_tree_p (DECL_SIZE (field1), &size1)
	  && poly_int_tree_p (DECL_SIZE (field2), &size2)
	  && !ranges_maybe_overlap_p (offset1, size1, offset2, size2))
	return 1;
    }
  /* Resort to slower overlap checking by looking for matching types in
     the middle of access path.  */
  return -1;
}

/* Return low bound of array. Do not produce new trees
   and thus do not care about particular type of integer constant
   and placeholder exprs.  */

static tree
cheap_array_ref_low_bound (tree ref)
{
  tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));

  /* Avoid expensive array_ref_low_bound.
     low bound is either stored in operand2, or it is TYPE_MIN_VALUE of domain
     type or it is zero.  */
  if (TREE_OPERAND (ref, 2))
    return TREE_OPERAND (ref, 2);
  else if (domain_type && TYPE_MIN_VALUE (domain_type))
    return TYPE_MIN_VALUE (domain_type);
  else
    return integer_zero_node;
}

/* REF1 and REF2 are ARRAY_REFs with either same base address or which are
   completely disjoint.

   Return 1 if the refs are non-overlapping.
   Return 0 if they are possibly overlapping but if so the overlap again
   starts on the same address.
   Return -1 otherwise.  */

int
nonoverlapping_array_refs_p (tree ref1, tree ref2)
{
  tree index1 = TREE_OPERAND (ref1, 1);
  tree index2 = TREE_OPERAND (ref2, 1);
  tree low_bound1 = cheap_array_ref_low_bound (ref1);
  tree low_bound2 = cheap_array_ref_low_bound (ref2);

  /* Handle zero offsets first: we do not need to match type size in this
     case.  */
  if (operand_equal_p (index1, low_bound1, 0)
      && operand_equal_p (index2, low_bound2, 0))
    return 0;

  /* If type sizes are different, give up.

     Avoid expensive array_ref_element_size.
     If operand 3 is present it denotes size in the alignmnet units.
     Otherwise size is TYPE_SIZE of the element type.
     Handle only common cases where types are of the same "kind".  */
  if ((TREE_OPERAND (ref1, 3) == NULL) != (TREE_OPERAND (ref2, 3) == NULL))
    return -1;

  tree elmt_type1 = TREE_TYPE (TREE_TYPE (TREE_OPERAND (ref1, 0)));
  tree elmt_type2 = TREE_TYPE (TREE_TYPE (TREE_OPERAND (ref2, 0)));

  if (TREE_OPERAND (ref1, 3))
    {
      if (TYPE_ALIGN (elmt_type1) != TYPE_ALIGN (elmt_type2)
	  || !operand_equal_p (TREE_OPERAND (ref1, 3),
			       TREE_OPERAND (ref2, 3), 0))
	return -1;
    }
  else
    {
      if (!operand_equal_p (TYPE_SIZE_UNIT (elmt_type1),
			    TYPE_SIZE_UNIT (elmt_type2), 0))
	return -1;
    }

  /* Since we know that type sizes are the same, there is no need to return
     -1 after this point. Partial overlap can not be introduced.  */

  /* We may need to fold trees in this case.
     TODO: Handle integer constant case at least.  */
  if (!operand_equal_p (low_bound1, low_bound2, 0))
    return 0;

  if (TREE_CODE (index1) == INTEGER_CST && TREE_CODE (index2) == INTEGER_CST)
    {
      if (tree_int_cst_equal (index1, index2))
	return 0;
      return 1;
    }
  /* TODO: We can use VRP to further disambiguate here. */
  return 0;
}

/* Try to disambiguate REF1 and REF2 under the assumption that MATCH1 and
   MATCH2 either point to the same address or are disjoint.
   MATCH1 and MATCH2 are assumed to be ref in the access path of REF1 and REF2
   respectively or NULL in the case we established equivalence of bases.
   If PARTIAL_OVERLAP is true assume that the toplevel arrays may actually
   overlap by exact multiply of their element size.

   This test works by matching the initial segment of the access path
   and does not rely on TBAA thus is safe for !flag_strict_aliasing if
   match was determined without use of TBAA oracle.

   Return 1 if we can determine that component references REF1 and REF2,
   that are within a common DECL, cannot overlap.

   Return 0 if paths are same and thus there is nothing to disambiguate more
   (i.e. there is must alias assuming there is must alias between MATCH1 and
   MATCH2)

   Return -1 if we can not determine 0 or 1 - this happens when we met
   non-matching types was met in the path.
   In this case it may make sense to continue by other disambiguation
   oracles.  */

static int
nonoverlapping_refs_since_match_p (tree match1, tree ref1,
				   tree match2, tree ref2,
				   bool partial_overlap)
{
  int ntbaa1 = 0, ntbaa2 = 0;
  /* Early return if there are no references to match, we do not need
     to walk the access paths.

     Do not consider this as may-alias for stats - it is more useful
     to have information how many disambiguations happened provided that
     the query was meaningful.  */

  if (match1 == ref1 || !handled_component_p (ref1)
      || match2 == ref2 || !handled_component_p (ref2))
    return -1;

  auto_vec<tree, 16> component_refs1;
  auto_vec<tree, 16> component_refs2;

  /* Create the stack of handled components for REF1.  */
  while (handled_component_p (ref1) && ref1 != match1)
    {
      /* We use TBAA only to re-synchronize after mismatched refs.  So we
	 do not need to truncate access path after TBAA part ends.  */
      if (ends_tbaa_access_path_p (ref1))
	ntbaa1 = 0;
      else
	ntbaa1++;
      component_refs1.safe_push (ref1);
      ref1 = TREE_OPERAND (ref1, 0);
    }

  /* Create the stack of handled components for REF2.  */
  while (handled_component_p (ref2) && ref2 != match2)
    {
      if (ends_tbaa_access_path_p (ref2))
	ntbaa2 = 0;
      else
	ntbaa2++;
      component_refs2.safe_push (ref2);
      ref2 = TREE_OPERAND (ref2, 0);
    }

  if (!flag_strict_aliasing)
    {
      ntbaa1 = 0;
      ntbaa2 = 0;
    }

  bool mem_ref1 = TREE_CODE (ref1) == MEM_REF && ref1 != match1;
  bool mem_ref2 = TREE_CODE (ref2) == MEM_REF && ref2 != match2;

  /* If only one of access path starts with MEM_REF check that offset is 0
     so the addresses stays the same after stripping it.
     TODO: In this case we may walk the other access path until we get same
     offset.

     If both starts with MEM_REF, offset has to be same.  */
  if ((mem_ref1 && !mem_ref2 && !integer_zerop (TREE_OPERAND (ref1, 1)))
      || (mem_ref2 && !mem_ref1 && !integer_zerop (TREE_OPERAND (ref2, 1)))
      || (mem_ref1 && mem_ref2
	  && !tree_int_cst_equal (TREE_OPERAND (ref1, 1),
				  TREE_OPERAND (ref2, 1))))
    {
      ++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
      return -1;
    }

  /* TARGET_MEM_REF are never wrapped in handled components, so we do not need
     to handle them here at all.  */
  gcc_checking_assert (TREE_CODE (ref1) != TARGET_MEM_REF
		       && TREE_CODE (ref2) != TARGET_MEM_REF);

  /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
     rank.  This is sufficient because we start from the same DECL and you
     cannot reference several fields at a time with COMPONENT_REFs (unlike
     with ARRAY_RANGE_REFs for arrays) so you always need the same number
     of them to access a sub-component, unless you're in a union, in which
     case the return value will precisely be false.  */
  while (true)
    {
      /* Track if we seen unmatched ref with non-zero offset.  In this case
	 we must look for partial overlaps.  */
      bool seen_unmatched_ref_p = false;

      /* First match ARRAY_REFs an try to disambiguate.  */
      if (!component_refs1.is_empty ()
	  && !component_refs2.is_empty ())
	{
	  unsigned int narray_refs1=0, narray_refs2=0;

	  /* We generally assume that both access paths starts by same sequence
	     of refs.  However if number of array refs is not in sync, try
	     to recover and pop elts until number match.  This helps the case
	     where one access path starts by array and other by element.  */
	  for (narray_refs1 = 0; narray_refs1 < component_refs1.length ();
	       narray_refs1++)
	    if (TREE_CODE (component_refs1 [component_refs1.length()
					    - 1 - narray_refs1]) != ARRAY_REF)
	      break;

	  for (narray_refs2 = 0; narray_refs2 < component_refs2.length ();
	       narray_refs2++)
	    if (TREE_CODE (component_refs2 [component_refs2.length()
					    - 1 - narray_refs2]) != ARRAY_REF)
	      break;
	  for (; narray_refs1 > narray_refs2; narray_refs1--)
	    {
	      ref1 = component_refs1.pop ();
	      ntbaa1--;

	      /* If index is non-zero we need to check whether the reference
		 does not break the main invariant that bases are either
		 disjoint or equal.  Consider the example:

		 unsigned char out[][1];
		 out[1]="a";
		 out[i][0];

		 Here bases out and out are same, but after removing the
		 [i] index, this invariant no longer holds, because
		 out[i] points to the middle of array out.

		 TODO: If size of type of the skipped reference is an integer
		 multiply of the size of type of the other reference this
		 invariant can be verified, but even then it is not completely
		 safe with !flag_strict_aliasing if the other reference contains
		 unbounded array accesses.
		 See   */

	      if (!operand_equal_p (TREE_OPERAND (ref1, 1),
				    cheap_array_ref_low_bound (ref1), 0))
		return 0;
	    }
	  for (; narray_refs2 > narray_refs1; narray_refs2--)
	    {
	      ref2 = component_refs2.pop ();
	      ntbaa2--;
	      if (!operand_equal_p (TREE_OPERAND (ref2, 1),
				    cheap_array_ref_low_bound (ref2), 0))
		return 0;
	    }
	  /* Try to disambiguate matched arrays.  */
	  for (unsigned int i = 0; i < narray_refs1; i++)
	    {
	      int cmp = nonoverlapping_array_refs_p (component_refs1.pop (),
						     component_refs2.pop ());
	      ntbaa1--;
	      ntbaa2--;
	      if (cmp == 1 && !partial_overlap)
		{
		  ++alias_stats
		    .nonoverlapping_refs_since_match_p_no_alias;
		  return 1;
		}
	      if (cmp == -1)
		{
		  seen_unmatched_ref_p = true;
		  /* We can not maintain the invariant that bases are either
		     same or completely disjoint.  However we can still recover
		     from type based alias analysis if we reach references to
		     same sizes.  We do not attempt to match array sizes, so
		     just finish array walking and look for component refs.  */
		  if (ntbaa1 < 0 || ntbaa2 < 0)
		    {
		      ++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
		      return -1;
		    }
		  for (i++; i < narray_refs1; i++)
		    {
		      component_refs1.pop ();
		      component_refs2.pop ();
		      ntbaa1--;
		      ntbaa2--;
		    }
		  break;
		}
	      partial_overlap = false;
	    }
	}

      /* Next look for component_refs.  */
      do
	{
	  if (component_refs1.is_empty ())
	    {
	      ++alias_stats
		.nonoverlapping_refs_since_match_p_must_overlap;
	      return 0;
	    }
	  ref1 = component_refs1.pop ();
	  ntbaa1--;
	  if (TREE_CODE (ref1) != COMPONENT_REF)
	    {
	      seen_unmatched_ref_p = true;
	      if (ntbaa1 < 0 || ntbaa2 < 0)
		{
		  ++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
		  return -1;
		}
	    }
	}
      while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));

      do
	{
	  if (component_refs2.is_empty ())
	    {
	      ++alias_stats
		.nonoverlapping_refs_since_match_p_must_overlap;
	      return 0;
	    }
	  ref2 = component_refs2.pop ();
	  ntbaa2--;
	  if (TREE_CODE (ref2) != COMPONENT_REF)
	    {
	      if (ntbaa1 < 0 || ntbaa2 < 0)
		{
		  ++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
		  return -1;
		}
	      seen_unmatched_ref_p = true;
	    }
	}
      while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));

      /* BIT_FIELD_REF and VIEW_CONVERT_EXPR are taken off the vectors
	 earlier.  */
      gcc_checking_assert (TREE_CODE (ref1) == COMPONENT_REF
			   && TREE_CODE (ref2) == COMPONENT_REF);

      tree field1 = TREE_OPERAND (ref1, 1);
      tree field2 = TREE_OPERAND (ref2, 1);

      /* ??? We cannot simply use the type of operand #0 of the refs here
	 as the Fortran compiler smuggles type punning into COMPONENT_REFs
	 for common blocks instead of using unions like everyone else.  */
      tree type1 = DECL_CONTEXT (field1);
      tree type2 = DECL_CONTEXT (field2);

      partial_overlap = false;

      /* If we skipped array refs on type of different sizes, we can
	 no longer be sure that there are not partial overlaps.  */
      if (seen_unmatched_ref_p && ntbaa1 >= 0 && ntbaa2 >= 0
	  && !operand_equal_p (TYPE_SIZE (type1), TYPE_SIZE (type2), 0))
	{
	  ++alias_stats
	    .nonoverlapping_refs_since_match_p_may_alias;
	  return -1;
	}

      int cmp = nonoverlapping_component_refs_p_1 (field1, field2);
      if (cmp == -1)
	{
	  ++alias_stats
	    .nonoverlapping_refs_since_match_p_may_alias;
	  return -1;
	}
      else if (cmp == 1)
	{
	  ++alias_stats
	    .nonoverlapping_refs_since_match_p_no_alias;
	  return 1;
	}
    }
}

/* Return TYPE_UID which can be used to match record types we consider
   same for TBAA purposes.  */

static inline int
ncr_type_uid (const_tree field)
{
  /* ??? We cannot simply use the type of operand #0 of the refs here
     as the Fortran compiler smuggles type punning into COMPONENT_REFs
     for common blocks instead of using unions like everyone else.  */
  tree type = DECL_FIELD_CONTEXT (field);
  /* With LTO types considered same_type_for_tbaa_p 
     from different translation unit may not have same
     main variant.  They however have same TYPE_CANONICAL.  */
  if (TYPE_CANONICAL (type))
    return TYPE_UID (TYPE_CANONICAL (type));
  return TYPE_UID (type);
}

/* qsort compare function to sort FIELD_DECLs after their
   DECL_FIELD_CONTEXT TYPE_UID.  */

static inline int
ncr_compar (const void *field1_, const void *field2_)
{
  const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
  const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
  unsigned int uid1 = ncr_type_uid (field1);
  unsigned int uid2 = ncr_type_uid (field2);

  if (uid1 < uid2)
    return -1;
  else if (uid1 > uid2)
    return 1;
  return 0;
}

/* Return true if we can determine that the fields referenced cannot
   overlap for any pair of objects.  This relies on TBAA.  */

static bool
nonoverlapping_component_refs_p (const_tree x, const_tree y)
{
  /* Early return if we have nothing to do.

     Do not consider this as may-alias for stats - it is more useful
     to have information how many disambiguations happened provided that
     the query was meaningful.  */
  if (!flag_strict_aliasing
      || !x || !y
      || !handled_component_p (x)
      || !handled_component_p (y))
    return false;

  auto_vec<const_tree, 16> fieldsx;
  while (handled_component_p (x))
    {
      if (TREE_CODE (x) == COMPONENT_REF)
	{
	  tree field = TREE_OPERAND (x, 1);
	  tree type = DECL_FIELD_CONTEXT (field);
	  if (TREE_CODE (type) == RECORD_TYPE)
	    fieldsx.safe_push (field);
	}
      else if (ends_tbaa_access_path_p (x))
	fieldsx.truncate (0);
      x = TREE_OPERAND (x, 0);
    }
  if (fieldsx.length () == 0)
    return false;
  auto_vec<const_tree, 16> fieldsy;
  while (handled_component_p (y))
    {
      if (TREE_CODE (y) == COMPONENT_REF)
	{
	  tree field = TREE_OPERAND (y, 1);
	  tree type = DECL_FIELD_CONTEXT (field);
	  if (TREE_CODE (type) == RECORD_TYPE)
	    fieldsy.safe_push (TREE_OPERAND (y, 1));
	}
      else if (ends_tbaa_access_path_p (y))
	fieldsy.truncate (0);
      y = TREE_OPERAND (y, 0);
    }
  if (fieldsy.length () == 0)
    {
      ++alias_stats.nonoverlapping_component_refs_p_may_alias;
      return false;
    }

  /* Most common case first.  */
  if (fieldsx.length () == 1
      && fieldsy.length () == 1)
   {
     if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldsx[0]),
			     DECL_FIELD_CONTEXT (fieldsy[0])) == 1
	 && nonoverlapping_component_refs_p_1 (fieldsx[0], fieldsy[0]) == 1)
      {
         ++alias_stats.nonoverlapping_component_refs_p_no_alias;
         return true;
      }
     else
      {
         ++alias_stats.nonoverlapping_component_refs_p_may_alias;
         return false;
      }
   }

  if (fieldsx.length () == 2)
    {
      if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
	std::swap (fieldsx[0], fieldsx[1]);
    }
  else
    fieldsx.qsort (ncr_compar);

  if (fieldsy.length () == 2)
    {
      if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
	std::swap (fieldsy[0], fieldsy[1]);
    }
  else
    fieldsy.qsort (ncr_compar);

  unsigned i = 0, j = 0;
  do
    {
      const_tree fieldx = fieldsx[i];
      const_tree fieldy = fieldsy[j];

      /* We're left with accessing different fields of a structure,
	 no possible overlap.  */
      if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldx),
			      DECL_FIELD_CONTEXT (fieldy)) == 1
	  && nonoverlapping_component_refs_p_1 (fieldx, fieldy) == 1)
	{
	  ++alias_stats.nonoverlapping_component_refs_p_no_alias;
	  return true;
	}

      if (ncr_type_uid (fieldx) < ncr_type_uid (fieldy))
	{
	  i++;
	  if (i == fieldsx.length ())
	    break;
	}
      else
	{
	  j++;
	  if (j == fieldsy.length ())
	    break;
	}
    }
  while (1);

  ++alias_stats.nonoverlapping_component_refs_p_may_alias;
  return false;
}


/* Return true if two memory references based on the variables BASE1
   and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
   [OFFSET2, OFFSET2 + MAX_SIZE2) may alias.  REF1 and REF2
   if non-NULL are the complete memory reference trees.  */

static bool
decl_refs_may_alias_p (tree ref1, tree base1,
		       poly_int64 offset1, poly_int64 max_size1,
		       poly_int64 size1,
		       tree ref2, tree base2,
		       poly_int64 offset2, poly_int64 max_size2,
		       poly_int64 size2)
{
  gcc_checking_assert (DECL_P (base1) && DECL_P (base2));

  /* If both references are based on different variables, they cannot alias.  */
  if (compare_base_decls (base1, base2) == 0)
    return false;

  /* If both references are based on the same variable, they cannot alias if
     the accesses do not overlap.  */
  if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
    return false;

  /* If there is must alias, there is no use disambiguating further.  */
  if (known_eq (size1, max_size1) && known_eq (size2, max_size2))
    return true;

  /* For components with variable position, the above test isn't sufficient,
     so we disambiguate component references manually.  */
  if (ref1 && ref2
      && handled_component_p (ref1) && handled_component_p (ref2)
      && nonoverlapping_refs_since_match_p (NULL, ref1, NULL, ref2, false) == 1)
    return false;

  return true;     
}

/* Return true if access with BASE is view converted.
   Base must not be stripped from inner MEM_REF (&decl)
   which is done by ao_ref_base and thus one extra walk
   of handled components is needed.  */

static bool
view_converted_memref_p (tree base)
{
  if (TREE_CODE (base) != MEM_REF && TREE_CODE (base) != TARGET_MEM_REF)
    return false;
  return same_type_for_tbaa (TREE_TYPE (base),
			     TREE_TYPE (TREE_OPERAND (base, 1))) != 1;
}

/* Return true if an indirect reference based on *PTR1 constrained
   to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
   constrained to [OFFSET2, OFFSET2 + MAX_SIZE2).  *PTR1 and BASE2 have
   the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
   in which case they are computed on-demand.  REF1 and REF2
   if non-NULL are the complete memory reference trees.  */

static bool
indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
			       poly_int64 offset1, poly_int64 max_size1,
			       poly_int64 size1,
			       alias_set_type ref1_alias_set,
			       alias_set_type base1_alias_set,
			       tree ref2 ATTRIBUTE_UNUSED, tree base2,
			       poly_int64 offset2, poly_int64 max_size2,
			       poly_int64 size2,
			       alias_set_type ref2_alias_set,
			       alias_set_type base2_alias_set, bool tbaa_p)
{
  tree ptr1;
  tree ptrtype1, dbase2;

  gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
			|| TREE_CODE (base1) == TARGET_MEM_REF)
		       && DECL_P (base2));

  ptr1 = TREE_OPERAND (base1, 0);
  poly_offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;

  /* If only one reference is based on a variable, they cannot alias if
     the pointer access is beyond the extent of the variable access.
     (the pointer base cannot validly point to an offset less than zero
     of the variable).
     ???  IVOPTs creates bases that do not honor this restriction,
     so do not apply this optimization for TARGET_MEM_REFs.  */
  if (TREE_CODE (base1) != TARGET_MEM_REF
      && !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
    return false;

  /* If the pointer based access is bigger than the variable they cannot
     alias.  This is similar to the check below where we use TBAA to
     increase the size of the pointer based access based on the dynamic
     type of a containing object we can infer from it.  */
  poly_int64 dsize2;
  if (known_size_p (size1)
      && poly_int_tree_p (DECL_SIZE (base2), &dsize2)
      && known_lt (dsize2, size1))
    return false;

  /* They also cannot alias if the pointer may not point to the decl.  */
  if (!ptr_deref_may_alias_decl_p (ptr1, base2))
    return false;

  /* Disambiguations that rely on strict aliasing rules follow.  */
  if (!flag_strict_aliasing || !tbaa_p)
    return true;

  /* If the alias set for a pointer access is zero all bets are off.  */
  if (base1_alias_set == 0 || base2_alias_set == 0)
    return true;

  /* When we are trying to disambiguate an access with a pointer dereference
     as base versus one with a decl as base we can use both the size
     of the decl and its dynamic type for extra disambiguation.
     ???  We do not know anything about the dynamic type of the decl
     other than that its alias-set contains base2_alias_set as a subset
     which does not help us here.  */
  /* As we know nothing useful about the dynamic type of the decl just
     use the usual conflict check rather than a subset test.
     ???  We could introduce -fvery-strict-aliasing when the language
     does not allow decls to have a dynamic type that differs from their
     static type.  Then we can check 
     !alias_set_subset_of (base1_alias_set, base2_alias_set) instead.  */
  if (base1_alias_set != base2_alias_set
      && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
    return false;

  ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));

  /* If the size of the access relevant for TBAA through the pointer
     is bigger than the size of the decl we can't possibly access the
     decl via that pointer.  */
  if (/* ???  This in turn may run afoul when a decl of type T which is
	 a member of union type U is accessed through a pointer to
	 type U and sizeof T is smaller than sizeof U.  */
      TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
      && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
      && compare_sizes (DECL_SIZE (base2),
		        TYPE_SIZE (TREE_TYPE (ptrtype1))) < 0)
    return false;

  if (!ref2)
    return true;

  /* If the decl is accessed via a MEM_REF, reconstruct the base
     we can use for TBAA and an appropriately adjusted offset.  */
  dbase2 = ref2;
  while (handled_component_p (dbase2))
    dbase2 = TREE_OPERAND (dbase2, 0);
  poly_int64 doffset1 = offset1;
  poly_offset_int doffset2 = offset2;
  if (TREE_CODE (dbase2) == MEM_REF
      || TREE_CODE (dbase2) == TARGET_MEM_REF)
    {
      doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
      tree ptrtype2 = TREE_TYPE (TREE_OPERAND (dbase2, 1));
      /* If second reference is view-converted, give up now.  */
      if (same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (ptrtype2)) != 1)
	return true;
    }

  /* If first reference is view-converted, give up now.  */
  if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1)
    return true;

  /* If both references are through the same type, they do not alias
     if the accesses do not overlap.  This does extra disambiguation
     for mixed/pointer accesses but requires strict aliasing.
     For MEM_REFs we require that the component-ref offset we computed
     is relative to the start of the type which we ensure by
     comparing rvalue and access type and disregarding the constant
     pointer offset.

     But avoid treating variable length arrays as "objects", instead assume they
     can overlap by an exact multiple of their element size.
     See gcc.dg/torture/alias-2.c.  */
  if (((TREE_CODE (base1) != TARGET_MEM_REF
       || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
       && (TREE_CODE (dbase2) != TARGET_MEM_REF
	   || (!TMR_INDEX (dbase2) && !TMR_INDEX2 (dbase2))))
      && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1)
    {
      bool partial_overlap = (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
			      && (TYPE_SIZE (TREE_TYPE (base1))
			      && TREE_CODE (TYPE_SIZE (TREE_TYPE (base1)))
				 != INTEGER_CST));
      if (!partial_overlap
	  && !ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2))
	return false;
      if (!ref1 || !ref2
	  /* If there is must alias, there is no use disambiguating further.  */
	  || (!partial_overlap
	      && known_eq (size1, max_size1) && known_eq (size2, max_size2)))
	return true;
      int res = nonoverlapping_refs_since_match_p (base1, ref1, base2, ref2,
						   partial_overlap);
      if (res == -1)
	return !nonoverlapping_component_refs_p (ref1, ref2);
      return !res;
    }

  /* Do access-path based disambiguation.  */
  if (ref1 && ref2
      && (handled_component_p (ref1) || handled_component_p (ref2)))
    return aliasing_component_refs_p (ref1,
				      ref1_alias_set, base1_alias_set,
				      offset1, max_size1,
				      ref2,
				      ref2_alias_set, base2_alias_set,
				      offset2, max_size2);

  return true;
}

/* Return true if two indirect references based on *PTR1
   and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
   [OFFSET2, OFFSET2 + MAX_SIZE2) may alias.  *PTR1 and *PTR2 have
   the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
   in which case they are computed on-demand.  REF1 and REF2
   if non-NULL are the complete memory reference trees. */

static bool
indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
			   poly_int64 offset1, poly_int64 max_size1,
			   poly_int64 size1,
			   alias_set_type ref1_alias_set,
			   alias_set_type base1_alias_set,
			   tree ref2 ATTRIBUTE_UNUSED, tree base2,
			   poly_int64 offset2, poly_int64 max_size2,
			   poly_int64 size2,
			   alias_set_type ref2_alias_set,
			   alias_set_type base2_alias_set, bool tbaa_p)
{
  tree ptr1;
  tree ptr2;
  tree ptrtype1, ptrtype2;

  gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
			|| TREE_CODE (base1) == TARGET_MEM_REF)
		       && (TREE_CODE (base2) == MEM_REF
			   || TREE_CODE (base2) == TARGET_MEM_REF));

  ptr1 = TREE_OPERAND (base1, 0);
  ptr2 = TREE_OPERAND (base2, 0);

  /* If both bases are based on pointers they cannot alias if they may not
     point to the same memory object or if they point to the same object
     and the accesses do not overlap.  */
  if ((!cfun || gimple_in_ssa_p (cfun))
      && operand_equal_p (ptr1, ptr2, 0)
      && (((TREE_CODE (base1) != TARGET_MEM_REF
	    || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
	   && (TREE_CODE (base2) != TARGET_MEM_REF
	       || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
	  || (TREE_CODE (base1) == TARGET_MEM_REF
	      && TREE_CODE (base2) == TARGET_MEM_REF
	      && (TMR_STEP (base1) == TMR_STEP (base2)
		  || (TMR_STEP (base1) && TMR_STEP (base2)
		      && operand_equal_p (TMR_STEP (base1),
					  TMR_STEP (base2), 0)))
	      && (TMR_INDEX (base1) == TMR_INDEX (base2)
		  || (TMR_INDEX (base1) && TMR_INDEX (base2)
		      && operand_equal_p (TMR_INDEX (base1),
					  TMR_INDEX (base2), 0)))
	      && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
		  || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
		      && operand_equal_p (TMR_INDEX2 (base1),
					  TMR_INDEX2 (base2), 0))))))
    {
      poly_offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
      poly_offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
      if (!ranges_maybe_overlap_p (offset1 + moff1, max_size1,
				   offset2 + moff2, max_size2))
	return false;
      /* If there is must alias, there is no use disambiguating further.  */
      if (known_eq (size1, max_size1) && known_eq (size2, max_size2))
	return true;
      if (ref1 && ref2)
	{
	  int res = nonoverlapping_refs_since_match_p (NULL, ref1, NULL, ref2,
						       false);
	  if (res != -1)
	    return !res;
	}
    }
  if (!ptr_derefs_may_alias_p (ptr1, ptr2))
    return false;

  /* Disambiguations that rely on strict aliasing rules follow.  */
  if (!flag_strict_aliasing || !tbaa_p)
    return true;

  ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
  ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));

  /* If the alias set for a pointer access is zero all bets are off.  */
  if (base1_alias_set == 0
      || base2_alias_set == 0)
    return true;

  /* Do type-based disambiguation.  */
  if (base1_alias_set != base2_alias_set
      && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
    return false;

  /* If either reference is view-converted, give up now.  */
  if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
      || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
    return true;

  /* If both references are through the same type, they do not alias
     if the accesses do not overlap.  This does extra disambiguation
     for mixed/pointer accesses but requires strict aliasing.  */
  if ((TREE_CODE (base1) != TARGET_MEM_REF
       || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
      && (TREE_CODE (base2) != TARGET_MEM_REF
	  || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
      && same_type_for_tbaa (TREE_TYPE (ptrtype1),
			     TREE_TYPE (ptrtype2)) == 1)
    {
      /* But avoid treating arrays as "objects", instead assume they
         can overlap by an exact multiple of their element size.
         See gcc.dg/torture/alias-2.c.  */
      bool partial_overlap = TREE_CODE (TREE_TYPE (ptrtype1)) == ARRAY_TYPE;

      if (!partial_overlap
	  && !ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
	return false;
      if (!ref1 || !ref2
	  || (!partial_overlap
	      && known_eq (size1, max_size1) && known_eq (size2, max_size2)))
	return true;
      int res = nonoverlapping_refs_since_match_p (base1, ref1, base2, ref2,
						   partial_overlap);
      if (res == -1)
	return !nonoverlapping_component_refs_p (ref1, ref2);
      return !res;
    }

  /* Do access-path based disambiguation.  */
  if (ref1 && ref2
      && (handled_component_p (ref1) || handled_component_p (ref2)))
    return aliasing_component_refs_p (ref1,
				      ref1_alias_set, base1_alias_set,
				      offset1, max_size1,
				      ref2,
				      ref2_alias_set, base2_alias_set,
				      offset2, max_size2);

  return true;
}

/* Return true, if the two memory references REF1 and REF2 may alias.  */

static bool
refs_may_alias_p_2 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
{
  tree base1, base2;
  poly_int64 offset1 = 0, offset2 = 0;
  poly_int64 max_size1 = -1, max_size2 = -1;
  bool var1_p, var2_p, ind1_p, ind2_p;

  gcc_checking_assert ((!ref1->ref
			|| TREE_CODE (ref1->ref) == SSA_NAME
			|| DECL_P (ref1->ref)
			|| TREE_CODE (ref1->ref) == STRING_CST
			|| handled_component_p (ref1->ref)
			|| TREE_CODE (ref1->ref) == MEM_REF
			|| TREE_CODE (ref1->ref) == TARGET_MEM_REF
			|| TREE_CODE (ref1->ref) == WITH_SIZE_EXPR)
		       && (!ref2->ref
			   || TREE_CODE (ref2->ref) == SSA_NAME
			   || DECL_P (ref2->ref)
			   || TREE_CODE (ref2->ref) == STRING_CST
			   || handled_component_p (ref2->ref)
			   || TREE_CODE (ref2->ref) == MEM_REF
			   || TREE_CODE (ref2->ref) == TARGET_MEM_REF
			   || TREE_CODE (ref2->ref) == WITH_SIZE_EXPR));

  /* Decompose the references into their base objects and the access.  */
  base1 = ao_ref_base (ref1);
  offset1 = ref1->offset;
  max_size1 = ref1->max_size;
  base2 = ao_ref_base (ref2);
  offset2 = ref2->offset;
  max_size2 = ref2->max_size;

  /* We can end up with registers or constants as bases for example from
     *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
     which is seen as a struct copy.  */
  if (TREE_CODE (base1) == SSA_NAME
      || TREE_CODE (base1) == CONST_DECL
      || TREE_CODE (base1) == CONSTRUCTOR
      || TREE_CODE (base1) == ADDR_EXPR
      || CONSTANT_CLASS_P (base1)
      || TREE_CODE (base2) == SSA_NAME
      || TREE_CODE (base2) == CONST_DECL
      || TREE_CODE (base2) == CONSTRUCTOR
      || TREE_CODE (base2) == ADDR_EXPR
      || CONSTANT_CLASS_P (base2))
    return false;

  /* We can end up referring to code via function and label decls.
     As we likely do not properly track code aliases conservatively
     bail out.  */
  if (TREE_CODE (base1) == FUNCTION_DECL
      || TREE_CODE (base1) == LABEL_DECL
      || TREE_CODE (base2) == FUNCTION_DECL
      || TREE_CODE (base2) == LABEL_DECL)
    return true;

  /* Two volatile accesses always conflict.  */
  if (ref1->volatile_p
      && ref2->volatile_p)
    return true;

  /* refN->ref may convey size information, do not confuse our workers
     with that but strip it - ao_ref_base took it into account already.  */
  tree ref1ref = ref1->ref;
  if (ref1ref && TREE_CODE (ref1ref) == WITH_SIZE_EXPR)
    ref1ref = TREE_OPERAND (ref1ref, 0);
  tree ref2ref = ref2->ref;
  if (ref2ref && TREE_CODE (ref2ref) == WITH_SIZE_EXPR)
    ref2ref = TREE_OPERAND (ref2ref, 0);

  /* Defer to simple offset based disambiguation if we have
     references based on two decls.  Do this before defering to
     TBAA to handle must-alias cases in conformance with the
     GCC extension of allowing type-punning through unions.  */
  var1_p = DECL_P (base1);
  var2_p = DECL_P (base2);
  if (var1_p && var2_p)
    return decl_refs_may_alias_p (ref1ref, base1, offset1, max_size1,
				  ref1->size,
				  ref2ref, base2, offset2, max_size2,
				  ref2->size);

  /* Handle restrict based accesses.
     ???  ao_ref_base strips inner MEM_REF [&decl], recover from that
     here.  */
  tree rbase1 = base1;
  tree rbase2 = base2;
  if (var1_p)
    {
      rbase1 = ref1ref;
      if (rbase1)
	while (handled_component_p (rbase1))
	  rbase1 = TREE_OPERAND (rbase1, 0);
    }
  if (var2_p)
    {
      rbase2 = ref2ref;
      if (rbase2)
	while (handled_component_p (rbase2))
	  rbase2 = TREE_OPERAND (rbase2, 0);
    }
  if (rbase1 && rbase2
      && (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
      && (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
      /* If the accesses are in the same restrict clique... */
      && MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
      /* But based on different pointers they do not alias.  */
      && MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
    return false;

  ind1_p = (TREE_CODE (base1) == MEM_REF
	    || TREE_CODE (base1) == TARGET_MEM_REF);
  ind2_p = (TREE_CODE (base2) == MEM_REF
	    || TREE_CODE (base2) == TARGET_MEM_REF);

  /* Canonicalize the pointer-vs-decl case.  */
  if (ind1_p && var2_p)
    {
      std::swap (offset1, offset2);
      std::swap (max_size1, max_size2);
      std::swap (base1, base2);
      std::swap (ref1, ref2);
      std::swap (ref1ref, ref2ref);
      var1_p = true;
      ind1_p = false;
      var2_p = false;
      ind2_p = true;
    }

  /* First defer to TBAA if possible.  */
  if (tbaa_p
      && flag_strict_aliasing
      && !alias_sets_conflict_p (ao_ref_alias_set (ref1),
				 ao_ref_alias_set (ref2)))
    return false;

  /* If the reference is based on a pointer that points to memory
     that may not be written to then the other reference cannot possibly
     clobber it.  */
  if ((TREE_CODE (TREE_OPERAND (base2, 0)) == SSA_NAME
       && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base2, 0)))
      || (ind1_p
	  && TREE_CODE (TREE_OPERAND (base1, 0)) == SSA_NAME
	  && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base1, 0))))
    return false;

  /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators.  */
  if (var1_p && ind2_p)
    return indirect_ref_may_alias_decl_p (ref2ref, base2,
					  offset2, max_size2, ref2->size,
					  ao_ref_alias_set (ref2),
					  ao_ref_base_alias_set (ref2),
					  ref1ref, base1,
					  offset1, max_size1, ref1->size,
					  ao_ref_alias_set (ref1),
					  ao_ref_base_alias_set (ref1),
					  tbaa_p);
  else if (ind1_p && ind2_p)
    return indirect_refs_may_alias_p (ref1ref, base1,
				      offset1, max_size1, ref1->size,
				      ao_ref_alias_set (ref1),
				      ao_ref_base_alias_set (ref1),
				      ref2ref, base2,
				      offset2, max_size2, ref2->size,
				      ao_ref_alias_set (ref2),
				      ao_ref_base_alias_set (ref2),
				      tbaa_p);

  gcc_unreachable ();
}

/* Return true, if the two memory references REF1 and REF2 may alias
   and update statistics.  */

bool
refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
{
  bool res = refs_may_alias_p_2 (ref1, ref2, tbaa_p);
  if (res)
    ++alias_stats.refs_may_alias_p_may_alias;
  else
    ++alias_stats.refs_may_alias_p_no_alias;
  return res;
}

static bool
refs_may_alias_p (tree ref1, ao_ref *ref2, bool tbaa_p)
{
  ao_ref r1;
  ao_ref_init (&r1, ref1);
  return refs_may_alias_p_1 (&r1, ref2, tbaa_p);
}

bool
refs_may_alias_p (tree ref1, tree ref2, bool tbaa_p)
{
  ao_ref r1, r2;
  ao_ref_init (&r1, ref1);
  ao_ref_init (&r2, ref2);
  return refs_may_alias_p_1 (&r1, &r2, tbaa_p);
}

/* Returns true if there is a anti-dependence for the STORE that
   executes after the LOAD.  */

bool
refs_anti_dependent_p (tree load, tree store)
{
  ao_ref r1, r2;
  ao_ref_init (&r1, load);
  ao_ref_init (&r2, store);
  return refs_may_alias_p_1 (&r1, &r2, false);
}

/* Returns true if there is a output dependence for the stores
   STORE1 and STORE2.  */

bool
refs_output_dependent_p (tree store1, tree store2)
{
  ao_ref r1, r2;
  ao_ref_init (&r1, store1);
  ao_ref_init (&r2, store2);
  return refs_may_alias_p_1 (&r1, &r2, false);
}

/* Return ture if REF may access global memory.  */

bool
ref_may_access_global_memory_p (ao_ref *ref)
{
  if (!ref->ref)
    return true;
  tree base = ao_ref_base (ref);
  if (TREE_CODE (base) == MEM_REF
      || TREE_CODE (base) == TARGET_MEM_REF)
    {
      if (ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0)))
	return true;
    }
  else
    {
      if (!auto_var_in_fn_p (base, current_function_decl)
	  || pt_solution_includes (&cfun->gimple_df->escaped,
				   base))
	return true;
    }
  return false;
}

/* Returns true if and only if REF may alias any access stored in TT.
   IF TBAA_P is true, use TBAA oracle.  */

static bool
modref_may_conflict (const gcall *stmt,
		     modref_tree <alias_set_type> *tt, ao_ref *ref, bool tbaa_p)
{
  alias_set_type base_set, ref_set;
  bool global_memory_ok = false;

  if (tt->every_base)
    return true;

  if (!dbg_cnt (ipa_mod_ref))
    return true;

  base_set = ao_ref_base_alias_set (ref);

  ref_set = ao_ref_alias_set (ref);

  int num_tests = 0, max_tests = param_modref_max_tests;
  for (auto base_node : tt->bases)
    {
      if (tbaa_p && flag_strict_aliasing)
	{
	  if (num_tests >= max_tests)
	    return true;
	  alias_stats.modref_tests++;
	  if (!alias_sets_conflict_p (base_set, base_node->base))
	    continue;
	  num_tests++;
	}

      if (base_node->every_ref)
	return true;

      for (auto ref_node : base_node->refs)
	{
	  /* Do not repeat same test as before.  */
	  if ((ref_set != base_set || base_node->base != ref_node->ref)
	      && tbaa_p && flag_strict_aliasing)
	    {
	      if (num_tests >= max_tests)
		return true;
	      alias_stats.modref_tests++;
	      if (!alias_sets_conflict_p (ref_set, ref_node->ref))
		continue;
	      num_tests++;
	    }

	  if (ref_node->every_access)
	    return true;

	  /* TBAA checks did not disambiguate, try individual accesses.  */
	  for (auto access_node : ref_node->accesses)
	    {
	      if (num_tests >= max_tests)
		return true;

	      if (access_node.parm_index == MODREF_GLOBAL_MEMORY_PARM)
		{
		  if (global_memory_ok)
		    continue;
		  if (ref_may_access_global_memory_p (ref))
		    return true;
		  global_memory_ok = true;
		  num_tests++;
		  continue;
		}

	      tree arg = access_node.get_call_arg (stmt);
	      if (!arg)
		return true;

	      alias_stats.modref_baseptr_tests++;

	      if (integer_zerop (arg) && flag_delete_null_pointer_checks)
		continue;

	      /* PTA oracle will be unhapy of arg is not an pointer.  */
	      if (!POINTER_TYPE_P (TREE_TYPE (arg)))
		return true;

	      /* If we don't have base pointer, give up.  */
	      if (!ref->ref && !ref->base)
		continue;

	      ao_ref ref2;
	      if (access_node.get_ao_ref (stmt, &ref2))
		{
		  ref2.ref_alias_set = ref_node->ref;
		  ref2.base_alias_set = base_node->base;
		  if (refs_may_alias_p_1 (&ref2, ref, tbaa_p))
		    return true;
		}
	      else if (ptr_deref_may_alias_ref_p_1 (arg, ref))
		return true;

	      num_tests++;
	    }
	}
    }
  return false;
}

/* Check if REF conflicts with call using "fn spec" attribute.
   If CLOBBER is true we are checking for writes, otherwise check loads.

   Return 0 if there are no conflicts (except for possible function call
   argument reads), 1 if there are conflicts and -1 if we can not decide by
   fn spec.  */

static int
check_fnspec (gcall *call, ao_ref *ref, bool clobber)
{
  attr_fnspec fnspec = gimple_call_fnspec (call);
  if (fnspec.known_p ())
    {
      if (clobber
	  ? !fnspec.global_memory_written_p ()
	  : !fnspec.global_memory_read_p ())
	{
	  for (unsigned int i = 0; i < gimple_call_num_args (call); i++)
	    if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, i)))
		&& (!fnspec.arg_specified_p (i)
		    || (clobber ? fnspec.arg_maybe_written_p (i)
			: fnspec.arg_maybe_read_p (i))))
	      {
		ao_ref dref;
		tree size = NULL_TREE;
		unsigned int size_arg;

		if (!fnspec.arg_specified_p (i))
		  ;
		else if (fnspec.arg_max_access_size_given_by_arg_p
			   (i, &size_arg))
		  size = gimple_call_arg (call, size_arg);
		else if (fnspec.arg_access_size_given_by_type_p (i))
		  {
		    tree callee = gimple_call_fndecl (call);
		    tree t = TYPE_ARG_TYPES (TREE_TYPE (callee));

		    for (unsigned int p = 0; p < i; p++)
		      t = TREE_CHAIN (t);
		    size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_VALUE (t)));
		  }
		ao_ref_init_from_ptr_and_size (&dref,
					       gimple_call_arg (call, i),
					       size);
		if (refs_may_alias_p_1 (&dref, ref, false))
		  return 1;
	      }
	  if (clobber
	      && fnspec.errno_maybe_written_p ()
	      && flag_errno_math
	      && targetm.ref_may_alias_errno (ref))
	    return 1;
	  return 0;
	}
    }

 /* FIXME: we should handle barriers more consistently, but for now leave the
    check here.  */
  if (gimple_call_builtin_p (call, BUILT_IN_NORMAL))
    switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
      {
      /* __sync_* builtins and some OpenMP builtins act as threading
	 barriers.  */
#undef DEF_SYNC_BUILTIN
#define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
#include "sync-builtins.def"
#undef DEF_SYNC_BUILTIN
      case BUILT_IN_GOMP_ATOMIC_START:
      case BUILT_IN_GOMP_ATOMIC_END:
      case BUILT_IN_GOMP_BARRIER:
      case BUILT_IN_GOMP_BARRIER_CANCEL:
      case BUILT_IN_GOMP_TASKWAIT:
      case BUILT_IN_GOMP_TASKGROUP_END:
      case BUILT_IN_GOMP_CRITICAL_START:
      case BUILT_IN_GOMP_CRITICAL_END:
      case BUILT_IN_GOMP_CRITICAL_NAME_START:
      case BUILT_IN_GOMP_CRITICAL_NAME_END:
      case BUILT_IN_GOMP_LOOP_END:
      case BUILT_IN_GOMP_LOOP_END_CANCEL:
      case BUILT_IN_GOMP_ORDERED_START:
      case BUILT_IN_GOMP_ORDERED_END:
      case BUILT_IN_GOMP_SECTIONS_END:
      case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
      case BUILT_IN_GOMP_SINGLE_COPY_START:
      case BUILT_IN_GOMP_SINGLE_COPY_END:
	return 1;

      default:
	return -1;
      }
  return -1;
}

/* If the call CALL may use the memory reference REF return true,
   otherwise return false.  */

static bool
ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref, bool tbaa_p)
{
  tree base, callee;
  unsigned i;
  int flags = gimple_call_flags (call);

  if (flags & (ECF_CONST|ECF_NOVOPS))
    goto process_args;

  /* A call that is not without side-effects might involve volatile
     accesses and thus conflicts with all other volatile accesses.  */
  if (ref->volatile_p)
    return true;

  callee = gimple_call_fndecl (call);

  if (callee != NULL_TREE)
    {
      struct cgraph_node *node = cgraph_node::get (callee);
      /* We can not safely optimize based on summary of calle if it does
	 not always bind to current def: it is possible that memory load
	 was optimized out earlier and the interposed variant may not be
	 optimized this way.  */
      if (node && node->binds_to_current_def_p ())
	{
	  modref_summary *summary = get_modref_function_summary (node);
	  if (summary && !summary->calls_interposable)
	    {
	      if (!modref_may_conflict (call, summary->loads, ref, tbaa_p))
		{
		  alias_stats.modref_use_no_alias++;
		  if (dump_file && (dump_flags & TDF_DETAILS))
		    {
		      fprintf (dump_file,
			       "ipa-modref: call stmt ");
		      print_gimple_stmt (dump_file, call, 0);
		      fprintf (dump_file,
			       "ipa-modref: call to %s does not use ",
			       node->dump_name ());
		      if (!ref->ref && ref->base)
			{
			  fprintf (dump_file, "base: ");
			  print_generic_expr (dump_file, ref->base);
			}
		      else if (ref->ref)
			{
			  fprintf (dump_file, "ref: ");
			  print_generic_expr (dump_file, ref->ref);
			}
		      fprintf (dump_file, " alias sets: %i->%i\n",
			       ao_ref_base_alias_set (ref),
			       ao_ref_alias_set (ref));
		    }
		  goto process_args;
		}
	      alias_stats.modref_use_may_alias++;
	    }
       }
    }

  base = ao_ref_base (ref);
  if (!base)
    return true;

  /* If the reference is based on a decl that is not aliased the call
     cannot possibly use it.  */
  if (DECL_P (base)
      && !may_be_aliased (base)
      /* But local statics can be used through recursion.  */
      && !is_global_var (base))
    goto process_args;

  if (int res = check_fnspec (call, ref, false))
    {
      if (res == 1)
	return true;
    }
  else
    goto process_args;

  /* Check if base is a global static variable that is not read
     by the function.  */
  if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
    {
      struct cgraph_node *node = cgraph_node::get (callee);
      bitmap read;
      int id;

      /* FIXME: Callee can be an OMP builtin that does not have a call graph
	 node yet.  We should enforce that there are nodes for all decls in the
	 IL and remove this check instead.  */
      if (node
	  && (id = ipa_reference_var_uid (base)) != -1
	  && (read = ipa_reference_get_read_global (node))
	  && !bitmap_bit_p (read, id))
	goto process_args;
    }

  /* Check if the base variable is call-used.  */
  if (DECL_P (base))
    {
      if (pt_solution_includes (gimple_call_use_set (call), base))
	return true;
    }
  else if ((TREE_CODE (base) == MEM_REF
	    || TREE_CODE (base) == TARGET_MEM_REF)
	   && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
    {
      struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
      if (!pi)
	return true;

      if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
	return true;
    }
  else
    return true;

  /* Inspect call arguments for passed-by-value aliases.  */
process_args:
  for (i = 0; i < gimple_call_num_args (call); ++i)
    {
      tree op = gimple_call_arg (call, i);
      int flags = gimple_call_arg_flags (call, i);

      if (flags & (EAF_UNUSED | EAF_NO_DIRECT_READ))
	continue;

      if (TREE_CODE (op) == WITH_SIZE_EXPR)
	op = TREE_OPERAND (op, 0);

      if (TREE_CODE (op) != SSA_NAME
	  && !is_gimple_min_invariant (op))
	{
	  ao_ref r;
	  ao_ref_init (&r, op);
	  if (refs_may_alias_p_1 (&r, ref, tbaa_p))
	    return true;
	}
    }

  return false;
}

static bool
ref_maybe_used_by_call_p (gcall *call, ao_ref *ref, bool tbaa_p)
{
  bool res;
  res = ref_maybe_used_by_call_p_1 (call, ref, tbaa_p);
  if (res)
    ++alias_stats.ref_maybe_used_by_call_p_may_alias;
  else
    ++alias_stats.ref_maybe_used_by_call_p_no_alias;
  return res;
}


/* If the statement STMT may use the memory reference REF return
   true, otherwise return false.  */

bool
ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref, bool tbaa_p)
{
  if (is_gimple_assign (stmt))
    {
      tree rhs;

      /* All memory assign statements are single.  */
      if (!gimple_assign_single_p (stmt))
	return false;

      rhs = gimple_assign_rhs1 (stmt);
      if (is_gimple_reg (rhs)
	  || is_gimple_min_invariant (rhs)
	  || gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
	return false;

      return refs_may_alias_p (rhs, ref, tbaa_p);
    }
  else if (is_gimple_call (stmt))
    return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref, tbaa_p);
  else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
    {
      tree retval = gimple_return_retval (return_stmt);
      if (retval
	  && TREE_CODE (retval) != SSA_NAME
	  && !is_gimple_min_invariant (retval)
	  && refs_may_alias_p (retval, ref, tbaa_p))
	return true;
      /* If ref escapes the function then the return acts as a use.  */
      tree base = ao_ref_base (ref);
      if (!base)
	;
      else if (DECL_P (base))
	return is_global_var (base);
      else if (TREE_CODE (base) == MEM_REF
	       || TREE_CODE (base) == TARGET_MEM_REF)
	return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
      return false;
    }

  return true;
}

bool
ref_maybe_used_by_stmt_p (gimple *stmt, tree ref, bool tbaa_p)
{
  ao_ref r;
  ao_ref_init (&r, ref);
  return ref_maybe_used_by_stmt_p (stmt, &r, tbaa_p);
}

/* If the call in statement CALL may clobber the memory reference REF
   return true, otherwise return false.  */

bool
call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref, bool tbaa_p)
{
  tree base;
  tree callee;

  /* If the call is pure or const it cannot clobber anything.  */
  if (gimple_call_flags (call)
      & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
    return false;
  if (gimple_call_internal_p (call))
    switch (gimple_call_internal_fn (call))
      {
	/* Treat these internal calls like ECF_PURE for aliasing,
	   they don't write to any memory the program should care about.
	   They have important other side-effects, and read memory,
	   so can't be ECF_NOVOPS.  */
      case IFN_UBSAN_NULL:
      case IFN_UBSAN_BOUNDS:
      case IFN_UBSAN_VPTR:
      case IFN_UBSAN_OBJECT_SIZE:
      case IFN_UBSAN_PTR:
      case IFN_ASAN_CHECK:
	return false;
      default:
	break;
      }

  callee = gimple_call_fndecl (call);

  if (callee != NULL_TREE && !ref->volatile_p)
    {
      struct cgraph_node *node = cgraph_node::get (callee);
      if (node)
	{
	  modref_summary *summary = get_modref_function_summary (node);
	  if (summary)
	    {
	      if (!modref_may_conflict (call, summary->stores, ref, tbaa_p)
		  && (!summary->writes_errno
		      || !targetm.ref_may_alias_errno (ref)))
		{
		  alias_stats.modref_clobber_no_alias++;
		  if (dump_file && (dump_flags & TDF_DETAILS))
		    {
		      fprintf (dump_file,
			       "ipa-modref: call stmt ");
		      print_gimple_stmt (dump_file, call, 0);
		      fprintf (dump_file,
			       "ipa-modref: call to %s does not clobber ",
			       node->dump_name ());
		      if (!ref->ref && ref->base)
			{
			  fprintf (dump_file, "base: ");
			  print_generic_expr (dump_file, ref->base);
			}
		      else if (ref->ref)
			{
			  fprintf (dump_file, "ref: ");
			  print_generic_expr (dump_file, ref->ref);
			}
		      fprintf (dump_file, " alias sets: %i->%i\n",
			       ao_ref_base_alias_set (ref),
			       ao_ref_alias_set (ref));
		    }
		  return false;
		}
	      alias_stats.modref_clobber_may_alias++;
	  }
	}
    }

  base = ao_ref_base (ref);
  if (!base)
    return true;

  if (TREE_CODE (base) == SSA_NAME
      || CONSTANT_CLASS_P (base))
    return false;

  /* A call that is not without side-effects might involve volatile
     accesses and thus conflicts with all other volatile accesses.  */
  if (ref->volatile_p)
    return true;

  /* If the reference is based on a decl that is not aliased the call
     cannot possibly clobber it.  */
  if (DECL_P (base)
      && !may_be_aliased (base)
      /* But local non-readonly statics can be modified through recursion
         or the call may implement a threading barrier which we must
	 treat as may-def.  */
      && (TREE_READONLY (base)
	  || !is_global_var (base)))
    return false;

  /* If the reference is based on a pointer that points to memory
     that may not be written to then the call cannot possibly clobber it.  */
  if ((TREE_CODE (base) == MEM_REF
       || TREE_CODE (base) == TARGET_MEM_REF)
      && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
      && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base, 0)))
    return false;

  if (int res = check_fnspec (call, ref, true))
    {
      if (res == 1)
	return true;
    }
  else
    return false;

  /* Check if base is a global static variable that is not written
     by the function.  */
  if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
    {
      struct cgraph_node *node = cgraph_node::get (callee);
      bitmap written;
      int id;

      if (node
	  && (id = ipa_reference_var_uid (base)) != -1
	  && (written = ipa_reference_get_written_global (node))
	  && !bitmap_bit_p (written, id))
	return false;
    }

  /* Check if the base variable is call-clobbered.  */
  if (DECL_P (base))
    return pt_solution_includes (gimple_call_clobber_set (call), base);
  else if ((TREE_CODE (base) == MEM_REF
	    || TREE_CODE (base) == TARGET_MEM_REF)
	   && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
    {
      struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
      if (!pi)
	return true;

      return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
    }

  return true;
}

/* If the call in statement CALL may clobber the memory reference REF
   return true, otherwise return false.  */

bool
call_may_clobber_ref_p (gcall *call, tree ref, bool tbaa_p)
{
  bool res;
  ao_ref r;
  ao_ref_init (&r, ref);
  res = call_may_clobber_ref_p_1 (call, &r, tbaa_p);
  if (res)
    ++alias_stats.call_may_clobber_ref_p_may_alias;
  else
    ++alias_stats.call_may_clobber_ref_p_no_alias;
  return res;
}


/* If the statement STMT may clobber the memory reference REF return true,
   otherwise return false.  */

bool
stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref, bool tbaa_p)
{
  if (is_gimple_call (stmt))
    {
      tree lhs = gimple_call_lhs (stmt);
      if (lhs
	  && TREE_CODE (lhs) != SSA_NAME)
	{
	  ao_ref r;
	  ao_ref_init (&r, lhs);
	  if (refs_may_alias_p_1 (ref, &r, tbaa_p))
	    return true;
	}

      return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref, tbaa_p);
    }
  else if (gimple_assign_single_p (stmt))
    {
      tree lhs = gimple_assign_lhs (stmt);
      if (TREE_CODE (lhs) != SSA_NAME)
	{
	  ao_ref r;
	  ao_ref_init (&r, lhs);
	  return refs_may_alias_p_1 (ref, &r, tbaa_p);
	}
    }
  else if (gimple_code (stmt) == GIMPLE_ASM)
    return true;

  return false;
}

bool
stmt_may_clobber_ref_p (gimple *stmt, tree ref, bool tbaa_p)
{
  ao_ref r;
  ao_ref_init (&r, ref);
  return stmt_may_clobber_ref_p_1 (stmt, &r, tbaa_p);
}

/* Return true if store1 and store2 described by corresponding tuples
   <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
   address.  */

static bool
same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
			 poly_int64 max_size1,
			 tree base2, poly_int64 offset2, poly_int64 size2,
			 poly_int64 max_size2)
{
  /* Offsets need to be 0.  */
  if (maybe_ne (offset1, 0)
      || maybe_ne (offset2, 0))
    return false;

  bool base1_obj_p = SSA_VAR_P (base1);
  bool base2_obj_p = SSA_VAR_P (base2);

  /* We need one object.  */
  if (base1_obj_p == base2_obj_p)
    return false;
  tree obj = base1_obj_p ? base1 : base2;

  /* And we need one MEM_REF.  */
  bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
  bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
  if (base1_memref_p == base2_memref_p)
    return false;
  tree memref = base1_memref_p ? base1 : base2;

  /* Sizes need to be valid.  */
  if (!known_size_p (max_size1)
      || !known_size_p (max_size2)
      || !known_size_p (size1)
      || !known_size_p (size2))
    return false;

  /* Max_size needs to match size.  */
  if (maybe_ne (max_size1, size1)
      || maybe_ne (max_size2, size2))
    return false;

  /* Sizes need to match.  */
  if (maybe_ne (size1, size2))
    return false;


  /* Check that memref is a store to pointer with singleton points-to info.  */
  if (!integer_zerop (TREE_OPERAND (memref, 1)))
    return false;
  tree ptr = TREE_OPERAND (memref, 0);
  if (TREE_CODE (ptr) != SSA_NAME)
    return false;
  struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
  unsigned int pt_uid;
  if (pi == NULL
      || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
    return false;

  /* Be conservative with non-call exceptions when the address might
     be NULL.  */
  if (cfun->can_throw_non_call_exceptions && pi->pt.null)
    return false;

  /* Check that ptr points relative to obj.  */
  unsigned int obj_uid = DECL_PT_UID (obj);
  if (obj_uid != pt_uid)
    return false;

  /* Check that the object size is the same as the store size.  That ensures us
     that ptr points to the start of obj.  */
  return (DECL_SIZE (obj)
	  && poly_int_tree_p (DECL_SIZE (obj))
	  && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
}

/* Return true if REF is killed by an store described by
   BASE, OFFSET, SIZE and MAX_SIZE.  */

static bool
store_kills_ref_p (tree base, poly_int64 offset, poly_int64 size,
		   poly_int64 max_size, ao_ref *ref)
{
  poly_int64 ref_offset = ref->offset;
  /* We can get MEM[symbol: sZ, index: D.8862_1] here,
     so base == ref->base does not always hold.  */
  if (base != ref->base)
    {
      /* Try using points-to info.  */
      if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
				   ref->offset, ref->size, ref->max_size))
	return true;

      /* If both base and ref->base are MEM_REFs, only compare the
	 first operand, and if the second operand isn't equal constant,
	 try to add the offsets into offset and ref_offset.  */
      if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
	  && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
	{
	  if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
				   TREE_OPERAND (ref->base, 1)))
	    {
	      poly_offset_int off1 = mem_ref_offset (base);
	      off1 <<= LOG2_BITS_PER_UNIT;
	      off1 += offset;
	      poly_offset_int off2 = mem_ref_offset (ref->base);
	      off2 <<= LOG2_BITS_PER_UNIT;
	      off2 += ref_offset;
	      if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
		size = -1;
	    }
	}
      else
	size = -1;
    }
  /* For a must-alias check we need to be able to constrain
     the access properly.  */
  return (known_eq (size, max_size)
	  && known_subrange_p (ref_offset, ref->max_size, offset, size));
}

/* If STMT kills the memory reference REF return true, otherwise
   return false.  */

bool
stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
{
  if (!ao_ref_base (ref))
    return false;

  if (gimple_has_lhs (stmt)
      && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
      /* The assignment is not necessarily carried out if it can throw
	 and we can catch it in the current function where we could inspect
	 the previous value.
	 ???  We only need to care about the RHS throwing.  For aggregate
	 assignments or similar calls and non-call exceptions the LHS
	 might throw as well.  */
      && !stmt_can_throw_internal (cfun, stmt))
    {
      tree lhs = gimple_get_lhs (stmt);
      /* If LHS is literally a base of the access we are done.  */
      if (ref->ref)
	{
	  tree base = ref->ref;
	  tree innermost_dropped_array_ref = NULL_TREE;
	  if (handled_component_p (base))
	    {
	      tree saved_lhs0 = NULL_TREE;
	      if (handled_component_p (lhs))
		{
		  saved_lhs0 = TREE_OPERAND (lhs, 0);
		  TREE_OPERAND (lhs, 0) = integer_zero_node;
		}
	      do
		{
		  /* Just compare the outermost handled component, if
		     they are equal we have found a possible common
		     base.  */
		  tree saved_base0 = TREE_OPERAND (base, 0);
		  TREE_OPERAND (base, 0) = integer_zero_node;
		  bool res = operand_equal_p (lhs, base, 0);
		  TREE_OPERAND (base, 0) = saved_base0;
		  if (res)
		    break;
		  /* Remember if we drop an array-ref that we need to
		     double-check not being at struct end.  */ 
		  if (TREE_CODE (base) == ARRAY_REF
		      || TREE_CODE (base) == ARRAY_RANGE_REF)
		    innermost_dropped_array_ref = base;
		  /* Otherwise drop handled components of the access.  */
		  base = saved_base0;
		}
	      while (handled_component_p (base));
	      if (saved_lhs0)
		TREE_OPERAND (lhs, 0) = saved_lhs0;
	    }
	  /* Finally check if the lhs has the same address and size as the
	     base candidate of the access.  Watch out if we have dropped
	     an array-ref that was at struct end, this means ref->ref may
	     be outside of the TYPE_SIZE of its base.  */
	  if ((! innermost_dropped_array_ref
	       || ! array_at_struct_end_p (innermost_dropped_array_ref))
	      && (lhs == base
		  || (((TYPE_SIZE (TREE_TYPE (lhs))
			== TYPE_SIZE (TREE_TYPE (base)))
		       || (TYPE_SIZE (TREE_TYPE (lhs))
			   && TYPE_SIZE (TREE_TYPE (base))
			   && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
					       TYPE_SIZE (TREE_TYPE (base)),
					       0)))
		      && operand_equal_p (lhs, base,
					  OEP_ADDRESS_OF
					  | OEP_MATCH_SIDE_EFFECTS))))
	    {
	      ++alias_stats.stmt_kills_ref_p_yes;
	      return true;
	    }
	}

      /* Now look for non-literal equal bases with the restriction of
         handling constant offset and size.  */
      /* For a must-alias check we need to be able to constrain
	 the access properly.  */
      if (!ref->max_size_known_p ())
	{
	  ++alias_stats.stmt_kills_ref_p_no;
	  return false;
	}
      poly_int64 size, offset, max_size;
      bool reverse;
      tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size,
					   &reverse);
      if (store_kills_ref_p (base, offset, size, max_size, ref))
	{
	  ++alias_stats.stmt_kills_ref_p_yes;
	  return true;
	}
    }

  if (is_gimple_call (stmt))
    {
      tree callee = gimple_call_fndecl (stmt);
      struct cgraph_node *node;
      modref_summary *summary;

      /* Try to disambiguate using modref summary.  Modref records a vector
	 of stores with known offsets relative to function parameters that must
	 happen every execution of function.  Find if we have a matching
	 store and verify that function can not use the value.  */
      if (callee != NULL_TREE
	  && (node = cgraph_node::get (callee)) != NULL
	  && node->binds_to_current_def_p ()
	  && (summary = get_modref_function_summary (node)) != NULL
	  && summary->kills.length ()
	  && (!cfun->can_throw_non_call_exceptions
	      || !stmt_can_throw_internal (cfun, stmt)))
	{
	  for (auto kill : summary->kills)
	    {
	      ao_ref dref;

	      /* We only can do useful compares if we know the access range
		 precisely.  */
	      if (!kill.get_ao_ref (as_a <gcall *> (stmt), &dref))
		continue;
	      if (store_kills_ref_p (ao_ref_base (&dref), dref.offset,
				     dref.size, dref.max_size, ref))
		{
		  /* For store to be killed it needs to not be used
		     earlier.  */
		  if (ref_maybe_used_by_call_p_1 (as_a <gcall *> (stmt), ref,
						  true)
		      || !dbg_cnt (ipa_mod_ref))
		    break;
		  if (dump_file && (dump_flags & TDF_DETAILS))
		    {
		      fprintf (dump_file,
			       "ipa-modref: call stmt ");
		      print_gimple_stmt (dump_file, stmt, 0);
		      fprintf (dump_file,
			       "ipa-modref: call to %s kills ",
			       node->dump_name ());
		      print_generic_expr (dump_file, ref->base);
		    }
		    ++alias_stats.modref_kill_yes;
		    return true;
		}
	    }
	  ++alias_stats.modref_kill_no;
	}
      if (callee != NULL_TREE
	  && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
	switch (DECL_FUNCTION_CODE (callee))
	  {
	  case BUILT_IN_FREE:
	    {
	      tree ptr = gimple_call_arg (stmt, 0);
	      tree base = ao_ref_base (ref);
	      if (base && TREE_CODE (base) == MEM_REF
		  && TREE_OPERAND (base, 0) == ptr)
		{
		  ++alias_stats.stmt_kills_ref_p_yes;
		  return true;
		}
	      break;
	    }

	  case BUILT_IN_MEMCPY:
	  case BUILT_IN_MEMPCPY:
	  case BUILT_IN_MEMMOVE:
	  case BUILT_IN_MEMSET:
	  case BUILT_IN_MEMCPY_CHK:
	  case BUILT_IN_MEMPCPY_CHK:
	  case BUILT_IN_MEMMOVE_CHK:
	  case BUILT_IN_MEMSET_CHK:
	  case BUILT_IN_STRNCPY:
	  case BUILT_IN_STPNCPY:
	  case BUILT_IN_CALLOC:
	    {
	      /* For a must-alias check we need to be able to constrain
		 the access properly.  */
	      if (!ref->max_size_known_p ())
		{
		  ++alias_stats.stmt_kills_ref_p_no;
		  return false;
		}
	      tree dest;
	      tree len;

	      /* In execution order a calloc call will never kill
		 anything.  However, DSE will (ab)use this interface
		 to ask if a calloc call writes the same memory locations
		 as a later assignment, memset, etc.  So handle calloc
		 in the expected way.  */
	      if (DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC)
		{
		  tree arg0 = gimple_call_arg (stmt, 0);
		  tree arg1 = gimple_call_arg (stmt, 1);
		  if (TREE_CODE (arg0) != INTEGER_CST
		      || TREE_CODE (arg1) != INTEGER_CST)
		    {
		      ++alias_stats.stmt_kills_ref_p_no;
		      return false;
		    }

		  dest = gimple_call_lhs (stmt);
		  if (!dest)
		    {
		      ++alias_stats.stmt_kills_ref_p_no;
		      return false;
		    }
		  len = fold_build2 (MULT_EXPR, TREE_TYPE (arg0), arg0, arg1);
		}
	      else
		{
		  dest = gimple_call_arg (stmt, 0);
		  len = gimple_call_arg (stmt, 2);
		}
	      if (!poly_int_tree_p (len))
		return false;
	      ao_ref dref;
	      ao_ref_init_from_ptr_and_size (&dref, dest, len);
	      if (store_kills_ref_p (ao_ref_base (&dref), dref.offset,
				     dref.size, dref.max_size, ref))
		{
		  ++alias_stats.stmt_kills_ref_p_yes;
		  return true;
		}
	      break;
	    }

	  case BUILT_IN_VA_END:
	    {
	      tree ptr = gimple_call_arg (stmt, 0);
	      if (TREE_CODE (ptr) == ADDR_EXPR)
		{
		  tree base = ao_ref_base (ref);
		  if (TREE_OPERAND (ptr, 0) == base)
		    {
		      ++alias_stats.stmt_kills_ref_p_yes;
		      return true;
		    }
		}
	      break;
	    }

	  default:;
	  }
    }
  ++alias_stats.stmt_kills_ref_p_no;
  return false;
}

bool
stmt_kills_ref_p (gimple *stmt, tree ref)
{
  ao_ref r;
  ao_ref_init (&r, ref);
  return stmt_kills_ref_p (stmt, &r);
}


/* Walk the virtual use-def chain of VUSE until hitting the virtual operand
   TARGET or a statement clobbering the memory reference REF in which
   case false is returned.  The walk starts with VUSE, one argument of PHI.  */

static bool
maybe_skip_until (gimple *phi, tree &target, basic_block target_bb,
		  ao_ref *ref, tree vuse, bool tbaa_p, unsigned int &limit,
		  bitmap *visited, bool abort_on_visited,
		  void *(*translate)(ao_ref *, tree, void *, translate_flags *),
		  translate_flags disambiguate_only,
		  void *data)
{
  basic_block bb = gimple_bb (phi);

  if (!*visited)
    *visited = BITMAP_ALLOC (NULL);

  bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));

  /* Walk until we hit the target.  */
  while (vuse != target)
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
      /* If we are searching for the target VUSE by walking up to
         TARGET_BB dominating the original PHI we are finished once
	 we reach a default def or a definition in a block dominating
	 that block.  Update TARGET and return.  */
      if (!target
	  && (gimple_nop_p (def_stmt)
	      || dominated_by_p (CDI_DOMINATORS,
				 target_bb, gimple_bb (def_stmt))))
	{
	  target = vuse;
	  return true;
	}

      /* Recurse for PHI nodes.  */
      if (gimple_code (def_stmt) == GIMPLE_PHI)
	{
	  /* An already visited PHI node ends the walk successfully.  */
	  if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
	    return !abort_on_visited;
	  vuse = get_continuation_for_phi (def_stmt, ref, tbaa_p, limit,
					   visited, abort_on_visited,
					   translate, data, disambiguate_only);
	  if (!vuse)
	    return false;
	  continue;
	}
      else if (gimple_nop_p (def_stmt))
	return false;
      else
	{
	  /* A clobbering statement or the end of the IL ends it failing.  */
	  if ((int)limit <= 0)
	    return false;
	  --limit;
	  if (stmt_may_clobber_ref_p_1 (def_stmt, ref, tbaa_p))
	    {
	      translate_flags tf = disambiguate_only;
	      if (translate
		  && (*translate) (ref, vuse, data, &tf) == NULL)
		;
	      else
		return false;
	    }
	}
      /* If we reach a new basic-block see if we already skipped it
         in a previous walk that ended successfully.  */
      if (gimple_bb (def_stmt) != bb)
	{
	  if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
	    return !abort_on_visited;
	  bb = gimple_bb (def_stmt);
	}
      vuse = gimple_vuse (def_stmt);
    }
  return true;
}


/* Starting from a PHI node for the virtual operand of the memory reference
   REF find a continuation virtual operand that allows to continue walking
   statements dominating PHI skipping only statements that cannot possibly
   clobber REF.  Decrements LIMIT for each alias disambiguation done
   and aborts the walk, returning NULL_TREE if it reaches zero.
   Returns NULL_TREE if no suitable virtual operand can be found.  */

tree
get_continuation_for_phi (gimple *phi, ao_ref *ref, bool tbaa_p,
			  unsigned int &limit, bitmap *visited,
			  bool abort_on_visited,
			  void *(*translate)(ao_ref *, tree, void *,
					     translate_flags *),
			  void *data,
			  translate_flags disambiguate_only)
{
  unsigned nargs = gimple_phi_num_args (phi);

  /* Through a single-argument PHI we can simply look through.  */
  if (nargs == 1)
    return PHI_ARG_DEF (phi, 0);

  /* For two or more arguments try to pairwise skip non-aliasing code
     until we hit the phi argument definition that dominates the other one.  */
  basic_block phi_bb = gimple_bb (phi);
  tree arg0, arg1;
  unsigned i;

  /* Find a candidate for the virtual operand which definition
     dominates those of all others.  */
  /* First look if any of the args themselves satisfy this.  */
  for (i = 0; i < nargs; ++i)
    {
      arg0 = PHI_ARG_DEF (phi, i);
      if (SSA_NAME_IS_DEFAULT_DEF (arg0))
	break;
      basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
      if (def_bb != phi_bb
	  && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
	break;
      arg0 = NULL_TREE;
    }
  /* If not, look if we can reach such candidate by walking defs
     until we hit the immediate dominator.  maybe_skip_until will
     do that for us.  */
  basic_block dom = get_immediate_dominator (CDI_DOMINATORS, phi_bb);

  /* Then check against the (to be) found candidate.  */
  for (i = 0; i < nargs; ++i)
    {
      arg1 = PHI_ARG_DEF (phi, i);
      if (arg1 == arg0)
	;
      else if (! maybe_skip_until (phi, arg0, dom, ref, arg1, tbaa_p,
				   limit, visited,
				   abort_on_visited,
				   translate,
				   /* Do not valueize when walking over
				      backedges.  */
				   dominated_by_p
				     (CDI_DOMINATORS,
				      gimple_bb (SSA_NAME_DEF_STMT (arg1)),
				      phi_bb)
				   ? TR_DISAMBIGUATE
				   : disambiguate_only, data))
	return NULL_TREE;
    }

  return arg0;
}

/* Based on the memory reference REF and its virtual use VUSE call
   WALKER for each virtual use that is equivalent to VUSE, including VUSE
   itself.  That is, for each virtual use for which its defining statement
   does not clobber REF.

   WALKER is called with REF, the current virtual use and DATA.  If
   WALKER returns non-NULL the walk stops and its result is returned.
   At the end of a non-successful walk NULL is returned.

   TRANSLATE if non-NULL is called with a pointer to REF, the virtual
   use which definition is a statement that may clobber REF and DATA.
   If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
   If TRANSLATE returns non-NULL the walk stops and its result is returned.
   If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
   to adjust REF and *DATA to make that valid.

   VALUEIZE if non-NULL is called with the next VUSE that is considered
   and return value is substituted for that.  This can be used to
   implement optimistic value-numbering for example.  Note that the
   VUSE argument is assumed to be valueized already.

   LIMIT specifies the number of alias queries we are allowed to do,
   the walk stops when it reaches zero and NULL is returned.  LIMIT
   is decremented by the number of alias queries (plus adjustments
   done by the callbacks) upon return.

   TODO: Cache the vector of equivalent vuses per ref, vuse pair.  */

void *
walk_non_aliased_vuses (ao_ref *ref, tree vuse, bool tbaa_p,
			void *(*walker)(ao_ref *, tree, void *),
			void *(*translate)(ao_ref *, tree, void *,
					   translate_flags *),
			tree (*valueize)(tree),
			unsigned &limit, void *data)
{
  bitmap visited = NULL;
  void *res;
  bool translated = false;

  timevar_push (TV_ALIAS_STMT_WALK);

  do
    {
      gimple *def_stmt;

      /* ???  Do we want to account this to TV_ALIAS_STMT_WALK?  */
      res = (*walker) (ref, vuse, data);
      /* Abort walk.  */
      if (res == (void *)-1)
	{
	  res = NULL;
	  break;
	}
      /* Lookup succeeded.  */
      else if (res != NULL)
	break;

      if (valueize)
	{
	  vuse = valueize (vuse);
	  if (!vuse)
	    {
	      res = NULL;
	      break;
	    }
	}
      def_stmt = SSA_NAME_DEF_STMT (vuse);
      if (gimple_nop_p (def_stmt))
	break;
      else if (gimple_code (def_stmt) == GIMPLE_PHI)
	vuse = get_continuation_for_phi (def_stmt, ref, tbaa_p, limit,
					 &visited, translated, translate, data);
      else
	{
	  if ((int)limit <= 0)
	    {
	      res = NULL;
	      break;
	    }
	  --limit;
	  if (stmt_may_clobber_ref_p_1 (def_stmt, ref, tbaa_p))
	    {
	      if (!translate)
		break;
	      translate_flags disambiguate_only = TR_TRANSLATE;
	      res = (*translate) (ref, vuse, data, &disambiguate_only);
	      /* Failed lookup and translation.  */
	      if (res == (void *)-1)
		{
		  res = NULL;
		  break;
		}
	      /* Lookup succeeded.  */
	      else if (res != NULL)
		break;
	      /* Translation succeeded, continue walking.  */
	      translated = translated || disambiguate_only == TR_TRANSLATE;
	    }
	  vuse = gimple_vuse (def_stmt);
	}
    }
  while (vuse);

  if (visited)
    BITMAP_FREE (visited);

  timevar_pop (TV_ALIAS_STMT_WALK);

  return res;
}


/* Based on the memory reference REF call WALKER for each vdef whose
   defining statement may clobber REF, starting with VDEF.  If REF
   is NULL_TREE, each defining statement is visited.

   WALKER is called with REF, the current vdef and DATA.  If WALKER
   returns true the walk is stopped, otherwise it continues.

   If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
   The pointer may be NULL and then we do not track this information.

   At PHI nodes walk_aliased_vdefs forks into one walk for each
   PHI argument (but only one walk continues at merge points), the
   return value is true if any of the walks was successful.

   The function returns the number of statements walked or -1 if
   LIMIT stmts were walked and the walk was aborted at this point.
   If LIMIT is zero the walk is not aborted.  */

static int
walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
		      bool (*walker)(ao_ref *, tree, void *), void *data,
		      bitmap *visited, unsigned int cnt,
		      bool *function_entry_reached, unsigned limit)
{
  do
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);

      if (*visited
	  && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
	return cnt;

      if (gimple_nop_p (def_stmt))
	{
	  if (function_entry_reached)
	    *function_entry_reached = true;
	  return cnt;
	}
      else if (gimple_code (def_stmt) == GIMPLE_PHI)
	{
	  unsigned i;
	  if (!*visited)
	    *visited = BITMAP_ALLOC (NULL);
	  for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
	    {
	      int res = walk_aliased_vdefs_1 (ref,
					      gimple_phi_arg_def (def_stmt, i),
					      walker, data, visited, cnt,
					      function_entry_reached, limit);
	      if (res == -1)
		return -1;
	      cnt = res;
	    }
	  return cnt;
	}

      /* ???  Do we want to account this to TV_ALIAS_STMT_WALK?  */
      cnt++;
      if (cnt == limit)
	return -1;
      if ((!ref
	   || stmt_may_clobber_ref_p_1 (def_stmt, ref))
	  && (*walker) (ref, vdef, data))
	return cnt;

      vdef = gimple_vuse (def_stmt);
    }
  while (1);
}

int
walk_aliased_vdefs (ao_ref *ref, tree vdef,
		    bool (*walker)(ao_ref *, tree, void *), void *data,
		    bitmap *visited,
		    bool *function_entry_reached, unsigned int limit)
{
  bitmap local_visited = NULL;
  int ret;

  timevar_push (TV_ALIAS_STMT_WALK);

  if (function_entry_reached)
    *function_entry_reached = false;

  ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
			      visited ? visited : &local_visited, 0,
			      function_entry_reached, limit);
  if (local_visited)
    BITMAP_FREE (local_visited);

  timevar_pop (TV_ALIAS_STMT_WALK);

  return ret;
}

/* Verify validity of the fnspec string.
   See attr-fnspec.h for details.  */

void
attr_fnspec::verify ()
{
  bool err = false;
  if (!len)
    return;

  /* Check return value specifier.  */
  if (len < return_desc_size)
    err = true;
  else if ((len - return_desc_size) % arg_desc_size)
    err = true;
  else if ((str[0] < '1' || str[0] > '4')
	   && str[0] != '.' && str[0] != 'm')
    err = true;

  switch (str[1])
    {
      case ' ':
      case 'p':
      case 'P':
      case 'c':
      case 'C':
	break;
      default:
	err = true;
    }
  if (err)
    internal_error ("invalid fn spec attribute \"%s\"", str);

  /* Now check all parameters.  */
  for (unsigned int i = 0; arg_specified_p (i); i++)
    {
      unsigned int idx = arg_idx (i);
      switch (str[idx])
	{
	  case 'x':
	  case 'X':
	  case 'r':
	  case 'R':
	  case 'o':
	  case 'O':
	  case 'w':
	  case 'W':
	  case '.':
	    if ((str[idx + 1] >= '1' && str[idx + 1] <= '9')
		|| str[idx + 1] == 't')
	      {
		if (str[idx] != 'r' && str[idx] != 'R'
		    && str[idx] != 'w' && str[idx] != 'W'
		    && str[idx] != 'o' && str[idx] != 'O')
		  err = true;
		if (str[idx + 1] != 't'
		    /* Size specified is scalar, so it should be described
		       by ". " if specified at all.  */
		    && (arg_specified_p (str[idx + 1] - '1')
			&& str[arg_idx (str[idx + 1] - '1')] != '.'))
		  err = true;
	      }
	    else if (str[idx + 1] != ' ')
	      err = true;
	    break;
	  default:
	    if (str[idx] < '1' || str[idx] > '9')
	      err = true;
	}
      if (err)
	internal_error ("invalid fn spec attribute \"%s\" arg %i", str, i);
    }
}

/* Return ture if TYPE1 and TYPE2 will always give the same answer
   when compared wit hother types using same_type_for_tbaa_p.  */

static bool
types_equal_for_same_type_for_tbaa_p (tree type1, tree type2,
				      bool lto_streaming_safe)
{
  /* We use same_type_for_tbaa_p to match types in the access path.
     This check is overly conservative.  */
  type1 = TYPE_MAIN_VARIANT (type1);
  type2 = TYPE_MAIN_VARIANT (type2);

  if (TYPE_STRUCTURAL_EQUALITY_P (type1)
      != TYPE_STRUCTURAL_EQUALITY_P (type2))
    return false;
  if (TYPE_STRUCTURAL_EQUALITY_P (type1))
    return true;

  if (lto_streaming_safe)
    return type1 == type2;
  else
    return TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2);
}

/* Compare REF1 and REF2 and return flags specifying their differences.
   If LTO_STREAMING_SAFE is true do not use alias sets and canonical
   types that are going to be recomputed.
   If TBAA is true also compare TBAA metadata.  */

int
ao_compare::compare_ao_refs (ao_ref *ref1, ao_ref *ref2,
			     bool lto_streaming_safe,
			     bool tbaa)
{
  if (TREE_THIS_VOLATILE (ref1->ref) != TREE_THIS_VOLATILE (ref2->ref))
    return SEMANTICS;
  tree base1 = ao_ref_base (ref1);
  tree base2 = ao_ref_base (ref2);

  if (!known_eq (ref1->offset, ref2->offset)
      || !known_eq (ref1->size, ref2->size)
      || !known_eq (ref1->max_size, ref2->max_size))
    return SEMANTICS;

  /* For variable accesses we need to compare actual paths
     to check that both refs are accessing same address and the access size.  */
  if (!known_eq (ref1->size, ref1->max_size))
    {
      if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (ref1->ref)),
			    TYPE_SIZE (TREE_TYPE (ref2->ref)), 0))
	return SEMANTICS;
      tree r1 = ref1->ref;
      tree r2 = ref2->ref;

      /* Handle toplevel COMPONENT_REFs of bitfields.
	 Those are special since they are not allowed in
	 ADDR_EXPR.  */
      if (TREE_CODE (r1) == COMPONENT_REF
	  && DECL_BIT_FIELD (TREE_OPERAND (r1, 1)))
	{
	  if (TREE_CODE (r2) != COMPONENT_REF
	      || !DECL_BIT_FIELD (TREE_OPERAND (r2, 1)))
	    return SEMANTICS;
	  tree field1 = TREE_OPERAND (r1, 1);
	  tree field2 = TREE_OPERAND (r2, 1);
	  if (!operand_equal_p (DECL_FIELD_OFFSET (field1),
				DECL_FIELD_OFFSET (field2), 0)
	      || !operand_equal_p (DECL_FIELD_BIT_OFFSET (field1),
				   DECL_FIELD_BIT_OFFSET (field2), 0)
	      || !operand_equal_p (DECL_SIZE (field1), DECL_SIZE (field2), 0)
	      || !types_compatible_p (TREE_TYPE (r1),
				      TREE_TYPE (r2)))
	    return SEMANTICS;
	  r1 = TREE_OPERAND (r1, 0);
	  r2 = TREE_OPERAND (r2, 0);
	}
      else if (TREE_CODE (r2) == COMPONENT_REF
	       && DECL_BIT_FIELD (TREE_OPERAND (r2, 1)))
	return SEMANTICS;

      /* Similarly for bit field refs.  */
      if (TREE_CODE (r1) == BIT_FIELD_REF)
	{
 	  if (TREE_CODE (r2) != BIT_FIELD_REF
	      || !operand_equal_p (TREE_OPERAND (r1, 1),
				   TREE_OPERAND (r2, 1), 0)
	      || !operand_equal_p (TREE_OPERAND (r1, 2),
				   TREE_OPERAND (r2, 2), 0)
	      || !types_compatible_p (TREE_TYPE (r1),
				      TREE_TYPE (r2)))
	    return SEMANTICS;
	  r1 = TREE_OPERAND (r1, 0);
	  r2 = TREE_OPERAND (r2, 0);
	}
      else if (TREE_CODE (r2) == BIT_FIELD_REF)
	return SEMANTICS;

      /* Now we can compare the address of actual memory access.  */
      if (!operand_equal_p (r1, r2, OEP_ADDRESS_OF | OEP_MATCH_SIDE_EFFECTS))
	return SEMANTICS;
    }
  /* For constant accesses we get more matches by comparing offset only.  */
  else if (!operand_equal_p (base1, base2,
			     OEP_ADDRESS_OF | OEP_MATCH_SIDE_EFFECTS))
    return SEMANTICS;

  /* We can't simply use get_object_alignment_1 on the full
     reference as for accesses with variable indexes this reports
     too conservative alignment.  */
  unsigned int align1, align2;
  unsigned HOST_WIDE_INT bitpos1, bitpos2;
  bool known1 = get_object_alignment_1 (base1, &align1, &bitpos1);
  bool known2 = get_object_alignment_1 (base2, &align2, &bitpos2);
  /* ??? For MEMREF get_object_alignment_1 determines aligned from
     TYPE_ALIGN but still returns false.  This seem to contradict
     its description.  So compare even if alignment is unknown.   */
  if (known1 != known2
      || (bitpos1 != bitpos2 || align1 != align2))
    return SEMANTICS;

  /* Now we know that accesses are semantically same.  */
  int flags = 0;

  /* ao_ref_base strips inner MEM_REF [&decl], recover from that here.  */
  tree rbase1 = ref1->ref;
  if (rbase1)
    while (handled_component_p (rbase1))
      rbase1 = TREE_OPERAND (rbase1, 0);
  tree rbase2 = ref2->ref;
  while (handled_component_p (rbase2))
    rbase2 = TREE_OPERAND (rbase2, 0);

  /* MEM_REFs and TARGET_MEM_REFs record dependence cliques which are used to
     implement restrict pointers.  MR_DEPENDENCE_CLIQUE 0 means no information.
     Otherwise we need to match bases and cliques.  */
  if ((((TREE_CODE (rbase1) == MEM_REF || TREE_CODE (rbase1) == TARGET_MEM_REF)
	&& MR_DEPENDENCE_CLIQUE (rbase1))
       || ((TREE_CODE (rbase2) == MEM_REF || TREE_CODE (rbase2) == TARGET_MEM_REF)
	   && MR_DEPENDENCE_CLIQUE (rbase2)))
      && (TREE_CODE (rbase1) != TREE_CODE (rbase2)
	  || MR_DEPENDENCE_CLIQUE (rbase1) != MR_DEPENDENCE_CLIQUE (rbase2)
	  || (MR_DEPENDENCE_BASE (rbase1) != MR_DEPENDENCE_BASE (rbase2))))
    flags |= DEPENDENCE_CLIQUE;

  if (!tbaa)
    return flags;

  /* Alias sets are not stable across LTO sreaming; be conservative here
     and compare types the alias sets are ultimately based on.  */
  if (lto_streaming_safe)
    {
      tree t1 = ao_ref_alias_ptr_type (ref1);
      tree t2 = ao_ref_alias_ptr_type (ref2);
      if (!alias_ptr_types_compatible_p (t1, t2))
	flags |= REF_ALIAS_SET;

      t1 = ao_ref_base_alias_ptr_type (ref1);
      t2 = ao_ref_base_alias_ptr_type (ref2);
      if (!alias_ptr_types_compatible_p (t1, t2))
	flags |= BASE_ALIAS_SET;
    }
  else
    {
      if (ao_ref_alias_set (ref1) != ao_ref_alias_set (ref2))
	flags |= REF_ALIAS_SET;
      if (ao_ref_base_alias_set (ref1) != ao_ref_base_alias_set (ref2))
	flags |= BASE_ALIAS_SET;
    }

  /* Access path is used only on non-view-converted references.  */
  bool view_converted = view_converted_memref_p (rbase1);
  if (view_converted_memref_p (rbase2) != view_converted)
    return flags | ACCESS_PATH;
  else if (view_converted)
    return flags;


  /* Find start of access paths and look for trailing arrays.  */
  tree c1 = ref1->ref, c2 = ref2->ref;
  tree end_struct_ref1 = NULL, end_struct_ref2 = NULL;
  int nskipped1 = 0, nskipped2 = 0;
  int i = 0;

  for (tree p1 = ref1->ref; handled_component_p (p1); p1 = TREE_OPERAND (p1, 0))
    {
      if (component_ref_to_zero_sized_trailing_array_p (p1))
	end_struct_ref1 = p1;
      if (ends_tbaa_access_path_p (p1))
	c1 = p1, nskipped1 = i;
      i++;
    }
  for (tree p2 = ref2->ref; handled_component_p (p2); p2 = TREE_OPERAND (p2, 0))
    {
      if (component_ref_to_zero_sized_trailing_array_p (p2))
	end_struct_ref2 = p2;
      if (ends_tbaa_access_path_p (p2))
	c2 = p2, nskipped1 = i;
      i++;
    }

  /* For variable accesses we can not rely on offset match bellow.
     We know that paths are struturally same, so only check that
     starts of TBAA paths did not diverge.  */
  if (!known_eq (ref1->size, ref1->max_size)
      && nskipped1 != nskipped2)
    return flags | ACCESS_PATH;

  /* Information about trailing refs is used by
     aliasing_component_refs_p that is applied only if paths
     has handled components..  */
  if (!handled_component_p (c1) && !handled_component_p (c2))
    ;
  else if ((end_struct_ref1 != NULL) != (end_struct_ref2 != NULL))
    return flags | ACCESS_PATH;
  if (end_struct_ref1
      && TYPE_MAIN_VARIANT (TREE_TYPE (end_struct_ref1))
	 != TYPE_MAIN_VARIANT (TREE_TYPE (end_struct_ref2)))
    return flags | ACCESS_PATH;

  /* Now compare all handled components of the access path.
     We have three oracles that cares about access paths:
       - aliasing_component_refs_p
       - nonoverlapping_refs_since_match_p
       - nonoverlapping_component_refs_p
     We need to match things these oracles compare.

     It is only necessary to check types for compatibility
     and offsets.  Rest of what oracles compares are actual
     addresses.  Those are already known to be same:
       - for constant accesses we check offsets
       - for variable accesses we already matched
	 the path lexically with operand_equal_p.  */
  while (true)
    {
      bool comp1 = handled_component_p (c1);
      bool comp2 = handled_component_p (c2);

      if (comp1 != comp2)
	return flags | ACCESS_PATH;
      if (!comp1)
	break;

      if (TREE_CODE (c1) != TREE_CODE (c2))
	return flags | ACCESS_PATH;

      /* aliasing_component_refs_p attempts to find type match within
	 the paths.  For that reason both types needs to be equal
	 with respect to same_type_for_tbaa_p.  */
      if (!types_equal_for_same_type_for_tbaa_p (TREE_TYPE (c1),
						 TREE_TYPE (c2),
						 lto_streaming_safe))
	return flags | ACCESS_PATH;
      if (component_ref_to_zero_sized_trailing_array_p (c1)
	  != component_ref_to_zero_sized_trailing_array_p (c2))
	return flags | ACCESS_PATH;

      /* aliasing_matching_component_refs_p compares
	 offsets within the path.  Other properties are ignored.
	 Do not bother to verify offsets in variable accesses.  Here we
	 already compared them by operand_equal_p so they are
	 structurally same.  */
      if (!known_eq (ref1->size, ref1->max_size))
	{
	  poly_int64 offadj1, sztmc1, msztmc1;
	  bool reverse1;
	  get_ref_base_and_extent (c1, &offadj1, &sztmc1, &msztmc1, &reverse1);
	  poly_int64 offadj2, sztmc2, msztmc2;
	  bool reverse2;
	  get_ref_base_and_extent (c2, &offadj2, &sztmc2, &msztmc2, &reverse2);
	  if (!known_eq (offadj1, offadj2))
	    return flags | ACCESS_PATH;
	}
      c1 = TREE_OPERAND (c1, 0);
      c2 = TREE_OPERAND (c2, 0);
    }
  /* Finally test the access type.  */
  if (!types_equal_for_same_type_for_tbaa_p (TREE_TYPE (c1),
					     TREE_TYPE (c2),
					     lto_streaming_safe))
    return flags | ACCESS_PATH;
  return flags;
}

/* Hash REF to HSTATE.  If LTO_STREAMING_SAFE do not use alias sets
   and canonical types.  */
void
ao_compare::hash_ao_ref (ao_ref *ref, bool lto_streaming_safe, bool tbaa,
			 inchash::hash &hstate)
{
  tree base = ao_ref_base (ref);
  tree tbase = base;

  if (!known_eq (ref->size, ref->max_size))
    {
      tree r = ref->ref;
      if (TREE_CODE (r) == COMPONENT_REF
	  && DECL_BIT_FIELD (TREE_OPERAND (r, 1)))
	{
	  tree field = TREE_OPERAND (r, 1);
	  hash_operand (DECL_FIELD_OFFSET (field), hstate, 0);
	  hash_operand (DECL_FIELD_BIT_OFFSET (field), hstate, 0);
	  hash_operand (DECL_SIZE (field), hstate, 0);
	  r = TREE_OPERAND (r, 0);
	}
      if (TREE_CODE (r) == BIT_FIELD_REF)
	{
	  hash_operand (TREE_OPERAND (r, 1), hstate, 0);
	  hash_operand (TREE_OPERAND (r, 2), hstate, 0);
	  r = TREE_OPERAND (r, 0);
	}
      hash_operand (TYPE_SIZE (TREE_TYPE (ref->ref)), hstate, 0);
      hash_operand (r, hstate, OEP_ADDRESS_OF | OEP_MATCH_SIDE_EFFECTS);
    }
  else
    {
      hash_operand (tbase, hstate, OEP_ADDRESS_OF | OEP_MATCH_SIDE_EFFECTS);
      hstate.add_poly_int (ref->offset);
      hstate.add_poly_int (ref->size);
      hstate.add_poly_int (ref->max_size);
    }
  if (!lto_streaming_safe && tbaa)
    {
      hstate.add_int (ao_ref_alias_set (ref));
      hstate.add_int (ao_ref_base_alias_set (ref));
    }
}