aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-sra.cc
blob: 1ad4c4535d02ae1fe183eca103c5bcb9759c9239 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
/* Scalar Replacement of Aggregates (SRA) converts some structure
   references into scalar references, exposing them to the scalar
   optimizers.
   Copyright (C) 2008-2024 Free Software Foundation, Inc.
   Contributed by Martin Jambor <mjambor@suse.cz>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* This file implements Scalar Reduction of Aggregates (SRA).  SRA is run
   twice, once in the early stages of compilation (early SRA) and once in the
   late stages (late SRA).  The aim of both is to turn references to scalar
   parts of aggregates into uses of independent scalar variables.

   The two passes are nearly identical, the only difference is that early SRA
   does not scalarize unions which are used as the result in a GIMPLE_RETURN
   statement because together with inlining this can lead to weird type
   conversions.

   Both passes operate in four stages:

   1. The declarations that have properties which make them candidates for
      scalarization are identified in function find_var_candidates().  The
      candidates are stored in candidate_bitmap.

   2. The function body is scanned.  In the process, declarations which are
      used in a manner that prevent their scalarization are removed from the
      candidate bitmap.  More importantly, for every access into an aggregate,
      an access structure (struct access) is created by create_access() and
      stored in a vector associated with the aggregate.  Among other
      information, the aggregate declaration, the offset and size of the access
      and its type are stored in the structure.

      On a related note, assign_link structures are created for every assign
      statement between candidate aggregates and attached to the related
      accesses.

   3. The vectors of accesses are analyzed.  They are first sorted according to
      their offset and size and then scanned for partially overlapping accesses
      (i.e. those which overlap but one is not entirely within another).  Such
      an access disqualifies the whole aggregate from being scalarized.

      If there is no such inhibiting overlap, a representative access structure
      is chosen for every unique combination of offset and size.  Afterwards,
      the pass builds a set of trees from these structures, in which children
      of an access are within their parent (in terms of offset and size).

      Then accesses  are propagated  whenever possible (i.e.  in cases  when it
      does not create a partially overlapping access) across assign_links from
      the right hand side to the left hand side.

      Then the set of trees for each declaration is traversed again and those
      accesses which should be replaced by a scalar are identified.

   4. The function is traversed again, and for every reference into an
      aggregate that has some component which is about to be scalarized,
      statements are amended and new statements are created as necessary.
      Finally, if a parameter got scalarized, the scalar replacements are
      initialized with values from respective parameter aggregates.  */

#define INCLUDE_MEMORY
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "gimple-pretty-print.h"
#include "alias.h"
#include "fold-const.h"
#include "tree-eh.h"
#include "stor-layout.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "dbgcnt.h"
#include "builtins.h"
#include "tree-sra.h"
#include "opts.h"

/* Enumeration of all aggregate reductions we can do.  */
enum sra_mode { SRA_MODE_EARLY_IPA,   /* early call regularization */
		SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
		SRA_MODE_INTRA };     /* late intraprocedural SRA */

/* Global variable describing which aggregate reduction we are performing at
   the moment.  */
static enum sra_mode sra_mode;

struct assign_link;

/* ACCESS represents each access to an aggregate variable (as a whole or a
   part).  It can also represent a group of accesses that refer to exactly the
   same fragment of an aggregate (i.e. those that have exactly the same offset
   and size).  Such representatives for a single aggregate, once determined,
   are linked in a linked list and have the group fields set.

   Moreover, when doing intraprocedural SRA, a tree is built from those
   representatives (by the means of first_child and next_sibling pointers), in
   which all items in a subtree are "within" the root, i.e. their offset is
   greater or equal to offset of the root and offset+size is smaller or equal
   to offset+size of the root.  Children of an access are sorted by offset.

   Note that accesses to parts of vector and complex number types always
   represented by an access to the whole complex number or a vector.  It is a
   duty of the modifying functions to replace them appropriately.  */

struct access
{
  /* Values returned by  `get_ref_base_and_extent' for each component reference
     If EXPR isn't a component reference  just set `BASE = EXPR', `OFFSET = 0',
     `SIZE = TREE_SIZE (TREE_TYPE (expr))'.  */
  HOST_WIDE_INT offset;
  HOST_WIDE_INT size;
  tree base;

  /* Expression.  It is context dependent so do not use it to create new
     expressions to access the original aggregate.  See PR 42154 for a
     testcase.  */
  tree expr;
  /* Type.  */
  tree type;

  /* The statement this access belongs to.  */
  gimple *stmt;

  /* Next group representative for this aggregate. */
  struct access *next_grp;

  /* Pointer to the group representative.  Pointer to itself if the struct is
     the representative.  */
  struct access *group_representative;

  /* After access tree has been constructed, this points to the parent of the
     current access, if there is one.  NULL for roots.  */
  struct access *parent;

  /* If this access has any children (in terms of the definition above), this
     points to the first one.  */
  struct access *first_child;

  /* In intraprocedural SRA, pointer to the next sibling in the access tree as
     described above.  */
  struct access *next_sibling;

  /* Pointers to the first and last element in the linked list of assign
     links for propagation from LHS to RHS.  */
  struct assign_link *first_rhs_link, *last_rhs_link;

  /* Pointers to the first and last element in the linked list of assign
     links for propagation from LHS to RHS.  */
  struct assign_link *first_lhs_link, *last_lhs_link;

  /* Pointer to the next access in the work queues.  */
  struct access *next_rhs_queued, *next_lhs_queued;

  /* Replacement variable for this access "region."  Never to be accessed
     directly, always only by the means of get_access_replacement() and only
     when grp_to_be_replaced flag is set.  */
  tree replacement_decl;

  /* Is this access made in reverse storage order? */
  unsigned reverse : 1;

  /* Is this particular access write access? */
  unsigned write : 1;

  /* Is this access currently in the rhs work queue?  */
  unsigned grp_rhs_queued : 1;

  /* Is this access currently in the lhs work queue?  */
  unsigned grp_lhs_queued : 1;

  /* Does this group contain a write access?  This flag is propagated down the
     access tree.  */
  unsigned grp_write : 1;

  /* Does this group contain a read access?  This flag is propagated down the
     access tree.  */
  unsigned grp_read : 1;

  /* Does this group contain a read access that comes from an assignment
     statement?  This flag is propagated down the access tree.  */
  unsigned grp_assignment_read : 1;

  /* Does this group contain a write access that comes from an assignment
     statement?  This flag is propagated down the access tree.  */
  unsigned grp_assignment_write : 1;

  /* Does this group contain a read access through a scalar type?  This flag is
     not propagated in the access tree in any direction.  */
  unsigned grp_scalar_read : 1;

  /* Does this group contain a write access through a scalar type?  This flag
     is not propagated in the access tree in any direction.  */
  unsigned grp_scalar_write : 1;

  /* In a root of an access tree, true means that the entire tree should be
     totally scalarized - that all scalar leafs should be scalarized and
     non-root grp_total_scalarization accesses should be honored.  Otherwise,
     non-root accesses with grp_total_scalarization should never get scalar
     replacements.  */
  unsigned grp_total_scalarization : 1;

  /* Other passes of the analysis use this bit to make function
     analyze_access_subtree create scalar replacements for this group if
     possible.  */
  unsigned grp_hint : 1;

  /* Is the subtree rooted in this access fully covered by scalar
     replacements?  */
  unsigned grp_covered : 1;

  /* If set to true, this access and all below it in an access tree must not be
     scalarized.  */
  unsigned grp_unscalarizable_region : 1;

  /* Whether data have been written to parts of the aggregate covered by this
     access which is not to be scalarized.  This flag is propagated up in the
     access tree.  */
  unsigned grp_unscalarized_data : 1;

  /* Set if all accesses in the group consist of the same chain of
     COMPONENT_REFs and ARRAY_REFs.  */
  unsigned grp_same_access_path : 1;

  /* Does this access and/or group contain a write access through a
     BIT_FIELD_REF?  */
  unsigned grp_partial_lhs : 1;

  /* Set when a scalar replacement should be created for this variable.  */
  unsigned grp_to_be_replaced : 1;

  /* Set when we want a replacement for the sole purpose of having it in
     generated debug statements.  */
  unsigned grp_to_be_debug_replaced : 1;

  /* Should TREE_NO_WARNING of a replacement be set?  */
  unsigned grp_no_warning : 1;

  /* Result of propagation accross link from LHS to RHS.  */
  unsigned grp_result_of_prop_from_lhs : 1;
};

typedef struct access *access_p;


/* Alloc pool for allocating access structures.  */
static object_allocator<struct access> access_pool ("SRA accesses");

/* A structure linking lhs and rhs accesses from an aggregate assignment.  They
   are used to propagate subaccesses from rhs to lhs and vice versa as long as
   they don't conflict with what is already there.  In the RHS->LHS direction,
   we also propagate grp_write flag to lazily mark that the access contains any
   meaningful data.  */
struct assign_link
{
  struct access *lacc, *racc;
  struct assign_link *next_rhs, *next_lhs;
};

/* Alloc pool for allocating assign link structures.  */
static object_allocator<assign_link> assign_link_pool ("SRA links");

/* Base (tree) -> Vector (vec<access_p> *) map.  */
static hash_map<tree, auto_vec<access_p> > *base_access_vec;

/* Hash to limit creation of artificial accesses */
static hash_map<tree, unsigned> *propagation_budget;

/* Candidate hash table helpers.  */

struct uid_decl_hasher : nofree_ptr_hash <tree_node>
{
  static inline hashval_t hash (const tree_node *);
  static inline bool equal (const tree_node *, const tree_node *);
};

/* Hash a tree in a uid_decl_map.  */

inline hashval_t
uid_decl_hasher::hash (const tree_node *item)
{
  return item->decl_minimal.uid;
}

/* Return true if the DECL_UID in both trees are equal.  */

inline bool
uid_decl_hasher::equal (const tree_node *a, const tree_node *b)
{
  return (a->decl_minimal.uid == b->decl_minimal.uid);
}

/* Set of candidates.  */
static bitmap candidate_bitmap;
static hash_table<uid_decl_hasher> *candidates;

/* For a candidate UID return the candidates decl.  */

static inline tree
candidate (unsigned uid)
{
 tree_node t;
 t.decl_minimal.uid = uid;
 return candidates->find_with_hash (&t, static_cast <hashval_t> (uid));
}

/* Bitmap of candidates which we should try to entirely scalarize away and
   those which cannot be (because they are and need be used as a whole).  */
static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;

/* Bitmap of candidates in the constant pool, which cannot be scalarized
   because this would produce non-constant expressions (e.g. Ada).  */
static bitmap disqualified_constants;

/* Bitmap of candidates which are passed by reference in call arguments.  */
static bitmap passed_by_ref_in_call;

/* Obstack for creation of fancy names.  */
static struct obstack name_obstack;

/* Head of a linked list of accesses that need to have its subaccesses
   propagated to their assignment counterparts. */
static struct access *rhs_work_queue_head, *lhs_work_queue_head;

/* Dump contents of ACCESS to file F in a human friendly way.  If GRP is true,
   representative fields are dumped, otherwise those which only describe the
   individual access are.  */

static struct
{
  /* Number of processed aggregates is readily available in
     analyze_all_variable_accesses and so is not stored here.  */

  /* Number of created scalar replacements.  */
  int replacements;

  /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
     expression.  */
  int exprs;

  /* Number of statements created by generate_subtree_copies.  */
  int subtree_copies;

  /* Number of statements created by load_assign_lhs_subreplacements.  */
  int subreplacements;

  /* Number of times sra_modify_assign has deleted a statement.  */
  int deleted;

  /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
     RHS reparately due to type conversions or nonexistent matching
     references.  */
  int separate_lhs_rhs_handling;

  /* Number of parameters that were removed because they were unused.  */
  int deleted_unused_parameters;

  /* Number of scalars passed as parameters by reference that have been
     converted to be passed by value.  */
  int scalar_by_ref_to_by_val;

  /* Number of aggregate parameters that were replaced by one or more of their
     components.  */
  int aggregate_params_reduced;

  /* Numbber of components created when splitting aggregate parameters.  */
  int param_reductions_created;

  /* Number of deferred_init calls that are modified.  */
  int deferred_init;

  /* Number of deferred_init calls that are created by
     generate_subtree_deferred_init.  */
  int subtree_deferred_init;
} sra_stats;

static void
dump_access (FILE *f, struct access *access, bool grp)
{
  fprintf (f, "access { ");
  fprintf (f, "base = (%d)'", DECL_UID (access->base));
  print_generic_expr (f, access->base);
  fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
  fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
  fprintf (f, ", expr = ");
  print_generic_expr (f, access->expr);
  fprintf (f, ", type = ");
  print_generic_expr (f, access->type);
  fprintf (f, ", reverse = %d", access->reverse);
  if (grp)
    fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
	     "grp_assignment_write = %d, grp_scalar_read = %d, "
	     "grp_scalar_write = %d, grp_total_scalarization = %d, "
	     "grp_hint = %d, grp_covered = %d, "
	     "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
	     "grp_same_access_path = %d, grp_partial_lhs = %d, "
	     "grp_to_be_replaced = %d, grp_to_be_debug_replaced = %d}\n",
	     access->grp_read, access->grp_write, access->grp_assignment_read,
	     access->grp_assignment_write, access->grp_scalar_read,
	     access->grp_scalar_write, access->grp_total_scalarization,
	     access->grp_hint, access->grp_covered,
	     access->grp_unscalarizable_region, access->grp_unscalarized_data,
	     access->grp_same_access_path, access->grp_partial_lhs,
	     access->grp_to_be_replaced, access->grp_to_be_debug_replaced);
  else
    fprintf (f, ", write = %d, grp_total_scalarization = %d, "
	     "grp_partial_lhs = %d}\n",
	     access->write, access->grp_total_scalarization,
	     access->grp_partial_lhs);
}

/* Dump a subtree rooted in ACCESS to file F, indent by LEVEL.  */

static void
dump_access_tree_1 (FILE *f, struct access *access, int level)
{
  do
    {
      int i;

      for (i = 0; i < level; i++)
	fputs ("* ", f);

      dump_access (f, access, true);

      if (access->first_child)
	dump_access_tree_1 (f, access->first_child, level + 1);

      access = access->next_sibling;
    }
  while (access);
}

/* Dump all access trees for a variable, given the pointer to the first root in
   ACCESS.  */

static void
dump_access_tree (FILE *f, struct access *access)
{
  for (; access; access = access->next_grp)
    dump_access_tree_1 (f, access, 0);
}

/* Return true iff ACC is non-NULL and has subaccesses.  */

static inline bool
access_has_children_p (struct access *acc)
{
  return acc && acc->first_child;
}

/* Return true iff ACC is (partly) covered by at least one replacement.  */

static bool
access_has_replacements_p (struct access *acc)
{
  struct access *child;
  if (acc->grp_to_be_replaced)
    return true;
  for (child = acc->first_child; child; child = child->next_sibling)
    if (access_has_replacements_p (child))
      return true;
  return false;
}

/* Return a vector of pointers to accesses for the variable given in BASE or
   NULL if there is none.  */

static vec<access_p> *
get_base_access_vector (tree base)
{
  return base_access_vec->get (base);
}

/* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
   in ACCESS.  Return NULL if it cannot be found.  */

static struct access *
find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
			HOST_WIDE_INT size)
{
  while (access && (access->offset != offset || access->size != size))
    {
      struct access *child = access->first_child;

      while (child && (child->offset + child->size <= offset))
	child = child->next_sibling;
      access = child;
    }

  /* Total scalarization does not replace single field structures with their
     single field but rather creates an access for them underneath.  Look for
     it.  */
  if (access)
    while (access->first_child
	   && access->first_child->offset == offset
	   && access->first_child->size == size)
      access = access->first_child;

  return access;
}

/* Return the first group representative for DECL or NULL if none exists.  */

static struct access *
get_first_repr_for_decl (tree base)
{
  vec<access_p> *access_vec;

  access_vec = get_base_access_vector (base);
  if (!access_vec)
    return NULL;

  return (*access_vec)[0];
}

/* Find an access representative for the variable BASE and given OFFSET and
   SIZE.  Requires that access trees have already been built.  Return NULL if
   it cannot be found.  */

static struct access *
get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
				 HOST_WIDE_INT size)
{
  struct access *access;

  access = get_first_repr_for_decl (base);
  while (access && (access->offset + access->size <= offset))
    access = access->next_grp;
  if (!access)
    return NULL;

  return find_access_in_subtree (access, offset, size);
}

/* Add LINK to the linked list of assign links of RACC.  */

static void
add_link_to_rhs (struct access *racc, struct assign_link *link)
{
  gcc_assert (link->racc == racc);

  if (!racc->first_rhs_link)
    {
      gcc_assert (!racc->last_rhs_link);
      racc->first_rhs_link = link;
    }
  else
    racc->last_rhs_link->next_rhs = link;

  racc->last_rhs_link = link;
  link->next_rhs = NULL;
}

/* Add LINK to the linked list of lhs assign links of LACC.  */

static void
add_link_to_lhs (struct access *lacc, struct assign_link *link)
{
  gcc_assert (link->lacc == lacc);

  if (!lacc->first_lhs_link)
    {
      gcc_assert (!lacc->last_lhs_link);
      lacc->first_lhs_link = link;
    }
  else
    lacc->last_lhs_link->next_lhs = link;

  lacc->last_lhs_link = link;
  link->next_lhs = NULL;
}

/* Move all link structures in their linked list in OLD_ACC to the linked list
   in NEW_ACC.  */
static void
relink_to_new_repr (struct access *new_acc, struct access *old_acc)
{
  if (old_acc->first_rhs_link)
    {

      if (new_acc->first_rhs_link)
	{
	  gcc_assert (!new_acc->last_rhs_link->next_rhs);
	  gcc_assert (!old_acc->last_rhs_link
		      || !old_acc->last_rhs_link->next_rhs);

	  new_acc->last_rhs_link->next_rhs = old_acc->first_rhs_link;
	  new_acc->last_rhs_link = old_acc->last_rhs_link;
	}
      else
	{
	  gcc_assert (!new_acc->last_rhs_link);

	  new_acc->first_rhs_link = old_acc->first_rhs_link;
	  new_acc->last_rhs_link = old_acc->last_rhs_link;
	}
      old_acc->first_rhs_link = old_acc->last_rhs_link = NULL;
    }
  else
    gcc_assert (!old_acc->last_rhs_link);

  if (old_acc->first_lhs_link)
    {

      if (new_acc->first_lhs_link)
	{
	  gcc_assert (!new_acc->last_lhs_link->next_lhs);
	  gcc_assert (!old_acc->last_lhs_link
		      || !old_acc->last_lhs_link->next_lhs);

	  new_acc->last_lhs_link->next_lhs = old_acc->first_lhs_link;
	  new_acc->last_lhs_link = old_acc->last_lhs_link;
	}
      else
	{
	  gcc_assert (!new_acc->last_lhs_link);

	  new_acc->first_lhs_link = old_acc->first_lhs_link;
	  new_acc->last_lhs_link = old_acc->last_lhs_link;
	}
      old_acc->first_lhs_link = old_acc->last_lhs_link = NULL;
    }
  else
    gcc_assert (!old_acc->last_lhs_link);

}

/* Add ACCESS to the work to queue for propagation of subaccesses from RHS to
   LHS (which is actually a stack).  */

static void
add_access_to_rhs_work_queue (struct access *access)
{
  if (access->first_rhs_link && !access->grp_rhs_queued)
    {
      gcc_assert (!access->next_rhs_queued);
      access->next_rhs_queued = rhs_work_queue_head;
      access->grp_rhs_queued = 1;
      rhs_work_queue_head = access;
    }
}

/* Add ACCESS to the work to queue for propagation of subaccesses from LHS to
   RHS (which is actually a stack).  */

static void
add_access_to_lhs_work_queue (struct access *access)
{
  if (access->first_lhs_link && !access->grp_lhs_queued)
    {
      gcc_assert (!access->next_lhs_queued);
      access->next_lhs_queued = lhs_work_queue_head;
      access->grp_lhs_queued = 1;
      lhs_work_queue_head = access;
    }
}

/* Pop an access from the work queue for propagating from RHS to LHS, and
   return it, assuming there is one.  */

static struct access *
pop_access_from_rhs_work_queue (void)
{
  struct access *access = rhs_work_queue_head;

  rhs_work_queue_head = access->next_rhs_queued;
  access->next_rhs_queued = NULL;
  access->grp_rhs_queued = 0;
  return access;
}

/* Pop an access from the work queue for propagating from LHS to RHS, and
   return it, assuming there is one.  */

static struct access *
pop_access_from_lhs_work_queue (void)
{
  struct access *access = lhs_work_queue_head;

  lhs_work_queue_head = access->next_lhs_queued;
  access->next_lhs_queued = NULL;
  access->grp_lhs_queued = 0;
  return access;
}

/* Allocate necessary structures.  */

static void
sra_initialize (void)
{
  candidate_bitmap = BITMAP_ALLOC (NULL);
  candidates = new hash_table<uid_decl_hasher>
    (vec_safe_length (cfun->local_decls) / 2);
  should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
  cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
  disqualified_constants = BITMAP_ALLOC (NULL);
  passed_by_ref_in_call = BITMAP_ALLOC (NULL);
  gcc_obstack_init (&name_obstack);
  base_access_vec = new hash_map<tree, auto_vec<access_p> >;
  memset (&sra_stats, 0, sizeof (sra_stats));
}

/* Deallocate all general structures.  */

static void
sra_deinitialize (void)
{
  BITMAP_FREE (candidate_bitmap);
  delete candidates;
  candidates = NULL;
  BITMAP_FREE (should_scalarize_away_bitmap);
  BITMAP_FREE (cannot_scalarize_away_bitmap);
  BITMAP_FREE (disqualified_constants);
  BITMAP_FREE (passed_by_ref_in_call);
  access_pool.release ();
  assign_link_pool.release ();
  obstack_free (&name_obstack, NULL);

  delete base_access_vec;
}

/* Return true if DECL is a VAR_DECL in the constant pool, false otherwise.  */

static bool constant_decl_p (tree decl)
{
  return VAR_P (decl) && DECL_IN_CONSTANT_POOL (decl);
}

/* Remove DECL from candidates for SRA and write REASON to the dump file if
   there is one.  */

static void
disqualify_candidate (tree decl, const char *reason)
{
  if (bitmap_clear_bit (candidate_bitmap, DECL_UID (decl)))
    candidates->remove_elt_with_hash (decl, DECL_UID (decl));
  if (constant_decl_p (decl))
    bitmap_set_bit (disqualified_constants, DECL_UID (decl));

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "! Disqualifying ");
      print_generic_expr (dump_file, decl);
      fprintf (dump_file, " - %s\n", reason);
    }
}

/* Return true iff the type contains a field or an element which does not allow
   scalarization.  Use VISITED_TYPES to avoid re-checking already checked
   (sub-)types.  */

static bool
type_internals_preclude_sra_p_1 (tree type, const char **msg,
				 hash_set<tree> *visited_types)
{
  tree fld;
  tree et;

  if (visited_types->contains (type))
    return false;
  visited_types->add (type);

  switch (TREE_CODE (type))
    {
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
	if (TREE_CODE (fld) == FIELD_DECL)
	  {
	    if (TREE_CODE (fld) == FUNCTION_DECL)
	      continue;
	    tree ft = TREE_TYPE (fld);

	    if (TREE_THIS_VOLATILE (fld))
	      {
		*msg = "volatile structure field";
		return true;
	      }
	    if (!DECL_FIELD_OFFSET (fld))
	      {
		*msg = "no structure field offset";
		return true;
	      }
	    if (!DECL_SIZE (fld))
	      {
		*msg = "zero structure field size";
	        return true;
	      }
	    if (!tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
	      {
		*msg = "structure field offset not fixed";
		return true;
	      }
	    if (!tree_fits_uhwi_p (DECL_SIZE (fld)))
	      {
	        *msg = "structure field size not fixed";
		return true;
	      }
	    if (!tree_fits_shwi_p (bit_position (fld)))
	      {
	        *msg = "structure field size too big";
		return true;
	      }
	    if (AGGREGATE_TYPE_P (ft)
		    && int_bit_position (fld) % BITS_PER_UNIT != 0)
	      {
		*msg = "structure field is bit field";
	        return true;
	      }

	    if (AGGREGATE_TYPE_P (ft)
	      && type_internals_preclude_sra_p_1 (ft, msg, visited_types))
	      return true;
	  }

      return false;

    case ARRAY_TYPE:
      et = TREE_TYPE (type);

      if (TYPE_VOLATILE (et))
	{
	  *msg = "element type is volatile";
	  return true;
	}

      if (AGGREGATE_TYPE_P (et)
	  && type_internals_preclude_sra_p_1 (et, msg, visited_types))
	return true;

      return false;

    default:
      return false;
    }
}

/* Return true iff the type contains a field or an element which does not allow
   scalarization.  */

bool
type_internals_preclude_sra_p (tree type, const char **msg)
{
  hash_set<tree> visited_types;
  return type_internals_preclude_sra_p_1 (type, msg, &visited_types);
}


/* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
   the three fields.  Also add it to the vector of accesses corresponding to
   the base.  Finally, return the new access.  */

static struct access *
create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
{
  struct access *access = access_pool.allocate ();

  memset (access, 0, sizeof (struct access));
  access->base = base;
  access->offset = offset;
  access->size = size;

  base_access_vec->get_or_insert (base).safe_push (access);

  return access;
}

static bool maybe_add_sra_candidate (tree);

/* Create and insert access for EXPR. Return created access, or NULL if it is
   not possible.  Also scan for uses of constant pool as we go along and add
   to candidates.  */

static struct access *
create_access (tree expr, gimple *stmt, bool write)
{
  struct access *access;
  poly_int64 poffset, psize, pmax_size;
  tree base = expr;
  bool reverse, unscalarizable_region = false;

  base = get_ref_base_and_extent (expr, &poffset, &psize, &pmax_size,
				  &reverse);

  /* For constant-pool entries, check we can substitute the constant value.  */
  if (constant_decl_p (base)
      && !bitmap_bit_p (disqualified_constants, DECL_UID (base)))
    {
      if (expr != base
	  && !is_gimple_reg_type (TREE_TYPE (expr))
	  && dump_file && (dump_flags & TDF_DETAILS))
	{
	  /* This occurs in Ada with accesses to ARRAY_RANGE_REFs,
	     and elements of multidimensional arrays (which are
	     multi-element arrays in their own right).  */
	  fprintf (dump_file, "Allowing non-reg-type load of part"
			      " of constant-pool entry: ");
	  print_generic_expr (dump_file, expr);
	}
      maybe_add_sra_candidate (base);
    }

  if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
    return NULL;

  if (write && TREE_READONLY (base))
    {
      disqualify_candidate (base, "Encountered a store to a read-only decl.");
      return NULL;
    }

  HOST_WIDE_INT offset, size, max_size;
  if (!poffset.is_constant (&offset)
      || !psize.is_constant (&size)
      || !pmax_size.is_constant (&max_size))
    {
      disqualify_candidate (base, "Encountered a polynomial-sized access.");
      return NULL;
    }

  if (size != max_size)
    {
      size = max_size;
      unscalarizable_region = true;
    }
  if (size == 0)
    return NULL;
  if (offset < 0)
    {
      disqualify_candidate (base, "Encountered a negative offset access.");
      return NULL;
    }
  if (size < 0)
    {
      disqualify_candidate (base, "Encountered an unconstrained access.");
      return NULL;
    }
  if (offset + size > tree_to_shwi (DECL_SIZE (base)))
    {
      disqualify_candidate (base, "Encountered an access beyond the base.");
      return NULL;
    }
  if (TREE_CODE (TREE_TYPE (expr)) == BITINT_TYPE
      && size > WIDE_INT_MAX_PRECISION - 1)
    {
      disqualify_candidate (base, "Encountered too large _BitInt access.");
      return NULL;
    }

  access = create_access_1 (base, offset, size);
  access->expr = expr;
  access->type = TREE_TYPE (expr);
  access->write = write;
  access->grp_unscalarizable_region = unscalarizable_region;
  access->stmt = stmt;
  access->reverse = reverse;

  return access;
}

/* Given an array type TYPE, extract element size to *EL_SIZE, minimum index to
   *IDX and maximum index to *MAX so that the caller can iterate over all
   elements and return true, except if the array is known to be zero-length,
   then return false.  */

static bool
prepare_iteration_over_array_elts (tree type, HOST_WIDE_INT *el_size,
				   offset_int *idx, offset_int *max)
{
  tree elem_size = TYPE_SIZE (TREE_TYPE (type));
  gcc_assert (elem_size && tree_fits_shwi_p (elem_size));
  *el_size = tree_to_shwi (elem_size);
  gcc_assert (*el_size > 0);

  tree minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
  gcc_assert (TREE_CODE (minidx) == INTEGER_CST);
  tree maxidx = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
  /* Skip (some) zero-length arrays; others have MAXIDX == MINIDX - 1.  */
  if (!maxidx)
    return false;
  gcc_assert (TREE_CODE (maxidx) == INTEGER_CST);
  tree domain = TYPE_DOMAIN (type);
  /* MINIDX and MAXIDX are inclusive, and must be interpreted in
     DOMAIN (e.g. signed int, whereas min/max may be size_int).  */
  *idx = wi::to_offset (minidx);
  *max = wi::to_offset (maxidx);
  if (!TYPE_UNSIGNED (domain))
    {
      *idx = wi::sext (*idx, TYPE_PRECISION (domain));
      *max = wi::sext (*max, TYPE_PRECISION (domain));
    }
  return true;
}

/* A structure to track collecting padding and hold collected padding
   information.   */

class sra_padding_collecting
{
public:
  /* Given that there won't be any data until at least OFFSET, add an
     appropriate entry to the list of paddings or extend the last one.  */
  void record_padding (HOST_WIDE_INT offset);
  /* Vector of pairs describing contiguous pieces of padding, each pair
     consisting of offset and length.  */
  auto_vec<std::pair<HOST_WIDE_INT, HOST_WIDE_INT>, 10> m_padding;
  /* Offset where data should continue after the last seen actual bit of data
     if there was no padding.  */
  HOST_WIDE_INT m_data_until = 0;
};

/* Given that there won't be any data until at least OFFSET, add an appropriate
   entry to the list of paddings or extend the last one.  */

void sra_padding_collecting::record_padding (HOST_WIDE_INT offset)
{
  if (offset > m_data_until)
    {
      HOST_WIDE_INT psz = offset - m_data_until;
      if (!m_padding.is_empty ()
	  && ((m_padding[m_padding.length () - 1].first
	       + m_padding[m_padding.length () - 1].second) == offset))
	m_padding[m_padding.length () - 1].second += psz;
      else
	m_padding.safe_push (std::make_pair (m_data_until, psz));
    }
}

/* Return true iff TYPE is totally scalarizable - i.e. a RECORD_TYPE or
   fixed-length ARRAY_TYPE with fields that are either of gimple register types
   (excluding bit-fields) or (recursively) scalarizable types.  CONST_DECL must
   be true if we are considering a decl from constant pool.  If it is false,
   char arrays will be refused.

   TOTAL_OFFSET is the offset of TYPE within any outer type that is being
   examined.

   If PC is non-NULL, collect padding information into the vector within the
   structure.  The information is however only complete if the function returns
   true and does not contain any padding at its end.  */

static bool
totally_scalarizable_type_p (tree type, bool const_decl,
			     HOST_WIDE_INT total_offset,
			     sra_padding_collecting *pc)
{
  if (is_gimple_reg_type (type))
    {
      if (pc)
	{
	  pc->record_padding (total_offset);
	  pc->m_data_until = total_offset + tree_to_shwi (TYPE_SIZE (type));
	}
      return true;
    }
  if (type_contains_placeholder_p (type))
    return false;

  bool have_predecessor_field = false;
  HOST_WIDE_INT prev_pos = 0;

  switch (TREE_CODE (type))
  {
  case RECORD_TYPE:
    for (tree fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
      if (TREE_CODE (fld) == FIELD_DECL)
	{
	  tree ft = TREE_TYPE (fld);

	  if (!DECL_SIZE (fld))
	    return false;
	  if (zerop (DECL_SIZE (fld)))
	    continue;

	  HOST_WIDE_INT pos = int_bit_position (fld);
	  if (have_predecessor_field
	      && pos <= prev_pos)
	    return false;

	  have_predecessor_field = true;
	  prev_pos = pos;

	  if (DECL_BIT_FIELD (fld))
	    return false;

	  if (!totally_scalarizable_type_p (ft, const_decl, total_offset + pos,
					    pc))
	    return false;
	}

    return true;

  case ARRAY_TYPE:
    {
      HOST_WIDE_INT min_elem_size;
      if (const_decl)
	min_elem_size = 0;
      else
	min_elem_size = BITS_PER_UNIT;

      if (TYPE_DOMAIN (type) == NULL_TREE
	  || !tree_fits_shwi_p (TYPE_SIZE (type))
	  || !tree_fits_shwi_p (TYPE_SIZE (TREE_TYPE (type)))
	  || (tree_to_shwi (TYPE_SIZE (TREE_TYPE (type))) <= min_elem_size)
	  || !tree_fits_shwi_p (TYPE_MIN_VALUE (TYPE_DOMAIN (type))))
	return false;
      if (tree_to_shwi (TYPE_SIZE (type)) == 0
	  && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL_TREE)
	/* Zero-element array, should not prevent scalarization.  */
	;
      else if ((tree_to_shwi (TYPE_SIZE (type)) <= 0)
	       || !tree_fits_shwi_p (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
	/* Variable-length array, do not allow scalarization.  */
	return false;

      unsigned old_padding_len = 0;
      if (pc)
	old_padding_len = pc->m_padding.length ();
      tree elem = TREE_TYPE (type);
      if (!totally_scalarizable_type_p (elem, const_decl, total_offset, pc))
	return false;
      if (pc)
	{
	  unsigned new_padding_len = pc->m_padding.length ();
	  HOST_WIDE_INT el_size;
	  offset_int idx, max;
	  if (!prepare_iteration_over_array_elts (type, &el_size, &idx, &max))
	    return true;
	  pc->record_padding (total_offset + el_size);
	  ++idx;
	  for (HOST_WIDE_INT pos = total_offset + el_size;
	       idx <= max;
	       pos += el_size, ++idx)
	    {
	      for (unsigned i = old_padding_len; i < new_padding_len; i++)
		{
		  HOST_WIDE_INT pp
		    = pos + pc->m_padding[i].first - total_offset;
		  HOST_WIDE_INT psz = pc->m_padding[i].second;
		  pc->m_padding.safe_push (std::make_pair (pp, psz));
		}
	    }
	  pc->m_data_until = total_offset + tree_to_shwi (TYPE_SIZE (type));
	}
      return true;
    }
  default:
    return false;
  }
}

/* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it.  */

static inline bool
contains_view_convert_expr_p (const_tree ref)
{
  while (handled_component_p (ref))
    {
      if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
	return true;
      ref = TREE_OPERAND (ref, 0);
    }

  return false;
}

/* Return true if REF contains a VIEW_CONVERT_EXPR or a COMPONENT_REF with a
   bit-field field declaration.  If TYPE_CHANGING_P is non-NULL, set the bool
   it points to will be set if REF contains any of the above or a MEM_REF
   expression that effectively performs type conversion.  */

static bool
contains_vce_or_bfcref_p (const_tree ref, bool *type_changing_p = NULL)
{
  while (handled_component_p (ref))
    {
      if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
	  || (TREE_CODE (ref) == COMPONENT_REF
	      && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
	{
	  if (type_changing_p)
	    *type_changing_p = true;
	  return true;
	}
      ref = TREE_OPERAND (ref, 0);
    }

  if (!type_changing_p
      || TREE_CODE (ref) != MEM_REF
      || TREE_CODE (TREE_OPERAND (ref, 0)) != ADDR_EXPR)
    return false;

  tree mem = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
  if (TYPE_MAIN_VARIANT (TREE_TYPE (ref))
      != TYPE_MAIN_VARIANT (TREE_TYPE (mem)))
    *type_changing_p = true;

  return false;
}

/* Search the given tree for a declaration by skipping handled components and
   exclude it from the candidates.  */

static void
disqualify_base_of_expr (tree t, const char *reason)
{
  t = get_base_address (t);
  if (t && DECL_P (t))
    disqualify_candidate (t, reason);
}

/* Return true if the BIT_FIELD_REF read EXPR is handled by SRA.  */

static bool
sra_handled_bf_read_p (tree expr)
{
  uint64_t size, offset;
  if (bit_field_size (expr).is_constant (&size)
      && bit_field_offset (expr).is_constant (&offset)
      && size % BITS_PER_UNIT == 0
      && offset % BITS_PER_UNIT == 0
      && pow2p_hwi (size))
    return true;
  return false;
}

/* Scan expression EXPR and create access structures for all accesses to
   candidates for scalarization.  Return the created access or NULL if none is
   created.  */

static struct access *
build_access_from_expr_1 (tree expr, gimple *stmt, bool write)
{
  /* We only allow ADDR_EXPRs in arguments of function calls and those must
     have been dealt with in build_access_from_call_arg.  Any other address
     taking should have been caught by scan_visit_addr.   */
  if (TREE_CODE (expr) == ADDR_EXPR)
    {
      tree base = get_base_address (TREE_OPERAND (expr, 0));
      gcc_assert (!DECL_P (base)
		  || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)));
      return NULL;
    }

  struct access *ret = NULL;
  bool partial_ref;

  if ((TREE_CODE (expr) == BIT_FIELD_REF
       && (write || !sra_handled_bf_read_p (expr)))
      || TREE_CODE (expr) == IMAGPART_EXPR
      || TREE_CODE (expr) == REALPART_EXPR)
    {
      expr = TREE_OPERAND (expr, 0);
      partial_ref = true;
    }
  else
    partial_ref = false;

  if (storage_order_barrier_p (expr))
    {
      disqualify_base_of_expr (expr, "storage order barrier.");
      return NULL;
    }

  /* We need to dive through V_C_Es in order to get the size of its parameter
     and not the result type.  Ada produces such statements.  We are also
     capable of handling the topmost V_C_E but not any of those buried in other
     handled components.  */
  if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
    expr = TREE_OPERAND (expr, 0);

  if (contains_view_convert_expr_p (expr))
    {
      disqualify_base_of_expr (expr, "V_C_E under a different handled "
			       "component.");
      return NULL;
    }
  if (TREE_THIS_VOLATILE (expr))
    {
      disqualify_base_of_expr (expr, "part of a volatile reference.");
      return NULL;
    }

  switch (TREE_CODE (expr))
    {
    case MEM_REF:
      if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR)
	return NULL;
      /* fall through */
    case VAR_DECL:
    case PARM_DECL:
    case RESULT_DECL:
    case COMPONENT_REF:
    case ARRAY_REF:
    case ARRAY_RANGE_REF:
    case BIT_FIELD_REF:
      ret = create_access (expr, stmt, write);
      break;

    default:
      break;
    }

  if (write && partial_ref && ret)
    ret->grp_partial_lhs = 1;

  return ret;
}

/* Scan expression EXPR and create access structures for all accesses to
   candidates for scalarization.  Return true if any access has been inserted.
   STMT must be the statement from which the expression is taken, WRITE must be
   true if the expression is a store and false otherwise. */

static bool
build_access_from_expr (tree expr, gimple *stmt, bool write)
{
  struct access *access;

  access = build_access_from_expr_1 (expr, stmt, write);
  if (access)
    {
      /* This means the aggregate is accesses as a whole in a way other than an
	 assign statement and thus cannot be removed even if we had a scalar
	 replacement for everything.  */
      if (cannot_scalarize_away_bitmap)
	bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
      return true;
    }
  return false;
}

enum out_edge_check { SRA_OUTGOING_EDGES_UNCHECKED, SRA_OUTGOING_EDGES_OK,
		      SRA_OUTGOING_EDGES_FAIL };

/* Return true if STMT terminates BB and there is an abnormal edge going out of
   the BB and remember the decision in OE_CHECK.  */

static bool
abnormal_edge_after_stmt_p (gimple *stmt, enum out_edge_check *oe_check)
{
  if (*oe_check == SRA_OUTGOING_EDGES_OK)
    return false;
  if (*oe_check == SRA_OUTGOING_EDGES_FAIL)
    return true;
  if (stmt_ends_bb_p (stmt))
    {
      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
	if (e->flags & EDGE_ABNORMAL)
	  {
	    *oe_check = SRA_OUTGOING_EDGES_FAIL;
	    return true;
	  }
    }
  *oe_check = SRA_OUTGOING_EDGES_OK;
  return false;
}

/* Scan expression EXPR which is an argument of a call and create access
   structures for all accesses to candidates for scalarization.  Return true
   if any access has been inserted.  STMT must be the statement from which the
   expression is taken.  CAN_BE_RETURNED must be true if call argument flags
   do not rule out that the argument is directly returned.  OE_CHECK is used
   to remember result of a test for abnormal outgoing edges after this
   statement.  */

static bool
build_access_from_call_arg (tree expr, gimple *stmt, bool can_be_returned,
			    enum out_edge_check *oe_check)
{
  if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
    {
      tree base = expr;
      if (TREE_CODE (expr) == ADDR_EXPR)
	base = get_base_address (TREE_OPERAND (expr, 0));
      disqualify_base_of_expr (base, "Passed to a returns_twice call.");
      return false;
    }

  if (TREE_CODE (expr) == ADDR_EXPR)
    {
      tree base = get_base_address (TREE_OPERAND (expr, 0));

      if (can_be_returned)
	{
	  disqualify_base_of_expr (base, "Address possibly returned, "
				   "leading to an alis SRA may not know.");
	  return false;
	}
      if (abnormal_edge_after_stmt_p (stmt, oe_check))
	{
	  disqualify_base_of_expr (base, "May lead to need to add statements "
				   "to abnormal edge.");
	  return false;
	}

      bool read =  build_access_from_expr (base, stmt, false);
      bool write =  build_access_from_expr (base, stmt, true);
      if (read || write)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Allowed ADDR_EXPR of ");
	      print_generic_expr (dump_file, base);
	      fprintf (dump_file, " because of ");
	      print_gimple_stmt (dump_file, stmt, 0);
	      fprintf (dump_file, "\n");
	    }
	  bitmap_set_bit (passed_by_ref_in_call, DECL_UID (base));
	  return true;
	}
      else
	return false;
    }

  return build_access_from_expr (expr, stmt, false);
}


/* Return the single non-EH successor edge of BB or NULL if there is none or
   more than one.  */

static edge
single_non_eh_succ (basic_block bb)
{
  edge e, res = NULL;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    if (!(e->flags & EDGE_EH))
      {
	if (res)
	  return NULL;
	res = e;
      }

  return res;
}

/* Disqualify LHS and RHS for scalarization if STMT has to terminate its BB and
   there is no alternative spot where to put statements SRA might need to
   generate after it.  The spot we are looking for is an edge leading to a
   single non-EH successor, if it exists and is indeed single.  RHS may be
   NULL, in that case ignore it.  */

static bool
disqualify_if_bad_bb_terminating_stmt (gimple *stmt, tree lhs, tree rhs)
{
  if (stmt_ends_bb_p (stmt))
    {
      if (single_non_eh_succ (gimple_bb (stmt)))
	return false;

      disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
      if (rhs)
	disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
      return true;
    }
  return false;
}

/* Return true if the nature of BASE is such that it contains data even if
   there is no write to it in the function.  */

static bool
comes_initialized_p (tree base)
{
  return TREE_CODE (base) == PARM_DECL || constant_decl_p (base);
}

/* Scan expressions occurring in STMT, create access structures for all accesses
   to candidates for scalarization and remove those candidates which occur in
   statements or expressions that prevent them from being split apart.  Return
   true if any access has been inserted.  */

static bool
build_accesses_from_assign (gimple *stmt)
{
  tree lhs, rhs;
  struct access *lacc, *racc;

  if (!gimple_assign_single_p (stmt)
      /* Scope clobbers don't influence scalarization.  */
      || gimple_clobber_p (stmt))
    return false;

  lhs = gimple_assign_lhs (stmt);
  rhs = gimple_assign_rhs1 (stmt);

  if (disqualify_if_bad_bb_terminating_stmt (stmt, lhs, rhs))
    return false;

  racc = build_access_from_expr_1 (rhs, stmt, false);
  lacc = build_access_from_expr_1 (lhs, stmt, true);

  if (lacc)
    {
      lacc->grp_assignment_write = 1;
      if (storage_order_barrier_p (rhs))
	lacc->grp_unscalarizable_region = 1;

      if (should_scalarize_away_bitmap && !is_gimple_reg_type (lacc->type))
	{
	  bool type_changing_p = false;
	  contains_vce_or_bfcref_p (lhs, &type_changing_p);
	  if (type_changing_p)
	    bitmap_set_bit (cannot_scalarize_away_bitmap,
			    DECL_UID (lacc->base));
	}
    }

  if (racc)
    {
      racc->grp_assignment_read = 1;
      if (should_scalarize_away_bitmap && !is_gimple_reg_type (racc->type))
	{
	  bool type_changing_p = false;
	  contains_vce_or_bfcref_p (rhs, &type_changing_p);

	  if (type_changing_p || gimple_has_volatile_ops (stmt))
	    bitmap_set_bit (cannot_scalarize_away_bitmap,
			    DECL_UID (racc->base));
	  else
	    bitmap_set_bit (should_scalarize_away_bitmap,
			    DECL_UID (racc->base));
	}
      if (storage_order_barrier_p (lhs))
	racc->grp_unscalarizable_region = 1;
    }

  if (lacc && racc
      && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
      && !lacc->grp_unscalarizable_region
      && !racc->grp_unscalarizable_region
      && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
      && lacc->size == racc->size
      && useless_type_conversion_p (lacc->type, racc->type))
    {
      struct assign_link *link;

      link = assign_link_pool.allocate ();
      memset (link, 0, sizeof (struct assign_link));

      link->lacc = lacc;
      link->racc = racc;
      add_link_to_rhs (racc, link);
      add_link_to_lhs (lacc, link);
      add_access_to_rhs_work_queue (racc);
      add_access_to_lhs_work_queue (lacc);

      /* Let's delay marking the areas as written until propagation of accesses
	 across link, unless the nature of rhs tells us that its data comes
	 from elsewhere.  */
      if (!comes_initialized_p (racc->base))
	lacc->write = false;
    }

  return lacc || racc;
}

/* Callback of walk_stmt_load_store_addr_ops visit_addr used to detect taking
   addresses of candidates a places which are not call arguments.  Such
   candidates are disqalified from SRA.  This also applies to GIMPLE_ASM
   operands with memory constrains which cannot be scalarized.  */

static bool
scan_visit_addr (gimple *, tree op, tree, void *)
{
  op = get_base_address (op);
  if (op
      && DECL_P (op))
    disqualify_candidate (op, "Address taken in a non-call-argument context.");

  return false;
}

/* Scan function and look for interesting expressions and create access
   structures for them.  Return true iff any access is created.  */

static bool
scan_function (void)
{
  basic_block bb;
  bool ret = false;

  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator gsi;
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	walk_stmt_load_store_addr_ops (gsi_stmt (gsi), NULL, NULL, NULL,
				       scan_visit_addr);

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple *stmt = gsi_stmt (gsi);
	  tree t;
	  unsigned i;

	  if (gimple_code (stmt) != GIMPLE_CALL)
	    walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
					   scan_visit_addr);

	  switch (gimple_code (stmt))
	    {
	    case GIMPLE_RETURN:
	      t = gimple_return_retval (as_a <greturn *> (stmt));
	      if (t != NULL_TREE)
		ret |= build_access_from_expr (t, stmt, false);
	      break;

	    case GIMPLE_ASSIGN:
	      ret |= build_accesses_from_assign (stmt);
	      break;

	    case GIMPLE_CALL:
	      {
		enum out_edge_check oe_check = SRA_OUTGOING_EDGES_UNCHECKED;
		gcall *call = as_a <gcall *> (stmt);
		for (i = 0; i < gimple_call_num_args (call); i++)
		  {
		    bool can_be_returned;
		    if (gimple_call_lhs (call))
		      {
			int af = gimple_call_arg_flags (call, i);
			can_be_returned = !(af & EAF_NOT_RETURNED_DIRECTLY);
		      }
		    else
		      can_be_returned = false;
		    ret |= build_access_from_call_arg (gimple_call_arg (call,
									i),
						       stmt, can_be_returned,
						       &oe_check);
		  }
		if (gimple_call_chain(stmt))
		  ret |= build_access_from_call_arg (gimple_call_chain(call),
						     stmt, false,  &oe_check);
	      }

	      t = gimple_call_lhs (stmt);
	      if (t && !disqualify_if_bad_bb_terminating_stmt (stmt, t, NULL))
		{
		  /* If the STMT is a call to DEFERRED_INIT, avoid setting
		     cannot_scalarize_away_bitmap.  */
		  if (gimple_call_internal_p (stmt, IFN_DEFERRED_INIT))
		    ret |= !!build_access_from_expr_1 (t, stmt, true);
		  else
		    ret |= build_access_from_expr (t, stmt, true);
		}
	      break;

	    case GIMPLE_ASM:
	      {
		gasm *asm_stmt = as_a <gasm *> (stmt);
		if (stmt_ends_bb_p (asm_stmt)
		    && !single_succ_p (gimple_bb (asm_stmt)))
		  {
		    for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
		      {
			t = TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
			disqualify_base_of_expr (t, "OP of asm goto.");
		      }
		    for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
		      {
			t = TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
			disqualify_base_of_expr (t, "OP of asm goto.");
		      }
		  }
		else
		  {
		    for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
		      {
			t = TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
			ret |= build_access_from_expr (t, asm_stmt, false);
		      }
		    for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
		      {
			t = TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
			ret |= build_access_from_expr (t, asm_stmt, true);
		      }
		  }
	      }
	      break;

	    default:
	      break;
	    }
	}
    }

  return ret;
}

/* Helper of QSORT function. There are pointers to accesses in the array.  An
   access is considered smaller than another if it has smaller offset or if the
   offsets are the same but is size is bigger. */

static int
compare_access_positions (const void *a, const void *b)
{
  const access_p *fp1 = (const access_p *) a;
  const access_p *fp2 = (const access_p *) b;
  const access_p f1 = *fp1;
  const access_p f2 = *fp2;

  if (f1->offset != f2->offset)
    return f1->offset < f2->offset ? -1 : 1;

  if (f1->size == f2->size)
    {
      if (f1->type == f2->type)
	return 0;
      /* Put any non-aggregate type before any aggregate type.  */
      else if (!is_gimple_reg_type (f1->type)
	  && is_gimple_reg_type (f2->type))
	return 1;
      else if (is_gimple_reg_type (f1->type)
	       && !is_gimple_reg_type (f2->type))
	return -1;
      /* Put any complex or vector type before any other scalar type.  */
      else if (TREE_CODE (f1->type) != COMPLEX_TYPE
	       && TREE_CODE (f1->type) != VECTOR_TYPE
	       && (TREE_CODE (f2->type) == COMPLEX_TYPE
		   || VECTOR_TYPE_P (f2->type)))
	return 1;
      else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
		|| VECTOR_TYPE_P (f1->type))
	       && TREE_CODE (f2->type) != COMPLEX_TYPE
	       && TREE_CODE (f2->type) != VECTOR_TYPE)
	return -1;
      /* Put any integral type before any non-integral type.  When splicing, we
	 make sure that those with insufficient precision and occupying the
	 same space are not scalarized.  */
      else if (INTEGRAL_TYPE_P (f1->type)
	       && !INTEGRAL_TYPE_P (f2->type))
	return -1;
      else if (!INTEGRAL_TYPE_P (f1->type)
	       && INTEGRAL_TYPE_P (f2->type))
	return 1;
      /* Put the integral type with the bigger precision first.  */
      else if (INTEGRAL_TYPE_P (f1->type)
	       && INTEGRAL_TYPE_P (f2->type)
	       && (TYPE_PRECISION (f2->type) != TYPE_PRECISION (f1->type)))
	return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
      /* Stabilize the sort.  */
      return TYPE_UID (f1->type) - TYPE_UID (f2->type);
    }

  /* We want the bigger accesses first, thus the opposite operator in the next
     line: */
  return f1->size > f2->size ? -1 : 1;
}


/* Append a name of the declaration to the name obstack.  A helper function for
   make_fancy_name.  */

static void
make_fancy_decl_name (tree decl)
{
  char buffer[32];

  tree name = DECL_NAME (decl);
  if (name)
    obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
		  IDENTIFIER_LENGTH (name));
  else
    {
      sprintf (buffer, "D%u", DECL_UID (decl));
      obstack_grow (&name_obstack, buffer, strlen (buffer));
    }
}

/* Helper for make_fancy_name.  */

static void
make_fancy_name_1 (tree expr)
{
  char buffer[32];
  tree index;

  if (DECL_P (expr))
    {
      make_fancy_decl_name (expr);
      return;
    }

  switch (TREE_CODE (expr))
    {
    case COMPONENT_REF:
      make_fancy_name_1 (TREE_OPERAND (expr, 0));
      obstack_1grow (&name_obstack, '$');
      make_fancy_decl_name (TREE_OPERAND (expr, 1));
      break;

    case ARRAY_REF:
      make_fancy_name_1 (TREE_OPERAND (expr, 0));
      obstack_1grow (&name_obstack, '$');
      /* Arrays with only one element may not have a constant as their
	 index. */
      index = TREE_OPERAND (expr, 1);
      if (TREE_CODE (index) != INTEGER_CST)
	break;
      sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
      obstack_grow (&name_obstack, buffer, strlen (buffer));
      break;

    case BIT_FIELD_REF:
    case ADDR_EXPR:
      make_fancy_name_1 (TREE_OPERAND (expr, 0));
      break;

    case MEM_REF:
      make_fancy_name_1 (TREE_OPERAND (expr, 0));
      if (!integer_zerop (TREE_OPERAND (expr, 1)))
	{
	  obstack_1grow (&name_obstack, '$');
	  sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
		   TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
	  obstack_grow (&name_obstack, buffer, strlen (buffer));
	}
      break;

    case REALPART_EXPR:
    case IMAGPART_EXPR:
      gcc_unreachable (); 	/* we treat these as scalars.  */
      break;
    default:
      break;
    }
}

/* Create a human readable name for replacement variable of ACCESS.  */

static char *
make_fancy_name (tree expr)
{
  make_fancy_name_1 (expr);
  obstack_1grow (&name_obstack, '\0');
  return XOBFINISH (&name_obstack, char *);
}

/* Construct a MEM_REF that would reference a part of aggregate BASE of type
   EXP_TYPE at the given OFFSET and with storage order REVERSE.  If BASE is
   something for which get_addr_base_and_unit_offset returns NULL, gsi must
   be non-NULL and is used to insert new statements either before or below
   the current one as specified by INSERT_AFTER.  This function is not capable
   of handling bitfields.  */

tree
build_ref_for_offset (location_t loc, tree base, poly_int64 offset,
		      bool reverse, tree exp_type, gimple_stmt_iterator *gsi,
		      bool insert_after)
{
  tree prev_base = base;
  tree off;
  tree mem_ref;
  poly_int64 base_offset;
  unsigned HOST_WIDE_INT misalign;
  unsigned int align;

  /* Preserve address-space information.  */
  addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (base));
  if (as != TYPE_ADDR_SPACE (exp_type))
    exp_type = build_qualified_type (exp_type,
				     TYPE_QUALS (exp_type)
				     | ENCODE_QUAL_ADDR_SPACE (as));

  poly_int64 byte_offset = exact_div (offset, BITS_PER_UNIT);
  get_object_alignment_1 (base, &align, &misalign);
  base = get_addr_base_and_unit_offset (base, &base_offset);

  /* get_addr_base_and_unit_offset returns NULL for references with a variable
     offset such as array[var_index].  */
  if (!base)
    {
      gassign *stmt;
      tree tmp, addr;

      gcc_checking_assert (gsi);
      tmp = make_ssa_name (build_pointer_type (TREE_TYPE (prev_base)));
      addr = build_fold_addr_expr (unshare_expr (prev_base));
      STRIP_USELESS_TYPE_CONVERSION (addr);
      stmt = gimple_build_assign (tmp, addr);
      gimple_set_location (stmt, loc);
      if (insert_after)
	gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
      else
	gsi_insert_before (gsi, stmt, GSI_SAME_STMT);

      off = build_int_cst (reference_alias_ptr_type (prev_base), byte_offset);
      base = tmp;
    }
  else if (TREE_CODE (base) == MEM_REF)
    {
      off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
			   base_offset + byte_offset);
      off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
      base = unshare_expr (TREE_OPERAND (base, 0));
    }
  else
    {
      off = build_int_cst (reference_alias_ptr_type (prev_base),
			   base_offset + byte_offset);
      base = build_fold_addr_expr (unshare_expr (base));
    }

  unsigned int align_bound = known_alignment (misalign + offset);
  if (align_bound != 0)
    align = MIN (align, align_bound);
  if (align != TYPE_ALIGN (exp_type))
    exp_type = build_aligned_type (exp_type, align);

  mem_ref = fold_build2_loc (loc, MEM_REF, exp_type, base, off);
  REF_REVERSE_STORAGE_ORDER (mem_ref) = reverse;
  if (TREE_THIS_VOLATILE (prev_base))
    TREE_THIS_VOLATILE (mem_ref) = 1;
  if (TREE_SIDE_EFFECTS (prev_base))
    TREE_SIDE_EFFECTS (mem_ref) = 1;
  return mem_ref;
}

/* Construct and return a memory reference that is equal to a portion of
   MODEL->expr but is based on BASE.  If this cannot be done, return NULL.  */

static tree
build_reconstructed_reference (location_t, tree base, struct access *model)
{
  tree expr = model->expr;
  /* We have to make sure to start just below the outermost union.  */
  tree start_expr = expr;
  while (handled_component_p (expr))
    {
      if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == UNION_TYPE)
	start_expr = expr;
      expr = TREE_OPERAND (expr, 0);
    }

  expr = start_expr;
  tree prev_expr = NULL_TREE;
  while (!types_compatible_p (TREE_TYPE (expr), TREE_TYPE (base)))
    {
      if (!handled_component_p (expr))
	return NULL_TREE;
      prev_expr = expr;
      expr = TREE_OPERAND (expr, 0);
    }

  /* Guard against broken VIEW_CONVERT_EXPRs...  */
  if (!prev_expr)
    return NULL_TREE;

  TREE_OPERAND (prev_expr, 0) = base;
  tree ref = unshare_expr (model->expr);
  TREE_OPERAND (prev_expr, 0) = expr;
  return ref;
}

/* Construct a memory reference to a part of an aggregate BASE at the given
   OFFSET and of the same type as MODEL.  In case this is a reference to a
   bit-field, the function will replicate the last component_ref of model's
   expr to access it.  INSERT_AFTER and GSI have the same meaning as in
   build_ref_for_offset, furthermore, when GSI is NULL, the function expects
   that it re-builds the entire reference from a DECL to the final access and
   so will create a MEM_REF when OFFSET does not exactly match offset of
   MODEL.  */

static tree
build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
		     struct access *model, gimple_stmt_iterator *gsi,
		     bool insert_after)
{
  gcc_assert (offset >= 0);
  if (TREE_CODE (model->expr) == COMPONENT_REF
      && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
    {
      /* This access represents a bit-field.  */
      tree t, exp_type, fld = TREE_OPERAND (model->expr, 1);

      offset -= int_bit_position (fld);
      exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
      t = build_ref_for_offset (loc, base, offset, model->reverse, exp_type,
				gsi, insert_after);
      /* The flag will be set on the record type.  */
      REF_REVERSE_STORAGE_ORDER (t) = 0;
      return fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (fld), t, fld,
			      NULL_TREE);
    }
  else
    {
      tree res;
      if (model->grp_same_access_path
	  && !TREE_THIS_VOLATILE (base)
	  && (TYPE_ADDR_SPACE (TREE_TYPE (base))
	      == TYPE_ADDR_SPACE (TREE_TYPE (model->expr)))
	  && (offset == model->offset
	      || (gsi && offset <= model->offset))
	  /* build_reconstructed_reference can still fail if we have already
	     massaged BASE because of another type incompatibility.  */
	  && (res = build_reconstructed_reference (loc, base, model)))
	return res;
      else
	return build_ref_for_offset (loc, base, offset, model->reverse,
				     model->type, gsi, insert_after);
    }
}

/* Attempt to build a memory reference that we could but into a gimple
   debug_bind statement.  Similar to build_ref_for_model but punts if it has to
   create statements and return s NULL instead.  This function also ignores
   alignment issues and so its results should never end up in non-debug
   statements.  */

static tree
build_debug_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
			   struct access *model)
{
  poly_int64 base_offset;
  tree off;

  if (TREE_CODE (model->expr) == COMPONENT_REF
      && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
    return NULL_TREE;

  base = get_addr_base_and_unit_offset (base, &base_offset);
  if (!base)
    return NULL_TREE;
  if (TREE_CODE (base) == MEM_REF)
    {
      off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
			   base_offset + offset / BITS_PER_UNIT);
      off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
      base = unshare_expr (TREE_OPERAND (base, 0));
    }
  else
    {
      off = build_int_cst (reference_alias_ptr_type (base),
			   base_offset + offset / BITS_PER_UNIT);
      base = build_fold_addr_expr (unshare_expr (base));
    }

  return fold_build2_loc (loc, MEM_REF, model->type, base, off);
}

/* Construct a memory reference consisting of component_refs and array_refs to
   a part of an aggregate *RES (which is of type TYPE).  The requested part
   should have type EXP_TYPE at be the given OFFSET.  This function might not
   succeed, it returns true when it does and only then *RES points to something
   meaningful.  This function should be used only to build expressions that we
   might need to present to user (e.g. in warnings).  In all other situations,
   build_ref_for_model or build_ref_for_offset should be used instead.  */

static bool
build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
				    tree exp_type)
{
  while (1)
    {
      tree fld;
      tree tr_size, index, minidx;
      HOST_WIDE_INT el_size;

      if (offset == 0 && exp_type
	  && types_compatible_p (exp_type, type))
	return true;

      switch (TREE_CODE (type))
	{
	case UNION_TYPE:
	case QUAL_UNION_TYPE:
	case RECORD_TYPE:
	  for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
	    {
	      HOST_WIDE_INT pos, size;
	      tree tr_pos, expr, *expr_ptr;

	      if (TREE_CODE (fld) != FIELD_DECL)
		continue;

	      tr_pos = bit_position (fld);
	      if (!tr_pos || !tree_fits_uhwi_p (tr_pos))
		continue;
	      pos = tree_to_uhwi (tr_pos);
	      gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
	      tr_size = DECL_SIZE (fld);
	      if (!tr_size || !tree_fits_uhwi_p (tr_size))
		continue;
	      size = tree_to_uhwi (tr_size);
	      if (size == 0)
		{
		  if (pos != offset)
		    continue;
		}
	      else if (pos > offset || (pos + size) <= offset)
		continue;

	      expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
			     NULL_TREE);
	      expr_ptr = &expr;
	      if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
						      offset - pos, exp_type))
		{
		  *res = expr;
		  return true;
		}
	    }
	  return false;

	case ARRAY_TYPE:
	  tr_size = TYPE_SIZE (TREE_TYPE (type));
	  if (!tr_size || !tree_fits_uhwi_p (tr_size))
	    return false;
	  el_size = tree_to_uhwi (tr_size);

	  minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
	  if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
	    return false;
	  index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
	  if (!integer_zerop (minidx))
	    index = int_const_binop (PLUS_EXPR, index, minidx);
	  *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
			 NULL_TREE, NULL_TREE);
	  offset = offset % el_size;
	  type = TREE_TYPE (type);
	  break;

	default:
	  if (offset != 0)
	    return false;

	  if (exp_type)
	    return false;
	  else
	    return true;
	}
    }
}

/* Print message to dump file why a variable was rejected. */

static void
reject (tree var, const char *msg)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
      print_generic_expr (dump_file, var);
      fprintf (dump_file, "\n");
    }
}

/* Return true if VAR is a candidate for SRA.  */

static bool
maybe_add_sra_candidate (tree var)
{
  tree type = TREE_TYPE (var);
  const char *msg;
  tree_node **slot;

  if (!AGGREGATE_TYPE_P (type)) 
    {
      reject (var, "not aggregate");
      return false;
    }

  if ((is_global_var (var)
       /* There are cases where non-addressable variables fail the
	  pt_solutions_check test, e.g in gcc.dg/uninit-40.c. */
       || (TREE_ADDRESSABLE (var)
	   && pt_solution_includes (&cfun->gimple_df->escaped_return, var))
       || (TREE_CODE (var) == RESULT_DECL
	   && !DECL_BY_REFERENCE (var)
	   && aggregate_value_p (var, current_function_decl)))
      /* Allow constant-pool entries that "need to live in memory".  */
      && !constant_decl_p (var))
    {
      reject (var, "needs to live in memory and escapes or global");
      return false;
    }
  if (TREE_THIS_VOLATILE (var))
    {
      reject (var, "is volatile");
      return false;
    }
  if (!COMPLETE_TYPE_P (type))
    {
      reject (var, "has incomplete type");
      return false;
    }
  if (!tree_fits_shwi_p (TYPE_SIZE (type)))
    {
      reject (var, "type size not fixed");
      return false;
    }
  if (tree_to_shwi (TYPE_SIZE (type)) == 0)
    {
      reject (var, "type size is zero");
      return false;
    }
  if (type_internals_preclude_sra_p (type, &msg))
    {
      reject (var, msg);
      return false;
    }
  if (/* Fix for PR 41089.  tree-stdarg.cc needs to have va_lists intact but
	 we also want to schedule it rather late.  Thus we ignore it in
	 the early pass. */
      (sra_mode == SRA_MODE_EARLY_INTRA
       && is_va_list_type (type)))
    {
      reject (var, "is va_list");
      return false;
    }

  bitmap_set_bit (candidate_bitmap, DECL_UID (var));
  slot = candidates->find_slot_with_hash (var, DECL_UID (var), INSERT);
  *slot = var;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
      print_generic_expr (dump_file, var);
      fprintf (dump_file, "\n");
    }

  return true;
}

/* The very first phase of intraprocedural SRA.  It marks in candidate_bitmap
   those with type which is suitable for scalarization.  */

static bool
find_var_candidates (void)
{
  tree var, parm;
  unsigned int i;
  bool ret = false;

  for (parm = DECL_ARGUMENTS (current_function_decl);
       parm;
       parm = DECL_CHAIN (parm))
    ret |= maybe_add_sra_candidate (parm);

  FOR_EACH_LOCAL_DECL (cfun, i, var)
    {
      if (!VAR_P (var))
        continue;

      ret |= maybe_add_sra_candidate (var);
    }

  return ret;
}

/* Return true if EXP is a reference chain of COMPONENT_REFs and AREAY_REFs
   ending either with a DECL or a MEM_REF with zero offset.  */

static bool
path_comparable_for_same_access (tree expr)
{
  while (handled_component_p (expr))
    {
      if (TREE_CODE (expr) == ARRAY_REF)
	{
	  /* SSA name indices can occur here too when the array is of sie one.
	     But we cannot just re-use array_refs with SSA names elsewhere in
	     the function, so disallow non-constant indices.  TODO: Remove this
	     limitation after teaching build_reconstructed_reference to replace
	     the index with the index type lower bound.  */
	  if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST)
	    return false;
	}
      expr = TREE_OPERAND (expr, 0);
    }

  if (TREE_CODE (expr) == MEM_REF)
    {
      if (!zerop (TREE_OPERAND (expr, 1)))
	return false;
    }
  else
    gcc_assert (DECL_P (expr));

  return true;
}

/* Assuming that EXP1 consists of only COMPONENT_REFs and ARRAY_REFs, return
   true if the chain of these handled components are exactly the same as EXP2
   and the expression under them is the same DECL or an equivalent MEM_REF.
   The reference picked by compare_access_positions must go to EXP1.  */

static bool
same_access_path_p (tree exp1, tree exp2)
{
  if (TREE_CODE (exp1) != TREE_CODE (exp2))
    {
      /* Special case single-field structures loaded sometimes as the field
	 and sometimes as the structure.  If the field is of a scalar type,
	 compare_access_positions will put it into exp1.

	 TODO: The gimple register type condition can be removed if teach
	 compare_access_positions to put inner types first.  */
      if (is_gimple_reg_type (TREE_TYPE (exp1))
	  && TREE_CODE (exp1) == COMPONENT_REF
	  && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (exp1, 0)))
	      == TYPE_MAIN_VARIANT (TREE_TYPE (exp2))))
	exp1 = TREE_OPERAND (exp1, 0);
      else
	return false;
    }

  if (!operand_equal_p (exp1, exp2, OEP_ADDRESS_OF))
    return false;

  return true;
}

/* Return true when either T1 is a type that, when loaded into a register and
   stored back to memory will yield the same bits or when both T1 and T2 are
   compatible.  */

static bool
types_risk_mangled_binary_repr_p (tree t1, tree t2)
{
  if (mode_can_transfer_bits (TYPE_MODE (t1)))
    return false;

  return !types_compatible_p (t1, t2);
}

/* Sort all accesses for the given variable, check for partial overlaps and
   return NULL if there are any.  If there are none, pick a representative for
   each combination of offset and size and create a linked list out of them.
   Return the pointer to the first representative and make sure it is the first
   one in the vector of accesses.  */

static struct access *
sort_and_splice_var_accesses (tree var)
{
  int i, j, access_count;
  struct access *res, **prev_acc_ptr = &res;
  vec<access_p> *access_vec;
  bool first = true;
  HOST_WIDE_INT low = -1, high = 0;

  access_vec = get_base_access_vector (var);
  if (!access_vec)
    return NULL;
  access_count = access_vec->length ();

  /* Sort by <OFFSET, SIZE>.  */
  access_vec->qsort (compare_access_positions);

  i = 0;
  while (i < access_count)
    {
      struct access *access = (*access_vec)[i];
      bool grp_write = access->write;
      bool grp_read = !access->write;
      bool grp_scalar_write = access->write
	&& is_gimple_reg_type (access->type);
      bool grp_scalar_read = !access->write
	&& is_gimple_reg_type (access->type);
      bool grp_assignment_read = access->grp_assignment_read;
      bool grp_assignment_write = access->grp_assignment_write;
      bool multiple_scalar_reads = false;
      bool grp_partial_lhs = access->grp_partial_lhs;
      bool first_scalar = is_gimple_reg_type (access->type);
      bool unscalarizable_region = access->grp_unscalarizable_region;
      bool grp_same_access_path = true;
      bool bf_non_full_precision
	= (INTEGRAL_TYPE_P (access->type)
	   && TYPE_PRECISION (access->type) != access->size
	   && TREE_CODE (access->expr) == COMPONENT_REF
	   && DECL_BIT_FIELD (TREE_OPERAND (access->expr, 1)));

      if (first || access->offset >= high)
	{
	  first = false;
	  low = access->offset;
	  high = access->offset + access->size;
	}
      else if (access->offset > low && access->offset + access->size > high)
	return NULL;
      else
	gcc_assert (access->offset >= low
		    && access->offset + access->size <= high);

      if (INTEGRAL_TYPE_P (access->type)
	  && TYPE_PRECISION (access->type) != access->size
	  && bitmap_bit_p (passed_by_ref_in_call, DECL_UID (access->base)))
	{
	  /* This can lead to performance regressions because we can generate
	     excessive zero extensions.  */
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Won't scalarize ");
	      print_generic_expr (dump_file, access->base);
	      fprintf (dump_file, "(%d), it is passed by reference to a call "
		       "and there are accesses with precision not covering "
		       "their type size.", DECL_UID (access->base));
	    }
	  return NULL;
	}

      grp_same_access_path = path_comparable_for_same_access (access->expr);

      j = i + 1;
      while (j < access_count)
	{
	  struct access *ac2 = (*access_vec)[j];
	  if (ac2->offset != access->offset || ac2->size != access->size)
	    break;
	  if (ac2->write)
	    {
	      grp_write = true;
	      grp_scalar_write = (grp_scalar_write
				  || is_gimple_reg_type (ac2->type));
	    }
	  else
	    {
	      grp_read = true;
	      if (is_gimple_reg_type (ac2->type))
		{
		  if (grp_scalar_read)
		    multiple_scalar_reads = true;
		  else
		    grp_scalar_read = true;
		}
	    }
	  grp_assignment_read |= ac2->grp_assignment_read;
	  grp_assignment_write |= ac2->grp_assignment_write;
	  grp_partial_lhs |= ac2->grp_partial_lhs;
	  unscalarizable_region |= ac2->grp_unscalarizable_region;
	  relink_to_new_repr (access, ac2);

	  /* If there are both aggregate-type and scalar-type accesses with
	     this combination of size and offset, the comparison function
	     should have put the scalars first.  */
	  gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
	  /* It also prefers integral types to non-integral.  However, when the
	     precision of the selected type does not span the entire area and
	     should also be used for a non-integer (i.e. float), we must not
	     let that happen.  Normally analyze_access_subtree expands the type
	     to cover the entire area but for bit-fields it doesn't.  */
	  if (bf_non_full_precision && !INTEGRAL_TYPE_P (ac2->type))
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "Cannot scalarize the following access "
			   "because insufficient precision integer type was "
			   "selected.\n  ");
		  dump_access (dump_file, access, false);
		}
	      unscalarizable_region = true;
	    }
	  else if (types_risk_mangled_binary_repr_p (access->type, ac2->type))
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "Cannot scalarize the following access "
			   "because data would be held in a mode which is not "
			   "guaranteed to preserve all bits.\n  ");
		  dump_access (dump_file, access, false);
		}
	      unscalarizable_region = true;
	    }

	  if (grp_same_access_path
	      && !same_access_path_p (access->expr, ac2->expr))
	    grp_same_access_path = false;

	  ac2->group_representative = access;
	  j++;
	}

      i = j;

      access->group_representative = access;
      access->grp_write = grp_write;
      access->grp_read = grp_read;
      access->grp_scalar_read = grp_scalar_read;
      access->grp_scalar_write = grp_scalar_write;
      access->grp_assignment_read = grp_assignment_read;
      access->grp_assignment_write = grp_assignment_write;
      access->grp_hint = multiple_scalar_reads && !constant_decl_p (var);
      access->grp_partial_lhs = grp_partial_lhs;
      access->grp_unscalarizable_region = unscalarizable_region;
      access->grp_same_access_path = grp_same_access_path;

      *prev_acc_ptr = access;
      prev_acc_ptr = &access->next_grp;
    }

  gcc_assert (res == (*access_vec)[0]);
  return res;
}

/* Create a variable for the given ACCESS which determines the type, name and a
   few other properties.  Return the variable declaration and store it also to
   ACCESS->replacement.  REG_TREE is used when creating a declaration to base a
   default-definition SSA name on in order to facilitate an uninitialized
   warning.  It is used instead of the actual ACCESS type if that is not of a
   gimple register type.  */

static tree
create_access_replacement (struct access *access, tree reg_type = NULL_TREE)
{
  tree repl;

  tree type = access->type;
  if (reg_type && !is_gimple_reg_type (type))
    type = reg_type;

  if (access->grp_to_be_debug_replaced)
    {
      repl = create_tmp_var_raw (access->type);
      DECL_CONTEXT (repl) = current_function_decl;
    }
  else
    /* Drop any special alignment on the type if it's not on the main
       variant.  This avoids issues with weirdo ABIs like AAPCS.  */
    repl = create_tmp_var (build_qualified_type (TYPE_MAIN_VARIANT (type),
						 TYPE_QUALS (type)), "SR");
  if (access->grp_partial_lhs
      && is_gimple_reg_type (type))
    DECL_NOT_GIMPLE_REG_P (repl) = 1;

  DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
  DECL_ARTIFICIAL (repl) = 1;
  DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);

  if (DECL_NAME (access->base)
      && !DECL_IGNORED_P (access->base)
      && !DECL_ARTIFICIAL (access->base))
    {
      char *pretty_name = make_fancy_name (access->expr);
      tree debug_expr = unshare_expr_without_location (access->expr), d;
      bool fail = false;

      DECL_NAME (repl) = get_identifier (pretty_name);
      DECL_NAMELESS (repl) = 1;
      obstack_free (&name_obstack, pretty_name);

      /* Get rid of any SSA_NAMEs embedded in debug_expr,
	 as DECL_DEBUG_EXPR isn't considered when looking for still
	 used SSA_NAMEs and thus they could be freed.  All debug info
	 generation cares is whether something is constant or variable
	 and that get_ref_base_and_extent works properly on the
	 expression.  It cannot handle accesses at a non-constant offset
	 though, so just give up in those cases.  */
      for (d = debug_expr;
	   !fail && (handled_component_p (d) || TREE_CODE (d) == MEM_REF);
	   d = TREE_OPERAND (d, 0))
	switch (TREE_CODE (d))
	  {
	  case ARRAY_REF:
	  case ARRAY_RANGE_REF:
	    if (TREE_OPERAND (d, 1)
		&& TREE_CODE (TREE_OPERAND (d, 1)) != INTEGER_CST)
	      fail = true;
	    if (TREE_OPERAND (d, 3)
		&& TREE_CODE (TREE_OPERAND (d, 3)) != INTEGER_CST)
	      fail = true;
	    /* FALLTHRU */
	  case COMPONENT_REF:
	    if (TREE_OPERAND (d, 2)
		&& TREE_CODE (TREE_OPERAND (d, 2)) != INTEGER_CST)
	      fail = true;
	    break;
	  case MEM_REF:
	    if (TREE_CODE (TREE_OPERAND (d, 0)) != ADDR_EXPR)
	      fail = true;
	    else
	      d = TREE_OPERAND (d, 0);
	    break;
	  default:
	    break;
	  }
      if (!fail)
	{
	  SET_DECL_DEBUG_EXPR (repl, debug_expr);
	  DECL_HAS_DEBUG_EXPR_P (repl) = 1;
	}
      if (access->grp_no_warning)
	suppress_warning (repl /* Be more selective! */);
      else
	copy_warning (repl, access->base);
    }
  else
    suppress_warning (repl /* Be more selective! */);

  if (dump_file)
    {
      if (access->grp_to_be_debug_replaced)
	{
	  fprintf (dump_file, "Created a debug-only replacement for ");
	  print_generic_expr (dump_file, access->base);
	  fprintf (dump_file, " offset: %u, size: %u\n",
		   (unsigned) access->offset, (unsigned) access->size);
	}
      else
	{
	  fprintf (dump_file, "Created a replacement for ");
	  print_generic_expr (dump_file, access->base);
	  fprintf (dump_file, " offset: %u, size: %u: ",
		   (unsigned) access->offset, (unsigned) access->size);
	  print_generic_expr (dump_file, repl, TDF_UID);
	  fprintf (dump_file, "\n");
	}
    }
  sra_stats.replacements++;

  return repl;
}

/* Return ACCESS scalar replacement, which must exist.  */

static inline tree
get_access_replacement (struct access *access)
{
  gcc_checking_assert (access->replacement_decl);
  return access->replacement_decl;
}


/* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
   linked list along the way.  Stop when *ACCESS is NULL or the access pointed
   to it is not "within" the root.  Return false iff some accesses partially
   overlap.  */

static bool
build_access_subtree (struct access **access)
{
  struct access *root = *access, *last_child = NULL;
  HOST_WIDE_INT limit = root->offset + root->size;

  *access = (*access)->next_grp;
  while  (*access && (*access)->offset + (*access)->size <= limit)
    {
      if (!last_child)
	root->first_child = *access;
      else
	last_child->next_sibling = *access;
      last_child = *access;
      (*access)->parent = root;
      (*access)->grp_write |= root->grp_write;

      if (!build_access_subtree (access))
	return false;
    }

  if (*access && (*access)->offset < limit)
    return false;

  return true;
}

/* Build a tree of access representatives, ACCESS is the pointer to the first
   one, others are linked in a list by the next_grp field.  Return false iff
   some accesses partially overlap.  */

static bool
build_access_trees (struct access *access)
{
  while (access)
    {
      struct access *root = access;

      if (!build_access_subtree (&access))
	return false;
      root->next_grp = access;
    }
  return true;
}

/* Traverse the access forest where ROOT is the first root and verify that
   various important invariants hold true.  */

DEBUG_FUNCTION void
verify_sra_access_forest (struct access *root)
{
  struct access *access = root;
  tree first_base = root->base;
  gcc_assert (DECL_P (first_base));
  do
    {
      gcc_assert (access->base == first_base);
      if (access->parent)
	gcc_assert (access->offset >= access->parent->offset
		    && access->size <= access->parent->size);
      if (access->next_sibling)
	gcc_assert (access->next_sibling->offset
		    >= access->offset + access->size);

      poly_int64 poffset, psize, pmax_size;
      bool reverse;
      tree base = get_ref_base_and_extent (access->expr, &poffset, &psize,
					   &pmax_size, &reverse);
      HOST_WIDE_INT offset, size, max_size;
      if (!poffset.is_constant (&offset)
	  || !psize.is_constant (&size)
	  || !pmax_size.is_constant (&max_size))
	gcc_unreachable ();
      gcc_assert (base == first_base);
      gcc_assert (offset == access->offset);
      gcc_assert (access->grp_unscalarizable_region
		  || access->grp_total_scalarization
		  || size == max_size);
      gcc_assert (access->grp_unscalarizable_region
		  || !is_gimple_reg_type (access->type)
		  || size == access->size);
      gcc_assert (reverse == access->reverse);

      if (access->first_child)
	{
	  gcc_assert (access->first_child->parent == access);
	  access = access->first_child;
	}
      else if (access->next_sibling)
	{
	  gcc_assert (access->next_sibling->parent == access->parent);
	  access = access->next_sibling;
	}
      else
	{
	  while (access->parent && !access->next_sibling)
	    access = access->parent;
	  if (access->next_sibling)
	    access = access->next_sibling;
	  else
	    {
	      gcc_assert (access == root);
	      root = root->next_grp;
	      access = root;
	    }
	}
    }
  while (access);
}

/* Verify access forests of all candidates with accesses by calling
   verify_access_forest on each on them.  */

DEBUG_FUNCTION void
verify_all_sra_access_forests (void)
{
  bitmap_iterator bi;
  unsigned i;
  EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
    {
      tree var = candidate (i);
      struct access *access = get_first_repr_for_decl (var);
      if (access)
	{
	  gcc_assert (access->base == var);
	  verify_sra_access_forest (access);
	}
    }
}

/* Return true if expr contains some ARRAY_REFs into a variable bounded
   array.  */

static bool
expr_with_var_bounded_array_refs_p (tree expr)
{
  while (handled_component_p (expr))
    {
      if (TREE_CODE (expr) == ARRAY_REF
	  && !tree_fits_shwi_p (array_ref_low_bound (expr)))
	return true;
      expr = TREE_OPERAND (expr, 0);
    }
  return false;
}

/* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
   both seeming beneficial and when ALLOW_REPLACEMENTS allows it.  If TOTALLY
   is set, we are totally scalarizing the aggregate.  Also set all sorts of
   access flags appropriately along the way, notably always set grp_read and
   grp_assign_read according to MARK_READ and grp_write when MARK_WRITE is
   true.

   Creating a replacement for a scalar access is considered beneficial if its
   grp_hint ot TOTALLY is set (this means either that there is more than one
   direct read access or that we are attempting total scalarization) or
   according to the following table:

   Access written to through a scalar type (once or more times)
   |
   |	Written to in an assignment statement
   |	|
   |	|	Access read as scalar _once_
   |	|	|
   |   	|	|	Read in an assignment statement
   |	|	|	|
   |   	|	|	|	Scalarize	Comment
-----------------------------------------------------------------------------
   0	0	0	0			No access for the scalar
   0	0	0	1			No access for the scalar
   0	0	1	0	No		Single read - won't help
   0	0	1	1	No		The same case
   0	1	0	0			No access for the scalar
   0	1	0	1			No access for the scalar
   0	1	1	0	Yes		s = *g; return s.i;
   0	1	1	1       Yes		The same case as above
   1	0	0	0	No		Won't help
   1	0	0	1	Yes		s.i = 1; *g = s;
   1	0	1	0	Yes		s.i = 5; g = s.i;
   1	0	1	1	Yes		The same case as above
   1	1	0	0	No		Won't help.
   1	1	0	1	Yes		s.i = 1; *g = s;
   1	1	1	0	Yes		s = *g; return s.i;
   1	1	1	1	Yes		Any of the above yeses  */

static bool
analyze_access_subtree (struct access *root, struct access *parent,
			bool allow_replacements, bool totally)
{
  struct access *child;
  HOST_WIDE_INT limit = root->offset + root->size;
  HOST_WIDE_INT covered_to = root->offset;
  bool scalar = is_gimple_reg_type (root->type);
  bool hole = false, sth_created = false;

  if (parent)
    {
      if (parent->grp_read)
	root->grp_read = 1;
      if (parent->grp_assignment_read)
	root->grp_assignment_read = 1;
      if (parent->grp_write)
	root->grp_write = 1;
      if (parent->grp_assignment_write)
	root->grp_assignment_write = 1;
      if (!parent->grp_same_access_path)
	root->grp_same_access_path = 0;
    }

  if (root->grp_unscalarizable_region)
    allow_replacements = false;

  if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
    allow_replacements = false;

  if (!totally && root->grp_result_of_prop_from_lhs)
    allow_replacements = false;

  for (child = root->first_child; child; child = child->next_sibling)
    {
      hole |= covered_to < child->offset;
      sth_created |= analyze_access_subtree (child, root,
					     allow_replacements && !scalar
					     && !root->grp_partial_lhs,
					     totally);

      root->grp_unscalarized_data |= child->grp_unscalarized_data;
      if (child->grp_covered)
	covered_to += child->size;
      else
	hole = true;
    }

  if (allow_replacements && scalar && !root->first_child
      && (totally || !root->grp_total_scalarization)
      && (totally
	  || root->grp_hint
	  || ((root->grp_scalar_read || root->grp_assignment_read)
	      && (root->grp_scalar_write || root->grp_assignment_write))))
    {
      /* Always create access replacements that cover the whole access.
         For integral types this means the precision has to match.
	 Avoid assumptions based on the integral type kind, too.  */
      if (INTEGRAL_TYPE_P (root->type)
	  && ((TREE_CODE (root->type) != INTEGER_TYPE
	       && TREE_CODE (root->type) != BITINT_TYPE)
	      || TYPE_PRECISION (root->type) != root->size)
	  /* But leave bitfield accesses alone.  */
	  && (TREE_CODE (root->expr) != COMPONENT_REF
	      || !DECL_BIT_FIELD (TREE_OPERAND (root->expr, 1))))
	{
	  tree rt = root->type;
	  gcc_assert ((root->offset % BITS_PER_UNIT) == 0
		      && (root->size % BITS_PER_UNIT) == 0);
	  if (TREE_CODE (root->type) == BITINT_TYPE)
	    root->type = build_bitint_type (root->size, TYPE_UNSIGNED (rt));
	  else
	    root->type = build_nonstandard_integer_type (root->size,
							 TYPE_UNSIGNED (rt));
	  root->expr = build_ref_for_offset (UNKNOWN_LOCATION, root->base,
					     root->offset, root->reverse,
					     root->type, NULL, false);

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Changing the type of a replacement for ");
	      print_generic_expr (dump_file, root->base);
	      fprintf (dump_file, " offset: %u, size: %u ",
		       (unsigned) root->offset, (unsigned) root->size);
	      fprintf (dump_file, " to an integer.\n");
	    }
	}

      root->grp_to_be_replaced = 1;
      root->replacement_decl = create_access_replacement (root);
      sth_created = true;
      hole = false;
    }
  else
    {
      if (allow_replacements
	  && scalar && !root->first_child
	  && !root->grp_total_scalarization
	  && (root->grp_scalar_write || root->grp_assignment_write)
	  && !bitmap_bit_p (cannot_scalarize_away_bitmap,
			    DECL_UID (root->base)))
	{
	  gcc_checking_assert (!root->grp_scalar_read
			       && !root->grp_assignment_read);
	  sth_created = true;
	  if (MAY_HAVE_DEBUG_BIND_STMTS)
	    {
	      root->grp_to_be_debug_replaced = 1;
	      root->replacement_decl = create_access_replacement (root);
	    }
	}

      if (covered_to < limit)
	hole = true;
      if (scalar || !allow_replacements)
	root->grp_total_scalarization = 0;
    }

  if (!hole || totally)
    root->grp_covered = 1;
  else if (root->grp_write || comes_initialized_p (root->base))
    root->grp_unscalarized_data = 1; /* not covered and written to */
  return sth_created;
}

/* Analyze all access trees linked by next_grp by the means of
   analyze_access_subtree.  */
static bool
analyze_access_trees (struct access *access)
{
  bool ret = false;

  while (access)
    {
      if (analyze_access_subtree (access, NULL, true,
				  access->grp_total_scalarization))
	ret = true;
      access = access->next_grp;
    }

  return ret;
}

/* Return true iff a potential new child of ACC at offset OFFSET and with size
   SIZE would conflict with an already existing one.  If exactly such a child
   already exists in ACC, store a pointer to it in EXACT_MATCH.  */

static bool
child_would_conflict_in_acc (struct access *acc, HOST_WIDE_INT norm_offset,
			      HOST_WIDE_INT size, struct access **exact_match)
{
  struct access *child;

  for (child = acc->first_child; child; child = child->next_sibling)
    {
      if (child->offset == norm_offset && child->size == size)
	{
	  *exact_match = child;
	  return true;
	}

      if (child->offset < norm_offset + size
	  && child->offset + child->size > norm_offset)
	return true;
    }

  return false;
}

/* Create a new child access of PARENT, with all properties just like MODEL
   except for its offset and with its grp_write false and grp_read true.
   Return the new access or NULL if it cannot be created.  Note that this
   access is created long after all splicing and sorting, it's not located in
   any access vector and is automatically a representative of its group.  Set
   the gpr_write flag of the new accesss if SET_GRP_WRITE is true.  */

static struct access *
create_artificial_child_access (struct access *parent, struct access *model,
				HOST_WIDE_INT new_offset,
				bool set_grp_read, bool set_grp_write)
{
  struct access **child;
  tree expr = parent->base;

  gcc_assert (!model->grp_unscalarizable_region);

  struct access *access = access_pool.allocate ();
  memset (access, 0, sizeof (struct access));
  if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
					   model->type))
    {
      access->grp_no_warning = true;
      expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
				  new_offset, model, NULL, false);
    }

  access->base = parent->base;
  access->expr = expr;
  access->offset = new_offset;
  access->size = model->size;
  access->type = model->type;
  access->parent = parent;
  access->grp_read = set_grp_read;
  access->grp_write = set_grp_write;
  access->reverse = model->reverse;

  child = &parent->first_child;
  while (*child && (*child)->offset < new_offset)
    child = &(*child)->next_sibling;

  access->next_sibling = *child;
  *child = access;

  return access;
}


/* Beginning with ACCESS, traverse its whole access subtree and mark all
   sub-trees as written to.  If any of them has not been marked so previously
   and has assignment links leading from it, re-enqueue it.  */

static void
subtree_mark_written_and_rhs_enqueue (struct access *access)
{
  if (access->grp_write)
    return;
  access->grp_write = true;
  add_access_to_rhs_work_queue (access);

  struct access *child;
  for (child = access->first_child; child; child = child->next_sibling)
    subtree_mark_written_and_rhs_enqueue (child);
}

/* If there is still budget to create a propagation access for DECL, return
   true and decrement the budget.  Otherwise return false.  */

static bool
budget_for_propagation_access (tree decl)
{
  unsigned b, *p = propagation_budget->get (decl);
  if (p)
    b = *p;
  else
    b = param_sra_max_propagations;

  if (b == 0)
    return false;
  b--;

  if (b == 0 && dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "The propagation budget of ");
      print_generic_expr (dump_file, decl);
      fprintf (dump_file, " (UID: %u) has been exhausted.\n", DECL_UID (decl));
    }
  propagation_budget->put (decl, b);
  return true;
}

/* Return true if ACC or any of its subaccesses has grp_child set.  */

static bool
access_or_its_child_written (struct access *acc)
{
  if (acc->grp_write)
    return true;
  for (struct access *sub = acc->first_child; sub; sub = sub->next_sibling)
    if (access_or_its_child_written (sub))
      return true;
  return false;
}

/* Propagate subaccesses and grp_write flags of RACC across an assignment link
   to LACC.  Enqueue sub-accesses as necessary so that the write flag is
   propagated transitively.  Return true if anything changed.  Additionally, if
   RACC is a scalar access but LACC is not, change the type of the latter, if
   possible.  */

static bool
propagate_subaccesses_from_rhs (struct access *lacc, struct access *racc)
{
  struct access *rchild;
  HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
  bool ret = false;

  /* IF the LHS is still not marked as being written to, we only need to do so
     if the RHS at this level actually was.  */
  if (!lacc->grp_write)
    {
      gcc_checking_assert (!comes_initialized_p (racc->base));
      if (racc->grp_write)
	{
	  subtree_mark_written_and_rhs_enqueue (lacc);
	  ret = true;
	}
    }

  if (is_gimple_reg_type (lacc->type)
      || lacc->grp_unscalarizable_region
      || racc->grp_unscalarizable_region)
    {
      if (!lacc->grp_write)
	{
	  ret = true;
	  subtree_mark_written_and_rhs_enqueue (lacc);
	}
      return ret;
    }

  if (is_gimple_reg_type (racc->type))
    {
      if (!lacc->grp_write)
	{
	  ret = true;
	  subtree_mark_written_and_rhs_enqueue (lacc);
	}
      if (!lacc->first_child
	  && !racc->first_child
	  && !types_risk_mangled_binary_repr_p (racc->type, lacc->type))
	{
	  /* We are about to change the access type from aggregate to scalar,
	     so we need to put the reverse flag onto the access, if any.  */
	  const bool reverse
	    = TYPE_REVERSE_STORAGE_ORDER (lacc->type)
	      && !POINTER_TYPE_P (racc->type)
	      && !VECTOR_TYPE_P (racc->type);
	  tree t = lacc->base;

	  lacc->type = racc->type;
	  if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
						  lacc->offset, racc->type))
	    {
	      lacc->expr = t;
	      lacc->grp_same_access_path = true;
	    }
	  else
	    {
	      lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
						lacc->base, lacc->offset,
						racc, NULL, false);
	      if (TREE_CODE (lacc->expr) == MEM_REF)
		REF_REVERSE_STORAGE_ORDER (lacc->expr) = reverse;
	      lacc->grp_no_warning = true;
	      lacc->grp_same_access_path = false;
	    }
	  lacc->reverse = reverse;
	}
      return ret;
    }

  for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
    {
      struct access *new_acc = NULL;
      HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;

      if (child_would_conflict_in_acc (lacc, norm_offset, rchild->size,
					&new_acc))
	{
	  if (new_acc)
	    {
	      if (!new_acc->grp_write && rchild->grp_write)
		{
		  gcc_assert (!lacc->grp_write);
		  subtree_mark_written_and_rhs_enqueue (new_acc);
		  ret = true;
		}

	      rchild->grp_hint = 1;
	      new_acc->grp_hint |= new_acc->grp_read;
	      if (rchild->first_child
		  && propagate_subaccesses_from_rhs (new_acc, rchild))
		{
		  ret = 1;
		  add_access_to_rhs_work_queue (new_acc);
		}
	    }
	  else
	    {
	      if (!lacc->grp_write)
		{
		  ret = true;
		  subtree_mark_written_and_rhs_enqueue (lacc);
		}
	    }
	  continue;
	}

      if (rchild->grp_unscalarizable_region
	  || !budget_for_propagation_access (lacc->base))
	{
	  if (!lacc->grp_write && access_or_its_child_written (rchild))
	    {
	      ret = true;
	      subtree_mark_written_and_rhs_enqueue (lacc);
	    }
	  continue;
	}

      rchild->grp_hint = 1;
      /* Because get_ref_base_and_extent always includes padding in size for
	 accesses to DECLs but not necessarily for COMPONENT_REFs of the same
	 type, we might be actually attempting to here to create a child of the
	 same type as the parent.  */
      if (!types_compatible_p (lacc->type, rchild->type))
	new_acc = create_artificial_child_access (lacc, rchild, norm_offset,
						  false,
						  (lacc->grp_write
						   || rchild->grp_write));
      else
	new_acc = lacc;
      gcc_checking_assert (new_acc);
      if (racc->first_child)
	propagate_subaccesses_from_rhs (new_acc, rchild);

      add_access_to_rhs_work_queue (lacc);
      ret = true;
    }

  return ret;
}

/* Propagate subaccesses of LACC across an assignment link to RACC if they
   should inhibit total scalarization of the corresponding area.  No flags are
   being propagated in the process.  Return true if anything changed.  */

static bool
propagate_subaccesses_from_lhs (struct access *lacc, struct access *racc)
{
  if (is_gimple_reg_type (racc->type)
      || lacc->grp_unscalarizable_region
      || racc->grp_unscalarizable_region)
    return false;

  /* TODO: Do we want set some new racc flag to stop potential total
     scalarization if lacc is a scalar access (and none fo the two have
     children)?  */

  bool ret = false;
  HOST_WIDE_INT norm_delta = racc->offset - lacc->offset;
  for (struct access *lchild = lacc->first_child;
       lchild;
       lchild = lchild->next_sibling)
    {
      struct access *matching_acc = NULL;
      HOST_WIDE_INT norm_offset = lchild->offset + norm_delta;

      if (lchild->grp_unscalarizable_region
	  || child_would_conflict_in_acc (racc, norm_offset, lchild->size,
					  &matching_acc)
	  || !budget_for_propagation_access (racc->base))
	{
	  if (matching_acc
	      && propagate_subaccesses_from_lhs (lchild, matching_acc))
	    add_access_to_lhs_work_queue (matching_acc);
	  continue;
	}

      /* Because get_ref_base_and_extent always includes padding in size for
	 accesses to DECLs but not necessarily for COMPONENT_REFs of the same
	 type, we might be actually attempting to here to create a child of the
	 same type as the parent.  */
      if (!types_compatible_p (racc->type, lchild->type))
	{
	  struct access *new_acc
	    = create_artificial_child_access (racc, lchild, norm_offset,
					      true, false);
	  new_acc->grp_result_of_prop_from_lhs = 1;
	  propagate_subaccesses_from_lhs (lchild, new_acc);
	}
      else
	propagate_subaccesses_from_lhs (lchild, racc);
      ret = true;
    }
  return ret;
}

/* Propagate all subaccesses across assignment links.  */

static void
propagate_all_subaccesses (void)
{
  propagation_budget = new hash_map<tree, unsigned>;
  while (rhs_work_queue_head)
    {
      struct access *racc = pop_access_from_rhs_work_queue ();
      struct assign_link *link;

      if (racc->group_representative)
	racc= racc->group_representative;
      gcc_assert (racc->first_rhs_link);

      for (link = racc->first_rhs_link; link; link = link->next_rhs)
	{
	  struct access *lacc = link->lacc;

	  if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
	    continue;
	  lacc = lacc->group_representative;

	  bool reque_parents = false;
	  if (!bitmap_bit_p (candidate_bitmap, DECL_UID (racc->base)))
	    {
	      if (!lacc->grp_write)
		{
		  subtree_mark_written_and_rhs_enqueue (lacc);
		  reque_parents = true;
		}
	    }
	  else if (propagate_subaccesses_from_rhs (lacc, racc))
	    reque_parents = true;

	  if (reque_parents)
	    do
	      {
		add_access_to_rhs_work_queue (lacc);
		lacc = lacc->parent;
	      }
	    while (lacc);
	}
    }

  while (lhs_work_queue_head)
    {
      struct access *lacc = pop_access_from_lhs_work_queue ();
      struct assign_link *link;

      if (lacc->group_representative)
	lacc = lacc->group_representative;
      gcc_assert (lacc->first_lhs_link);

      if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
	continue;

      for (link = lacc->first_lhs_link; link; link = link->next_lhs)
	{
	  struct access *racc = link->racc;

	  if (racc->group_representative)
	    racc = racc->group_representative;
	  if (!bitmap_bit_p (candidate_bitmap, DECL_UID (racc->base)))
	    continue;
	  if (propagate_subaccesses_from_lhs (lacc, racc))
	    add_access_to_lhs_work_queue (racc);
	}
    }
  delete propagation_budget;
}

/* Return true if the forest beginning with ROOT does not contain
   unscalarizable regions or non-byte aligned accesses.  */

static bool
can_totally_scalarize_forest_p (struct access *root)
{
  struct access *access = root;
  do
    {
      if (access->grp_unscalarizable_region
	  || (access->offset % BITS_PER_UNIT) != 0
	  || (access->size % BITS_PER_UNIT) != 0
	  || (is_gimple_reg_type (access->type)
	      && access->first_child))
	return false;

      if (access->first_child)
	access = access->first_child;
      else if (access->next_sibling)
	access = access->next_sibling;
      else
	{
	  while (access->parent && !access->next_sibling)
	    access = access->parent;
	  if (access->next_sibling)
	    access = access->next_sibling;
	  else
	    {
	      gcc_assert (access == root);
	      root = root->next_grp;
	      access = root;
	    }
	}
    }
  while (access);
  return true;
}

/* Create and return an ACCESS in PARENT spanning from POS with SIZE, TYPE and
   reference EXPR for total scalarization purposes and mark it as such.  Within
   the children of PARENT, link it in between PTR and NEXT_SIBLING.  */

static struct access *
create_total_scalarization_access (struct access *parent, HOST_WIDE_INT pos,
				   HOST_WIDE_INT size, tree type, tree expr,
				   struct access **ptr,
				   struct access *next_sibling)
{
  struct access *access = access_pool.allocate ();
  memset (access, 0, sizeof (struct access));
  access->base = parent->base;
  access->offset = pos;
  access->size = size;
  access->expr = expr;
  access->type = type;
  access->parent = parent;
  access->grp_write = parent->grp_write;
  access->grp_total_scalarization = 1;
  access->grp_hint = 1;
  access->grp_same_access_path = path_comparable_for_same_access (expr);
  access->reverse = reverse_storage_order_for_component_p (expr);

  access->next_sibling = next_sibling;
  *ptr = access;
  return access;
}

/* Create and return an ACCESS in PARENT spanning from POS with SIZE, TYPE and
   reference EXPR for total scalarization purposes and mark it as such, link it
   at *PTR and reshape the tree so that those elements at *PTR and their
   siblings which fall within the part described by POS and SIZE are moved to
   be children of the new access.  If a partial overlap is detected, return
   NULL.  */

static struct access *
create_total_access_and_reshape (struct access *parent, HOST_WIDE_INT pos,
				 HOST_WIDE_INT size, tree type, tree expr,
				 struct access **ptr)
{
  struct access **p = ptr;

  while (*p && (*p)->offset < pos + size)
    {
      if ((*p)->offset + (*p)->size > pos + size)
	return NULL;
      p = &(*p)->next_sibling;
    }

  struct access *next_child = *ptr;
  struct access *new_acc
    = create_total_scalarization_access (parent, pos, size, type, expr,
					 ptr, *p);
  if (p != ptr)
    {
      new_acc->first_child = next_child;
      *p = NULL;
      for (struct access *a = next_child; a; a = a->next_sibling)
	a->parent = new_acc;
    }
  return new_acc;
}

static bool totally_scalarize_subtree (struct access *root);

/* Return true if INNER is either the same type as OUTER or if it is the type
   of a record field in OUTER at offset zero, possibly in nested
   sub-records.  */

static bool
access_and_field_type_match_p (tree outer, tree inner)
{
  if (TYPE_MAIN_VARIANT (outer) == TYPE_MAIN_VARIANT (inner))
    return true;
  if (TREE_CODE (outer) != RECORD_TYPE)
    return false;
  tree fld = TYPE_FIELDS (outer);
  while (fld)
    {
     if (TREE_CODE (fld) == FIELD_DECL)
       {
	if (!zerop (DECL_FIELD_OFFSET (fld)))
	  return false;
	if (TYPE_MAIN_VARIANT (TREE_TYPE (fld)) == inner)
	  return true;
	if (TREE_CODE (TREE_TYPE (fld)) == RECORD_TYPE)
	  fld = TYPE_FIELDS (TREE_TYPE (fld));
	else
	  return false;
       }
     else
       fld = DECL_CHAIN (fld);
    }
  return false;
}

/* Return type of total_should_skip_creating_access indicating whether a total
   scalarization access for a field/element should be created, whether it
   already exists or whether the entire total scalarization has to fail.  */

enum total_sra_field_state {TOTAL_FLD_CREATE, TOTAL_FLD_DONE, TOTAL_FLD_FAILED};

/* Do all the necessary steps in total scalarization when the given aggregate
   type has a TYPE at POS with the given SIZE should be put into PARENT and
   when we have processed all its siblings with smaller offsets up until and
   including LAST_SEEN_SIBLING (which can be NULL).

   If some further siblings are to be skipped, set *LAST_SEEN_SIBLING as
   appropriate.  Return TOTAL_FLD_CREATE id the caller should carry on with
   creating a new access, TOTAL_FLD_DONE if access or accesses capable of
   representing the described part of the aggregate for the purposes of total
   scalarization already exist or TOTAL_FLD_FAILED if there is a problem which
   prevents total scalarization from happening at all.  */

static enum total_sra_field_state
total_should_skip_creating_access (struct access *parent,
				   struct access **last_seen_sibling,
				   tree type, HOST_WIDE_INT pos,
				   HOST_WIDE_INT size)
{
  struct access *next_child;
  if (!*last_seen_sibling)
    next_child = parent->first_child;
  else
    next_child = (*last_seen_sibling)->next_sibling;

  /* First, traverse the chain of siblings until it points to an access with
     offset at least equal to POS.  Check all skipped accesses whether they
     span the POS boundary and if so, return with a failure.  */
  while (next_child && next_child->offset < pos)
    {
      if (next_child->offset + next_child->size > pos)
	return TOTAL_FLD_FAILED;
      *last_seen_sibling = next_child;
      next_child = next_child->next_sibling;
    }

  /* Now check whether next_child has exactly the right POS and SIZE and if so,
     whether it can represent what we need and can be totally scalarized
     itself.  */
  if (next_child && next_child->offset == pos
      && next_child->size == size)
    {
      if (!is_gimple_reg_type (next_child->type)
	  && (!access_and_field_type_match_p (type, next_child->type)
	      || !totally_scalarize_subtree (next_child)))
	return TOTAL_FLD_FAILED;

      *last_seen_sibling = next_child;
      return TOTAL_FLD_DONE;
    }

  /* If the child we're looking at would partially overlap, we just cannot
     totally scalarize.  */
  if (next_child
      && next_child->offset < pos + size
      && next_child->offset + next_child->size > pos + size)
    return TOTAL_FLD_FAILED;

  if (is_gimple_reg_type (type))
    {
      /* We don't scalarize accesses that are children of other scalar type
	 accesses, so if we go on and create an access for a register type,
	 there should not be any pre-existing children.  There are rare cases
	 where the requested type is a vector but we already have register
	 accesses for all its elements which is equally good.  Detect that
	 situation or whether we need to bail out.  */

      HOST_WIDE_INT covered = pos;
      bool skipping = false;
      while (next_child
	     && next_child->offset + next_child->size <= pos + size)
	{
	  if (next_child->offset != covered
	      || !is_gimple_reg_type (next_child->type))
	    return TOTAL_FLD_FAILED;

	  covered += next_child->size;
	  *last_seen_sibling = next_child;
	  next_child = next_child->next_sibling;
	  skipping = true;
	}

      if (skipping)
	{
	  if (covered != pos + size)
	    return TOTAL_FLD_FAILED;
	  else
	    return TOTAL_FLD_DONE;
	}
    }

  return TOTAL_FLD_CREATE;
}

/* Go over sub-tree rooted in ROOT and attempt to create scalar accesses
   spanning all uncovered areas covered by ROOT, return false if the attempt
   failed.  All created accesses will have grp_unscalarizable_region set (and
   should be ignored if the function returns false).  */

static bool
totally_scalarize_subtree (struct access *root)
{
  gcc_checking_assert (!root->grp_unscalarizable_region);
  gcc_checking_assert (!is_gimple_reg_type (root->type));

  struct access *last_seen_sibling = NULL;

  switch (TREE_CODE (root->type))
    {
    case RECORD_TYPE:
      for (tree fld = TYPE_FIELDS (root->type); fld; fld = DECL_CHAIN (fld))
	if (TREE_CODE (fld) == FIELD_DECL)
	  {
	    tree ft = TREE_TYPE (fld);
	    HOST_WIDE_INT fsize = tree_to_uhwi (DECL_SIZE (fld));
	    if (!fsize)
	      continue;

	    HOST_WIDE_INT pos = root->offset + int_bit_position (fld);
	    if (pos + fsize > root->offset + root->size)
	      return false;
	    enum total_sra_field_state
	      state = total_should_skip_creating_access (root,
							 &last_seen_sibling,
							 ft, pos, fsize);
	    switch (state)
	      {
	      case TOTAL_FLD_FAILED:
		return false;
	      case TOTAL_FLD_DONE:
		continue;
	      case TOTAL_FLD_CREATE:
		break;
	      default:
		gcc_unreachable ();
	      }

	    struct access **p = (last_seen_sibling
				 ? &last_seen_sibling->next_sibling
				 : &root->first_child);
	    tree nref = build3 (COMPONENT_REF, ft, root->expr, fld, NULL_TREE);
	    struct access *new_child
	      = create_total_access_and_reshape (root, pos, fsize, ft, nref, p);
	    if (!new_child)
	      return false;

	    if (!is_gimple_reg_type (ft)
		&& !totally_scalarize_subtree (new_child))
	      return false;
	    last_seen_sibling = new_child;
	  }
      break;
    case ARRAY_TYPE:
      {
	tree elemtype = TREE_TYPE (root->type);
	HOST_WIDE_INT el_size;
	offset_int idx, max;
	if (!prepare_iteration_over_array_elts (root->type, &el_size,
						&idx, &max))
	  break;

	for (HOST_WIDE_INT pos = root->offset;
	     idx <= max;
	     pos += el_size, ++idx)
	  {
	    enum total_sra_field_state
	      state = total_should_skip_creating_access (root,
							 &last_seen_sibling,
							 elemtype, pos,
							 el_size);
	    switch (state)
	      {
	      case TOTAL_FLD_FAILED:
		return false;
	      case TOTAL_FLD_DONE:
		continue;
	      case TOTAL_FLD_CREATE:
		break;
	      default:
		gcc_unreachable ();
	      }

	    struct access **p = (last_seen_sibling
				 ? &last_seen_sibling->next_sibling
				 : &root->first_child);
	    tree nref = build4 (ARRAY_REF, elemtype, root->expr,
				wide_int_to_tree (TYPE_DOMAIN (root->type),
						  idx),
				NULL_TREE, NULL_TREE);
	    struct access *new_child
	      = create_total_access_and_reshape (root, pos, el_size, elemtype,
						 nref, p);
	    if (!new_child)
	      return false;

	    if (!is_gimple_reg_type (elemtype)
		&& !totally_scalarize_subtree (new_child))
	      return false;
	    last_seen_sibling = new_child;
	  }
      }
      break;
    default:
      gcc_unreachable ();
    }
  return true;
}

/* Get the total total scalarization size limit in the current function.  */

unsigned HOST_WIDE_INT
sra_get_max_scalarization_size (void)
{
  bool optimize_speed_p = !optimize_function_for_size_p (cfun);
  /* If the user didn't set PARAM_SRA_MAX_SCALARIZATION_SIZE_<...>,
     fall back to a target default.  */
  unsigned HOST_WIDE_INT max_scalarization_size
    = get_move_ratio (optimize_speed_p) * UNITS_PER_WORD;

  if (optimize_speed_p)
    {
      if (OPTION_SET_P (param_sra_max_scalarization_size_speed))
	max_scalarization_size = param_sra_max_scalarization_size_speed;
    }
  else
    {
      if (OPTION_SET_P (param_sra_max_scalarization_size_size))
	max_scalarization_size = param_sra_max_scalarization_size_size;
    }
  max_scalarization_size *= BITS_PER_UNIT;
  return max_scalarization_size;
}

/* Go through all accesses collected throughout the (intraprocedural) analysis
   stage, exclude overlapping ones, identify representatives and build trees
   out of them, making decisions about scalarization on the way.  Return true
   iff there are any to-be-scalarized variables after this stage. */

static bool
analyze_all_variable_accesses (void)
{
  int res = 0;
  bitmap tmp = BITMAP_ALLOC (NULL);
  bitmap_iterator bi;
  unsigned i;

  bitmap_copy (tmp, candidate_bitmap);
  EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
    {
      tree var = candidate (i);
      struct access *access;

      access = sort_and_splice_var_accesses (var);
      if (!access || !build_access_trees (access))
	disqualify_candidate (var,
			      "No or inhibitingly overlapping accesses.");
    }

  propagate_all_subaccesses ();

  unsigned HOST_WIDE_INT max_scalarization_size
    = sra_get_max_scalarization_size ();
  EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
    if (bitmap_bit_p (should_scalarize_away_bitmap, i)
	&& !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
      {
	tree var = candidate (i);
	if (!VAR_P (var))
	  continue;

	if (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (var))) > max_scalarization_size)
	  {
	    if (dump_file && (dump_flags & TDF_DETAILS))
	      {
		fprintf (dump_file, "Too big to totally scalarize: ");
		print_generic_expr (dump_file, var);
		fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
	      }
	    continue;
	  }

	bool all_types_ok = true;
	for (struct access *access = get_first_repr_for_decl (var);
	     access;
	     access = access->next_grp)
	  if (!can_totally_scalarize_forest_p (access)
	      || !totally_scalarizable_type_p (access->type,
					       constant_decl_p (var),
					       0, nullptr))
	    {
	      all_types_ok = false;
	      break;
	    }
	if (!all_types_ok)
	  continue;

	if (dump_file && (dump_flags & TDF_DETAILS))
	  {
	    fprintf (dump_file, "Will attempt to totally scalarize ");
	    print_generic_expr (dump_file, var);
	    fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
	  }
	bool scalarized = true;
	for (struct access *access = get_first_repr_for_decl (var);
	     access;
	     access = access->next_grp)
	  if (!is_gimple_reg_type (access->type)
	      && !totally_scalarize_subtree (access))
	    {
	      scalarized = false;
	      break;
	    }

	if (scalarized)
	  for (struct access *access = get_first_repr_for_decl (var);
	       access;
	       access = access->next_grp)
	    access->grp_total_scalarization = true;
      }

  if (flag_checking)
    verify_all_sra_access_forests ();

  bitmap_copy (tmp, candidate_bitmap);
  EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
    {
      tree var = candidate (i);
      struct access *access = get_first_repr_for_decl (var);

      if (analyze_access_trees (access))
	{
	  res++;
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "\nAccess trees for ");
	      print_generic_expr (dump_file, var);
	      fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
	      dump_access_tree (dump_file, access);
	      fprintf (dump_file, "\n");
	    }
	}
      else
	disqualify_candidate (var, "No scalar replacements to be created.");
    }

  BITMAP_FREE (tmp);

  if (res)
    {
      statistics_counter_event (cfun, "Scalarized aggregates", res);
      return true;
    }
  else
    return false;
}

/* Generate statements copying scalar replacements of accesses within a subtree
   into or out of AGG.  ACCESS, all its children, siblings and their children
   are to be processed.  AGG is an aggregate type expression (can be a
   declaration but does not have to be, it can for example also be a mem_ref or
   a series of handled components).  TOP_OFFSET is the offset of the processed
   subtree which has to be subtracted from offsets of individual accesses to
   get corresponding offsets for AGG.  If CHUNK_SIZE is non-null, copy only
   replacements in the interval <start_offset, start_offset + chunk_size>,
   otherwise copy all.  GSI is a statement iterator used to place the new
   statements.  WRITE should be true when the statements should write from AGG
   to the replacement and false if vice versa.  if INSERT_AFTER is true, new
   statements will be added after the current statement in GSI, they will be
   added before the statement otherwise.  */

static void
generate_subtree_copies (struct access *access, tree agg,
			 HOST_WIDE_INT top_offset,
			 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
			 gimple_stmt_iterator *gsi, bool write,
			 bool insert_after, location_t loc)
{
  /* Never write anything into constant pool decls.  See PR70602.  */
  if (!write && constant_decl_p (agg))
    return;
  do
    {
      if (chunk_size && access->offset >= start_offset + chunk_size)
	return;

      if (access->grp_to_be_replaced
	  && (chunk_size == 0
	      || access->offset + access->size > start_offset))
	{
	  tree expr, repl = get_access_replacement (access);
	  gassign *stmt;

	  expr = build_ref_for_model (loc, agg, access->offset - top_offset,
				      access, gsi, insert_after);

	  if (write)
	    {
	      if (access->grp_partial_lhs)
		expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
						 !insert_after,
						 insert_after ? GSI_NEW_STMT
						 : GSI_SAME_STMT);
	      stmt = gimple_build_assign (repl, expr);
	    }
	  else
	    {
	      suppress_warning (repl /* Be more selective! */);
	      if (access->grp_partial_lhs)
		repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
						 !insert_after,
						 insert_after ? GSI_NEW_STMT
						 : GSI_SAME_STMT);
	      stmt = gimple_build_assign (expr, repl);
	    }
	  gimple_set_location (stmt, loc);

	  if (insert_after)
	    gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
	  else
	    gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
	  update_stmt (stmt);
	  sra_stats.subtree_copies++;
	}
      else if (write
	       && access->grp_to_be_debug_replaced
	       && (chunk_size == 0
		   || access->offset + access->size > start_offset))
	{
	  gdebug *ds;
	  tree drhs = build_debug_ref_for_model (loc, agg,
						 access->offset - top_offset,
						 access);
	  ds = gimple_build_debug_bind (get_access_replacement (access),
					drhs, gsi_stmt (*gsi));
	  if (insert_after)
	    gsi_insert_after (gsi, ds, GSI_NEW_STMT);
	  else
	    gsi_insert_before (gsi, ds, GSI_SAME_STMT);
	}

      if (access->first_child)
	generate_subtree_copies (access->first_child, agg, top_offset,
				 start_offset, chunk_size, gsi,
				 write, insert_after, loc);

      access = access->next_sibling;
    }
  while (access);
}

/* Assign zero to all scalar replacements in an access subtree.  ACCESS is the
   root of the subtree to be processed.  GSI is the statement iterator used
   for inserting statements which are added after the current statement if
   INSERT_AFTER is true or before it otherwise.  */

static void
init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
			bool insert_after, location_t loc)

{
  struct access *child;

  if (access->grp_to_be_replaced)
    {
      gassign *stmt;

      stmt = gimple_build_assign (get_access_replacement (access),
				  build_zero_cst (access->type));
      if (insert_after)
	gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
      else
	gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
      update_stmt (stmt);
      gimple_set_location (stmt, loc);
    }
  else if (access->grp_to_be_debug_replaced)
    {
      gdebug *ds
	= gimple_build_debug_bind (get_access_replacement (access),
				   build_zero_cst (access->type),
				   gsi_stmt (*gsi));
      if (insert_after)
	gsi_insert_after (gsi, ds, GSI_NEW_STMT);
      else
	gsi_insert_before (gsi, ds, GSI_SAME_STMT);
    }

  for (child = access->first_child; child; child = child->next_sibling)
    init_subtree_with_zero (child, gsi, insert_after, loc);
}

/* Clobber all scalar replacements in an access subtree.  ACCESS is the
   root of the subtree to be processed.  GSI is the statement iterator used
   for inserting statements which are added after the current statement if
   INSERT_AFTER is true or before it otherwise.  */

static void
clobber_subtree (struct access *access, gimple_stmt_iterator *gsi,
		bool insert_after, location_t loc)

{
  struct access *child;

  if (access->grp_to_be_replaced)
    {
      tree rep = get_access_replacement (access);
      tree clobber = build_clobber (access->type);
      gimple *stmt = gimple_build_assign (rep, clobber);

      if (insert_after)
	gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
      else
	gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
      update_stmt (stmt);
      gimple_set_location (stmt, loc);
    }

  for (child = access->first_child; child; child = child->next_sibling)
    clobber_subtree (child, gsi, insert_after, loc);
}

/* Search for an access representative for the given expression EXPR and
   return it or NULL if it cannot be found.  */

static struct access *
get_access_for_expr (tree expr)
{
  poly_int64 poffset, psize, pmax_size;
  HOST_WIDE_INT offset, max_size;
  tree base;
  bool reverse;

  /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
     a different size than the size of its argument and we need the latter
     one.  */
  if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
    expr = TREE_OPERAND (expr, 0);

  base = get_ref_base_and_extent (expr, &poffset, &psize, &pmax_size,
				  &reverse);
  if (!known_size_p (pmax_size)
      || !pmax_size.is_constant (&max_size)
      || !poffset.is_constant (&offset)
      || !DECL_P (base))
    return NULL;

  if (tree basesize = DECL_SIZE (base))
    {
      poly_int64 sz;
      if (offset < 0
	  || !poly_int_tree_p (basesize, &sz)
	  || known_le (sz, offset))
	return NULL;
    }

  if (max_size == 0
      || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
    return NULL;

  return get_var_base_offset_size_access (base, offset, max_size);
}

/* Replace the expression EXPR with a scalar replacement if there is one and
   generate other statements to do type conversion or subtree copying if
   necessary.  WRITE is true if the expression is being written to (it is on a
   LHS of a statement or output in an assembly statement).  STMT_GSI is used to
   place newly created statements before the processed statement, REFRESH_GSI
   is used to place them afterwards - unless the processed statement must end a
   BB in which case it is placed on the outgoing non-EH edge.  REFRESH_GSI and
   is then used to continue iteration over the BB.  If sra_modify_expr is
   called only once with WRITE equal to true on a given statement, both
   iterator parameters can point to the same one.  */

static bool
sra_modify_expr (tree *expr, bool write, gimple_stmt_iterator *stmt_gsi,
		 gimple_stmt_iterator *refresh_gsi)
{
  location_t loc;
  struct access *access;
  tree type, bfr, orig_expr;
  bool partial_cplx_access = false;

  if (TREE_CODE (*expr) == BIT_FIELD_REF
      && (write || !sra_handled_bf_read_p (*expr)))
    {
      bfr = *expr;
      expr = &TREE_OPERAND (*expr, 0);
    }
  else
    bfr = NULL_TREE;

  if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
    {
      expr = &TREE_OPERAND (*expr, 0);
      partial_cplx_access = true;
    }
  access = get_access_for_expr (*expr);
  if (!access)
    return false;
  type = TREE_TYPE (*expr);
  orig_expr = *expr;

  loc = gimple_location (gsi_stmt (*stmt_gsi));
  gimple_stmt_iterator alt_gsi = gsi_none ();
  if (write && stmt_ends_bb_p (gsi_stmt (*stmt_gsi)))
    {
      alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*stmt_gsi)));
      refresh_gsi = &alt_gsi;
    }

  if (access->grp_to_be_replaced)
    {
      tree repl = get_access_replacement (access);
      /* If we replace a non-register typed access simply use the original
         access expression to extract the scalar component afterwards.
	 This happens if scalarizing a function return value or parameter
	 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
	 gcc.c-torture/compile/20011217-1.c.

         We also want to use this when accessing a complex or vector which can
         be accessed as a different type too, potentially creating a need for
         type conversion (see PR42196) and when scalarized unions are involved
         in assembler statements (see PR42398).  */
      if (!bfr && !useless_type_conversion_p (type, access->type))
	{
	  tree ref;

	  ref = build_ref_for_model (loc, orig_expr, 0, access, stmt_gsi,
				     false);

	  if (partial_cplx_access)
	    {
	    /* VIEW_CONVERT_EXPRs in partial complex access are always fine in
	       the case of a write because in such case the replacement cannot
	       be a gimple register.  In the case of a load, we have to
	       differentiate in between a register an non-register
	       replacement.  */
	      tree t = build1 (VIEW_CONVERT_EXPR, type, repl);
	      gcc_checking_assert (!write || access->grp_partial_lhs);
	      if (!access->grp_partial_lhs)
		{
		  tree tmp = make_ssa_name (type);
		  gassign *stmt = gimple_build_assign (tmp, t);
		  /* This is always a read. */
		  gsi_insert_before (stmt_gsi, stmt, GSI_SAME_STMT);
		  t = tmp;
		}
	      *expr = t;
	    }
	  else if (write)
	    {
	      gassign *stmt;

	      if (access->grp_partial_lhs)
		ref = force_gimple_operand_gsi (refresh_gsi, ref, true,
						NULL_TREE, false, GSI_NEW_STMT);
	      stmt = gimple_build_assign (repl, ref);
	      gimple_set_location (stmt, loc);
	      gsi_insert_after (refresh_gsi, stmt, GSI_NEW_STMT);
	    }
	  else
	    {
	      gassign *stmt;

	      if (access->grp_partial_lhs)
		repl = force_gimple_operand_gsi (stmt_gsi, repl, true,
						 NULL_TREE, true,
						 GSI_SAME_STMT);
	      stmt = gimple_build_assign (ref, repl);
	      gimple_set_location (stmt, loc);
	      gsi_insert_before (stmt_gsi, stmt, GSI_SAME_STMT);
	    }
	}
      else
	{
	  /* If we are going to replace a scalar field in a structure with
	     reverse storage order by a stand-alone scalar, we are going to
	     effectively byte-swap the scalar and we also need to byte-swap
	     the portion of it represented by the bit-field.  */
	  if (bfr && REF_REVERSE_STORAGE_ORDER (bfr))
	    {
	      REF_REVERSE_STORAGE_ORDER (bfr) = 0;
	      TREE_OPERAND (bfr, 2)
		= size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (repl)),
			      size_binop (PLUS_EXPR, TREE_OPERAND (bfr, 1),
						     TREE_OPERAND (bfr, 2)));
	    }

	  *expr = repl;
	}

      sra_stats.exprs++;
    }
  else if (write && access->grp_to_be_debug_replaced)
    {
      gdebug *ds = gimple_build_debug_bind (get_access_replacement (access),
					    NULL_TREE,
					    gsi_stmt (*stmt_gsi));
      gsi_insert_after (stmt_gsi, ds, GSI_NEW_STMT);
    }

  if (access->first_child && !TREE_READONLY (access->base))
    {
      HOST_WIDE_INT start_offset, chunk_size;
      if (bfr
	  && tree_fits_uhwi_p (TREE_OPERAND (bfr, 1))
	  && tree_fits_uhwi_p (TREE_OPERAND (bfr, 2)))
	{
	  chunk_size = tree_to_uhwi (TREE_OPERAND (bfr, 1));
	  start_offset = access->offset
	    + tree_to_uhwi (TREE_OPERAND (bfr, 2));
	}
      else
	start_offset = chunk_size = 0;

      generate_subtree_copies (access->first_child, orig_expr, access->offset,
			       start_offset, chunk_size,
			       write ? refresh_gsi : stmt_gsi,
			       write, write, loc);
    }
  return true;
}

/* If EXPR, which must be a call argument, is an ADDR_EXPR, generate writes and
   reads from its base before and after the call statement given in CALL_GSI
   and return true if any copying took place.  Otherwise call sra_modify_expr
   on EXPR and return its value.  FLAGS is what the gimple_call_arg_flags
   return for the given parameter.  */

static bool
sra_modify_call_arg (tree *expr, gimple_stmt_iterator *call_gsi,
		     gimple_stmt_iterator *refresh_gsi, int flags)
{
  if (TREE_CODE (*expr) != ADDR_EXPR)
    return sra_modify_expr (expr, false, call_gsi, refresh_gsi);

  if (flags & EAF_UNUSED)
    return false;

  tree base = get_base_address (TREE_OPERAND (*expr, 0));
  if (!DECL_P (base))
    return false;
  struct access *access = get_access_for_expr (base);
  if (!access)
    return false;

  gimple *stmt = gsi_stmt (*call_gsi);
  location_t loc = gimple_location (stmt);
  generate_subtree_copies (access, base, 0, 0, 0, call_gsi, false, false,
			   loc);

  if (flags & EAF_NO_DIRECT_CLOBBER)
    return true;

  if (!stmt_ends_bb_p (stmt))
    generate_subtree_copies (access, base, 0, 0, 0, refresh_gsi, true,
			     true, loc);
  else
    {
      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, gsi_bb (*call_gsi)->succs)
	{
	  gimple_stmt_iterator alt_gsi = gsi_start_edge (e);
	  generate_subtree_copies (access, base, 0, 0, 0, &alt_gsi, true,
				   true, loc);
	}
    }
  return true;
}

/* Where scalar replacements of the RHS have been written to when a replacement
   of a LHS of an assigments cannot be direclty loaded from a replacement of
   the RHS. */
enum unscalarized_data_handling { SRA_UDH_NONE,  /* Nothing done so far. */
				  SRA_UDH_RIGHT, /* Data flushed to the RHS. */
				  SRA_UDH_LEFT }; /* Data flushed to the LHS. */

struct subreplacement_assignment_data
{
  /* Offset of the access representing the lhs of the assignment.  */
  HOST_WIDE_INT left_offset;

  /* LHS and RHS of the original assignment.  */
  tree assignment_lhs, assignment_rhs;

  /* Access representing the rhs of the whole assignment.  */
  struct access *top_racc;

  /* Stmt iterator used for statement insertions after the original assignment.
   It points to the main GSI used to traverse a BB during function body
   modification.  */
  gimple_stmt_iterator *new_gsi;

  /* Stmt iterator used for statement insertions before the original
   assignment.  Keeps on pointing to the original statement.  */
  gimple_stmt_iterator old_gsi;

  /* Location of the assignment.   */
  location_t loc;

  /* Keeps the information whether we have needed to refresh replacements of
   the LHS and from which side of the assignments this takes place.  */
  enum unscalarized_data_handling refreshed;
};

/* Store all replacements in the access tree rooted in TOP_RACC either to their
   base aggregate if there are unscalarized data or directly to LHS of the
   statement that is pointed to by GSI otherwise.  */

static void
handle_unscalarized_data_in_subtree (struct subreplacement_assignment_data *sad)
{
  tree src;
  /* If the RHS is a load from a constant, we do not need to (and must not)
     flush replacements to it and can use it directly as if we did.  */
  if (TREE_READONLY (sad->top_racc->base))
    {
      sad->refreshed = SRA_UDH_RIGHT;
      return;
    }
  if (sad->top_racc->grp_unscalarized_data)
    {
      src = sad->assignment_rhs;
      sad->refreshed = SRA_UDH_RIGHT;
    }
  else
    {
      src = sad->assignment_lhs;
      sad->refreshed = SRA_UDH_LEFT;
    }
  generate_subtree_copies (sad->top_racc->first_child, src,
			   sad->top_racc->offset, 0, 0,
			   &sad->old_gsi, false, false, sad->loc);
}

/* Try to generate statements to load all sub-replacements in an access subtree
   formed by children of LACC from scalar replacements in the SAD->top_racc
   subtree.  If that is not possible, refresh the SAD->top_racc base aggregate
   and load the accesses from it.  */

static void
load_assign_lhs_subreplacements (struct access *lacc,
				 struct subreplacement_assignment_data *sad)
{
  for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
    {
      HOST_WIDE_INT offset;
      offset = lacc->offset - sad->left_offset + sad->top_racc->offset;

      if (lacc->grp_to_be_replaced)
	{
	  struct access *racc;
	  gassign *stmt;
	  tree rhs;

	  racc = find_access_in_subtree (sad->top_racc, offset, lacc->size);
	  if (racc && racc->grp_to_be_replaced)
	    {
	      rhs = get_access_replacement (racc);
	      bool vce = false;
	      if (!useless_type_conversion_p (lacc->type, racc->type))
		{
		  rhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
					 lacc->type, rhs);
		  vce = true;
		}

	      if (lacc->grp_partial_lhs && (vce || racc->grp_partial_lhs))
		rhs = force_gimple_operand_gsi (&sad->old_gsi, rhs, true,
						NULL_TREE, true, GSI_SAME_STMT);
	    }
	  else
	    {
	      /* No suitable access on the right hand side, need to load from
		 the aggregate.  See if we have to update it first... */
	      if (sad->refreshed == SRA_UDH_NONE)
		handle_unscalarized_data_in_subtree (sad);

	      if (sad->refreshed == SRA_UDH_LEFT)
		rhs = build_ref_for_model (sad->loc, sad->assignment_lhs,
					   lacc->offset - sad->left_offset,
					   lacc, sad->new_gsi, true);
	      else
		rhs = build_ref_for_model (sad->loc, sad->assignment_rhs,
					   lacc->offset - sad->left_offset,
					   lacc, sad->new_gsi, true);
	      if (lacc->grp_partial_lhs)
		rhs = force_gimple_operand_gsi (sad->new_gsi,
						rhs, true, NULL_TREE,
						false, GSI_NEW_STMT);
	    }

	  stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
	  gsi_insert_after (sad->new_gsi, stmt, GSI_NEW_STMT);
	  gimple_set_location (stmt, sad->loc);
	  update_stmt (stmt);
	  sra_stats.subreplacements++;
	}
      else
	{
	  if (sad->refreshed == SRA_UDH_NONE
	      && lacc->grp_read && !lacc->grp_covered)
	    handle_unscalarized_data_in_subtree (sad);

	  if (lacc && lacc->grp_to_be_debug_replaced)
	    {
	      gdebug *ds;
	      tree drhs;
	      struct access *racc = find_access_in_subtree (sad->top_racc,
							    offset,
							    lacc->size);

	      if (racc && racc->grp_to_be_replaced)
		{
		  if (racc->grp_write || constant_decl_p (racc->base))
		    drhs = get_access_replacement (racc);
		  else
		    drhs = NULL;
		}
	      else if (sad->refreshed == SRA_UDH_LEFT)
		drhs = build_debug_ref_for_model (sad->loc, lacc->base,
						  lacc->offset, lacc);
	      else if (sad->refreshed == SRA_UDH_RIGHT)
		drhs = build_debug_ref_for_model (sad->loc, sad->top_racc->base,
						  offset, lacc);
	      else
		drhs = NULL_TREE;
	      if (drhs
		  && !useless_type_conversion_p (lacc->type, TREE_TYPE (drhs)))
		drhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
					lacc->type, drhs);
	      ds = gimple_build_debug_bind (get_access_replacement (lacc),
					    drhs, gsi_stmt (sad->old_gsi));
	      gsi_insert_after (sad->new_gsi, ds, GSI_NEW_STMT);
	    }
	}

      if (lacc->first_child)
	load_assign_lhs_subreplacements (lacc, sad);
    }
}

/* Result code for SRA assignment modification.  */
enum assignment_mod_result { SRA_AM_NONE,       /* nothing done for the stmt */
			     SRA_AM_MODIFIED,  /* stmt changed but not
						  removed */
			     SRA_AM_REMOVED };  /* stmt eliminated */

/* Modify assignments with a CONSTRUCTOR on their RHS.  STMT contains a pointer
   to the assignment and GSI is the statement iterator pointing at it.  Returns
   the same values as sra_modify_assign.  */

static enum assignment_mod_result
sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
{
  tree lhs = gimple_assign_lhs (stmt);
  struct access *acc = get_access_for_expr (lhs);
  if (!acc)
    return SRA_AM_NONE;
  location_t loc = gimple_location (stmt);

  if (gimple_clobber_p (stmt))
    {
      /* Clobber the replacement variable.  */
      clobber_subtree (acc, gsi, !acc->grp_covered, loc);
      /* Remove clobbers of fully scalarized variables, they are dead.  */
      if (acc->grp_covered)
	{
	  unlink_stmt_vdef (stmt);
	  gsi_remove (gsi, true);
	  release_defs (stmt);
	  return SRA_AM_REMOVED;
	}
      else
	return SRA_AM_MODIFIED;
    }

  if (CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt)) > 0)
    {
      /* I have never seen this code path trigger but if it can happen the
	 following should handle it gracefully.  */
      if (access_has_children_p (acc))
	generate_subtree_copies (acc->first_child, lhs, acc->offset, 0, 0, gsi,
				 true, true, loc);
      return SRA_AM_MODIFIED;
    }

  if (acc->grp_covered)
    {
      init_subtree_with_zero (acc, gsi, false, loc);
      unlink_stmt_vdef (stmt);
      gsi_remove (gsi, true);
      release_defs (stmt);
      return SRA_AM_REMOVED;
    }
  else
    {
      init_subtree_with_zero (acc, gsi, true, loc);
      return SRA_AM_MODIFIED;
    }
}

/* Create and return a new suitable default definition SSA_NAME for RACC which
   is an access describing an uninitialized part of an aggregate that is being
   loaded.  REG_TREE is used instead of the actual RACC type if that is not of
   a gimple register type.  */

static tree
get_repl_default_def_ssa_name (struct access *racc, tree reg_type)
{
  gcc_checking_assert (!racc->grp_to_be_replaced
		       && !racc->grp_to_be_debug_replaced);
  if (!racc->replacement_decl)
    racc->replacement_decl = create_access_replacement (racc, reg_type);
  return get_or_create_ssa_default_def (cfun, racc->replacement_decl);
}


/* Generate statements to call .DEFERRED_INIT to initialize scalar replacements
   of accesses within a subtree ACCESS; all its children, siblings and their
   children are to be processed.
   GSI is a statement iterator used to place the new statements.  */
static void
generate_subtree_deferred_init (struct access *access,
				tree init_type,
				tree decl_name,
				gimple_stmt_iterator *gsi,
				location_t loc)
{
  do
    {
      if (access->grp_to_be_replaced)
	{
	  tree repl = get_access_replacement (access);
	  gimple *call
	    = gimple_build_call_internal (IFN_DEFERRED_INIT, 3,
					  TYPE_SIZE_UNIT (TREE_TYPE (repl)),
					  init_type, decl_name);
	  gimple_call_set_lhs (call, repl);
	  gsi_insert_before (gsi, call, GSI_SAME_STMT);
	  update_stmt (call);
	  gimple_set_location (call, loc);
	  sra_stats.subtree_deferred_init++;
	}
      if (access->first_child)
	generate_subtree_deferred_init (access->first_child, init_type,
					decl_name, gsi, loc);

      access = access ->next_sibling;
    }
  while (access);
}

/* For a call to .DEFERRED_INIT:
   var = .DEFERRED_INIT (size_of_var, init_type, name_of_var);
   examine the LHS variable VAR and replace it with a scalar replacement if
   there is one, also replace the RHS call to a call to .DEFERRED_INIT of
   the corresponding scalar relacement variable.  Examine the subtree and
   do the scalar replacements in the subtree too.  STMT is the call, GSI is
   the statment iterator to place newly created statement.  */

static enum assignment_mod_result
sra_modify_deferred_init (gimple *stmt, gimple_stmt_iterator *gsi)
{
  tree lhs = gimple_call_lhs (stmt);
  tree init_type = gimple_call_arg (stmt, 1);
  tree decl_name = gimple_call_arg (stmt, 2);

  struct access *lhs_access = get_access_for_expr (lhs);
  if (!lhs_access)
    return SRA_AM_NONE;

  location_t loc = gimple_location (stmt);

  if (lhs_access->grp_to_be_replaced)
    {
      tree lhs_repl = get_access_replacement (lhs_access);
      gimple_call_set_lhs (stmt, lhs_repl);
      tree arg0_repl = TYPE_SIZE_UNIT (TREE_TYPE (lhs_repl));
      gimple_call_set_arg (stmt, 0, arg0_repl);
      sra_stats.deferred_init++;
      gcc_assert (!lhs_access->first_child);
      return SRA_AM_MODIFIED;
    }

  if (lhs_access->first_child)
    generate_subtree_deferred_init (lhs_access->first_child,
				    init_type, decl_name, gsi, loc);
  if (lhs_access->grp_covered)
    {
      unlink_stmt_vdef (stmt);
      gsi_remove (gsi, true);
      release_defs (stmt);
      return SRA_AM_REMOVED;
    }

  return SRA_AM_MODIFIED;
}

/* Examine both sides of the assignment statement pointed to by STMT, replace
   them with a scalare replacement if there is one and generate copying of
   replacements if scalarized aggregates have been used in the assignment.  GSI
   is used to hold generated statements for type conversions and subtree
   copying.  */

static enum assignment_mod_result
sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
{
  struct access *lacc, *racc;
  tree lhs, rhs;
  bool modify_this_stmt = false;
  bool force_gimple_rhs = false;
  location_t loc;
  gimple_stmt_iterator orig_gsi = *gsi;

  if (!gimple_assign_single_p (stmt))
    return SRA_AM_NONE;
  lhs = gimple_assign_lhs (stmt);
  rhs = gimple_assign_rhs1 (stmt);

  if (TREE_CODE (rhs) == CONSTRUCTOR)
    return sra_modify_constructor_assign (stmt, gsi);

  if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
      || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
      || (TREE_CODE (rhs) == BIT_FIELD_REF && !sra_handled_bf_read_p (rhs))
      || TREE_CODE (lhs) == BIT_FIELD_REF)
    {
      modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (stmt),
					  false, gsi, gsi);
      modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (stmt),
					   true, gsi, gsi);
      return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
    }

  lacc = get_access_for_expr (lhs);
  racc = get_access_for_expr (rhs);
  if (!lacc && !racc)
    return SRA_AM_NONE;
  /* Avoid modifying initializations of constant-pool replacements.  */
  if (racc && (racc->replacement_decl == lhs))
    return SRA_AM_NONE;

  loc = gimple_location (stmt);
  if (lacc && lacc->grp_to_be_replaced)
    {
      lhs = get_access_replacement (lacc);
      gimple_assign_set_lhs (stmt, lhs);
      modify_this_stmt = true;
      if (lacc->grp_partial_lhs)
	force_gimple_rhs = true;
      sra_stats.exprs++;
    }

  if (racc && racc->grp_to_be_replaced)
    {
      rhs = get_access_replacement (racc);
      modify_this_stmt = true;
      if (racc->grp_partial_lhs)
	force_gimple_rhs = true;
      sra_stats.exprs++;
    }
  else if (racc
	   && !racc->grp_unscalarized_data
	   && !racc->grp_unscalarizable_region
	   && TREE_CODE (lhs) == SSA_NAME
	   && !access_has_replacements_p (racc))
    {
      rhs = get_repl_default_def_ssa_name (racc, TREE_TYPE (lhs));
      modify_this_stmt = true;
      sra_stats.exprs++;
    }

  if (modify_this_stmt
      && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
    {
      /* If we can avoid creating a VIEW_CONVERT_EXPR, then do so.
	 ??? This should move to fold_stmt which we simply should
	 call after building a VIEW_CONVERT_EXPR here.  */
      if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
	  && TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (lhs)) == racc->reverse
	  && !contains_bitfld_component_ref_p (lhs))
	{
	  lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
	  gimple_assign_set_lhs (stmt, lhs);
	}
      else if (lacc
	       && AGGREGATE_TYPE_P (TREE_TYPE (rhs))
	       && TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (rhs)) == lacc->reverse
	       && !contains_vce_or_bfcref_p (rhs))
	rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);

      if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
	{
	  rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
	  if (is_gimple_reg_type (TREE_TYPE (lhs))
	      && TREE_CODE (lhs) != SSA_NAME)
	    force_gimple_rhs = true;
	}
    }

  if (lacc && lacc->grp_to_be_debug_replaced)
    {
      tree dlhs = get_access_replacement (lacc);
      tree drhs = unshare_expr (rhs);
      if (!useless_type_conversion_p (TREE_TYPE (dlhs), TREE_TYPE (drhs)))
	{
	  if (AGGREGATE_TYPE_P (TREE_TYPE (drhs))
	      && !contains_vce_or_bfcref_p (drhs))
	    drhs = build_debug_ref_for_model (loc, drhs, 0, lacc);
	  if (drhs
	      && !useless_type_conversion_p (TREE_TYPE (dlhs),
					     TREE_TYPE (drhs)))
	    drhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
				    TREE_TYPE (dlhs), drhs);
	}
      gdebug *ds = gimple_build_debug_bind (dlhs, drhs, stmt);
      gsi_insert_before (gsi, ds, GSI_SAME_STMT);
    }

  /* From this point on, the function deals with assignments in between
     aggregates when at least one has scalar reductions of some of its
     components.  There are three possible scenarios: Both the LHS and RHS have
     to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.

     In the first case, we would like to load the LHS components from RHS
     components whenever possible.  If that is not possible, we would like to
     read it directly from the RHS (after updating it by storing in it its own
     components).  If there are some necessary unscalarized data in the LHS,
     those will be loaded by the original assignment too.  If neither of these
     cases happen, the original statement can be removed.  Most of this is done
     by load_assign_lhs_subreplacements.

     In the second case, we would like to store all RHS scalarized components
     directly into LHS and if they cover the aggregate completely, remove the
     statement too.  In the third case, we want the LHS components to be loaded
     directly from the RHS (DSE will remove the original statement if it
     becomes redundant).

     This is a bit complex but manageable when types match and when unions do
     not cause confusion in a way that we cannot really load a component of LHS
     from the RHS or vice versa (the access representing this level can have
     subaccesses that are accessible only through a different union field at a
     higher level - different from the one used in the examined expression).
     Unions are fun.

     Therefore, I specially handle a fourth case, happening when there is a
     specific type cast or it is impossible to locate a scalarized subaccess on
     the other side of the expression.  If that happens, I simply "refresh" the
     RHS by storing in it is scalarized components leave the original statement
     there to do the copying and then load the scalar replacements of the LHS.
     This is what the first branch does.  */

  if (modify_this_stmt
      || gimple_has_volatile_ops (stmt)
      || contains_vce_or_bfcref_p (rhs)
      || contains_vce_or_bfcref_p (lhs)
      || stmt_ends_bb_p (stmt))
    {
      /* No need to copy into a constant, it comes pre-initialized.  */
      if (access_has_children_p (racc) && !TREE_READONLY (racc->base))
	generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
				 gsi, false, false, loc);
      if (access_has_children_p (lacc))
	{
	  gimple_stmt_iterator alt_gsi = gsi_none ();
	  if (stmt_ends_bb_p (stmt))
	    {
	      alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
	      gsi = &alt_gsi;
	    }
	  generate_subtree_copies (lacc->first_child, lhs, lacc->offset, 0, 0,
				   gsi, true, true, loc);
	}
      sra_stats.separate_lhs_rhs_handling++;

      /* This gimplification must be done after generate_subtree_copies,
	 lest we insert the subtree copies in the middle of the gimplified
	 sequence.  */
      if (force_gimple_rhs)
	rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
					true, GSI_SAME_STMT);
      if (gimple_assign_rhs1 (stmt) != rhs)
	{
	  modify_this_stmt = true;
	  gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
	  gcc_assert (stmt == gsi_stmt (orig_gsi));
	}

      return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
    }
  else
    {
      if (access_has_children_p (lacc)
	  && access_has_children_p (racc)
	  /* When an access represents an unscalarizable region, it usually
	     represents accesses with variable offset and thus must not be used
	     to generate new memory accesses.  */
	  && !lacc->grp_unscalarizable_region
	  && !racc->grp_unscalarizable_region)
	{
	  struct subreplacement_assignment_data sad;

	  sad.left_offset = lacc->offset;
	  sad.assignment_lhs = lhs;
	  sad.assignment_rhs = rhs;
	  sad.top_racc = racc;
	  sad.old_gsi = *gsi;
	  sad.new_gsi = gsi;
	  sad.loc = gimple_location (stmt);
	  sad.refreshed = SRA_UDH_NONE;

	  if (lacc->grp_read && !lacc->grp_covered)
	    handle_unscalarized_data_in_subtree (&sad);

	  load_assign_lhs_subreplacements (lacc, &sad);
	  if (sad.refreshed != SRA_UDH_RIGHT)
	    {
	      gsi_next (gsi);
	      unlink_stmt_vdef (stmt);
	      gsi_remove (&sad.old_gsi, true);
	      release_defs (stmt);
	      sra_stats.deleted++;
	      return SRA_AM_REMOVED;
	    }
	}
      else
	{
	  if (access_has_children_p (racc)
	      && !racc->grp_unscalarized_data
	      && TREE_CODE (lhs) != SSA_NAME)
	    {
	      if (dump_file)
		{
		  fprintf (dump_file, "Removing load: ");
		  print_gimple_stmt (dump_file, stmt, 0);
		}
	      generate_subtree_copies (racc->first_child, lhs,
				       racc->offset, 0, 0, gsi,
				       false, false, loc);
	      gcc_assert (stmt == gsi_stmt (*gsi));
	      unlink_stmt_vdef (stmt);
	      gsi_remove (gsi, true);
	      release_defs (stmt);
	      sra_stats.deleted++;
	      return SRA_AM_REMOVED;
	    }
	  /* Restore the aggregate RHS from its components so the
	     prevailing aggregate copy does the right thing.  */
	  if (access_has_children_p (racc) && !TREE_READONLY (racc->base))
	    generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
				     gsi, false, false, loc);
	  /* Re-load the components of the aggregate copy destination.
	     But use the RHS aggregate to load from to expose more
	     optimization opportunities.  */
	  if (access_has_children_p (lacc))
	    {
	      generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
				       0, 0, gsi, true, true, loc);
	      if (lacc->grp_covered)
		{
		  unlink_stmt_vdef (stmt);
		  gsi_remove (& orig_gsi, true);
		  release_defs (stmt);
		  sra_stats.deleted++;
		  return SRA_AM_REMOVED;
		}
	    }
	}

      return SRA_AM_NONE;
    }
}

/* Set any scalar replacements of values in the constant pool to the initial
   value of the constant.  (Constant-pool decls like *.LC0 have effectively
   been initialized before the program starts, we must do the same for their
   replacements.)  Thus, we output statements like 'SR.1 = *.LC0[0];' into
   the function's entry block.  */

static void
initialize_constant_pool_replacements (void)
{
  gimple_seq seq = NULL;
  gimple_stmt_iterator gsi = gsi_start (seq);
  bitmap_iterator bi;
  unsigned i;

  EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
    {
      tree var = candidate (i);
      if (!constant_decl_p (var))
	continue;

      struct access *access = get_first_repr_for_decl (var);

      while (access)
	{
	  if (access->replacement_decl)
	    {
	      gassign *stmt
		= gimple_build_assign (get_access_replacement (access),
				       unshare_expr (access->expr));
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "Generating constant initializer: ");
		  print_gimple_stmt (dump_file, stmt, 0);
		  fprintf (dump_file, "\n");
		}
	      gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
	      update_stmt (stmt);
	    }

	  if (access->first_child)
	    access = access->first_child;
	  else if (access->next_sibling)
	    access = access->next_sibling;
	  else
	    {
	      while (access->parent && !access->next_sibling)
		access = access->parent;
	      if (access->next_sibling)
		access = access->next_sibling;
	      else
		access = access->next_grp;
	    }
	}
    }

  seq = gsi_seq (gsi);
  if (seq)
    gsi_insert_seq_on_edge_immediate (
      single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), seq);
}

/* Traverse the function body and all modifications as decided in
   analyze_all_variable_accesses.  Return true iff the CFG has been
   changed.  */

static bool
sra_modify_function_body (void)
{
  bool cfg_changed = false;
  basic_block bb;

  initialize_constant_pool_replacements ();

  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator gsi = gsi_start_bb (bb);
      while (!gsi_end_p (gsi))
	{
	  gimple *stmt = gsi_stmt (gsi);
	  enum assignment_mod_result assign_result;
	  bool modified = false, deleted = false;
	  tree *t;
	  unsigned i;

	  switch (gimple_code (stmt))
	    {
	    case GIMPLE_RETURN:
	      t = gimple_return_retval_ptr (as_a <greturn *> (stmt));
	      if (*t != NULL_TREE)
		modified |= sra_modify_expr (t, false, &gsi, &gsi);
	      break;

	    case GIMPLE_ASSIGN:
	      assign_result = sra_modify_assign (stmt, &gsi);
	      modified |= assign_result == SRA_AM_MODIFIED;
	      deleted = assign_result == SRA_AM_REMOVED;
	      break;

	    case GIMPLE_CALL:
	      /* Handle calls to .DEFERRED_INIT specially.  */
	      if (gimple_call_internal_p (stmt, IFN_DEFERRED_INIT))
		{
		  assign_result = sra_modify_deferred_init (stmt, &gsi);
		  modified |= assign_result == SRA_AM_MODIFIED;
		  deleted = assign_result == SRA_AM_REMOVED;
		}
	      else
		{
		  gcall *call = as_a <gcall *> (stmt);
		  gimple_stmt_iterator call_gsi = gsi;

		  /* Operands must be processed before the lhs.  */
		  for (i = 0; i < gimple_call_num_args (call); i++)
		    {
		      int flags = gimple_call_arg_flags (call, i);
		      t = gimple_call_arg_ptr (call, i);
		      modified |= sra_modify_call_arg (t, &call_gsi, &gsi, flags);
		    }
		  if (gimple_call_chain (call))
		    {
		      t = gimple_call_chain_ptr (call);
		      int flags = gimple_call_static_chain_flags (call);
		      modified |= sra_modify_call_arg (t, &call_gsi, &gsi,
						       flags);
		    }
		  if (gimple_call_lhs (call))
		    {
		      t = gimple_call_lhs_ptr (call);
		      modified |= sra_modify_expr (t, true, &call_gsi, &gsi);
		    }
		}
	      break;

	    case GIMPLE_ASM:
	      {
		gimple_stmt_iterator stmt_gsi = gsi;
		gasm *asm_stmt = as_a <gasm *> (stmt);
		for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
		  {
		    t = &TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
		    modified |= sra_modify_expr (t, false, &stmt_gsi, &gsi);
		  }
		for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
		  {
		    t = &TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
		    modified |= sra_modify_expr (t, true, &stmt_gsi, &gsi);
		  }
	      }
	      break;

	    default:
	      break;
	    }

	  if (modified)
	    {
	      update_stmt (stmt);
	      if (maybe_clean_eh_stmt (stmt)
		  && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
		cfg_changed = true;
	    }
	  if (!deleted)
	    gsi_next (&gsi);
	}
    }

  gsi_commit_edge_inserts ();
  return cfg_changed;
}

/* Generate statements initializing scalar replacements of parts of function
   parameters.  */

static void
initialize_parameter_reductions (void)
{
  gimple_stmt_iterator gsi;
  gimple_seq seq = NULL;
  tree parm;

  gsi = gsi_start (seq);
  for (parm = DECL_ARGUMENTS (current_function_decl);
       parm;
       parm = DECL_CHAIN (parm))
    {
      vec<access_p> *access_vec;
      struct access *access;

      if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
	continue;
      access_vec = get_base_access_vector (parm);
      if (!access_vec)
	continue;

      for (access = (*access_vec)[0];
	   access;
	   access = access->next_grp)
	generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
				 EXPR_LOCATION (parm));
    }

  seq = gsi_seq (gsi);
  if (seq)
    gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), seq);
}

/* The "main" function of intraprocedural SRA passes.  Runs the analysis and if
   it reveals there are components of some aggregates to be scalarized, it runs
   the required transformations.  */
static unsigned int
perform_intra_sra (void)
{
  int ret = 0;
  sra_initialize ();

  if (!find_var_candidates ())
    goto out;

  if (!scan_function ())
    goto out;

  if (!analyze_all_variable_accesses ())
    goto out;

  if (sra_modify_function_body ())
    ret = TODO_update_ssa | TODO_cleanup_cfg;
  else
    ret = TODO_update_ssa;
  initialize_parameter_reductions ();

  statistics_counter_event (cfun, "Scalar replacements created",
			    sra_stats.replacements);
  statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
  statistics_counter_event (cfun, "Subtree copy stmts",
			    sra_stats.subtree_copies);
  statistics_counter_event (cfun, "Subreplacement stmts",
			    sra_stats.subreplacements);
  statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
  statistics_counter_event (cfun, "Separate LHS and RHS handling",
			    sra_stats.separate_lhs_rhs_handling);

 out:
  sra_deinitialize ();
  return ret;
}

/* Perform early intraprocedural SRA.  */
static unsigned int
early_intra_sra (void)
{
  sra_mode = SRA_MODE_EARLY_INTRA;
  return perform_intra_sra ();
}

/* Perform "late" intraprocedural SRA.  */
static unsigned int
late_intra_sra (void)
{
  sra_mode = SRA_MODE_INTRA;
  return perform_intra_sra ();
}


static bool
gate_intra_sra (void)
{
  return flag_tree_sra != 0 && dbg_cnt (tree_sra);
}


namespace {

const pass_data pass_data_sra_early =
{
  GIMPLE_PASS, /* type */
  "esra", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_SRA, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_update_ssa, /* todo_flags_finish */
};

class pass_sra_early : public gimple_opt_pass
{
public:
  pass_sra_early (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_sra_early, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *) final override { return gate_intra_sra (); }
  unsigned int execute (function *) final override
  {
    return early_intra_sra ();
  }

}; // class pass_sra_early

} // anon namespace

gimple_opt_pass *
make_pass_sra_early (gcc::context *ctxt)
{
  return new pass_sra_early (ctxt);
}

namespace {

const pass_data pass_data_sra =
{
  GIMPLE_PASS, /* type */
  "sra", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_SRA, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  TODO_update_address_taken, /* todo_flags_start */
  TODO_update_ssa, /* todo_flags_finish */
};

class pass_sra : public gimple_opt_pass
{
public:
  pass_sra (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_sra, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *) final override { return gate_intra_sra (); }
  unsigned int execute (function *) final override { return late_intra_sra (); }

}; // class pass_sra

} // anon namespace

gimple_opt_pass *
make_pass_sra (gcc::context *ctxt)
{
  return new pass_sra (ctxt);
}


/* If type T cannot be totally scalarized, return false.  Otherwise return true
   and push to the vector within PC offsets and lengths of all padding in the
   type as total scalarization would encounter it.  */

static bool
check_ts_and_push_padding_to_vec (tree type, sra_padding_collecting *pc)
{
  if (!totally_scalarizable_type_p (type, true /* optimistic value */,
				    0, pc))
    return false;

  pc->record_padding (tree_to_shwi (TYPE_SIZE (type)));
  return true;
}

/* Given two types in an assignment, return true either if any one cannot be
   totally scalarized or if they have padding (i.e. not copied bits)  */

bool
sra_total_scalarization_would_copy_same_data_p (tree t1, tree t2)
{
  sra_padding_collecting p1;
  if (!check_ts_and_push_padding_to_vec (t1, &p1))
    return true;

  sra_padding_collecting p2;
  if (!check_ts_and_push_padding_to_vec (t2, &p2))
    return true;

  unsigned l = p1.m_padding.length ();
  if (l != p2.m_padding.length ())
    return false;
  for (unsigned i = 0; i < l; i++)
    if (p1.m_padding[i].first != p2.m_padding[i].first
	|| p1.m_padding[i].second != p2.m_padding[i].second)
      return false;

  return true;
}