1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
|
/* Scalar evolution detector.
Copyright (C) 2003-2023 Free Software Foundation, Inc.
Contributed by Sebastian Pop <s.pop@laposte.net>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/*
Description:
This pass analyzes the evolution of scalar variables in loop
structures. The algorithm is based on the SSA representation,
and on the loop hierarchy tree. This algorithm is not based on
the notion of versions of a variable, as it was the case for the
previous implementations of the scalar evolution algorithm, but
it assumes that each defined name is unique.
The notation used in this file is called "chains of recurrences",
and has been proposed by Eugene Zima, Robert Van Engelen, and
others for describing induction variables in programs. For example
"b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
when entering in the loop_1 and has a step 2 in this loop, in other
words "for (b = 0; b < N; b+=2);". Note that the coefficients of
this chain of recurrence (or chrec [shrek]) can contain the name of
other variables, in which case they are called parametric chrecs.
For example, "b -> {a, +, 2}_1" means that the initial value of "b"
is the value of "a". In most of the cases these parametric chrecs
are fully instantiated before their use because symbolic names can
hide some difficult cases such as self-references described later
(see the Fibonacci example).
A short sketch of the algorithm is:
Given a scalar variable to be analyzed, follow the SSA edge to
its definition:
- When the definition is a GIMPLE_ASSIGN: if the right hand side
(RHS) of the definition cannot be statically analyzed, the answer
of the analyzer is: "don't know".
Otherwise, for all the variables that are not yet analyzed in the
RHS, try to determine their evolution, and finally try to
evaluate the operation of the RHS that gives the evolution
function of the analyzed variable.
- When the definition is a condition-phi-node: determine the
evolution function for all the branches of the phi node, and
finally merge these evolutions (see chrec_merge).
- When the definition is a loop-phi-node: determine its initial
condition, that is the SSA edge defined in an outer loop, and
keep it symbolic. Then determine the SSA edges that are defined
in the body of the loop. Follow the inner edges until ending on
another loop-phi-node of the same analyzed loop. If the reached
loop-phi-node is not the starting loop-phi-node, then we keep
this definition under a symbolic form. If the reached
loop-phi-node is the same as the starting one, then we compute a
symbolic stride on the return path. The result is then the
symbolic chrec {initial_condition, +, symbolic_stride}_loop.
Examples:
Example 1: Illustration of the basic algorithm.
| a = 3
| loop_1
| b = phi (a, c)
| c = b + 1
| if (c > 10) exit_loop
| endloop
Suppose that we want to know the number of iterations of the
loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
ask the scalar evolution analyzer two questions: what's the
scalar evolution (scev) of "c", and what's the scev of "10". For
"10" the answer is "10" since it is a scalar constant. For the
scalar variable "c", it follows the SSA edge to its definition,
"c = b + 1", and then asks again what's the scev of "b".
Following the SSA edge, we end on a loop-phi-node "b = phi (a,
c)", where the initial condition is "a", and the inner loop edge
is "c". The initial condition is kept under a symbolic form (it
may be the case that the copy constant propagation has done its
work and we end with the constant "3" as one of the edges of the
loop-phi-node). The update edge is followed to the end of the
loop, and until reaching again the starting loop-phi-node: b -> c
-> b. At this point we have drawn a path from "b" to "b" from
which we compute the stride in the loop: in this example it is
"+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
that the scev for "b" is known, it is possible to compute the
scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
determine the number of iterations in the loop_1, we have to
instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
more analysis the scev {4, +, 1}_1, or in other words, this is
the function "f (x) = x + 4", where x is the iteration count of
the loop_1. Now we have to solve the inequality "x + 4 > 10",
and take the smallest iteration number for which the loop is
exited: x = 7. This loop runs from x = 0 to x = 7, and in total
there are 8 iterations. In terms of loop normalization, we have
created a variable that is implicitly defined, "x" or just "_1",
and all the other analyzed scalars of the loop are defined in
function of this variable:
a -> 3
b -> {3, +, 1}_1
c -> {4, +, 1}_1
or in terms of a C program:
| a = 3
| for (x = 0; x <= 7; x++)
| {
| b = x + 3
| c = x + 4
| }
Example 2a: Illustration of the algorithm on nested loops.
| loop_1
| a = phi (1, b)
| c = a + 2
| loop_2 10 times
| b = phi (c, d)
| d = b + 3
| endloop
| endloop
For analyzing the scalar evolution of "a", the algorithm follows
the SSA edge into the loop's body: "a -> b". "b" is an inner
loop-phi-node, and its analysis as in Example 1, gives:
b -> {c, +, 3}_2
d -> {c + 3, +, 3}_2
Following the SSA edge for the initial condition, we end on "c = a
+ 2", and then on the starting loop-phi-node "a". From this point,
the loop stride is computed: back on "c = a + 2" we get a "+2" in
the loop_1, then on the loop-phi-node "b" we compute the overall
effect of the inner loop that is "b = c + 30", and we get a "+30"
in the loop_1. That means that the overall stride in loop_1 is
equal to "+32", and the result is:
a -> {1, +, 32}_1
c -> {3, +, 32}_1
Example 2b: Multivariate chains of recurrences.
| loop_1
| k = phi (0, k + 1)
| loop_2 4 times
| j = phi (0, j + 1)
| loop_3 4 times
| i = phi (0, i + 1)
| A[j + k] = ...
| endloop
| endloop
| endloop
Analyzing the access function of array A with
instantiate_parameters (loop_1, "j + k"), we obtain the
instantiation and the analysis of the scalar variables "j" and "k"
in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
{0, +, 1}_1. To obtain the evolution function in loop_3 and
instantiate the scalar variables up to loop_1, one has to use:
instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
The result of this call is {{0, +, 1}_1, +, 1}_2.
Example 3: Higher degree polynomials.
| loop_1
| a = phi (2, b)
| c = phi (5, d)
| b = a + 1
| d = c + a
| endloop
a -> {2, +, 1}_1
b -> {3, +, 1}_1
c -> {5, +, a}_1
d -> {5 + a, +, a}_1
instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
Example 4: Lucas, Fibonacci, or mixers in general.
| loop_1
| a = phi (1, b)
| c = phi (3, d)
| b = c
| d = c + a
| endloop
a -> (1, c)_1
c -> {3, +, a}_1
The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
following semantics: during the first iteration of the loop_1, the
variable contains the value 1, and then it contains the value "c".
Note that this syntax is close to the syntax of the loop-phi-node:
"a -> (1, c)_1" vs. "a = phi (1, c)".
The symbolic chrec representation contains all the semantics of the
original code. What is more difficult is to use this information.
Example 5: Flip-flops, or exchangers.
| loop_1
| a = phi (1, b)
| c = phi (3, d)
| b = c
| d = a
| endloop
a -> (1, c)_1
c -> (3, a)_1
Based on these symbolic chrecs, it is possible to refine this
information into the more precise PERIODIC_CHRECs:
a -> |1, 3|_1
c -> |3, 1|_1
This transformation is not yet implemented.
Further readings:
You can find a more detailed description of the algorithm in:
http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
this is a preliminary report and some of the details of the
algorithm have changed. I'm working on a research report that
updates the description of the algorithms to reflect the design
choices used in this implementation.
A set of slides show a high level overview of the algorithm and run
an example through the scalar evolution analyzer:
http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
The slides that I have presented at the GCC Summit'04 are available
at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "optabs-query.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-ssa.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-affine.h"
#include "tree-scalar-evolution.h"
#include "dumpfile.h"
#include "tree-ssa-propagate.h"
#include "gimple-fold.h"
#include "tree-into-ssa.h"
#include "builtins.h"
#include "case-cfn-macros.h"
static tree analyze_scalar_evolution_1 (class loop *, tree);
static tree analyze_scalar_evolution_for_address_of (class loop *loop,
tree var);
/* The cached information about an SSA name with version NAME_VERSION,
claiming that below basic block with index INSTANTIATED_BELOW, the
value of the SSA name can be expressed as CHREC. */
struct GTY((for_user)) scev_info_str {
unsigned int name_version;
int instantiated_below;
tree chrec;
};
/* Counters for the scev database. */
static unsigned nb_set_scev = 0;
static unsigned nb_get_scev = 0;
struct scev_info_hasher : ggc_ptr_hash<scev_info_str>
{
static hashval_t hash (scev_info_str *i);
static bool equal (const scev_info_str *a, const scev_info_str *b);
};
static GTY (()) hash_table<scev_info_hasher> *scalar_evolution_info;
/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
static inline struct scev_info_str *
new_scev_info_str (basic_block instantiated_below, tree var)
{
struct scev_info_str *res;
res = ggc_alloc<scev_info_str> ();
res->name_version = SSA_NAME_VERSION (var);
res->chrec = chrec_not_analyzed_yet;
res->instantiated_below = instantiated_below->index;
return res;
}
/* Computes a hash function for database element ELT. */
hashval_t
scev_info_hasher::hash (scev_info_str *elt)
{
return elt->name_version ^ elt->instantiated_below;
}
/* Compares database elements E1 and E2. */
bool
scev_info_hasher::equal (const scev_info_str *elt1, const scev_info_str *elt2)
{
return (elt1->name_version == elt2->name_version
&& elt1->instantiated_below == elt2->instantiated_below);
}
/* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
A first query on VAR returns chrec_not_analyzed_yet. */
static tree *
find_var_scev_info (basic_block instantiated_below, tree var)
{
struct scev_info_str *res;
struct scev_info_str tmp;
tmp.name_version = SSA_NAME_VERSION (var);
tmp.instantiated_below = instantiated_below->index;
scev_info_str **slot = scalar_evolution_info->find_slot (&tmp, INSERT);
if (!*slot)
*slot = new_scev_info_str (instantiated_below, var);
res = *slot;
return &res->chrec;
}
/* Hashtable helpers for a temporary hash-table used when
analyzing a scalar evolution, instantiating a CHREC or
resolving mixers. */
class instantiate_cache_type
{
public:
htab_t map;
vec<scev_info_str> entries;
instantiate_cache_type () : map (NULL), entries (vNULL) {}
~instantiate_cache_type ();
tree get (unsigned slot) { return entries[slot].chrec; }
void set (unsigned slot, tree chrec) { entries[slot].chrec = chrec; }
};
instantiate_cache_type::~instantiate_cache_type ()
{
if (map != NULL)
{
htab_delete (map);
entries.release ();
}
}
/* Cache to avoid infinite recursion when instantiating an SSA name.
Live during the outermost analyze_scalar_evolution, instantiate_scev
or resolve_mixers call. */
static instantiate_cache_type *global_cache;
/* Return true when PHI is a loop-phi-node. */
static bool
loop_phi_node_p (gimple *phi)
{
/* The implementation of this function is based on the following
property: "all the loop-phi-nodes of a loop are contained in the
loop's header basic block". */
return loop_containing_stmt (phi)->header == gimple_bb (phi);
}
/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
In general, in the case of multivariate evolutions we want to get
the evolution in different loops. LOOP specifies the level for
which to get the evolution.
Example:
| for (j = 0; j < 100; j++)
| {
| for (k = 0; k < 100; k++)
| {
| i = k + j; - Here the value of i is a function of j, k.
| }
| ... = i - Here the value of i is a function of j.
| }
| ... = i - Here the value of i is a scalar.
Example:
| i_0 = ...
| loop_1 10 times
| i_1 = phi (i_0, i_2)
| i_2 = i_1 + 2
| endloop
This loop has the same effect as:
LOOP_1 has the same effect as:
| i_1 = i_0 + 20
The overall effect of the loop, "i_0 + 20" in the previous example,
is obtained by passing in the parameters: LOOP = 1,
EVOLUTION_FN = {i_0, +, 2}_1.
*/
tree
compute_overall_effect_of_inner_loop (class loop *loop, tree evolution_fn)
{
bool val = false;
if (evolution_fn == chrec_dont_know)
return chrec_dont_know;
else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
{
class loop *inner_loop = get_chrec_loop (evolution_fn);
if (inner_loop == loop
|| flow_loop_nested_p (loop, inner_loop))
{
tree nb_iter = number_of_latch_executions (inner_loop);
if (nb_iter == chrec_dont_know)
return chrec_dont_know;
else
{
tree res;
/* evolution_fn is the evolution function in LOOP. Get
its value in the nb_iter-th iteration. */
res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
if (chrec_contains_symbols_defined_in_loop (res, loop->num))
res = instantiate_parameters (loop, res);
/* Continue the computation until ending on a parent of LOOP. */
return compute_overall_effect_of_inner_loop (loop, res);
}
}
else
return evolution_fn;
}
/* If the evolution function is an invariant, there is nothing to do. */
else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
return evolution_fn;
else
return chrec_dont_know;
}
/* Associate CHREC to SCALAR. */
static void
set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
{
tree *scalar_info;
if (TREE_CODE (scalar) != SSA_NAME)
return;
scalar_info = find_var_scev_info (instantiated_below, scalar);
if (dump_file)
{
if (dump_flags & TDF_SCEV)
{
fprintf (dump_file, "(set_scalar_evolution \n");
fprintf (dump_file, " instantiated_below = %d \n",
instantiated_below->index);
fprintf (dump_file, " (scalar = ");
print_generic_expr (dump_file, scalar);
fprintf (dump_file, ")\n (scalar_evolution = ");
print_generic_expr (dump_file, chrec);
fprintf (dump_file, "))\n");
}
if (dump_flags & TDF_STATS)
nb_set_scev++;
}
*scalar_info = chrec;
}
/* Retrieve the chrec associated to SCALAR instantiated below
INSTANTIATED_BELOW block. */
static tree
get_scalar_evolution (basic_block instantiated_below, tree scalar)
{
tree res;
if (dump_file)
{
if (dump_flags & TDF_SCEV)
{
fprintf (dump_file, "(get_scalar_evolution \n");
fprintf (dump_file, " (scalar = ");
print_generic_expr (dump_file, scalar);
fprintf (dump_file, ")\n");
}
if (dump_flags & TDF_STATS)
nb_get_scev++;
}
if (VECTOR_TYPE_P (TREE_TYPE (scalar))
|| TREE_CODE (TREE_TYPE (scalar)) == COMPLEX_TYPE)
/* For chrec_dont_know we keep the symbolic form. */
res = scalar;
else
switch (TREE_CODE (scalar))
{
case SSA_NAME:
if (SSA_NAME_IS_DEFAULT_DEF (scalar))
res = scalar;
else
res = *find_var_scev_info (instantiated_below, scalar);
break;
case REAL_CST:
case FIXED_CST:
case INTEGER_CST:
res = scalar;
break;
default:
res = chrec_not_analyzed_yet;
break;
}
if (dump_file && (dump_flags & TDF_SCEV))
{
fprintf (dump_file, " (scalar_evolution = ");
print_generic_expr (dump_file, res);
fprintf (dump_file, "))\n");
}
return res;
}
/* Depth first search algorithm. */
enum t_bool {
t_false,
t_true,
t_dont_know
};
class scev_dfs
{
public:
scev_dfs (class loop *loop_, gphi *phi_, tree init_cond_)
: loop (loop_), loop_phi_node (phi_), init_cond (init_cond_) {}
t_bool get_ev (tree *, tree);
private:
t_bool follow_ssa_edge_expr (gimple *, tree, tree *, int);
t_bool follow_ssa_edge_binary (gimple *at_stmt,
tree type, tree rhs0, enum tree_code code,
tree rhs1, tree *evolution_of_loop, int limit);
t_bool follow_ssa_edge_in_condition_phi_branch (int i,
gphi *condition_phi,
tree *evolution_of_branch,
tree init_cond, int limit);
t_bool follow_ssa_edge_in_condition_phi (gphi *condition_phi,
tree *evolution_of_loop, int limit);
t_bool follow_ssa_edge_inner_loop_phi (gphi *loop_phi_node,
tree *evolution_of_loop, int limit);
tree add_to_evolution (tree chrec_before, enum tree_code code,
tree to_add, gimple *at_stmt);
tree add_to_evolution_1 (tree chrec_before, tree to_add, gimple *at_stmt);
class loop *loop;
gphi *loop_phi_node;
tree init_cond;
};
t_bool
scev_dfs::get_ev (tree *ev_fn, tree arg)
{
*ev_fn = chrec_dont_know;
return follow_ssa_edge_expr (loop_phi_node, arg, ev_fn, 0);
}
/* Helper function for add_to_evolution. Returns the evolution
function for an assignment of the form "a = b + c", where "a" and
"b" are on the strongly connected component. CHREC_BEFORE is the
information that we already have collected up to this point.
TO_ADD is the evolution of "c".
When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
evolution the expression TO_ADD, otherwise construct an evolution
part for this loop. */
tree
scev_dfs::add_to_evolution_1 (tree chrec_before, tree to_add, gimple *at_stmt)
{
tree type, left, right;
unsigned loop_nb = loop->num;
class loop *chloop;
switch (TREE_CODE (chrec_before))
{
case POLYNOMIAL_CHREC:
chloop = get_chrec_loop (chrec_before);
if (chloop == loop
|| flow_loop_nested_p (chloop, loop))
{
unsigned var;
type = chrec_type (chrec_before);
/* When there is no evolution part in this loop, build it. */
if (chloop != loop)
{
var = loop_nb;
left = chrec_before;
right = SCALAR_FLOAT_TYPE_P (type)
? build_real (type, dconst0)
: build_int_cst (type, 0);
}
else
{
var = CHREC_VARIABLE (chrec_before);
left = CHREC_LEFT (chrec_before);
right = CHREC_RIGHT (chrec_before);
}
to_add = chrec_convert (type, to_add, at_stmt);
right = chrec_convert_rhs (type, right, at_stmt);
right = chrec_fold_plus (chrec_type (right), right, to_add);
return build_polynomial_chrec (var, left, right);
}
else
{
gcc_assert (flow_loop_nested_p (loop, chloop));
/* Search the evolution in LOOP_NB. */
left = add_to_evolution_1 (CHREC_LEFT (chrec_before),
to_add, at_stmt);
right = CHREC_RIGHT (chrec_before);
right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
left, right);
}
default:
/* These nodes do not depend on a loop. */
if (chrec_before == chrec_dont_know)
return chrec_dont_know;
left = chrec_before;
right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
/* When we add the first evolution we need to replace the symbolic
evolution we've put in when the DFS reached the loop PHI node
with the initial value. There's only a limited cases of
extra operations ontop of that symbol allowed, namely
sign-conversions we can look through. For other cases we leave
the symbolic initial condition which causes build_polynomial_chrec
to return chrec_dont_know. See PR42512, PR66375 and PR107176 for
cases we mishandled before. */
STRIP_NOPS (chrec_before);
if (chrec_before == gimple_phi_result (loop_phi_node))
left = fold_convert (TREE_TYPE (left), init_cond);
return build_polynomial_chrec (loop_nb, left, right);
}
}
/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
of LOOP_NB.
Description (provided for completeness, for those who read code in
a plane, and for my poor 62 bytes brain that would have forgotten
all this in the next two or three months):
The algorithm of translation of programs from the SSA representation
into the chrecs syntax is based on a pattern matching. After having
reconstructed the overall tree expression for a loop, there are only
two cases that can arise:
1. a = loop-phi (init, a + expr)
2. a = loop-phi (init, expr)
where EXPR is either a scalar constant with respect to the analyzed
loop (this is a degree 0 polynomial), or an expression containing
other loop-phi definitions (these are higher degree polynomials).
Examples:
1.
| init = ...
| loop_1
| a = phi (init, a + 5)
| endloop
2.
| inita = ...
| initb = ...
| loop_1
| a = phi (inita, 2 * b + 3)
| b = phi (initb, b + 1)
| endloop
For the first case, the semantics of the SSA representation is:
| a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
that is, there is a loop index "x" that determines the scalar value
of the variable during the loop execution. During the first
iteration, the value is that of the initial condition INIT, while
during the subsequent iterations, it is the sum of the initial
condition with the sum of all the values of EXPR from the initial
iteration to the before last considered iteration.
For the second case, the semantics of the SSA program is:
| a (x) = init, if x = 0;
| expr (x - 1), otherwise.
The second case corresponds to the PEELED_CHREC, whose syntax is
close to the syntax of a loop-phi-node:
| phi (init, expr) vs. (init, expr)_x
The proof of the translation algorithm for the first case is a
proof by structural induction based on the degree of EXPR.
Degree 0:
When EXPR is a constant with respect to the analyzed loop, or in
other words when EXPR is a polynomial of degree 0, the evolution of
the variable A in the loop is an affine function with an initial
condition INIT, and a step EXPR. In order to show this, we start
from the semantics of the SSA representation:
f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
and since "expr (j)" is a constant with respect to "j",
f (x) = init + x * expr
Finally, based on the semantics of the pure sum chrecs, by
identification we get the corresponding chrecs syntax:
f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
f (x) -> {init, +, expr}_x
Higher degree:
Suppose that EXPR is a polynomial of degree N with respect to the
analyzed loop_x for which we have already determined that it is
written under the chrecs syntax:
| expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
We start from the semantics of the SSA program:
| f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
|
| f (x) = init + \sum_{j = 0}^{x - 1}
| (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
|
| f (x) = init + \sum_{j = 0}^{x - 1}
| \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
|
| f (x) = init + \sum_{k = 0}^{n - 1}
| (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
|
| f (x) = init + \sum_{k = 0}^{n - 1}
| (b_k * \binom{x}{k + 1})
|
| f (x) = init + b_0 * \binom{x}{1} + ...
| + b_{n-1} * \binom{x}{n}
|
| f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
| + b_{n-1} * \binom{x}{n}
|
And finally from the definition of the chrecs syntax, we identify:
| f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
This shows the mechanism that stands behind the add_to_evolution
function. An important point is that the use of symbolic
parameters avoids the need of an analysis schedule.
Example:
| inita = ...
| initb = ...
| loop_1
| a = phi (inita, a + 2 + b)
| b = phi (initb, b + 1)
| endloop
When analyzing "a", the algorithm keeps "b" symbolically:
| a -> {inita, +, 2 + b}_1
Then, after instantiation, the analyzer ends on the evolution:
| a -> {inita, +, 2 + initb, +, 1}_1
*/
tree
scev_dfs::add_to_evolution (tree chrec_before, enum tree_code code,
tree to_add, gimple *at_stmt)
{
tree type = chrec_type (to_add);
tree res = NULL_TREE;
if (to_add == NULL_TREE)
return chrec_before;
/* TO_ADD is either a scalar, or a parameter. TO_ADD is not
instantiated at this point. */
if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
/* This should not happen. */
return chrec_dont_know;
if (dump_file && (dump_flags & TDF_SCEV))
{
fprintf (dump_file, "(add_to_evolution \n");
fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
fprintf (dump_file, " (chrec_before = ");
print_generic_expr (dump_file, chrec_before);
fprintf (dump_file, ")\n (to_add = ");
print_generic_expr (dump_file, to_add);
fprintf (dump_file, ")\n");
}
if (code == MINUS_EXPR)
to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
? build_real (type, dconstm1)
: build_int_cst_type (type, -1));
res = add_to_evolution_1 (chrec_before, to_add, at_stmt);
if (dump_file && (dump_flags & TDF_SCEV))
{
fprintf (dump_file, " (res = ");
print_generic_expr (dump_file, res);
fprintf (dump_file, "))\n");
}
return res;
}
/* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
Return true if the strongly connected component has been found. */
t_bool
scev_dfs::follow_ssa_edge_binary (gimple *at_stmt, tree type, tree rhs0,
enum tree_code code, tree rhs1,
tree *evolution_of_loop, int limit)
{
t_bool res = t_false;
tree evol;
switch (code)
{
case POINTER_PLUS_EXPR:
case PLUS_EXPR:
if (TREE_CODE (rhs0) == SSA_NAME)
{
if (TREE_CODE (rhs1) == SSA_NAME)
{
/* Match an assignment under the form:
"a = b + c". */
/* We want only assignments of form "name + name" contribute to
LIMIT, as the other cases do not necessarily contribute to
the complexity of the expression. */
limit++;
evol = *evolution_of_loop;
res = follow_ssa_edge_expr (at_stmt, rhs0, &evol, limit);
if (res == t_true)
*evolution_of_loop = add_to_evolution
(chrec_convert (type, evol, at_stmt), code, rhs1, at_stmt);
else if (res == t_false)
{
res = follow_ssa_edge_expr
(at_stmt, rhs1, evolution_of_loop, limit);
if (res == t_true)
*evolution_of_loop = add_to_evolution
(chrec_convert (type, *evolution_of_loop, at_stmt),
code, rhs0, at_stmt);
}
}
else
gcc_unreachable (); /* Handled in caller. */
}
else if (TREE_CODE (rhs1) == SSA_NAME)
{
/* Match an assignment under the form:
"a = ... + c". */
res = follow_ssa_edge_expr (at_stmt, rhs1, evolution_of_loop, limit);
if (res == t_true)
*evolution_of_loop = add_to_evolution
(chrec_convert (type, *evolution_of_loop, at_stmt),
code, rhs0, at_stmt);
}
else
/* Otherwise, match an assignment under the form:
"a = ... + ...". */
/* And there is nothing to do. */
res = t_false;
break;
case MINUS_EXPR:
/* This case is under the form "opnd0 = rhs0 - rhs1". */
if (TREE_CODE (rhs0) == SSA_NAME)
gcc_unreachable (); /* Handled in caller. */
else
/* Otherwise, match an assignment under the form:
"a = ... - ...". */
/* And there is nothing to do. */
res = t_false;
break;
default:
res = t_false;
}
return res;
}
/* Checks whether the I-th argument of a PHI comes from a backedge. */
static bool
backedge_phi_arg_p (gphi *phi, int i)
{
const_edge e = gimple_phi_arg_edge (phi, i);
/* We would in fact like to test EDGE_DFS_BACK here, but we do not care
about updating it anywhere, and this should work as well most of the
time. */
if (e->flags & EDGE_IRREDUCIBLE_LOOP)
return true;
return false;
}
/* Helper function for one branch of the condition-phi-node. Return
true if the strongly connected component has been found following
this path. */
t_bool
scev_dfs::follow_ssa_edge_in_condition_phi_branch (int i,
gphi *condition_phi,
tree *evolution_of_branch,
tree init_cond, int limit)
{
tree branch = PHI_ARG_DEF (condition_phi, i);
*evolution_of_branch = chrec_dont_know;
/* Do not follow back edges (they must belong to an irreducible loop, which
we really do not want to worry about). */
if (backedge_phi_arg_p (condition_phi, i))
return t_false;
if (TREE_CODE (branch) == SSA_NAME)
{
*evolution_of_branch = init_cond;
return follow_ssa_edge_expr (condition_phi, branch,
evolution_of_branch, limit);
}
/* This case occurs when one of the condition branches sets
the variable to a constant: i.e. a phi-node like
"a_2 = PHI <a_7(5), 2(6)>;".
FIXME: This case have to be refined correctly:
in some cases it is possible to say something better than
chrec_dont_know, for example using a wrap-around notation. */
return t_false;
}
/* This function merges the branches of a condition-phi-node in a
loop. */
t_bool
scev_dfs::follow_ssa_edge_in_condition_phi (gphi *condition_phi,
tree *evolution_of_loop, int limit)
{
int i, n;
tree init = *evolution_of_loop;
tree evolution_of_branch;
t_bool res = follow_ssa_edge_in_condition_phi_branch (0, condition_phi,
&evolution_of_branch,
init, limit);
if (res == t_false || res == t_dont_know)
return res;
*evolution_of_loop = evolution_of_branch;
n = gimple_phi_num_args (condition_phi);
for (i = 1; i < n; i++)
{
/* Quickly give up when the evolution of one of the branches is
not known. */
if (*evolution_of_loop == chrec_dont_know)
return t_true;
/* Increase the limit by the PHI argument number to avoid exponential
time and memory complexity. */
res = follow_ssa_edge_in_condition_phi_branch (i, condition_phi,
&evolution_of_branch,
init, limit + i);
if (res == t_false || res == t_dont_know)
return res;
*evolution_of_loop = chrec_merge (*evolution_of_loop,
evolution_of_branch);
}
return t_true;
}
/* Follow an SSA edge in an inner loop. It computes the overall
effect of the loop, and following the symbolic initial conditions,
it follows the edges in the parent loop. The inner loop is
considered as a single statement. */
t_bool
scev_dfs::follow_ssa_edge_inner_loop_phi (gphi *loop_phi_node,
tree *evolution_of_loop, int limit)
{
class loop *loop = loop_containing_stmt (loop_phi_node);
tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
/* Sometimes, the inner loop is too difficult to analyze, and the
result of the analysis is a symbolic parameter. */
if (ev == PHI_RESULT (loop_phi_node))
{
t_bool res = t_false;
int i, n = gimple_phi_num_args (loop_phi_node);
for (i = 0; i < n; i++)
{
tree arg = PHI_ARG_DEF (loop_phi_node, i);
basic_block bb;
/* Follow the edges that exit the inner loop. */
bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
if (!flow_bb_inside_loop_p (loop, bb))
res = follow_ssa_edge_expr (loop_phi_node,
arg, evolution_of_loop, limit);
if (res == t_true)
break;
}
/* If the path crosses this loop-phi, give up. */
if (res == t_true)
*evolution_of_loop = chrec_dont_know;
return res;
}
/* Otherwise, compute the overall effect of the inner loop. */
ev = compute_overall_effect_of_inner_loop (loop, ev);
return follow_ssa_edge_expr (loop_phi_node, ev, evolution_of_loop, limit);
}
/* Follow the ssa edge into the expression EXPR.
Return true if the strongly connected component has been found. */
t_bool
scev_dfs::follow_ssa_edge_expr (gimple *at_stmt, tree expr,
tree *evolution_of_loop, int limit)
{
gphi *halting_phi = loop_phi_node;
enum tree_code code;
tree type, rhs0, rhs1 = NULL_TREE;
/* The EXPR is one of the following cases:
- an SSA_NAME,
- an INTEGER_CST,
- a PLUS_EXPR,
- a POINTER_PLUS_EXPR,
- a MINUS_EXPR,
- other cases are not yet handled. */
/* For SSA_NAME look at the definition statement, handling
PHI nodes and otherwise expand appropriately for the expression
handling below. */
if (TREE_CODE (expr) == SSA_NAME)
{
gimple *def = SSA_NAME_DEF_STMT (expr);
if (gimple_nop_p (def))
return t_false;
/* Give up if the path is longer than the MAX that we allow. */
if (limit > param_scev_max_expr_complexity)
{
*evolution_of_loop = chrec_dont_know;
return t_dont_know;
}
if (gphi *phi = dyn_cast <gphi *>(def))
{
if (!loop_phi_node_p (phi))
/* DEF is a condition-phi-node. Follow the branches, and
record their evolutions. Finally, merge the collected
information and set the approximation to the main
variable. */
return follow_ssa_edge_in_condition_phi (phi, evolution_of_loop,
limit);
/* When the analyzed phi is the halting_phi, the
depth-first search is over: we have found a path from
the halting_phi to itself in the loop. */
if (phi == halting_phi)
{
*evolution_of_loop = expr;
return t_true;
}
/* Otherwise, the evolution of the HALTING_PHI depends
on the evolution of another loop-phi-node, i.e. the
evolution function is a higher degree polynomial. */
class loop *def_loop = loop_containing_stmt (def);
if (def_loop == loop)
return t_false;
/* Inner loop. */
if (flow_loop_nested_p (loop, def_loop))
return follow_ssa_edge_inner_loop_phi (phi, evolution_of_loop,
limit + 1);
/* Outer loop. */
return t_false;
}
/* At this level of abstraction, the program is just a set
of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
other def to be handled. */
if (!is_gimple_assign (def))
return t_false;
code = gimple_assign_rhs_code (def);
switch (get_gimple_rhs_class (code))
{
case GIMPLE_BINARY_RHS:
rhs0 = gimple_assign_rhs1 (def);
rhs1 = gimple_assign_rhs2 (def);
break;
case GIMPLE_UNARY_RHS:
case GIMPLE_SINGLE_RHS:
rhs0 = gimple_assign_rhs1 (def);
break;
default:
return t_false;
}
type = TREE_TYPE (gimple_assign_lhs (def));
at_stmt = def;
}
else
{
code = TREE_CODE (expr);
type = TREE_TYPE (expr);
/* Via follow_ssa_edge_inner_loop_phi we arrive here with the
GENERIC scalar evolution of the inner loop. */
switch (code)
{
CASE_CONVERT:
rhs0 = TREE_OPERAND (expr, 0);
break;
case POINTER_PLUS_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
rhs0 = TREE_OPERAND (expr, 0);
rhs1 = TREE_OPERAND (expr, 1);
STRIP_USELESS_TYPE_CONVERSION (rhs0);
STRIP_USELESS_TYPE_CONVERSION (rhs1);
break;
default:
rhs0 = expr;
}
}
switch (code)
{
CASE_CONVERT:
{
/* This assignment is under the form "a_1 = (cast) rhs. We cannot
validate any precision altering conversion during the SCC
analysis, so don't even try. */
if (!tree_nop_conversion_p (type, TREE_TYPE (rhs0)))
return t_false;
t_bool res = follow_ssa_edge_expr (at_stmt, rhs0,
evolution_of_loop, limit);
if (res == t_true)
*evolution_of_loop = chrec_convert (type, *evolution_of_loop,
at_stmt);
return res;
}
case INTEGER_CST:
/* This assignment is under the form "a_1 = 7". */
return t_false;
case ADDR_EXPR:
{
/* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
if (TREE_CODE (TREE_OPERAND (rhs0, 0)) != MEM_REF)
return t_false;
tree mem = TREE_OPERAND (rhs0, 0);
rhs0 = TREE_OPERAND (mem, 0);
rhs1 = TREE_OPERAND (mem, 1);
code = POINTER_PLUS_EXPR;
}
/* Fallthru. */
case POINTER_PLUS_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
/* This case is under the form "rhs0 +- rhs1". */
if (TREE_CODE (rhs0) == SSA_NAME
&& (TREE_CODE (rhs1) != SSA_NAME || code == MINUS_EXPR))
{
/* Match an assignment under the form:
"a = b +- ...". */
t_bool res = follow_ssa_edge_expr (at_stmt, rhs0,
evolution_of_loop, limit);
if (res == t_true)
*evolution_of_loop = add_to_evolution
(chrec_convert (type, *evolution_of_loop, at_stmt),
code, rhs1, at_stmt);
return res;
}
/* Else search for the SCC in both rhs0 and rhs1. */
return follow_ssa_edge_binary (at_stmt, type, rhs0, code, rhs1,
evolution_of_loop, limit);
default:
return t_false;
}
}
/* This section selects the loops that will be good candidates for the
scalar evolution analysis. For the moment, greedily select all the
loop nests we could analyze. */
/* For a loop with a single exit edge, return the COND_EXPR that
guards the exit edge. If the expression is too difficult to
analyze, then give up. */
gcond *
get_loop_exit_condition (const class loop *loop)
{
gcond *res = NULL;
edge exit_edge = single_exit (loop);
if (dump_file && (dump_flags & TDF_SCEV))
fprintf (dump_file, "(get_loop_exit_condition \n ");
if (exit_edge)
res = safe_dyn_cast <gcond *> (*gsi_last_bb (exit_edge->src));
if (dump_file && (dump_flags & TDF_SCEV))
{
print_gimple_stmt (dump_file, res, 0);
fprintf (dump_file, ")\n");
}
return res;
}
/* Simplify PEELED_CHREC represented by (init_cond, arg) in LOOP.
Handle below case and return the corresponding POLYNOMIAL_CHREC:
# i_17 = PHI <i_13(5), 0(3)>
# _20 = PHI <_5(5), start_4(D)(3)>
...
i_13 = i_17 + 1;
_5 = start_4(D) + i_13;
Though variable _20 appears as a PEELED_CHREC in the form of
(start_4, _5)_LOOP, it's a POLYNOMIAL_CHREC like {start_4, 1}_LOOP.
See PR41488. */
static tree
simplify_peeled_chrec (class loop *loop, tree arg, tree init_cond)
{
aff_tree aff1, aff2;
tree ev, left, right, type, step_val;
hash_map<tree, name_expansion *> *peeled_chrec_map = NULL;
ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, arg));
if (ev == NULL_TREE || TREE_CODE (ev) != POLYNOMIAL_CHREC)
return chrec_dont_know;
left = CHREC_LEFT (ev);
right = CHREC_RIGHT (ev);
type = TREE_TYPE (left);
step_val = chrec_fold_plus (type, init_cond, right);
/* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
if "left" equals to "init + right". */
if (operand_equal_p (left, step_val, 0))
{
if (dump_file && (dump_flags & TDF_SCEV))
fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
return build_polynomial_chrec (loop->num, init_cond, right);
}
/* The affine code only deals with pointer and integer types. */
if (!POINTER_TYPE_P (type)
&& !INTEGRAL_TYPE_P (type))
return chrec_dont_know;
/* Try harder to check if they are equal. */
tree_to_aff_combination_expand (left, type, &aff1, &peeled_chrec_map);
tree_to_aff_combination_expand (step_val, type, &aff2, &peeled_chrec_map);
free_affine_expand_cache (&peeled_chrec_map);
aff_combination_scale (&aff2, -1);
aff_combination_add (&aff1, &aff2);
/* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
if "left" equals to "init + right". */
if (aff_combination_zero_p (&aff1))
{
if (dump_file && (dump_flags & TDF_SCEV))
fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
return build_polynomial_chrec (loop->num, init_cond, right);
}
return chrec_dont_know;
}
/* Given a LOOP_PHI_NODE, this function determines the evolution
function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
static tree
analyze_evolution_in_loop (gphi *loop_phi_node,
tree init_cond)
{
int i, n = gimple_phi_num_args (loop_phi_node);
tree evolution_function = chrec_not_analyzed_yet;
class loop *loop = loop_containing_stmt (loop_phi_node);
basic_block bb;
static bool simplify_peeled_chrec_p = true;
if (dump_file && (dump_flags & TDF_SCEV))
{
fprintf (dump_file, "(analyze_evolution_in_loop \n");
fprintf (dump_file, " (loop_phi_node = ");
print_gimple_stmt (dump_file, loop_phi_node, 0);
fprintf (dump_file, ")\n");
}
for (i = 0; i < n; i++)
{
tree arg = PHI_ARG_DEF (loop_phi_node, i);
tree ev_fn = chrec_dont_know;
t_bool res;
/* Select the edges that enter the loop body. */
bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
if (!flow_bb_inside_loop_p (loop, bb))
continue;
if (TREE_CODE (arg) == SSA_NAME)
{
bool val = false;
/* Pass in the initial condition to the follow edge function. */
scev_dfs dfs (loop, loop_phi_node, init_cond);
res = dfs.get_ev (&ev_fn, arg);
/* If ev_fn has no evolution in the inner loop, and the
init_cond is not equal to ev_fn, then we have an
ambiguity between two possible values, as we cannot know
the number of iterations at this point. */
if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
&& no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
&& !operand_equal_p (init_cond, ev_fn, 0))
ev_fn = chrec_dont_know;
}
else
res = t_false;
/* When it is impossible to go back on the same
loop_phi_node by following the ssa edges, the
evolution is represented by a peeled chrec, i.e. the
first iteration, EV_FN has the value INIT_COND, then
all the other iterations it has the value of ARG.
For the moment, PEELED_CHREC nodes are not built. */
if (res != t_true)
{
ev_fn = chrec_dont_know;
/* Try to recognize POLYNOMIAL_CHREC which appears in
the form of PEELED_CHREC, but guard the process with
a bool variable to keep the analyzer from infinite
recurrence for real PEELED_RECs. */
if (simplify_peeled_chrec_p && TREE_CODE (arg) == SSA_NAME)
{
simplify_peeled_chrec_p = false;
ev_fn = simplify_peeled_chrec (loop, arg, init_cond);
simplify_peeled_chrec_p = true;
}
}
/* When there are multiple back edges of the loop (which in fact never
happens currently, but nevertheless), merge their evolutions. */
evolution_function = chrec_merge (evolution_function, ev_fn);
if (evolution_function == chrec_dont_know)
break;
}
if (dump_file && (dump_flags & TDF_SCEV))
{
fprintf (dump_file, " (evolution_function = ");
print_generic_expr (dump_file, evolution_function);
fprintf (dump_file, "))\n");
}
return evolution_function;
}
/* Looks to see if VAR is a copy of a constant (via straightforward assignments
or degenerate phi's). If so, returns the constant; else, returns VAR. */
static tree
follow_copies_to_constant (tree var)
{
tree res = var;
while (TREE_CODE (res) == SSA_NAME
/* We face not updated SSA form in multiple places and this walk
may end up in sibling loops so we have to guard it. */
&& !name_registered_for_update_p (res))
{
gimple *def = SSA_NAME_DEF_STMT (res);
if (gphi *phi = dyn_cast <gphi *> (def))
{
if (tree rhs = degenerate_phi_result (phi))
res = rhs;
else
break;
}
else if (gimple_assign_single_p (def))
/* Will exit loop if not an SSA_NAME. */
res = gimple_assign_rhs1 (def);
else
break;
}
if (CONSTANT_CLASS_P (res))
return res;
return var;
}
/* Given a loop-phi-node, return the initial conditions of the
variable on entry of the loop. When the CCP has propagated
constants into the loop-phi-node, the initial condition is
instantiated, otherwise the initial condition is kept symbolic.
This analyzer does not analyze the evolution outside the current
loop, and leaves this task to the on-demand tree reconstructor. */
static tree
analyze_initial_condition (gphi *loop_phi_node)
{
int i, n;
tree init_cond = chrec_not_analyzed_yet;
class loop *loop = loop_containing_stmt (loop_phi_node);
if (dump_file && (dump_flags & TDF_SCEV))
{
fprintf (dump_file, "(analyze_initial_condition \n");
fprintf (dump_file, " (loop_phi_node = \n");
print_gimple_stmt (dump_file, loop_phi_node, 0);
fprintf (dump_file, ")\n");
}
n = gimple_phi_num_args (loop_phi_node);
for (i = 0; i < n; i++)
{
tree branch = PHI_ARG_DEF (loop_phi_node, i);
basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
/* When the branch is oriented to the loop's body, it does
not contribute to the initial condition. */
if (flow_bb_inside_loop_p (loop, bb))
continue;
if (init_cond == chrec_not_analyzed_yet)
{
init_cond = branch;
continue;
}
if (TREE_CODE (branch) == SSA_NAME)
{
init_cond = chrec_dont_know;
break;
}
init_cond = chrec_merge (init_cond, branch);
}
/* Ooops -- a loop without an entry??? */
if (init_cond == chrec_not_analyzed_yet)
init_cond = chrec_dont_know;
/* We may not have fully constant propagated IL. Handle degenerate PHIs here
to not miss important early loop unrollings. */
init_cond = follow_copies_to_constant (init_cond);
if (dump_file && (dump_flags & TDF_SCEV))
{
fprintf (dump_file, " (init_cond = ");
print_generic_expr (dump_file, init_cond);
fprintf (dump_file, "))\n");
}
return init_cond;
}
/* Analyze the scalar evolution for LOOP_PHI_NODE. */
static tree
interpret_loop_phi (class loop *loop, gphi *loop_phi_node)
{
class loop *phi_loop = loop_containing_stmt (loop_phi_node);
tree init_cond;
gcc_assert (phi_loop == loop);
/* Otherwise really interpret the loop phi. */
init_cond = analyze_initial_condition (loop_phi_node);
return analyze_evolution_in_loop (loop_phi_node, init_cond);
}
/* This function merges the branches of a condition-phi-node,
contained in the outermost loop, and whose arguments are already
analyzed. */
static tree
interpret_condition_phi (class loop *loop, gphi *condition_phi)
{
int i, n = gimple_phi_num_args (condition_phi);
tree res = chrec_not_analyzed_yet;
for (i = 0; i < n; i++)
{
tree branch_chrec;
if (backedge_phi_arg_p (condition_phi, i))
{
res = chrec_dont_know;
break;
}
branch_chrec = analyze_scalar_evolution
(loop, PHI_ARG_DEF (condition_phi, i));
res = chrec_merge (res, branch_chrec);
if (res == chrec_dont_know)
break;
}
return res;
}
/* Interpret the operation RHS1 OP RHS2. If we didn't
analyze this node before, follow the definitions until ending
either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
return path, this function propagates evolutions (ala constant copy
propagation). OPND1 is not a GIMPLE expression because we could
analyze the effect of an inner loop: see interpret_loop_phi. */
static tree
interpret_rhs_expr (class loop *loop, gimple *at_stmt,
tree type, tree rhs1, enum tree_code code, tree rhs2)
{
tree res, chrec1, chrec2, ctype;
gimple *def;
if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
{
if (is_gimple_min_invariant (rhs1))
return chrec_convert (type, rhs1, at_stmt);
if (code == SSA_NAME)
return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
at_stmt);
}
switch (code)
{
case ADDR_EXPR:
if (TREE_CODE (TREE_OPERAND (rhs1, 0)) == MEM_REF
|| handled_component_p (TREE_OPERAND (rhs1, 0)))
{
machine_mode mode;
poly_int64 bitsize, bitpos;
int unsignedp, reversep;
int volatilep = 0;
tree base, offset;
tree chrec3;
tree unitpos;
base = get_inner_reference (TREE_OPERAND (rhs1, 0),
&bitsize, &bitpos, &offset, &mode,
&unsignedp, &reversep, &volatilep);
if (TREE_CODE (base) == MEM_REF)
{
rhs2 = TREE_OPERAND (base, 1);
rhs1 = TREE_OPERAND (base, 0);
chrec1 = analyze_scalar_evolution (loop, rhs1);
chrec2 = analyze_scalar_evolution (loop, rhs2);
chrec1 = chrec_convert (type, chrec1, at_stmt);
chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
chrec1 = instantiate_parameters (loop, chrec1);
chrec2 = instantiate_parameters (loop, chrec2);
res = chrec_fold_plus (type, chrec1, chrec2);
}
else
{
chrec1 = analyze_scalar_evolution_for_address_of (loop, base);
chrec1 = chrec_convert (type, chrec1, at_stmt);
res = chrec1;
}
if (offset != NULL_TREE)
{
chrec2 = analyze_scalar_evolution (loop, offset);
chrec2 = chrec_convert (TREE_TYPE (offset), chrec2, at_stmt);
chrec2 = instantiate_parameters (loop, chrec2);
res = chrec_fold_plus (type, res, chrec2);
}
if (maybe_ne (bitpos, 0))
{
unitpos = size_int (exact_div (bitpos, BITS_PER_UNIT));
chrec3 = analyze_scalar_evolution (loop, unitpos);
chrec3 = chrec_convert (TREE_TYPE (unitpos), chrec3, at_stmt);
chrec3 = instantiate_parameters (loop, chrec3);
res = chrec_fold_plus (type, res, chrec3);
}
}
else
res = chrec_dont_know;
break;
case POINTER_PLUS_EXPR:
chrec1 = analyze_scalar_evolution (loop, rhs1);
chrec2 = analyze_scalar_evolution (loop, rhs2);
chrec1 = chrec_convert (type, chrec1, at_stmt);
chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
chrec1 = instantiate_parameters (loop, chrec1);
chrec2 = instantiate_parameters (loop, chrec2);
res = chrec_fold_plus (type, chrec1, chrec2);
break;
case PLUS_EXPR:
chrec1 = analyze_scalar_evolution (loop, rhs1);
chrec2 = analyze_scalar_evolution (loop, rhs2);
ctype = type;
/* When the stmt is conditionally executed re-write the CHREC
into a form that has well-defined behavior on overflow. */
if (at_stmt
&& INTEGRAL_TYPE_P (type)
&& ! TYPE_OVERFLOW_WRAPS (type)
&& ! dominated_by_p (CDI_DOMINATORS, loop->latch,
gimple_bb (at_stmt)))
ctype = unsigned_type_for (type);
chrec1 = chrec_convert (ctype, chrec1, at_stmt);
chrec2 = chrec_convert (ctype, chrec2, at_stmt);
chrec1 = instantiate_parameters (loop, chrec1);
chrec2 = instantiate_parameters (loop, chrec2);
res = chrec_fold_plus (ctype, chrec1, chrec2);
if (type != ctype)
res = chrec_convert (type, res, at_stmt);
break;
case MINUS_EXPR:
chrec1 = analyze_scalar_evolution (loop, rhs1);
chrec2 = analyze_scalar_evolution (loop, rhs2);
ctype = type;
/* When the stmt is conditionally executed re-write the CHREC
into a form that has well-defined behavior on overflow. */
if (at_stmt
&& INTEGRAL_TYPE_P (type)
&& ! TYPE_OVERFLOW_WRAPS (type)
&& ! dominated_by_p (CDI_DOMINATORS,
loop->latch, gimple_bb (at_stmt)))
ctype = unsigned_type_for (type);
chrec1 = chrec_convert (ctype, chrec1, at_stmt);
chrec2 = chrec_convert (ctype, chrec2, at_stmt);
chrec1 = instantiate_parameters (loop, chrec1);
chrec2 = instantiate_parameters (loop, chrec2);
res = chrec_fold_minus (ctype, chrec1, chrec2);
if (type != ctype)
res = chrec_convert (type, res, at_stmt);
break;
case NEGATE_EXPR:
chrec1 = analyze_scalar_evolution (loop, rhs1);
ctype = type;
/* When the stmt is conditionally executed re-write the CHREC
into a form that has well-defined behavior on overflow. */
if (at_stmt
&& INTEGRAL_TYPE_P (type)
&& ! TYPE_OVERFLOW_WRAPS (type)
&& ! dominated_by_p (CDI_DOMINATORS,
loop->latch, gimple_bb (at_stmt)))
ctype = unsigned_type_for (type);
chrec1 = chrec_convert (ctype, chrec1, at_stmt);
/* TYPE may be integer, real or complex, so use fold_convert. */
chrec1 = instantiate_parameters (loop, chrec1);
res = chrec_fold_multiply (ctype, chrec1,
fold_convert (ctype, integer_minus_one_node));
if (type != ctype)
res = chrec_convert (type, res, at_stmt);
break;
case BIT_NOT_EXPR:
/* Handle ~X as -1 - X. */
chrec1 = analyze_scalar_evolution (loop, rhs1);
chrec1 = chrec_convert (type, chrec1, at_stmt);
chrec1 = instantiate_parameters (loop, chrec1);
res = chrec_fold_minus (type,
fold_convert (type, integer_minus_one_node),
chrec1);
break;
case MULT_EXPR:
chrec1 = analyze_scalar_evolution (loop, rhs1);
chrec2 = analyze_scalar_evolution (loop, rhs2);
ctype = type;
/* When the stmt is conditionally executed re-write the CHREC
into a form that has well-defined behavior on overflow. */
if (at_stmt
&& INTEGRAL_TYPE_P (type)
&& ! TYPE_OVERFLOW_WRAPS (type)
&& ! dominated_by_p (CDI_DOMINATORS,
loop->latch, gimple_bb (at_stmt)))
ctype = unsigned_type_for (type);
chrec1 = chrec_convert (ctype, chrec1, at_stmt);
chrec2 = chrec_convert (ctype, chrec2, at_stmt);
chrec1 = instantiate_parameters (loop, chrec1);
chrec2 = instantiate_parameters (loop, chrec2);
res = chrec_fold_multiply (ctype, chrec1, chrec2);
if (type != ctype)
res = chrec_convert (type, res, at_stmt);
break;
case LSHIFT_EXPR:
{
/* Handle A<<B as A * (1<<B). */
tree uns = unsigned_type_for (type);
chrec1 = analyze_scalar_evolution (loop, rhs1);
chrec2 = analyze_scalar_evolution (loop, rhs2);
chrec1 = chrec_convert (uns, chrec1, at_stmt);
chrec1 = instantiate_parameters (loop, chrec1);
chrec2 = instantiate_parameters (loop, chrec2);
tree one = build_int_cst (uns, 1);
chrec2 = fold_build2 (LSHIFT_EXPR, uns, one, chrec2);
res = chrec_fold_multiply (uns, chrec1, chrec2);
res = chrec_convert (type, res, at_stmt);
}
break;
CASE_CONVERT:
/* In case we have a truncation of a widened operation that in
the truncated type has undefined overflow behavior analyze
the operation done in an unsigned type of the same precision
as the final truncation. We cannot derive a scalar evolution
for the widened operation but for the truncated result. */
if (TREE_CODE (type) == INTEGER_TYPE
&& TREE_CODE (TREE_TYPE (rhs1)) == INTEGER_TYPE
&& TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (rhs1))
&& TYPE_OVERFLOW_UNDEFINED (type)
&& TREE_CODE (rhs1) == SSA_NAME
&& (def = SSA_NAME_DEF_STMT (rhs1))
&& is_gimple_assign (def)
&& TREE_CODE_CLASS (gimple_assign_rhs_code (def)) == tcc_binary
&& TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
{
tree utype = unsigned_type_for (type);
chrec1 = interpret_rhs_expr (loop, at_stmt, utype,
gimple_assign_rhs1 (def),
gimple_assign_rhs_code (def),
gimple_assign_rhs2 (def));
}
else
chrec1 = analyze_scalar_evolution (loop, rhs1);
res = chrec_convert (type, chrec1, at_stmt, true, rhs1);
break;
case BIT_AND_EXPR:
/* Given int variable A, handle A&0xffff as (int)(unsigned short)A.
If A is SCEV and its value is in the range of representable set
of type unsigned short, the result expression is a (no-overflow)
SCEV. */
res = chrec_dont_know;
if (tree_fits_uhwi_p (rhs2))
{
int precision;
unsigned HOST_WIDE_INT val = tree_to_uhwi (rhs2);
val ++;
/* Skip if value of rhs2 wraps in unsigned HOST_WIDE_INT or
it's not the maximum value of a smaller type than rhs1. */
if (val != 0
&& (precision = exact_log2 (val)) > 0
&& (unsigned) precision < TYPE_PRECISION (TREE_TYPE (rhs1)))
{
tree utype = build_nonstandard_integer_type (precision, 1);
if (TYPE_PRECISION (utype) < TYPE_PRECISION (TREE_TYPE (rhs1)))
{
chrec1 = analyze_scalar_evolution (loop, rhs1);
chrec1 = chrec_convert (utype, chrec1, at_stmt);
res = chrec_convert (TREE_TYPE (rhs1), chrec1, at_stmt);
}
}
}
break;
default:
res = chrec_dont_know;
break;
}
return res;
}
/* Interpret the expression EXPR. */
static tree
interpret_expr (class loop *loop, gimple *at_stmt, tree expr)
{
enum tree_code code;
tree type = TREE_TYPE (expr), op0, op1;
if (automatically_generated_chrec_p (expr))
return expr;
if (TREE_CODE (expr) == POLYNOMIAL_CHREC
|| TREE_CODE (expr) == CALL_EXPR
|| get_gimple_rhs_class (TREE_CODE (expr)) == GIMPLE_TERNARY_RHS)
return chrec_dont_know;
extract_ops_from_tree (expr, &code, &op0, &op1);
return interpret_rhs_expr (loop, at_stmt, type,
op0, code, op1);
}
/* Interpret the rhs of the assignment STMT. */
static tree
interpret_gimple_assign (class loop *loop, gimple *stmt)
{
tree type = TREE_TYPE (gimple_assign_lhs (stmt));
enum tree_code code = gimple_assign_rhs_code (stmt);
return interpret_rhs_expr (loop, stmt, type,
gimple_assign_rhs1 (stmt), code,
gimple_assign_rhs2 (stmt));
}
/* This section contains all the entry points:
- number_of_iterations_in_loop,
- analyze_scalar_evolution,
- instantiate_parameters.
*/
/* Helper recursive function. */
static tree
analyze_scalar_evolution_1 (class loop *loop, tree var)
{
gimple *def;
basic_block bb;
class loop *def_loop;
tree res;
if (TREE_CODE (var) != SSA_NAME)
return interpret_expr (loop, NULL, var);
def = SSA_NAME_DEF_STMT (var);
bb = gimple_bb (def);
def_loop = bb->loop_father;
if (!flow_bb_inside_loop_p (loop, bb))
{
/* Keep symbolic form, but look through obvious copies for constants. */
res = follow_copies_to_constant (var);
goto set_and_end;
}
if (loop != def_loop)
{
res = analyze_scalar_evolution_1 (def_loop, var);
class loop *loop_to_skip = superloop_at_depth (def_loop,
loop_depth (loop) + 1);
res = compute_overall_effect_of_inner_loop (loop_to_skip, res);
if (chrec_contains_symbols_defined_in_loop (res, loop->num))
res = analyze_scalar_evolution_1 (loop, res);
goto set_and_end;
}
switch (gimple_code (def))
{
case GIMPLE_ASSIGN:
res = interpret_gimple_assign (loop, def);
break;
case GIMPLE_PHI:
if (loop_phi_node_p (def))
res = interpret_loop_phi (loop, as_a <gphi *> (def));
else
res = interpret_condition_phi (loop, as_a <gphi *> (def));
break;
default:
res = chrec_dont_know;
break;
}
set_and_end:
/* Keep the symbolic form. */
if (res == chrec_dont_know)
res = var;
if (loop == def_loop)
set_scalar_evolution (block_before_loop (loop), var, res);
return res;
}
/* Analyzes and returns the scalar evolution of the ssa_name VAR in
LOOP. LOOP is the loop in which the variable is used.
Example of use: having a pointer VAR to a SSA_NAME node, STMT a
pointer to the statement that uses this variable, in order to
determine the evolution function of the variable, use the following
calls:
loop_p loop = loop_containing_stmt (stmt);
tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
*/
tree
analyze_scalar_evolution (class loop *loop, tree var)
{
tree res;
/* ??? Fix callers. */
if (! loop)
return var;
if (dump_file && (dump_flags & TDF_SCEV))
{
fprintf (dump_file, "(analyze_scalar_evolution \n");
fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
fprintf (dump_file, " (scalar = ");
print_generic_expr (dump_file, var);
fprintf (dump_file, ")\n");
}
res = get_scalar_evolution (block_before_loop (loop), var);
if (res == chrec_not_analyzed_yet)
{
/* We'll recurse into instantiate_scev, avoid tearing down the
instantiate cache repeatedly and keep it live from here. */
bool destr = false;
if (!global_cache)
{
global_cache = new instantiate_cache_type;
destr = true;
}
res = analyze_scalar_evolution_1 (loop, var);
if (destr)
{
delete global_cache;
global_cache = NULL;
}
}
if (dump_file && (dump_flags & TDF_SCEV))
fprintf (dump_file, ")\n");
return res;
}
/* Analyzes and returns the scalar evolution of VAR address in LOOP. */
static tree
analyze_scalar_evolution_for_address_of (class loop *loop, tree var)
{
return analyze_scalar_evolution (loop, build_fold_addr_expr (var));
}
/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
WRTO_LOOP (which should be a superloop of USE_LOOP)
FOLDED_CASTS is set to true if resolve_mixers used
chrec_convert_aggressive (TODO -- not really, we are way too conservative
at the moment in order to keep things simple).
To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
example:
for (i = 0; i < 100; i++) -- loop 1
{
for (j = 0; j < 100; j++) -- loop 2
{
k1 = i;
k2 = j;
use2 (k1, k2);
for (t = 0; t < 100; t++) -- loop 3
use3 (k1, k2);
}
use1 (k1, k2);
}
Both k1 and k2 are invariants in loop3, thus
analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
As they are invariant, it does not matter whether we consider their
usage in loop 3 or loop 2, hence
analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
Similarly for their evolutions with respect to loop 1. The values of K2
in the use in loop 2 vary independently on loop 1, thus we cannot express
the evolution with respect to loop 1:
analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
The value of k2 in the use in loop 1 is known, though:
analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
*/
static tree
analyze_scalar_evolution_in_loop (class loop *wrto_loop, class loop *use_loop,
tree version, bool *folded_casts)
{
bool val = false;
tree ev = version, tmp;
/* We cannot just do
tmp = analyze_scalar_evolution (use_loop, version);
ev = resolve_mixers (wrto_loop, tmp, folded_casts);
as resolve_mixers would query the scalar evolution with respect to
wrto_loop. For example, in the situation described in the function
comment, suppose that wrto_loop = loop1, use_loop = loop3 and
version = k2. Then
analyze_scalar_evolution (use_loop, version) = k2
and resolve_mixers (loop1, k2, folded_casts) finds that the value of
k2 in loop 1 is 100, which is a wrong result, since we are interested
in the value in loop 3.
Instead, we need to proceed from use_loop to wrto_loop loop by loop,
each time checking that there is no evolution in the inner loop. */
if (folded_casts)
*folded_casts = false;
while (1)
{
tmp = analyze_scalar_evolution (use_loop, ev);
ev = resolve_mixers (use_loop, tmp, folded_casts);
if (use_loop == wrto_loop)
return ev;
/* If the value of the use changes in the inner loop, we cannot express
its value in the outer loop (we might try to return interval chrec,
but we do not have a user for it anyway) */
if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
|| !val)
return chrec_dont_know;
use_loop = loop_outer (use_loop);
}
}
/* Computes a hash function for database element ELT. */
static inline hashval_t
hash_idx_scev_info (const void *elt_)
{
unsigned idx = ((size_t) elt_) - 2;
return scev_info_hasher::hash (&global_cache->entries[idx]);
}
/* Compares database elements E1 and E2. */
static inline int
eq_idx_scev_info (const void *e1, const void *e2)
{
unsigned idx1 = ((size_t) e1) - 2;
return scev_info_hasher::equal (&global_cache->entries[idx1],
(const scev_info_str *) e2);
}
/* Returns from CACHE the slot number of the cached chrec for NAME. */
static unsigned
get_instantiated_value_entry (instantiate_cache_type &cache,
tree name, edge instantiate_below)
{
if (!cache.map)
{
cache.map = htab_create (10, hash_idx_scev_info, eq_idx_scev_info, NULL);
cache.entries.create (10);
}
scev_info_str e;
e.name_version = SSA_NAME_VERSION (name);
e.instantiated_below = instantiate_below->dest->index;
void **slot = htab_find_slot_with_hash (cache.map, &e,
scev_info_hasher::hash (&e), INSERT);
if (!*slot)
{
e.chrec = chrec_not_analyzed_yet;
*slot = (void *)(size_t)(cache.entries.length () + 2);
cache.entries.safe_push (e);
}
return ((size_t)*slot) - 2;
}
/* Return the closed_loop_phi node for VAR. If there is none, return
NULL_TREE. */
static tree
loop_closed_phi_def (tree var)
{
class loop *loop;
edge exit;
gphi *phi;
gphi_iterator psi;
if (var == NULL_TREE
|| TREE_CODE (var) != SSA_NAME)
return NULL_TREE;
loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
exit = single_exit (loop);
if (!exit)
return NULL_TREE;
for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
{
phi = psi.phi ();
if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
return PHI_RESULT (phi);
}
return NULL_TREE;
}
static tree instantiate_scev_r (edge, class loop *, class loop *,
tree, bool *, int);
/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
and EVOLUTION_LOOP, that were left under a symbolic form.
CHREC is an SSA_NAME to be instantiated.
CACHE is the cache of already instantiated values.
Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
conversions that may wrap in signed/pointer type are folded, as long
as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
then we don't do such fold.
SIZE_EXPR is used for computing the size of the expression to be
instantiated, and to stop if it exceeds some limit. */
static tree
instantiate_scev_name (edge instantiate_below,
class loop *evolution_loop, class loop *inner_loop,
tree chrec,
bool *fold_conversions,
int size_expr)
{
tree res;
class loop *def_loop;
basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
/* A parameter, nothing to do. */
if (!def_bb
|| !dominated_by_p (CDI_DOMINATORS, def_bb, instantiate_below->dest))
return chrec;
/* We cache the value of instantiated variable to avoid exponential
time complexity due to reevaluations. We also store the convenient
value in the cache in order to prevent infinite recursion -- we do
not want to instantiate the SSA_NAME if it is in a mixer
structure. This is used for avoiding the instantiation of
recursively defined functions, such as:
| a_2 -> {0, +, 1, +, a_2}_1 */
unsigned si = get_instantiated_value_entry (*global_cache,
chrec, instantiate_below);
if (global_cache->get (si) != chrec_not_analyzed_yet)
return global_cache->get (si);
/* On recursion return chrec_dont_know. */
global_cache->set (si, chrec_dont_know);
def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
if (! dominated_by_p (CDI_DOMINATORS,
def_loop->header, instantiate_below->dest))
{
gimple *def = SSA_NAME_DEF_STMT (chrec);
if (gassign *ass = dyn_cast <gassign *> (def))
{
switch (gimple_assign_rhs_class (ass))
{
case GIMPLE_UNARY_RHS:
{
tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
inner_loop, gimple_assign_rhs1 (ass),
fold_conversions, size_expr);
if (op0 == chrec_dont_know)
return chrec_dont_know;
res = fold_build1 (gimple_assign_rhs_code (ass),
TREE_TYPE (chrec), op0);
break;
}
case GIMPLE_BINARY_RHS:
{
tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
inner_loop, gimple_assign_rhs1 (ass),
fold_conversions, size_expr);
if (op0 == chrec_dont_know)
return chrec_dont_know;
tree op1 = instantiate_scev_r (instantiate_below, evolution_loop,
inner_loop, gimple_assign_rhs2 (ass),
fold_conversions, size_expr);
if (op1 == chrec_dont_know)
return chrec_dont_know;
res = fold_build2 (gimple_assign_rhs_code (ass),
TREE_TYPE (chrec), op0, op1);
break;
}
default:
res = chrec_dont_know;
}
}
else
res = chrec_dont_know;
global_cache->set (si, res);
return res;
}
/* If the analysis yields a parametric chrec, instantiate the
result again. */
res = analyze_scalar_evolution (def_loop, chrec);
/* Don't instantiate default definitions. */
if (TREE_CODE (res) == SSA_NAME
&& SSA_NAME_IS_DEFAULT_DEF (res))
;
/* Don't instantiate loop-closed-ssa phi nodes. */
else if (TREE_CODE (res) == SSA_NAME
&& loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
> loop_depth (def_loop))
{
if (res == chrec)
res = loop_closed_phi_def (chrec);
else
res = chrec;
/* When there is no loop_closed_phi_def, it means that the
variable is not used after the loop: try to still compute the
value of the variable when exiting the loop. */
if (res == NULL_TREE)
{
loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec));
res = analyze_scalar_evolution (loop, chrec);
res = compute_overall_effect_of_inner_loop (loop, res);
res = instantiate_scev_r (instantiate_below, evolution_loop,
inner_loop, res,
fold_conversions, size_expr);
}
else if (dominated_by_p (CDI_DOMINATORS,
gimple_bb (SSA_NAME_DEF_STMT (res)),
instantiate_below->dest))
res = chrec_dont_know;
}
else if (res != chrec_dont_know)
{
if (inner_loop
&& def_bb->loop_father != inner_loop
&& !flow_loop_nested_p (def_bb->loop_father, inner_loop))
/* ??? We could try to compute the overall effect of the loop here. */
res = chrec_dont_know;
else
res = instantiate_scev_r (instantiate_below, evolution_loop,
inner_loop, res,
fold_conversions, size_expr);
}
/* Store the correct value to the cache. */
global_cache->set (si, res);
return res;
}
/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
and EVOLUTION_LOOP, that were left under a symbolic form.
CHREC is a polynomial chain of recurrence to be instantiated.
CACHE is the cache of already instantiated values.
Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
conversions that may wrap in signed/pointer type are folded, as long
as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
then we don't do such fold.
SIZE_EXPR is used for computing the size of the expression to be
instantiated, and to stop if it exceeds some limit. */
static tree
instantiate_scev_poly (edge instantiate_below,
class loop *evolution_loop, class loop *,
tree chrec, bool *fold_conversions, int size_expr)
{
tree op1;
tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
get_chrec_loop (chrec),
CHREC_LEFT (chrec), fold_conversions,
size_expr);
if (op0 == chrec_dont_know)
return chrec_dont_know;
op1 = instantiate_scev_r (instantiate_below, evolution_loop,
get_chrec_loop (chrec),
CHREC_RIGHT (chrec), fold_conversions,
size_expr);
if (op1 == chrec_dont_know)
return chrec_dont_know;
if (CHREC_LEFT (chrec) != op0
|| CHREC_RIGHT (chrec) != op1)
{
op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
}
return chrec;
}
/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
and EVOLUTION_LOOP, that were left under a symbolic form.
"C0 CODE C1" is a binary expression of type TYPE to be instantiated.
CACHE is the cache of already instantiated values.
Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
conversions that may wrap in signed/pointer type are folded, as long
as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
then we don't do such fold.
SIZE_EXPR is used for computing the size of the expression to be
instantiated, and to stop if it exceeds some limit. */
static tree
instantiate_scev_binary (edge instantiate_below,
class loop *evolution_loop, class loop *inner_loop,
tree chrec, enum tree_code code,
tree type, tree c0, tree c1,
bool *fold_conversions, int size_expr)
{
tree op1;
tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
c0, fold_conversions, size_expr);
if (op0 == chrec_dont_know)
return chrec_dont_know;
/* While we eventually compute the same op1 if c0 == c1 the process
of doing this is expensive so the following short-cut prevents
exponential compile-time behavior. */
if (c0 != c1)
{
op1 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
c1, fold_conversions, size_expr);
if (op1 == chrec_dont_know)
return chrec_dont_know;
}
else
op1 = op0;
if (c0 != op0
|| c1 != op1)
{
op0 = chrec_convert (type, op0, NULL);
op1 = chrec_convert_rhs (type, op1, NULL);
switch (code)
{
case POINTER_PLUS_EXPR:
case PLUS_EXPR:
return chrec_fold_plus (type, op0, op1);
case MINUS_EXPR:
return chrec_fold_minus (type, op0, op1);
case MULT_EXPR:
return chrec_fold_multiply (type, op0, op1);
default:
gcc_unreachable ();
}
}
return chrec ? chrec : fold_build2 (code, type, c0, c1);
}
/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
and EVOLUTION_LOOP, that were left under a symbolic form.
"CHREC" that stands for a convert expression "(TYPE) OP" is to be
instantiated.
CACHE is the cache of already instantiated values.
Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
conversions that may wrap in signed/pointer type are folded, as long
as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
then we don't do such fold.
SIZE_EXPR is used for computing the size of the expression to be
instantiated, and to stop if it exceeds some limit. */
static tree
instantiate_scev_convert (edge instantiate_below,
class loop *evolution_loop, class loop *inner_loop,
tree chrec, tree type, tree op,
bool *fold_conversions, int size_expr)
{
tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
inner_loop, op,
fold_conversions, size_expr);
if (op0 == chrec_dont_know)
return chrec_dont_know;
if (fold_conversions)
{
tree tmp = chrec_convert_aggressive (type, op0, fold_conversions);
if (tmp)
return tmp;
/* If we used chrec_convert_aggressive, we can no longer assume that
signed chrecs do not overflow, as chrec_convert does, so avoid
calling it in that case. */
if (*fold_conversions)
{
if (chrec && op0 == op)
return chrec;
return fold_convert (type, op0);
}
}
return chrec_convert (type, op0, NULL);
}
/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
and EVOLUTION_LOOP, that were left under a symbolic form.
CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
Handle ~X as -1 - X.
Handle -X as -1 * X.
CACHE is the cache of already instantiated values.
Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
conversions that may wrap in signed/pointer type are folded, as long
as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
then we don't do such fold.
SIZE_EXPR is used for computing the size of the expression to be
instantiated, and to stop if it exceeds some limit. */
static tree
instantiate_scev_not (edge instantiate_below,
class loop *evolution_loop, class loop *inner_loop,
tree chrec,
enum tree_code code, tree type, tree op,
bool *fold_conversions, int size_expr)
{
tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
inner_loop, op,
fold_conversions, size_expr);
if (op0 == chrec_dont_know)
return chrec_dont_know;
if (op != op0)
{
op0 = chrec_convert (type, op0, NULL);
switch (code)
{
case BIT_NOT_EXPR:
return chrec_fold_minus
(type, fold_convert (type, integer_minus_one_node), op0);
case NEGATE_EXPR:
return chrec_fold_multiply
(type, fold_convert (type, integer_minus_one_node), op0);
default:
gcc_unreachable ();
}
}
return chrec ? chrec : fold_build1 (code, type, op0);
}
/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
and EVOLUTION_LOOP, that were left under a symbolic form.
CHREC is the scalar evolution to instantiate.
CACHE is the cache of already instantiated values.
Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
conversions that may wrap in signed/pointer type are folded, as long
as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
then we don't do such fold.
SIZE_EXPR is used for computing the size of the expression to be
instantiated, and to stop if it exceeds some limit. */
static tree
instantiate_scev_r (edge instantiate_below,
class loop *evolution_loop, class loop *inner_loop,
tree chrec,
bool *fold_conversions, int size_expr)
{
/* Give up if the expression is larger than the MAX that we allow. */
if (size_expr++ > param_scev_max_expr_size)
return chrec_dont_know;
if (chrec == NULL_TREE
|| automatically_generated_chrec_p (chrec)
|| is_gimple_min_invariant (chrec))
return chrec;
switch (TREE_CODE (chrec))
{
case SSA_NAME:
return instantiate_scev_name (instantiate_below, evolution_loop,
inner_loop, chrec,
fold_conversions, size_expr);
case POLYNOMIAL_CHREC:
return instantiate_scev_poly (instantiate_below, evolution_loop,
inner_loop, chrec,
fold_conversions, size_expr);
case POINTER_PLUS_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
return instantiate_scev_binary (instantiate_below, evolution_loop,
inner_loop, chrec,
TREE_CODE (chrec), chrec_type (chrec),
TREE_OPERAND (chrec, 0),
TREE_OPERAND (chrec, 1),
fold_conversions, size_expr);
CASE_CONVERT:
return instantiate_scev_convert (instantiate_below, evolution_loop,
inner_loop, chrec,
TREE_TYPE (chrec), TREE_OPERAND (chrec, 0),
fold_conversions, size_expr);
case NEGATE_EXPR:
case BIT_NOT_EXPR:
return instantiate_scev_not (instantiate_below, evolution_loop,
inner_loop, chrec,
TREE_CODE (chrec), TREE_TYPE (chrec),
TREE_OPERAND (chrec, 0),
fold_conversions, size_expr);
case ADDR_EXPR:
if (is_gimple_min_invariant (chrec))
return chrec;
/* Fallthru. */
case SCEV_NOT_KNOWN:
return chrec_dont_know;
case SCEV_KNOWN:
return chrec_known;
default:
if (CONSTANT_CLASS_P (chrec))
return chrec;
return chrec_dont_know;
}
}
/* Analyze all the parameters of the chrec that were left under a
symbolic form. INSTANTIATE_BELOW is the basic block that stops the
recursive instantiation of parameters: a parameter is a variable
that is defined in a basic block that dominates INSTANTIATE_BELOW or
a function parameter. */
tree
instantiate_scev (edge instantiate_below, class loop *evolution_loop,
tree chrec)
{
tree res;
if (dump_file && (dump_flags & TDF_SCEV))
{
fprintf (dump_file, "(instantiate_scev \n");
fprintf (dump_file, " (instantiate_below = %d -> %d)\n",
instantiate_below->src->index, instantiate_below->dest->index);
if (evolution_loop)
fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
fprintf (dump_file, " (chrec = ");
print_generic_expr (dump_file, chrec);
fprintf (dump_file, ")\n");
}
bool destr = false;
if (!global_cache)
{
global_cache = new instantiate_cache_type;
destr = true;
}
res = instantiate_scev_r (instantiate_below, evolution_loop,
NULL, chrec, NULL, 0);
if (destr)
{
delete global_cache;
global_cache = NULL;
}
if (dump_file && (dump_flags & TDF_SCEV))
{
fprintf (dump_file, " (res = ");
print_generic_expr (dump_file, res);
fprintf (dump_file, "))\n");
}
return res;
}
/* Similar to instantiate_parameters, but does not introduce the
evolutions in outer loops for LOOP invariants in CHREC, and does not
care about causing overflows, as long as they do not affect value
of an expression. */
tree
resolve_mixers (class loop *loop, tree chrec, bool *folded_casts)
{
bool destr = false;
bool fold_conversions = false;
if (!global_cache)
{
global_cache = new instantiate_cache_type;
destr = true;
}
tree ret = instantiate_scev_r (loop_preheader_edge (loop), loop, NULL,
chrec, &fold_conversions, 0);
if (folded_casts && !*folded_casts)
*folded_casts = fold_conversions;
if (destr)
{
delete global_cache;
global_cache = NULL;
}
return ret;
}
/* Entry point for the analysis of the number of iterations pass.
This function tries to safely approximate the number of iterations
the loop will run. When this property is not decidable at compile
time, the result is chrec_dont_know. Otherwise the result is a
scalar or a symbolic parameter. When the number of iterations may
be equal to zero and the property cannot be determined at compile
time, the result is a COND_EXPR that represents in a symbolic form
the conditions under which the number of iterations is not zero.
Example of analysis: suppose that the loop has an exit condition:
"if (b > 49) goto end_loop;"
and that in a previous analysis we have determined that the
variable 'b' has an evolution function:
"EF = {23, +, 5}_2".
When we evaluate the function at the point 5, i.e. the value of the
variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
and EF (6) = 53. In this case the value of 'b' on exit is '53' and
the loop body has been executed 6 times. */
tree
number_of_latch_executions (class loop *loop)
{
edge exit;
class tree_niter_desc niter_desc;
tree may_be_zero;
tree res;
/* Determine whether the number of iterations in loop has already
been computed. */
res = loop->nb_iterations;
if (res)
return res;
may_be_zero = NULL_TREE;
if (dump_file && (dump_flags & TDF_SCEV))
fprintf (dump_file, "(number_of_iterations_in_loop = \n");
res = chrec_dont_know;
exit = single_exit (loop);
if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
{
may_be_zero = niter_desc.may_be_zero;
res = niter_desc.niter;
}
if (res == chrec_dont_know
|| !may_be_zero
|| integer_zerop (may_be_zero))
;
else if (integer_nonzerop (may_be_zero))
res = build_int_cst (TREE_TYPE (res), 0);
else if (COMPARISON_CLASS_P (may_be_zero))
res = fold_build3 (COND_EXPR, TREE_TYPE (res), may_be_zero,
build_int_cst (TREE_TYPE (res), 0), res);
else
res = chrec_dont_know;
if (dump_file && (dump_flags & TDF_SCEV))
{
fprintf (dump_file, " (set_nb_iterations_in_loop = ");
print_generic_expr (dump_file, res);
fprintf (dump_file, "))\n");
}
loop->nb_iterations = res;
return res;
}
/* Counters for the stats. */
struct chrec_stats
{
unsigned nb_chrecs;
unsigned nb_affine;
unsigned nb_affine_multivar;
unsigned nb_higher_poly;
unsigned nb_chrec_dont_know;
unsigned nb_undetermined;
};
/* Reset the counters. */
static inline void
reset_chrecs_counters (struct chrec_stats *stats)
{
stats->nb_chrecs = 0;
stats->nb_affine = 0;
stats->nb_affine_multivar = 0;
stats->nb_higher_poly = 0;
stats->nb_chrec_dont_know = 0;
stats->nb_undetermined = 0;
}
/* Dump the contents of a CHREC_STATS structure. */
static void
dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
{
fprintf (file, "\n(\n");
fprintf (file, "-----------------------------------------\n");
fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
fprintf (file, "%d\tdegree greater than 2 polynomials\n",
stats->nb_higher_poly);
fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
fprintf (file, "-----------------------------------------\n");
fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
fprintf (file, "%d\twith undetermined coefficients\n",
stats->nb_undetermined);
fprintf (file, "-----------------------------------------\n");
fprintf (file, "%d\tchrecs in the scev database\n",
(int) scalar_evolution_info->elements ());
fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
fprintf (file, "-----------------------------------------\n");
fprintf (file, ")\n\n");
}
/* Gather statistics about CHREC. */
static void
gather_chrec_stats (tree chrec, struct chrec_stats *stats)
{
if (dump_file && (dump_flags & TDF_STATS))
{
fprintf (dump_file, "(classify_chrec ");
print_generic_expr (dump_file, chrec);
fprintf (dump_file, "\n");
}
stats->nb_chrecs++;
if (chrec == NULL_TREE)
{
stats->nb_undetermined++;
return;
}
switch (TREE_CODE (chrec))
{
case POLYNOMIAL_CHREC:
if (evolution_function_is_affine_p (chrec))
{
if (dump_file && (dump_flags & TDF_STATS))
fprintf (dump_file, " affine_univariate\n");
stats->nb_affine++;
}
else if (evolution_function_is_affine_multivariate_p (chrec, 0))
{
if (dump_file && (dump_flags & TDF_STATS))
fprintf (dump_file, " affine_multivariate\n");
stats->nb_affine_multivar++;
}
else
{
if (dump_file && (dump_flags & TDF_STATS))
fprintf (dump_file, " higher_degree_polynomial\n");
stats->nb_higher_poly++;
}
break;
default:
break;
}
if (chrec_contains_undetermined (chrec))
{
if (dump_file && (dump_flags & TDF_STATS))
fprintf (dump_file, " undetermined\n");
stats->nb_undetermined++;
}
if (dump_file && (dump_flags & TDF_STATS))
fprintf (dump_file, ")\n");
}
/* Classify the chrecs of the whole database. */
void
gather_stats_on_scev_database (void)
{
struct chrec_stats stats;
if (!dump_file)
return;
reset_chrecs_counters (&stats);
hash_table<scev_info_hasher>::iterator iter;
scev_info_str *elt;
FOR_EACH_HASH_TABLE_ELEMENT (*scalar_evolution_info, elt, scev_info_str *,
iter)
gather_chrec_stats (elt->chrec, &stats);
dump_chrecs_stats (dump_file, &stats);
}
/* Initialize the analysis of scalar evolutions for LOOPS. */
void
scev_initialize (void)
{
gcc_assert (! scev_initialized_p ()
&& loops_state_satisfies_p (cfun, LOOPS_NORMAL));
scalar_evolution_info = hash_table<scev_info_hasher>::create_ggc (100);
for (auto loop : loops_list (cfun, 0))
loop->nb_iterations = NULL_TREE;
}
/* Return true if SCEV is initialized. */
bool
scev_initialized_p (void)
{
return scalar_evolution_info != NULL;
}
/* Cleans up the information cached by the scalar evolutions analysis
in the hash table. */
void
scev_reset_htab (void)
{
if (!scalar_evolution_info)
return;
scalar_evolution_info->empty ();
}
/* Cleans up the information cached by the scalar evolutions analysis
in the hash table and in the loop->nb_iterations. */
void
scev_reset (void)
{
scev_reset_htab ();
for (auto loop : loops_list (cfun, 0))
loop->nb_iterations = NULL_TREE;
}
/* Return true if the IV calculation in TYPE can overflow based on the knowledge
of the upper bound on the number of iterations of LOOP, the BASE and STEP
of IV.
We do not use information whether TYPE can overflow so it is safe to
use this test even for derived IVs not computed every iteration or
hypotetical IVs to be inserted into code. */
bool
iv_can_overflow_p (class loop *loop, tree type, tree base, tree step)
{
widest_int nit;
wide_int base_min, base_max, step_min, step_max, type_min, type_max;
signop sgn = TYPE_SIGN (type);
value_range r;
if (integer_zerop (step))
return false;
if (!INTEGRAL_TYPE_P (TREE_TYPE (base))
|| !get_range_query (cfun)->range_of_expr (r, base)
|| r.varying_p ()
|| r.undefined_p ())
return true;
base_min = r.lower_bound ();
base_max = r.upper_bound ();
if (!INTEGRAL_TYPE_P (TREE_TYPE (step))
|| !get_range_query (cfun)->range_of_expr (r, step)
|| r.varying_p ()
|| r.undefined_p ())
return true;
step_min = r.lower_bound ();
step_max = r.upper_bound ();
if (!get_max_loop_iterations (loop, &nit))
return true;
type_min = wi::min_value (type);
type_max = wi::max_value (type);
/* Just sanity check that we don't see values out of the range of the type.
In this case the arithmetics bellow would overflow. */
gcc_checking_assert (wi::ge_p (base_min, type_min, sgn)
&& wi::le_p (base_max, type_max, sgn));
/* Account the possible increment in the last ieration. */
wi::overflow_type overflow = wi::OVF_NONE;
nit = wi::add (nit, 1, SIGNED, &overflow);
if (overflow)
return true;
/* NIT is typeless and can exceed the precision of the type. In this case
overflow is always possible, because we know STEP is non-zero. */
if (wi::min_precision (nit, UNSIGNED) > TYPE_PRECISION (type))
return true;
wide_int nit2 = wide_int::from (nit, TYPE_PRECISION (type), UNSIGNED);
/* If step can be positive, check that nit*step <= type_max-base.
This can be done by unsigned arithmetic and we only need to watch overflow
in the multiplication. The right hand side can always be represented in
the type. */
if (sgn == UNSIGNED || !wi::neg_p (step_max))
{
wi::overflow_type overflow = wi::OVF_NONE;
if (wi::gtu_p (wi::mul (step_max, nit2, UNSIGNED, &overflow),
type_max - base_max)
|| overflow)
return true;
}
/* If step can be negative, check that nit*(-step) <= base_min-type_min. */
if (sgn == SIGNED && wi::neg_p (step_min))
{
wi::overflow_type overflow, overflow2;
overflow = overflow2 = wi::OVF_NONE;
if (wi::gtu_p (wi::mul (wi::neg (step_min, &overflow2),
nit2, UNSIGNED, &overflow),
base_min - type_min)
|| overflow || overflow2)
return true;
}
return false;
}
/* Given EV with form of "(type) {inner_base, inner_step}_loop", this
function tries to derive condition under which it can be simplified
into "{(type)inner_base, (type)inner_step}_loop". The condition is
the maximum number that inner iv can iterate. */
static tree
derive_simple_iv_with_niters (tree ev, tree *niters)
{
if (!CONVERT_EXPR_P (ev))
return ev;
tree inner_ev = TREE_OPERAND (ev, 0);
if (TREE_CODE (inner_ev) != POLYNOMIAL_CHREC)
return ev;
tree init = CHREC_LEFT (inner_ev);
tree step = CHREC_RIGHT (inner_ev);
if (TREE_CODE (init) != INTEGER_CST
|| TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
return ev;
tree type = TREE_TYPE (ev);
tree inner_type = TREE_TYPE (inner_ev);
if (TYPE_PRECISION (inner_type) >= TYPE_PRECISION (type))
return ev;
/* Type conversion in "(type) {inner_base, inner_step}_loop" can be
folded only if inner iv won't overflow. We compute the maximum
number the inner iv can iterate before overflowing and return the
simplified affine iv. */
tree delta;
init = fold_convert (type, init);
step = fold_convert (type, step);
ev = build_polynomial_chrec (CHREC_VARIABLE (inner_ev), init, step);
if (tree_int_cst_sign_bit (step))
{
tree bound = lower_bound_in_type (inner_type, inner_type);
delta = fold_build2 (MINUS_EXPR, type, init, fold_convert (type, bound));
step = fold_build1 (NEGATE_EXPR, type, step);
}
else
{
tree bound = upper_bound_in_type (inner_type, inner_type);
delta = fold_build2 (MINUS_EXPR, type, fold_convert (type, bound), init);
}
*niters = fold_build2 (FLOOR_DIV_EXPR, type, delta, step);
return ev;
}
/* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
respect to WRTO_LOOP and returns its base and step in IV if possible
(see analyze_scalar_evolution_in_loop for more details on USE_LOOP
and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
invariant in LOOP. Otherwise we require it to be an integer constant.
IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
because it is computed in signed arithmetics). Consequently, adding an
induction variable
for (i = IV->base; ; i += IV->step)
is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
false for the type of the induction variable, or you can prove that i does
not wrap by some other argument. Otherwise, this might introduce undefined
behavior, and
i = iv->base;
for (; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
must be used instead.
When IV_NITERS is not NULL, this function also checks case in which OP
is a conversion of an inner simple iv of below form:
(outer_type){inner_base, inner_step}_loop.
If type of inner iv has smaller precision than outer_type, it can't be
folded into {(outer_type)inner_base, (outer_type)inner_step}_loop because
the inner iv could overflow/wrap. In this case, we derive a condition
under which the inner iv won't overflow/wrap and do the simplification.
The derived condition normally is the maximum number the inner iv can
iterate, and will be stored in IV_NITERS. This is useful in loop niter
analysis, to derive break conditions when a loop must terminate, when is
infinite. */
bool
simple_iv_with_niters (class loop *wrto_loop, class loop *use_loop,
tree op, affine_iv *iv, tree *iv_niters,
bool allow_nonconstant_step)
{
enum tree_code code;
tree type, ev, base, e;
wide_int extreme;
bool folded_casts;
iv->base = NULL_TREE;
iv->step = NULL_TREE;
iv->no_overflow = false;
type = TREE_TYPE (op);
if (!POINTER_TYPE_P (type)
&& !INTEGRAL_TYPE_P (type))
return false;
ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
&folded_casts);
if (chrec_contains_undetermined (ev)
|| chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
return false;
if (tree_does_not_contain_chrecs (ev))
{
iv->base = ev;
iv->step = build_int_cst (TREE_TYPE (ev), 0);
iv->no_overflow = true;
return true;
}
/* If we can derive valid scalar evolution with assumptions. */
if (iv_niters && TREE_CODE (ev) != POLYNOMIAL_CHREC)
ev = derive_simple_iv_with_niters (ev, iv_niters);
if (TREE_CODE (ev) != POLYNOMIAL_CHREC)
return false;
if (CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
return false;
iv->step = CHREC_RIGHT (ev);
if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
|| tree_contains_chrecs (iv->step, NULL))
return false;
iv->base = CHREC_LEFT (ev);
if (tree_contains_chrecs (iv->base, NULL))
return false;
iv->no_overflow = !folded_casts && nowrap_type_p (type);
if (!iv->no_overflow
&& !iv_can_overflow_p (wrto_loop, type, iv->base, iv->step))
iv->no_overflow = true;
/* Try to simplify iv base:
(signed T) ((unsigned T)base + step) ;; TREE_TYPE (base) == signed T
== (signed T)(unsigned T)base + step
== base + step
If we can prove operation (base + step) doesn't overflow or underflow.
Specifically, we try to prove below conditions are satisfied:
base <= UPPER_BOUND (type) - step ;;step > 0
base >= LOWER_BOUND (type) - step ;;step < 0
This is done by proving the reverse conditions are false using loop's
initial conditions.
The is necessary to make loop niter, or iv overflow analysis easier
for below example:
int foo (int *a, signed char s, signed char l)
{
signed char i;
for (i = s; i < l; i++)
a[i] = 0;
return 0;
}
Note variable I is firstly converted to type unsigned char, incremented,
then converted back to type signed char. */
if (wrto_loop->num != use_loop->num)
return true;
if (!CONVERT_EXPR_P (iv->base) || TREE_CODE (iv->step) != INTEGER_CST)
return true;
type = TREE_TYPE (iv->base);
e = TREE_OPERAND (iv->base, 0);
if (TREE_CODE (e) != PLUS_EXPR
|| TREE_CODE (TREE_OPERAND (e, 1)) != INTEGER_CST
|| !tree_int_cst_equal (iv->step,
fold_convert (type, TREE_OPERAND (e, 1))))
return true;
e = TREE_OPERAND (e, 0);
if (!CONVERT_EXPR_P (e))
return true;
base = TREE_OPERAND (e, 0);
if (!useless_type_conversion_p (type, TREE_TYPE (base)))
return true;
if (tree_int_cst_sign_bit (iv->step))
{
code = LT_EXPR;
extreme = wi::min_value (type);
}
else
{
code = GT_EXPR;
extreme = wi::max_value (type);
}
wi::overflow_type overflow = wi::OVF_NONE;
extreme = wi::sub (extreme, wi::to_wide (iv->step),
TYPE_SIGN (type), &overflow);
if (overflow)
return true;
e = fold_build2 (code, boolean_type_node, base,
wide_int_to_tree (type, extreme));
e = simplify_using_initial_conditions (use_loop, e);
if (!integer_zerop (e))
return true;
if (POINTER_TYPE_P (TREE_TYPE (base)))
code = POINTER_PLUS_EXPR;
else
code = PLUS_EXPR;
iv->base = fold_build2 (code, TREE_TYPE (base), base, iv->step);
return true;
}
/* Like simple_iv_with_niters, but return TRUE when OP behaves as a simple
affine iv unconditionally. */
bool
simple_iv (class loop *wrto_loop, class loop *use_loop, tree op,
affine_iv *iv, bool allow_nonconstant_step)
{
return simple_iv_with_niters (wrto_loop, use_loop, op, iv,
NULL, allow_nonconstant_step);
}
/* Finalize the scalar evolution analysis. */
void
scev_finalize (void)
{
if (!scalar_evolution_info)
return;
scalar_evolution_info->empty ();
scalar_evolution_info = NULL;
free_numbers_of_iterations_estimates (cfun);
}
/* Returns true if the expression EXPR is considered to be too expensive
for scev_const_prop. */
static bool
expression_expensive_p (tree expr, hash_map<tree, uint64_t> &cache,
uint64_t &cost)
{
enum tree_code code;
if (is_gimple_val (expr))
return false;
code = TREE_CODE (expr);
if (code == TRUNC_DIV_EXPR
|| code == CEIL_DIV_EXPR
|| code == FLOOR_DIV_EXPR
|| code == ROUND_DIV_EXPR
|| code == TRUNC_MOD_EXPR
|| code == CEIL_MOD_EXPR
|| code == FLOOR_MOD_EXPR
|| code == ROUND_MOD_EXPR
|| code == EXACT_DIV_EXPR)
{
/* Division by power of two is usually cheap, so we allow it.
Forbid anything else. */
if (!integer_pow2p (TREE_OPERAND (expr, 1)))
return true;
}
bool visited_p;
uint64_t &local_cost = cache.get_or_insert (expr, &visited_p);
if (visited_p)
{
uint64_t tem = cost + local_cost;
if (tem < cost)
return true;
cost = tem;
return false;
}
local_cost = 1;
uint64_t op_cost = 0;
if (code == CALL_EXPR)
{
tree arg;
call_expr_arg_iterator iter;
/* Even though is_inexpensive_builtin might say true, we will get a
library call for popcount when backend does not have an instruction
to do so. We consider this to be expensive and generate
__builtin_popcount only when backend defines it. */
optab optab;
combined_fn cfn = get_call_combined_fn (expr);
switch (cfn)
{
CASE_CFN_POPCOUNT:
optab = popcount_optab;
goto bitcount_call;
CASE_CFN_CLZ:
optab = clz_optab;
goto bitcount_call;
CASE_CFN_CTZ:
optab = ctz_optab;
bitcount_call:
/* Check if opcode for popcount is available in the mode required. */
if (optab_handler (optab,
TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (expr, 0))))
== CODE_FOR_nothing)
{
machine_mode mode;
mode = TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (expr, 0)));
scalar_int_mode int_mode;
/* If the mode is of 2 * UNITS_PER_WORD size, we can handle
double-word popcount by emitting two single-word popcount
instructions. */
if (is_a <scalar_int_mode> (mode, &int_mode)
&& GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
&& (optab_handler (optab, word_mode)
!= CODE_FOR_nothing))
break;
return true;
}
break;
default:
if (cfn == CFN_LAST
|| !is_inexpensive_builtin (get_callee_fndecl (expr)))
return true;
break;
}
FOR_EACH_CALL_EXPR_ARG (arg, iter, expr)
if (expression_expensive_p (arg, cache, op_cost))
return true;
*cache.get (expr) += op_cost;
cost += op_cost + 1;
return false;
}
if (code == COND_EXPR)
{
if (expression_expensive_p (TREE_OPERAND (expr, 0), cache, op_cost)
|| (EXPR_P (TREE_OPERAND (expr, 1))
&& EXPR_P (TREE_OPERAND (expr, 2)))
/* If either branch has side effects or could trap. */
|| TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))
|| generic_expr_could_trap_p (TREE_OPERAND (expr, 1))
|| TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 0))
|| generic_expr_could_trap_p (TREE_OPERAND (expr, 0))
|| expression_expensive_p (TREE_OPERAND (expr, 1),
cache, op_cost)
|| expression_expensive_p (TREE_OPERAND (expr, 2),
cache, op_cost))
return true;
*cache.get (expr) += op_cost;
cost += op_cost + 1;
return false;
}
switch (TREE_CODE_CLASS (code))
{
case tcc_binary:
case tcc_comparison:
if (expression_expensive_p (TREE_OPERAND (expr, 1), cache, op_cost))
return true;
/* Fallthru. */
case tcc_unary:
if (expression_expensive_p (TREE_OPERAND (expr, 0), cache, op_cost))
return true;
*cache.get (expr) += op_cost;
cost += op_cost + 1;
return false;
default:
return true;
}
}
bool
expression_expensive_p (tree expr)
{
hash_map<tree, uint64_t> cache;
uint64_t expanded_size = 0;
return (expression_expensive_p (expr, cache, expanded_size)
|| expanded_size > cache.elements ());
}
/* Match.pd function to match bitwise inductive expression.
.i.e.
_2 = 1 << _1;
_3 = ~_2;
tmp_9 = _3 & tmp_12; */
extern bool gimple_bitwise_induction_p (tree, tree *, tree (*)(tree));
/* Return the inductive expression of bitwise operation if possible,
otherwise returns DEF. */
static tree
analyze_and_compute_bitwise_induction_effect (class loop* loop,
tree phidef,
unsigned HOST_WIDE_INT niter)
{
tree match_op[3],inv, bitwise_scev;
tree type = TREE_TYPE (phidef);
gphi* header_phi = NULL;
/* Match things like op2(MATCH_OP[2]), op1(MATCH_OP[1]), phidef(PHIDEF)
op2 = PHI <phidef, inv>
_1 = (int) bit_17;
_3 = 1 << _1;
op1 = ~_3;
phidef = op1 & op2; */
if (!gimple_bitwise_induction_p (phidef, &match_op[0], NULL)
|| TREE_CODE (match_op[2]) != SSA_NAME
|| !(header_phi = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (match_op[2])))
|| gimple_phi_num_args (header_phi) != 2)
return NULL_TREE;
if (PHI_ARG_DEF_FROM_EDGE (header_phi, loop_latch_edge (loop)) != phidef)
return NULL_TREE;
bitwise_scev = analyze_scalar_evolution (loop, match_op[1]);
bitwise_scev = instantiate_parameters (loop, bitwise_scev);
/* Make sure bits is in range of type precision. */
if (TREE_CODE (bitwise_scev) != POLYNOMIAL_CHREC
|| !INTEGRAL_TYPE_P (TREE_TYPE (bitwise_scev))
|| !tree_fits_uhwi_p (CHREC_LEFT (bitwise_scev))
|| tree_to_uhwi (CHREC_LEFT (bitwise_scev)) >= TYPE_PRECISION (type)
|| !tree_fits_shwi_p (CHREC_RIGHT (bitwise_scev)))
return NULL_TREE;
enum bit_op_kind
{
INDUCTION_BIT_CLEAR,
INDUCTION_BIT_IOR,
INDUCTION_BIT_XOR,
INDUCTION_BIT_RESET,
INDUCTION_ZERO,
INDUCTION_ALL
};
enum bit_op_kind induction_kind;
enum tree_code code1
= gimple_assign_rhs_code (SSA_NAME_DEF_STMT (phidef));
enum tree_code code2
= gimple_assign_rhs_code (SSA_NAME_DEF_STMT (match_op[0]));
/* BIT_CLEAR: A &= ~(1 << bit)
BIT_RESET: A ^= (1 << bit).
BIT_IOR: A |= (1 << bit)
BIT_ZERO: A &= (1 << bit)
BIT_ALL: A |= ~(1 << bit)
BIT_XOR: A ^= ~(1 << bit).
bit is induction variable. */
switch (code1)
{
case BIT_AND_EXPR:
induction_kind = code2 == BIT_NOT_EXPR
? INDUCTION_BIT_CLEAR
: INDUCTION_ZERO;
break;
case BIT_IOR_EXPR:
induction_kind = code2 == BIT_NOT_EXPR
? INDUCTION_ALL
: INDUCTION_BIT_IOR;
break;
case BIT_XOR_EXPR:
induction_kind = code2 == BIT_NOT_EXPR
? INDUCTION_BIT_XOR
: INDUCTION_BIT_RESET;
break;
/* A ^ ~(1 << bit) is equal to ~(A ^ (1 << bit)). */
case BIT_NOT_EXPR:
gcc_assert (code2 == BIT_XOR_EXPR);
induction_kind = INDUCTION_BIT_XOR;
break;
default:
gcc_unreachable ();
}
if (induction_kind == INDUCTION_ZERO)
return build_zero_cst (type);
if (induction_kind == INDUCTION_ALL)
return build_all_ones_cst (type);
wide_int bits = wi::zero (TYPE_PRECISION (type));
HOST_WIDE_INT bit_start = tree_to_shwi (CHREC_LEFT (bitwise_scev));
HOST_WIDE_INT step = tree_to_shwi (CHREC_RIGHT (bitwise_scev));
HOST_WIDE_INT bit_final = bit_start + step * niter;
/* bit_start, bit_final in range of [0,TYPE_PRECISION)
implies all bits are set in range. */
if (bit_final >= TYPE_PRECISION (type)
|| bit_final < 0)
return NULL_TREE;
/* Loop tripcount should be niter + 1. */
for (unsigned i = 0; i != niter + 1; i++)
{
bits = wi::set_bit (bits, bit_start);
bit_start += step;
}
bool inverted = false;
switch (induction_kind)
{
case INDUCTION_BIT_CLEAR:
code1 = BIT_AND_EXPR;
inverted = true;
break;
case INDUCTION_BIT_IOR:
code1 = BIT_IOR_EXPR;
break;
case INDUCTION_BIT_RESET:
code1 = BIT_XOR_EXPR;
break;
/* A ^= ~(1 << bit) is special, when loop tripcount is even,
it's equal to A ^= bits, else A ^= ~bits. */
case INDUCTION_BIT_XOR:
code1 = BIT_XOR_EXPR;
if (niter % 2 == 0)
inverted = true;
break;
default:
gcc_unreachable ();
}
if (inverted)
bits = wi::bit_not (bits);
inv = PHI_ARG_DEF_FROM_EDGE (header_phi, loop_preheader_edge (loop));
return fold_build2 (code1, type, inv, wide_int_to_tree (type, bits));
}
/* Match.pd function to match bitop with invariant expression
.i.e.
tmp_7 = _0 & _1; */
extern bool gimple_bitop_with_inv_p (tree, tree *, tree (*)(tree));
/* Return the inductive expression of bitop with invariant if possible,
otherwise returns DEF. */
static tree
analyze_and_compute_bitop_with_inv_effect (class loop* loop, tree phidef,
tree niter)
{
tree match_op[2],inv;
tree type = TREE_TYPE (phidef);
gphi* header_phi = NULL;
enum tree_code code;
/* match thing like op0 (match[0]), op1 (match[1]), phidef (PHIDEF)
op1 = PHI <phidef, inv>
phidef = op0 & op1
if op0 is an invariant, it could change to
phidef = op0 & inv. */
gimple *def;
def = SSA_NAME_DEF_STMT (phidef);
if (!(is_gimple_assign (def)
&& ((code = gimple_assign_rhs_code (def)), true)
&& (code == BIT_AND_EXPR || code == BIT_IOR_EXPR
|| code == BIT_XOR_EXPR)))
return NULL_TREE;
match_op[0] = gimple_assign_rhs1 (def);
match_op[1] = gimple_assign_rhs2 (def);
if (TREE_CODE (match_op[1]) != SSA_NAME
|| !expr_invariant_in_loop_p (loop, match_op[0])
|| !(header_phi = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (match_op[1])))
|| gimple_phi_num_args (header_phi) != 2)
return NULL_TREE;
if (PHI_ARG_DEF_FROM_EDGE (header_phi, loop_latch_edge (loop)) != phidef)
return NULL_TREE;
enum tree_code code1
= gimple_assign_rhs_code (def);
if (code1 == BIT_XOR_EXPR)
{
if (!tree_fits_uhwi_p (niter))
return NULL_TREE;
unsigned HOST_WIDE_INT niter_num;
niter_num = tree_to_uhwi (niter);
if (niter_num % 2 != 0)
match_op[0] = build_zero_cst (type);
}
inv = PHI_ARG_DEF_FROM_EDGE (header_phi, loop_preheader_edge (loop));
return fold_build2 (code1, type, inv, match_op[0]);
}
/* Do final value replacement for LOOP, return true if we did anything. */
bool
final_value_replacement_loop (class loop *loop)
{
/* If we do not know exact number of iterations of the loop, we cannot
replace the final value. */
edge exit = single_exit (loop);
if (!exit)
return false;
tree niter = number_of_latch_executions (loop);
if (niter == chrec_dont_know)
return false;
/* Ensure that it is possible to insert new statements somewhere. */
if (!single_pred_p (exit->dest))
split_loop_exit_edge (exit);
/* Set stmt insertion pointer. All stmts are inserted before this point. */
gimple_stmt_iterator gsi = gsi_after_labels (exit->dest);
class loop *ex_loop
= superloop_at_depth (loop,
loop_depth (exit->dest->loop_father) + 1);
bool any = false;
gphi_iterator psi;
for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
{
gphi *phi = psi.phi ();
tree rslt = PHI_RESULT (phi);
tree phidef = PHI_ARG_DEF_FROM_EDGE (phi, exit);
tree def = phidef;
if (virtual_operand_p (def))
{
gsi_next (&psi);
continue;
}
if (!POINTER_TYPE_P (TREE_TYPE (def))
&& !INTEGRAL_TYPE_P (TREE_TYPE (def)))
{
gsi_next (&psi);
continue;
}
bool folded_casts;
def = analyze_scalar_evolution_in_loop (ex_loop, loop, def,
&folded_casts);
tree bitinv_def, bit_def;
unsigned HOST_WIDE_INT niter_num;
if (def != chrec_dont_know)
def = compute_overall_effect_of_inner_loop (ex_loop, def);
/* Handle bitop with invariant induction expression.
.i.e
for (int i =0 ;i < 32; i++)
tmp &= bit2;
if bit2 is an invariant in loop which could simple to
tmp &= bit2. */
else if ((bitinv_def
= analyze_and_compute_bitop_with_inv_effect (loop,
phidef, niter)))
def = bitinv_def;
/* Handle bitwise induction expression.
.i.e.
for (int i = 0; i != 64; i+=3)
res &= ~(1UL << i);
RES can't be analyzed out by SCEV because it is not polynomially
expressible, but in fact final value of RES can be replaced by
RES & CONSTANT where CONSTANT all ones with bit {0,3,6,9,... ,63}
being cleared, similar for BIT_IOR_EXPR/BIT_XOR_EXPR. */
else if (tree_fits_uhwi_p (niter)
&& (niter_num = tree_to_uhwi (niter)) != 0
&& niter_num < TYPE_PRECISION (TREE_TYPE (phidef))
&& (bit_def
= analyze_and_compute_bitwise_induction_effect (loop,
phidef,
niter_num)))
def = bit_def;
if (!tree_does_not_contain_chrecs (def)
|| chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
/* Moving the computation from the loop may prolong life range
of some ssa names, which may cause problems if they appear
on abnormal edges. */
|| contains_abnormal_ssa_name_p (def)
/* Do not emit expensive expressions. The rationale is that
when someone writes a code like
while (n > 45) n -= 45;
he probably knows that n is not large, and does not want it
to be turned into n %= 45. */
|| expression_expensive_p (def))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "not replacing:\n ");
print_gimple_stmt (dump_file, phi, 0);
fprintf (dump_file, "\n");
}
gsi_next (&psi);
continue;
}
/* Eliminate the PHI node and replace it by a computation outside
the loop. */
if (dump_file)
{
fprintf (dump_file, "\nfinal value replacement:\n ");
print_gimple_stmt (dump_file, phi, 0);
fprintf (dump_file, " with expr: ");
print_generic_expr (dump_file, def);
}
any = true;
def = unshare_expr (def);
remove_phi_node (&psi, false);
/* If def's type has undefined overflow and there were folded
casts, rewrite all stmts added for def into arithmetics
with defined overflow behavior. */
if (folded_casts && ANY_INTEGRAL_TYPE_P (TREE_TYPE (def))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (def)))
{
gimple_seq stmts;
gimple_stmt_iterator gsi2;
def = force_gimple_operand (def, &stmts, true, NULL_TREE);
gsi2 = gsi_start (stmts);
while (!gsi_end_p (gsi2))
{
gimple *stmt = gsi_stmt (gsi2);
gimple_stmt_iterator gsi3 = gsi2;
gsi_next (&gsi2);
gsi_remove (&gsi3, false);
if (is_gimple_assign (stmt)
&& arith_code_with_undefined_signed_overflow
(gimple_assign_rhs_code (stmt)))
gsi_insert_seq_before (&gsi,
rewrite_to_defined_overflow (stmt),
GSI_SAME_STMT);
else
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
}
}
else
def = force_gimple_operand_gsi (&gsi, def, false, NULL_TREE,
true, GSI_SAME_STMT);
gassign *ass = gimple_build_assign (rslt, def);
gimple_set_location (ass,
gimple_phi_arg_location (phi, exit->dest_idx));
gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
if (dump_file)
{
fprintf (dump_file, "\n final stmt:\n ");
print_gimple_stmt (dump_file, ass, 0);
fprintf (dump_file, "\n");
}
}
return any;
}
#include "gt-tree-scalar-evolution.h"
|