1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
|
/* Calculate branch probabilities, and basic block execution counts.
Copyright (C) 1990-2024 Free Software Foundation, Inc.
Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
based on some ideas from Dain Samples of UC Berkeley.
Further mangling by Bob Manson, Cygnus Support.
Converted to use trees by Dale Johannesen, Apple Computer.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Generate basic block profile instrumentation and auxiliary files.
Tree-based version. See profile.cc for overview. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "memmodel.h"
#include "backend.h"
#include "target.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "coverage.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "varasm.h"
#include "tree-nested.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-cfg.h"
#include "tree-into-ssa.h"
#include "value-prof.h"
#include "profile.h"
#include "tree-cfgcleanup.h"
#include "stringpool.h"
#include "attribs.h"
#include "tree-pretty-print.h"
#include "langhooks.h"
#include "stor-layout.h"
#include "xregex.h"
#include "alloc-pool.h"
#include "symbol-summary.h"
#include "symtab-thunks.h"
#include "cfganal.h"
static GTY(()) tree gcov_type_node;
static GTY(()) tree tree_interval_profiler_fn;
static GTY(()) tree tree_pow2_profiler_fn;
static GTY(()) tree tree_topn_values_profiler_fn;
static GTY(()) tree tree_indirect_call_profiler_fn;
static GTY(()) tree tree_average_profiler_fn;
static GTY(()) tree tree_ior_profiler_fn;
static GTY(()) tree tree_time_profiler_counter;
static GTY(()) tree ic_tuple_var;
static GTY(()) tree ic_tuple_counters_field;
static GTY(()) tree ic_tuple_callee_field;
/* Types of counter update methods.
By default, the counter updates are done for a single threaded system
(COUNTER_UPDATE_SINGLE_THREAD).
If the user selected atomic profile counter updates
(-fprofile-update=atomic), then the counter updates will be done atomically
on a best-effort basis. One of three methods to do the counter updates is
selected according to the target capabilities.
Ideally, the counter updates are done through atomic operations in hardware
(COUNTER_UPDATE_ATOMIC_BUILTIN).
If the target supports only 32-bit atomic increments and gcov_type_node is a
64-bit integer type, then for the profile edge counters the increment is
performed through two separate 32-bit atomic increments
(COUNTER_UPDATE_ATOMIC_SPLIT or COUNTER_UPDATE_ATOMIC_PARTIAL). If the
target supports libatomic (targetm.have_libatomic), then other counter
updates are carried out by libatomic calls (COUNTER_UPDATE_ATOMIC_SPLIT).
If the target does not support libatomic, then the other counter updates are
not done atomically (COUNTER_UPDATE_ATOMIC_PARTIAL) and a warning is
issued.
If the target does not support atomic operations in hardware, however, it
supports libatomic, then all updates are carried out by libatomic calls
(COUNTER_UPDATE_ATOMIC_BUILTIN). */
enum counter_update_method {
COUNTER_UPDATE_SINGLE_THREAD,
COUNTER_UPDATE_ATOMIC_BUILTIN,
COUNTER_UPDATE_ATOMIC_SPLIT,
COUNTER_UPDATE_ATOMIC_PARTIAL
};
static counter_update_method counter_update = COUNTER_UPDATE_SINGLE_THREAD;
/* These functions support measuring modified conditition/decision coverage
(MC/DC). MC/DC requires all of the below during testing:
- Each entry and exit point is invoked
- Each decision takes every possible outcome
- Each condition in a decision takes every possible outcome
- Each condition in a decision is shown to independently affect the outcome
of the decision
Independence of a condition is shown by recording it being evaluated to a
value (true/false) and not being made irrelevant ("masked") by a later term.
This feature adds some instrumentation code, a few bitwise operators, that
records the branches taken in conditions and applies a filter for the
masking effect. Masking is essentially short-circuiting in reverse: a
condition does not contribute to the outcome if it would short circuit the
(sub) expression if it was evaluated right-to-left, (_ && false) and (_ ||
true).
The program is essentially rewritten this way:
- if (a || b) { fn () }
+ if (a) { _t |= 0x1; goto _then; }
+ else { _f |= 0x1;
+ if (b) { _t |= 0x2; _mask |= 0x1; goto _then; }
+ else { _f |= 0x2; goto _else; }
+ _then:
+ _gcov_t |= (_t & _mask);
+ _gcov_f |= (_f & _mask);
+ fn (); goto _end;
+ _else:
+ _gcov_t |= (_t & _mask);
+ _gcov_f |= (_f & _mask);
+ fn ();
+ _end:
It is assumed the front end will provide discrimnators so that conditional
basic blocks (basic block with a conditional jump and outgoing true/false
edges) that belong to the same Boolean expression have the same
discriminator. Masking is determined by analyzing these expressions as a
reduced order binary decision diagram. */
namespace
{
/* Some context and reused instances between function calls. Large embedded
buffers are used to up-front request enough memory for most programs and
merge them into a single allocation at the cost of using more memory in the
average case. Some numbers from linux v5.13 which is assumed to be a
reasonably diverse code base: 75% of the functions in linux have less than
16 nodes in the CFG and approx 2.5% have more than 64 nodes. The functions
that go beyond a few dozen nodes tend to be very large (>100) and so 64
seems like a good balance.
This is really just a performance balance of the cost of allocation and
wasted memory. */
struct conds_ctx
{
/* This is both a reusable shared allocation which is also used to return
single expressions, which means it for most code should only hold a
couple of elements. */
auto_vec<basic_block, 64> blocks;
/* Index for the topological order indexed by basic_block->index to an
ordering so that expression (a || b && c) => top_index[a] < top_index[b]
< top_index[c]. */
auto_vec<int, 256> top_index;
/* Pre-allocate bitmaps and vectors for per-function book keeping. This is
pure instance reuse and the bitmaps carry no data between function
calls. */
auto_vec<basic_block, 64> B1;
auto_vec<basic_block, 64> B2;
auto_sbitmap G1;
auto_sbitmap G2;
auto_sbitmap G3;
explicit conds_ctx (unsigned size) noexcept (true) : G1 (size), G2 (size),
G3 (size)
{
}
};
/* Only instrument terms with fewer than number of bits in a (wide) gcov
integer, which is probably 64. The algorithm itself does not impose this
limitation, but it makes for a simpler implementation.
* Allocating the output data structure (coverage_counter_alloc ()) can
assume pairs of gcov_type_unsigned and not use a separate length field.
* A pair gcov_type_unsigned can be used as accumulators.
* Updating accumulators is can use the bitwise operations |=, &= and not
custom operators that work for arbitrary-sized bit-sets.
Most real-world code should be unaffected by this, but it is possible
(especially for generated code) to exceed this limit. */
#define CONDITIONS_MAX_TERMS (TYPE_PRECISION (gcov_type_node))
#define EDGE_CONDITION (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
/* Compare two basic blocks by their order in the expression i.e. for (a || b)
then topological_cmp (a, b, ...) < 0. The result is undefined if LHS, RHS
belong to different expressions. The TOP_INDEX argument should be the
top_index vector from ctx. */
int
topological_cmp (const void *lhs, const void *rhs, void *top_index)
{
const_basic_block l = *(const basic_block*) lhs;
const_basic_block r = *(const basic_block*) rhs;
const vec<int>* im = (const vec<int>*) top_index;
return (*im)[l->index] - (*im)[r->index];
}
/* Find the index of NEEDLE in BLOCKS; return -1 if not found. This has two
uses, sometimes for the index and sometimes for set member checks. Sets are
typically very small (number of conditions, >8 is uncommon) so linear search
should be very fast. */
int
index_of (const basic_block needle, array_slice<basic_block> blocks)
{
for (size_t i = 0; i < blocks.size (); i++)
if (blocks[i] == needle)
return int (i);
return -1;
}
/* Special cases of the single_*_p and single_*_edge functions in basic-block.h
that don't consider exception handling or other complex edges. This helps
create a view of the CFG with only normal edges - if a basic block has both
an outgoing fallthrough and exceptional edge, it should be considered a
single-successor. */
bool
single_p (const vec<edge, va_gc> *edges)
{
int n = EDGE_COUNT (edges);
if (n == 0)
return false;
for (edge e : edges)
if (e->flags & EDGE_COMPLEX)
n -= 1;
return n == 1;
}
/* Get the single, non-complex edge. Behavior is undefined edges have more
than 1 non-complex edges. */
edge
single_edge (const vec<edge, va_gc> *edges)
{
gcc_checking_assert (single_p (edges));
for (edge e : edges)
{
if (e->flags & EDGE_COMPLEX)
continue;
return e;
}
return NULL;
}
/* Sometimes, for example with function calls, goto labels, and C++
destructors, the CFG gets extra nodes that are essentially single-entry
single-exit in the middle of boolean expressions. For example:
x || can_throw (y)
A
/|
/ |
B |
| |
C |
/ \ |
/ \|
F T
Without the extra node inserted by the function + exception it becomes a
proper 2-term graph, not 2 single-term graphs.
A
/|
C |
/ \|
F T
This function finds the source edge of these paths. This is often the
identity function. */
edge
contract_edge_up (edge e)
{
while (true)
{
basic_block src = e->src;
if (!single_p (src->preds))
return e;
if (!single_p (src->succs))
return e;
e = single_edge (src->preds);
}
}
/* A simple struct for storing/returning outcome block pairs. Either both
blocks are set or both are NULL. */
struct outcomes
{
basic_block t = NULL;
basic_block f = NULL;
operator bool () const noexcept (true)
{
return t && f;
}
};
/* Get the true/false successors of a basic block. If b is not a conditional
block both edges are NULL. */
outcomes
conditional_succs (const basic_block b)
{
outcomes c;
for (edge e : b->succs)
{
if (e->flags & EDGE_TRUE_VALUE)
c.t = e->dest;
if (e->flags & EDGE_FALSE_VALUE)
c.f = e->dest;
}
gcc_assert ((c.t && c.f) || (!c.t && !c.f));
return c;
}
/* Get the index or offset of a conditional flag, 0 for true and 1 for false.
These indices carry no semantics but must be consistent as they are used to
index into data structures in code generation and gcov. */
unsigned
condition_index (unsigned flag)
{
return (flag & EDGE_CONDITION) == EDGE_TRUE_VALUE ? 0 : 1;
}
/* Returns the condition identifier for the basic block if set, otherwise 0.
This is only meaningful in GIMPLE and is used for condition coverage.
There may be conditions created that did not get an uid, such as those
implicitly created by destructors. We could include them in the condition
coverage for completeness (i.e. condition coverage implies (implicit) branch
coverage), but they have no natural buckets and should all be single-term.
For now these are ignored and given uid = 0, and branch coverage is left to
-fprofile-arcs.
Under optimization, COND_EXPRs may be folded, replaced with switches,
min-max, etc., which leaves ghost identifiers in basic blocks that do not
end with a conditional jump. They are not really meaningful for condition
coverage anymore, but since coverage is unreliable under optimization anyway
this is not a big problem.
The cond_uids map in FN cannot be expected to exist. It will only be
created if it is needed, and a function may have gconds even though there
are none in source. This can be seen in PR gcov-profile/114601, when
-finstrument-functions-once is used and the function has no conditions. */
unsigned
condition_uid (struct function *fn, basic_block b)
{
gimple *stmt = gsi_stmt (gsi_last_bb (b));
if (!safe_is_a <gcond*> (stmt) || !fn->cond_uids)
return 0;
unsigned *v = fn->cond_uids->get (as_a <gcond*> (stmt));
return v ? *v : 0;
}
/* Compute the masking table.
Masking and short circuiting are deeply connected - masking occurs when
control flow reaches a state that is also reachable with short circuiting.
In fact, masking corresponds to short circuiting for the reversed
expression. This means we can find the limits, the last term in preceeding
subexpressions, by following the edges that short circuit to the same
outcome. The algorithm treats the CFG as a reduced order binary decision
diagram (see Randall E. Bryant's Graph Based Algorithms for Boolean
Function Manipulation (1987)).
In the simplest case a || b:
a
|\
| b
|/ \
T F
T has multiple incoming edges and is the outcome of a short circuit,
with top = a, bot = b. The top node (a) is masked when the edge (b, T) is
taken.
The names "top" and "bot" refer to a pair of nodes with a shared
successor. The top is always the node corresponding to the left-most
operand of the two, and it holds that top < bot in a topological ordering.
Now consider (a && b) || (c && d) and its masking table:
a
|\
b \
|\|
| c
| |\
| d \
|/ \|
T F
a[0] = {}
a[1] = {}
b[0] = {a}
b[1] = {}
c[0] = {}
c[1] = {}
d[0] = {c}
d[1] = {a,b}
Note that 0 and 1 are indices and not boolean values - a[0] is the index in
the masking vector when a takes the true edge.
b[0] and d[0] are identical to the a || b example, and d[1] is the bot in
the triangle [d, b] -> T. b is the top node in the [d, b] relationship and
last term in (a && b). To find the other terms masked we use the fact that
all paths in an expression go through either of the outcomes, found by
collecting all non-complex edges that go out of the expression (the
neighborhood). In some cases the outgoing edge go through intermediate (or
bypass) nodes, and we collect these paths too (see contract_edge_up).
We find the terms by marking the outcomes (in this case c, T) and walk the
predecessors starting at top (in this case b) and masking nodes when both
successors are marked.
The masking table is represented as two bitfields per term in the expression
with the index corresponding to the term in the Boolean expression.
a || b && c becomes the term vector [a b c] and the masking table [a[0]
a[1] b[0] ...]. The kth bit of a masking vector is set if the kth term
is masked by taking the edge.
The out masks are in uint64_t (the practical maximum for gcov_type_node for
any target) as it has to be big enough to store the target size gcov types
independent of the host. */
void
masking_vectors (conds_ctx& ctx, array_slice<basic_block> blocks,
array_slice<sbitmap> maps, array_slice<uint64_t> masks)
{
gcc_assert (blocks.is_valid ());
gcc_assert (!blocks.empty ());
gcc_assert (maps.is_valid ());
gcc_assert (masks.is_valid ());
gcc_assert (sizeof (masks[0]) * BITS_PER_UNIT >= CONDITIONS_MAX_TERMS);
if (bitmap_count_bits (maps[0]) == 1)
return;
sbitmap marks = ctx.G1;
const sbitmap core = maps[0];
const sbitmap allg = maps[1];
vec<basic_block>& queue = ctx.B1;
vec<basic_block>& body = ctx.B2;
const vec<int>& top_index = ctx.top_index;
/* Set up for the iteration - include the outcome nodes in the traversal.
The algorithm compares pairs of nodes and is not really sensitive to
traversal order, but need to maintain topological order because the
index of masking nodes maps to the index in the accumulators. We must
also check the incoming-to-outcome pairs. These edges may in turn be
split (this happens with labels on top of then/else blocks) so we must
follow any single-in single-out path. The non-condition blocks do not
have to be in order as they are non-condition blocks and will not be
considered for the set-bit index. */
body.truncate (0);
body.reserve (blocks.size () + 2);
for (const basic_block b : blocks)
if (bitmap_bit_p (core, b->index))
body.quick_push (b);
for (basic_block b : blocks)
{
if (!bitmap_bit_p (core, b->index))
continue;
for (edge e : b->succs)
{
if (e->flags & EDGE_COMPLEX)
continue;
if (bitmap_bit_p (allg, e->dest->index))
continue;
body.safe_push (e->dest);
/* There may be multiple nodes between the condition edge and the
actual outcome, and we need to know when these paths join to
determine if there is short circuit/masking. This is
effectively creating a virtual edge from the condition node to
the real outcome. */
while (!(e->flags & EDGE_DFS_BACK) && single_p (e->dest->succs))
{
e = single_edge (e->dest->succs);
body.safe_push (e->dest);
}
}
}
/* Find the masking. The leftmost element cannot mask anything, so
start at 1. */
for (size_t i = 1; i != body.length (); i++)
{
const basic_block b = body[i];
for (edge e1 : b->preds)
for (edge e2 : b->preds)
{
if (e1 == e2)
continue;
if ((e1->flags | e2->flags) & EDGE_COMPLEX)
continue;
edge etop = contract_edge_up (e1);
edge ebot = contract_edge_up (e2);
gcc_assert (etop != ebot);
const basic_block top = etop->src;
const basic_block bot = ebot->src;
const unsigned cond = etop->flags & ebot->flags & EDGE_CONDITION;
if (!cond)
continue;
if (top_index[top->index] > top_index[bot->index])
continue;
if (!bitmap_bit_p (core, top->index))
continue;
if (!bitmap_bit_p (core, bot->index))
continue;
outcomes out = conditional_succs (top);
gcc_assert (out);
bitmap_clear (marks);
bitmap_set_bit (marks, out.t->index);
bitmap_set_bit (marks, out.f->index);
queue.truncate (0);
queue.safe_push (top);
// The edge bot -> outcome triggers the masking
const int m = 2*index_of (bot, body) + condition_index (cond);
gcc_assert (m >= 0);
while (!queue.is_empty ())
{
basic_block q = queue.pop ();
/* q may have been processed & completed by being added to the
queue multiple times, so check that there is still work to
do before continuing. */
if (bitmap_bit_p (marks, q->index))
continue;
outcomes succs = conditional_succs (q);
if (!bitmap_bit_p (marks, succs.t->index))
continue;
if (!bitmap_bit_p (marks, succs.f->index))
continue;
const int index = index_of (q, body);
gcc_assert (index != -1);
masks[m] |= uint64_t (1) << index;
bitmap_set_bit (marks, q->index);
for (edge e : q->preds)
{
e = contract_edge_up (e);
if (e->flags & EDGE_DFS_BACK)
continue;
if (bitmap_bit_p (marks, e->src->index))
continue;
if (!bitmap_bit_p (core, e->src->index))
continue;
queue.safe_push (e->src);
}
}
}
}
}
/* Emit LHS = RHS on edges. This is just a short hand that automates the
building of the assign and immediately puts it on the edge, which becomes
noisy. */
tree
emit_assign (edge e, tree lhs, tree rhs)
{
gassign *w = gimple_build_assign (lhs, rhs);
gsi_insert_on_edge (e, w);
return lhs;
}
/* Emit lhs = RHS on edges. The lhs is created. */
tree
emit_assign (edge e, tree rhs)
{
return emit_assign (e, make_ssa_name (gcov_type_node), rhs);
}
/* Emit LHS = OP1 <OP> OP2 on edges. */
tree
emit_bitwise_op (edge e, tree op1, tree_code op, tree op2 = NULL_TREE)
{
tree lhs = make_ssa_name (gcov_type_node);
gassign *w = gimple_build_assign (lhs, op, op1, op2);
gsi_insert_on_edge (e, w);
return lhs;
}
/* Visitor for make_top_index. */
void
make_top_index_visit (basic_block b, vec<basic_block>& L, vec<int>& marks)
{
if (marks[b->index])
return;
/* Follow the false edge first, if it exists, so that true paths are given
the lower index in the ordering. Any iteration order
would yield a valid and useful topological ordering, but making sure the
true branch has the lower index first makes reporting work better for
expressions with ternaries. Walk the false branch first because the
array will be reversed to finalize the topological order.
With the wrong ordering (a ? b : c) && d could become [a c b d], but the
(expected) order is really [a b c d]. */
const unsigned false_fwd = EDGE_DFS_BACK | EDGE_FALSE_VALUE;
for (edge e : b->succs)
if ((e->flags & false_fwd) == EDGE_FALSE_VALUE)
make_top_index_visit (e->dest, L, marks);
for (edge e : b->succs)
if (!(e->flags & false_fwd))
make_top_index_visit (e->dest, L, marks);
marks[b->index] = 1;
L.quick_push (b);
}
/* Find a topological sorting of the blocks in a function so that left operands
are before right operands including subexpressions. Sorting on block index
does not guarantee this property and the syntactical order of terms is very
important to the condition coverage. The sorting algorithm is from Cormen
et al (2001) but with back-edges ignored and thus there is no need for
temporary marks (for cycle detection). The L argument is a buffer/working
memory, and the output will be written to TOP_INDEX.
For the expression (a || (b && c) || d) the blocks should be [a b c d]. */
void
make_top_index (array_slice<basic_block> blocks, vec<basic_block>& L,
vec<int>& top_index)
{
L.truncate (0);
L.reserve (blocks.size ());
/* Use of the output map as a temporary for tracking visited status. */
top_index.truncate (0);
top_index.safe_grow_cleared (blocks.size ());
for (const basic_block b : blocks)
make_top_index_visit (b, L, top_index);
/* Insert canaries - if there are unreachable nodes (for example infinite
loops) then the unreachable nodes should never be needed for comparison,
and L.length () < max_index. An index mapping should also never be
recorded twice. */
for (unsigned i = 0; i != top_index.length (); i++)
top_index[i] = -1;
gcc_assert (blocks.size () == L.length ());
L.reverse ();
const unsigned nblocks = L.length ();
for (unsigned i = 0; i != nblocks; i++)
{
gcc_assert (L[i]->index != -1);
top_index[L[i]->index] = int (i);
}
}
/* Find all nodes including non-conditions in a Boolean expression. We need to
know the paths through the expression so that the masking and
instrumentation phases can limit searches and know what subgraphs must be
threaded through, but not counted, such as the (b || c) in
a && fn (b || c) && d.
It is essentially the intersection of downwards paths from the expression
nodes EXPR to the post-dominator and upwards from the post-dominator.
Finding the dominator is slightly more involved than picking the first/last,
particularly under optimization, because both incoming and outgoing paths
may have multiple entries/exits.
It is assumed GRAPH is an array_slice of the basic blocks of this function
sorted by the basic block index. */
vec<basic_block>&
paths_between (conds_ctx &ctx, array_slice<basic_block> graph,
const vec<basic_block>& expr)
{
if (expr.length () == 1)
{
ctx.blocks.truncate (0);
ctx.blocks.safe_push (expr[0]);
return ctx.blocks;
}
basic_block dom;
sbitmap up = ctx.G1;
sbitmap down = ctx.G2;
sbitmap paths = ctx.G3;
vec<basic_block>& queue = ctx.B1;
queue.truncate (0);
bitmap_clear (down);
dom = get_immediate_dominator (CDI_POST_DOMINATORS, expr[0]);
for (basic_block b : expr)
if (dom != b)
dom = nearest_common_dominator (CDI_POST_DOMINATORS, dom, b);
queue.safe_splice (expr);
while (!queue.is_empty ())
{
basic_block b = queue.pop ();
if (!bitmap_set_bit (down, b->index))
continue;
if (b == dom)
continue;
for (edge e : b->succs)
if (!(e->flags & (EDGE_COMPLEX | EDGE_DFS_BACK)))
queue.safe_push (e->dest);
}
queue.truncate (0);
bitmap_clear (up);
dom = expr[0];
for (basic_block b : expr)
if (dom != b)
dom = nearest_common_dominator (CDI_DOMINATORS, dom, b);
queue.safe_splice (expr);
while (!queue.is_empty ())
{
basic_block b = queue.pop ();
if (!bitmap_set_bit (up, b->index))
continue;
if (b == dom)
continue;
for (edge e : b->preds)
if (!(e->flags & (EDGE_COMPLEX | EDGE_DFS_BACK)))
queue.safe_push (e->src);
}
bitmap_and (paths, up, down);
vec<basic_block>& blocks = ctx.blocks;
blocks.truncate (0);
blocks.reserve (graph.size ());
sbitmap_iterator itr;
unsigned index;
EXECUTE_IF_SET_IN_BITMAP (paths, 0, index, itr)
blocks.quick_push (graph[index]);
return blocks;
}
}
/* Context object for the condition coverage. This stores conds_ctx (the
buffers reused when analyzing the cfg) and the output arrays. This is
designed to be heap allocated and aggressively preallocates large buffers to
avoid having to reallocate for most programs. */
struct condcov
{
explicit condcov (unsigned nblocks) noexcept (true) : ctx (nblocks),
m_maps (sbitmap_vector_alloc (2 * nblocks, nblocks))
{
bitmap_vector_clear (m_maps, 2 * nblocks);
}
auto_vec<size_t, 128> m_index;
auto_vec<basic_block, 256> m_blocks;
auto_vec<uint64_t, 512> m_masks;
conds_ctx ctx;
sbitmap *m_maps;
};
/* Get the length, that is the number of Boolean expression found. cov_length
is the one-past index for cov_{blocks,masks,maps}. */
size_t
cov_length (const struct condcov* cov)
{
if (cov->m_index.is_empty ())
return 0;
return cov->m_index.length () - 1;
}
/* The subgraph, exluding intermediates, for the nth Boolean expression. */
array_slice<basic_block>
cov_blocks (struct condcov* cov, size_t n)
{
if (n >= cov->m_index.length ())
return array_slice<basic_block>::invalid ();
basic_block *begin = cov->m_blocks.begin () + cov->m_index[n];
basic_block *end = cov->m_blocks.begin () + cov->m_index[n + 1];
return array_slice<basic_block> (begin, end - begin);
}
/* The masks for the nth Boolean expression. */
array_slice<uint64_t>
cov_masks (struct condcov* cov, size_t n)
{
if (n >= cov->m_index.length ())
return array_slice<uint64_t>::invalid ();
uint64_t *begin = cov->m_masks.begin () + 2*cov->m_index[n];
uint64_t *end = cov->m_masks.begin () + 2*cov->m_index[n + 1];
return array_slice<uint64_t> (begin, end - begin);
}
/* The maps for the nth Boolean expression. */
array_slice<sbitmap>
cov_maps (struct condcov* cov, size_t n)
{
if (n >= cov->m_index.length ())
return array_slice<sbitmap>::invalid ();
sbitmap *begin = cov->m_maps + 2*n;
sbitmap *end = begin + 2;
return array_slice<sbitmap> (begin, end - begin);
}
/* Deleter for condcov. */
void
cov_free (struct condcov* cov)
{
sbitmap_vector_free (cov->m_maps);
delete cov;
}
/* Condition coverage (MC/DC)
Whalen, Heimdahl, De Silva in "Efficient Test Coverage Measurement for
MC/DC" describe an algorithm for modified condition/decision coverage based
on AST analysis. This algorithm does analyzes the control flow graph
(interpreted as a binary decision diagram) to determine the masking vectors.
The individual phases are described in more detail closer to the
implementation.
The coverage only considers the positions, not the symbols, in a
conditional, e.g. !A || (!B && A) is a 3-term conditional even though A
appears twice. Subexpressions have no effect on term ordering:
(a && (b || (c && d)) || e) comes out as [a b c d e]. Functions whose
arguments are Boolean expressions are treated as separate expressions, that
is, a && fn (b || c) && d is treated as [a _fn d] and [b c], not [a b c d].
The output for gcov is a vector of pairs of unsigned integers, interpreted
as bit-sets, where the bit index corresponds to the index of the condition
in the expression.
The returned condcov should be released by the caller with cov_free. */
struct condcov*
find_conditions (struct function *fn)
{
mark_dfs_back_edges (fn);
const bool have_dom = dom_info_available_p (fn, CDI_DOMINATORS);
const bool have_post_dom = dom_info_available_p (fn, CDI_POST_DOMINATORS);
if (!have_dom)
calculate_dominance_info (CDI_DOMINATORS);
if (!have_post_dom)
calculate_dominance_info (CDI_POST_DOMINATORS);
const unsigned nblocks = n_basic_blocks_for_fn (fn);
basic_block *fnblocksp = basic_block_info_for_fn (fn)->address ();
condcov *cov = new condcov (nblocks);
conds_ctx& ctx = cov->ctx;
array_slice<basic_block> fnblocks (fnblocksp, nblocks);
make_top_index (fnblocks, ctx.B1, ctx.top_index);
/* Bin the Boolean expressions so that exprs[id] -> [x1, x2, ...]. */
hash_map<int_hash<unsigned, 0>, auto_vec<basic_block>> exprs;
for (basic_block b : fnblocks)
{
const unsigned uid = condition_uid (fn, b);
if (uid == 0)
continue;
exprs.get_or_insert (uid).safe_push (b);
}
/* Visit all reachable nodes and collect conditions. Topological order is
important so the first node of a boolean expression is visited first
(it will mark subsequent terms). */
cov->m_index.safe_push (0);
for (auto expr : exprs)
{
vec<basic_block>& conds = expr.second;
if (conds.length () > CONDITIONS_MAX_TERMS)
{
location_t loc = gimple_location (gsi_stmt (gsi_last_bb (conds[0])));
warning_at (loc, OPT_Wcoverage_too_many_conditions,
"Too many conditions (found %u); giving up coverage",
conds.length ());
continue;
}
conds.sort (topological_cmp, &ctx.top_index);
vec<basic_block>& subgraph = paths_between (ctx, fnblocks, conds);
subgraph.sort (topological_cmp, &ctx.top_index);
const unsigned index = cov->m_index.length () - 1;
sbitmap condm = cov->m_maps[0 + 2*index];
sbitmap subgm = cov->m_maps[1 + 2*index];
for (basic_block b : conds)
bitmap_set_bit (condm, b->index);
for (basic_block b : subgraph)
bitmap_set_bit (subgm, b->index);
cov->m_blocks.safe_splice (subgraph);
cov->m_index.safe_push (cov->m_blocks.length ());
}
if (!have_dom)
free_dominance_info (fn, CDI_DOMINATORS);
if (!have_post_dom)
free_dominance_info (fn, CDI_POST_DOMINATORS);
cov->m_masks.safe_grow_cleared (2 * cov->m_index.last ());
const size_t length = cov_length (cov);
for (size_t i = 0; i != length; i++)
masking_vectors (ctx, cov_blocks (cov, i), cov_maps (cov, i),
cov_masks (cov, i));
return cov;
}
namespace
{
/* Stores the incoming edge and previous counters (in SSA form) on that edge
for the node e->deston that edge for the node e->dest. The counters record
the seen-true (0), seen-false (1), and current-mask (2). They are stored in
an array rather than proper members for access-by-index as the code paths
tend to be identical for the different counters. */
struct counters
{
edge e;
tree counter[3];
tree& operator [] (size_t i) { return counter[i]; }
};
/* Find the counters for the incoming edge e, or NULL if the edge has not been
recorded (could be for complex incoming edges). */
counters*
find_counters (vec<counters>& candidates, edge e)
{
for (counters& candidate : candidates)
if (candidate.e == e)
return &candidate;
return NULL;
}
/* Resolve the SSA for a specific counter KIND. If it is not modified by any
incoming edges, simply forward it, otherwise create a phi node of all the
candidate counters and return it. */
tree
resolve_counter (vec<counters>& cands, size_t kind)
{
gcc_assert (!cands.is_empty ());
gcc_assert (kind < 3);
counters& fst = cands[0];
if (!fst.e || fst.e->dest->preds->length () == 1)
{
gcc_assert (cands.length () == 1);
return fst[kind];
}
tree zero0 = build_int_cst (gcov_type_node, 0);
tree ssa = make_ssa_name (gcov_type_node);
gphi *phi = create_phi_node (ssa, fst.e->dest);
for (edge e : fst.e->dest->preds)
{
counters *prev = find_counters (cands, e);
if (prev)
add_phi_arg (phi, (*prev)[kind], e, UNKNOWN_LOCATION);
else
{
tree zero = make_ssa_name (gcov_type_node);
gimple_stmt_iterator gsi = gsi_after_labels (e->src);
gassign *set = gimple_build_assign (zero, zero0);
gsi_insert_before (&gsi, set, GSI_NEW_STMT);
add_phi_arg (phi, zero, e, UNKNOWN_LOCATION);
}
}
return ssa;
}
/* Resolve all the counters for a node. Note that the edge is undefined, as
the counters are intended to form the base to push to the successors, and
because the is only meaningful for nodes with a single predecessor. */
counters
resolve_counters (vec<counters>& cands)
{
counters next;
next[0] = resolve_counter (cands, 0);
next[1] = resolve_counter (cands, 1);
next[2] = resolve_counter (cands, 2);
return next;
}
}
/* Add instrumentation to a decision subgraph. EXPR should be the
(topologically sorted) block of nodes returned by cov_blocks, MAPS the
bitmaps returned by cov_maps, and MASKS the block of bitsets returned by
cov_masks. CONDNO should be the index of this condition in the function,
i.e. the same argument given to cov_{masks,graphs}. EXPR may contain nodes
in-between the conditions, e.g. when an operand contains a function call,
or there is a setjmp and the cfg is filled with complex edges.
Every node is annotated with three counters; the true, false, and mask
value. First, walk the graph and determine what if there are multiple
possible values for either accumulator depending on the path taken, in which
case a phi node is created and registered as the accumulator. Then, those
values are pushed as accumulators to the immediate successors. For some
very particular programs there may be multiple paths into the expression
(e.g. when prior terms are determined by a surrounding conditional) in which
case the default zero-counter is pushed, otherwise all predecessors will
have been considered before the successor because of topologically ordered
traversal. Finally, expr is traversed again to look for edges to the
outcomes, that is, edges with a destination outside of expr, and the local
accumulators are flushed to the global gcov counters on these edges. In
some cases there are edge splits that cause 3+ edges to the two outcome
nodes.
If a complex edge is taken (e.g. on a longjmp) the accumulators are
attempted poisoned so that there would be no change to the global counters,
but this has proven unreliable in the presence of undefined behavior, see
the setjmp003 test.
It is important that the flushes happen on the basic condition outgoing
edge, otherwise flushes could be lost to exception handling or other
abnormal control flow. */
size_t
instrument_decisions (array_slice<basic_block> expr, size_t condno,
array_slice<sbitmap> maps, array_slice<uint64_t> masks)
{
tree zero = build_int_cst (gcov_type_node, 0);
tree poison = build_int_cst (gcov_type_node, ~0ULL);
const sbitmap core = maps[0];
const sbitmap allg = maps[1];
hash_map<basic_block, vec<counters>> table;
counters zerocounter;
zerocounter.e = NULL;
zerocounter[0] = zero;
zerocounter[1] = zero;
zerocounter[2] = zero;
unsigned xi = 0;
bool increment = false;
tree rhs = build_int_cst (gcov_type_node, 1ULL << xi);
for (basic_block current : expr)
{
vec<counters>& candidates = table.get_or_insert (current);
if (candidates.is_empty ())
candidates.safe_push (zerocounter);
counters prev = resolve_counters (candidates);
if (increment)
{
xi += 1;
gcc_checking_assert (xi < sizeof (uint64_t) * BITS_PER_UNIT);
rhs = build_int_cst (gcov_type_node, 1ULL << xi);
increment = false;
}
for (edge e : current->succs)
{
counters next = prev;
next.e = e;
if (bitmap_bit_p (core, e->src->index) && (e->flags & EDGE_CONDITION))
{
const int k = condition_index (e->flags);
next[k] = emit_bitwise_op (e, prev[k], BIT_IOR_EXPR, rhs);
if (masks[2*xi + k])
{
tree m = build_int_cst (gcov_type_node, masks[2*xi + k]);
next[2] = emit_bitwise_op (e, prev[2], BIT_IOR_EXPR, m);
}
increment = true;
}
else if (e->flags & EDGE_COMPLEX)
{
/* A complex edge has been taken - wipe the accumulators and
poison the mask so that this path does not contribute to
coverage. */
next[0] = poison;
next[1] = poison;
next[2] = poison;
}
table.get_or_insert (e->dest).safe_push (next);
}
}
/* Since this is also the return value, the number of conditions, make sure
to include the increment of the last basic block. */
if (increment)
xi += 1;
gcc_assert (xi == bitmap_count_bits (core));
const tree relaxed = build_int_cst (integer_type_node, MEMMODEL_RELAXED);
const bool atomic = flag_profile_update == PROFILE_UPDATE_ATOMIC;
const tree atomic_ior = builtin_decl_explicit
(TYPE_PRECISION (gcov_type_node) > 32
? BUILT_IN_ATOMIC_FETCH_OR_8
: BUILT_IN_ATOMIC_FETCH_OR_4);
/* Flush to the gcov accumulators. */
for (const basic_block b : expr)
{
if (!bitmap_bit_p (core, b->index))
continue;
for (edge e : b->succs)
{
/* Flush the accumulators on leaving the Boolean function. The
destination may be inside the function only when it returns to
the loop header, such as do { ... } while (x); */
if (bitmap_bit_p (allg, e->dest->index)) {
if (!(e->flags & EDGE_DFS_BACK))
continue;
if (e->dest != expr[0])
continue;
}
vec<counters> *cands = table.get (e->dest);
gcc_assert (cands);
counters *prevp = find_counters (*cands, e);
gcc_assert (prevp);
counters prev = *prevp;
/* _true &= ~mask, _false &= ~mask */
counters next;
next[2] = emit_bitwise_op (e, prev[2], BIT_NOT_EXPR);
next[0] = emit_bitwise_op (e, prev[0], BIT_AND_EXPR, next[2]);
next[1] = emit_bitwise_op (e, prev[1], BIT_AND_EXPR, next[2]);
/* _global_true |= _true, _global_false |= _false */
for (size_t k = 0; k != 2; ++k)
{
tree ref = tree_coverage_counter_ref (GCOV_COUNTER_CONDS,
2*condno + k);
if (atomic)
{
ref = unshare_expr (ref);
gcall *flush = gimple_build_call (atomic_ior, 3,
build_addr (ref),
next[k], relaxed);
gsi_insert_on_edge (e, flush);
}
else
{
tree get = emit_assign (e, ref);
tree put = emit_bitwise_op (e, next[k], BIT_IOR_EXPR, get);
emit_assign (e, unshare_expr (ref), put);
}
}
}
}
return xi;
}
#undef CONDITIONS_MAX_TERMS
#undef EDGE_CONDITION
/* Do initialization work for the edge profiler. */
/* Add code:
__thread gcov* __gcov_indirect_call.counters; // pointer to actual counter
__thread void* __gcov_indirect_call.callee; // actual callee address
__thread int __gcov_function_counter; // time profiler function counter
*/
static void
init_ic_make_global_vars (void)
{
tree gcov_type_ptr;
gcov_type_ptr = build_pointer_type (get_gcov_type ());
tree tuple_type = lang_hooks.types.make_type (RECORD_TYPE);
/* callee */
ic_tuple_callee_field = build_decl (BUILTINS_LOCATION, FIELD_DECL, NULL_TREE,
ptr_type_node);
/* counters */
ic_tuple_counters_field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
NULL_TREE, gcov_type_ptr);
DECL_CHAIN (ic_tuple_counters_field) = ic_tuple_callee_field;
finish_builtin_struct (tuple_type, "indirect_call_tuple",
ic_tuple_counters_field, NULL_TREE);
ic_tuple_var
= build_decl (UNKNOWN_LOCATION, VAR_DECL,
get_identifier ("__gcov_indirect_call"), tuple_type);
TREE_PUBLIC (ic_tuple_var) = 1;
DECL_ARTIFICIAL (ic_tuple_var) = 1;
DECL_INITIAL (ic_tuple_var) = NULL;
DECL_EXTERNAL (ic_tuple_var) = 1;
if (targetm.have_tls)
set_decl_tls_model (ic_tuple_var, decl_default_tls_model (ic_tuple_var));
}
/* Create the type and function decls for the interface with gcov. */
void
gimple_init_gcov_profiler (void)
{
tree interval_profiler_fn_type;
tree pow2_profiler_fn_type;
tree topn_values_profiler_fn_type;
tree gcov_type_ptr;
tree ic_profiler_fn_type;
tree average_profiler_fn_type;
const char *fn_name;
if (!gcov_type_node)
{
const char *fn_suffix
= flag_profile_update == PROFILE_UPDATE_ATOMIC ? "_atomic" : "";
gcov_type_node = get_gcov_type ();
gcov_type_ptr = build_pointer_type (gcov_type_node);
/* void (*) (gcov_type *, gcov_type, int, unsigned) */
interval_profiler_fn_type
= build_function_type_list (void_type_node,
gcov_type_ptr, gcov_type_node,
integer_type_node,
unsigned_type_node, NULL_TREE);
fn_name = concat ("__gcov_interval_profiler", fn_suffix, NULL);
tree_interval_profiler_fn = build_fn_decl (fn_name,
interval_profiler_fn_type);
free (CONST_CAST (char *, fn_name));
TREE_NOTHROW (tree_interval_profiler_fn) = 1;
DECL_ATTRIBUTES (tree_interval_profiler_fn)
= tree_cons (get_identifier ("leaf"), NULL,
DECL_ATTRIBUTES (tree_interval_profiler_fn));
/* void (*) (gcov_type *, gcov_type) */
pow2_profiler_fn_type
= build_function_type_list (void_type_node,
gcov_type_ptr, gcov_type_node,
NULL_TREE);
fn_name = concat ("__gcov_pow2_profiler", fn_suffix, NULL);
tree_pow2_profiler_fn = build_fn_decl (fn_name, pow2_profiler_fn_type);
free (CONST_CAST (char *, fn_name));
TREE_NOTHROW (tree_pow2_profiler_fn) = 1;
DECL_ATTRIBUTES (tree_pow2_profiler_fn)
= tree_cons (get_identifier ("leaf"), NULL,
DECL_ATTRIBUTES (tree_pow2_profiler_fn));
/* void (*) (gcov_type *, gcov_type) */
topn_values_profiler_fn_type
= build_function_type_list (void_type_node,
gcov_type_ptr, gcov_type_node,
NULL_TREE);
fn_name = concat ("__gcov_topn_values_profiler", fn_suffix, NULL);
tree_topn_values_profiler_fn
= build_fn_decl (fn_name, topn_values_profiler_fn_type);
free (CONST_CAST (char *, fn_name));
TREE_NOTHROW (tree_topn_values_profiler_fn) = 1;
DECL_ATTRIBUTES (tree_topn_values_profiler_fn)
= tree_cons (get_identifier ("leaf"), NULL,
DECL_ATTRIBUTES (tree_topn_values_profiler_fn));
init_ic_make_global_vars ();
/* void (*) (gcov_type, void *) */
ic_profiler_fn_type
= build_function_type_list (void_type_node,
gcov_type_node,
ptr_type_node,
NULL_TREE);
fn_name = concat ("__gcov_indirect_call_profiler_v4", fn_suffix, NULL);
tree_indirect_call_profiler_fn
= build_fn_decl (fn_name, ic_profiler_fn_type);
free (CONST_CAST (char *, fn_name));
TREE_NOTHROW (tree_indirect_call_profiler_fn) = 1;
DECL_ATTRIBUTES (tree_indirect_call_profiler_fn)
= tree_cons (get_identifier ("leaf"), NULL,
DECL_ATTRIBUTES (tree_indirect_call_profiler_fn));
tree_time_profiler_counter
= build_decl (UNKNOWN_LOCATION, VAR_DECL,
get_identifier ("__gcov_time_profiler_counter"),
get_gcov_type ());
TREE_PUBLIC (tree_time_profiler_counter) = 1;
DECL_EXTERNAL (tree_time_profiler_counter) = 1;
TREE_STATIC (tree_time_profiler_counter) = 1;
DECL_ARTIFICIAL (tree_time_profiler_counter) = 1;
DECL_INITIAL (tree_time_profiler_counter) = NULL;
/* void (*) (gcov_type *, gcov_type) */
average_profiler_fn_type
= build_function_type_list (void_type_node,
gcov_type_ptr, gcov_type_node, NULL_TREE);
fn_name = concat ("__gcov_average_profiler", fn_suffix, NULL);
tree_average_profiler_fn = build_fn_decl (fn_name,
average_profiler_fn_type);
free (CONST_CAST (char *, fn_name));
TREE_NOTHROW (tree_average_profiler_fn) = 1;
DECL_ATTRIBUTES (tree_average_profiler_fn)
= tree_cons (get_identifier ("leaf"), NULL,
DECL_ATTRIBUTES (tree_average_profiler_fn));
fn_name = concat ("__gcov_ior_profiler", fn_suffix, NULL);
tree_ior_profiler_fn = build_fn_decl (fn_name, average_profiler_fn_type);
free (CONST_CAST (char *, fn_name));
TREE_NOTHROW (tree_ior_profiler_fn) = 1;
DECL_ATTRIBUTES (tree_ior_profiler_fn)
= tree_cons (get_identifier ("leaf"), NULL,
DECL_ATTRIBUTES (tree_ior_profiler_fn));
/* LTO streamer needs assembler names. Because we create these decls
late, we need to initialize them by hand. */
DECL_ASSEMBLER_NAME (tree_interval_profiler_fn);
DECL_ASSEMBLER_NAME (tree_pow2_profiler_fn);
DECL_ASSEMBLER_NAME (tree_topn_values_profiler_fn);
DECL_ASSEMBLER_NAME (tree_indirect_call_profiler_fn);
DECL_ASSEMBLER_NAME (tree_average_profiler_fn);
DECL_ASSEMBLER_NAME (tree_ior_profiler_fn);
}
}
/* If RESULT is not null, then output instructions as GIMPLE trees to assign
the updated counter from CALL of FUNC to RESULT. Insert the CALL and the
optional assignment instructions to GSI. Use NAME for temporary values. */
static inline void
gen_assign_counter_update (gimple_stmt_iterator *gsi, gcall *call, tree func,
tree result, const char *name)
{
if (result)
{
tree result_type = TREE_TYPE (TREE_TYPE (func));
tree tmp1 = make_temp_ssa_name (result_type, NULL, name);
gimple_set_lhs (call, tmp1);
gsi_insert_after (gsi, call, GSI_NEW_STMT);
tree tmp2 = make_temp_ssa_name (TREE_TYPE (result), NULL, name);
gassign *assign = gimple_build_assign (tmp2, NOP_EXPR, tmp1);
gsi_insert_after (gsi, assign, GSI_NEW_STMT);
assign = gimple_build_assign (result, tmp2);
gsi_insert_after (gsi, assign, GSI_NEW_STMT);
}
else
gsi_insert_after (gsi, call, GSI_NEW_STMT);
}
/* Output instructions as GIMPLE trees to increment the COUNTER. If RESULT is
not null, then assign the updated counter value to RESULT. Insert the
instructions to GSI. Use NAME for temporary values. */
static inline void
gen_counter_update (gimple_stmt_iterator *gsi, tree counter, tree result,
const char *name)
{
tree type = gcov_type_node;
tree addr = build_fold_addr_expr (counter);
tree one = build_int_cst (type, 1);
tree relaxed = build_int_cst (integer_type_node, MEMMODEL_RELAXED);
if (counter_update == COUNTER_UPDATE_ATOMIC_BUILTIN
|| (result && counter_update == COUNTER_UPDATE_ATOMIC_SPLIT))
{
/* __atomic_fetch_add (&counter, 1, MEMMODEL_RELAXED); */
tree f = builtin_decl_explicit (TYPE_PRECISION (type) > 32
? BUILT_IN_ATOMIC_ADD_FETCH_8
: BUILT_IN_ATOMIC_ADD_FETCH_4);
gcall *call = gimple_build_call (f, 3, addr, one, relaxed);
gen_assign_counter_update (gsi, call, f, result, name);
}
else if (!result && (counter_update == COUNTER_UPDATE_ATOMIC_SPLIT
|| counter_update == COUNTER_UPDATE_ATOMIC_PARTIAL))
{
/* low = __atomic_add_fetch_4 (addr, 1, MEMMODEL_RELAXED);
high_inc = low == 0 ? 1 : 0;
__atomic_add_fetch_4 (addr_high, high_inc, MEMMODEL_RELAXED); */
tree zero32 = build_zero_cst (uint32_type_node);
tree one32 = build_one_cst (uint32_type_node);
tree addr_high = make_temp_ssa_name (TREE_TYPE (addr), NULL, name);
tree four = build_int_cst (size_type_node, 4);
gassign *assign1 = gimple_build_assign (addr_high, POINTER_PLUS_EXPR,
addr, four);
gsi_insert_after (gsi, assign1, GSI_NEW_STMT);
if (WORDS_BIG_ENDIAN)
std::swap (addr, addr_high);
tree f = builtin_decl_explicit (BUILT_IN_ATOMIC_ADD_FETCH_4);
gcall *call1 = gimple_build_call (f, 3, addr, one, relaxed);
tree low = make_temp_ssa_name (uint32_type_node, NULL, name);
gimple_call_set_lhs (call1, low);
gsi_insert_after (gsi, call1, GSI_NEW_STMT);
tree is_zero = make_temp_ssa_name (boolean_type_node, NULL, name);
gassign *assign2 = gimple_build_assign (is_zero, EQ_EXPR, low,
zero32);
gsi_insert_after (gsi, assign2, GSI_NEW_STMT);
tree high_inc = make_temp_ssa_name (uint32_type_node, NULL, name);
gassign *assign3 = gimple_build_assign (high_inc, COND_EXPR,
is_zero, one32, zero32);
gsi_insert_after (gsi, assign3, GSI_NEW_STMT);
gcall *call2 = gimple_build_call (f, 3, addr_high, high_inc,
relaxed);
gsi_insert_after (gsi, call2, GSI_NEW_STMT);
}
else
{
tree tmp1 = make_temp_ssa_name (type, NULL, name);
gassign *assign1 = gimple_build_assign (tmp1, counter);
gsi_insert_after (gsi, assign1, GSI_NEW_STMT);
tree tmp2 = make_temp_ssa_name (type, NULL, name);
gassign *assign2 = gimple_build_assign (tmp2, PLUS_EXPR, tmp1, one);
gsi_insert_after (gsi, assign2, GSI_NEW_STMT);
gassign *assign3 = gimple_build_assign (unshare_expr (counter), tmp2);
gsi_insert_after (gsi, assign3, GSI_NEW_STMT);
if (result)
{
gassign *assign4 = gimple_build_assign (result, tmp2);
gsi_insert_after (gsi, assign4, GSI_NEW_STMT);
}
}
}
/* Output instructions as GIMPLE trees to increment the edge
execution count, and insert them on E. */
void
gimple_gen_edge_profiler (int edgeno, edge e)
{
gimple_stmt_iterator gsi = gsi_last (PENDING_STMT (e));
tree counter = tree_coverage_counter_ref (GCOV_COUNTER_ARCS, edgeno);
gen_counter_update (&gsi, counter, NULL_TREE, "PROF_edge_counter");
}
/* Emits code to get VALUE to instrument at GSI, and returns the
variable containing the value. */
static tree
prepare_instrumented_value (gimple_stmt_iterator *gsi, histogram_value value)
{
tree val = value->hvalue.value;
if (POINTER_TYPE_P (TREE_TYPE (val)))
val = fold_convert (build_nonstandard_integer_type
(TYPE_PRECISION (TREE_TYPE (val)), 1), val);
return force_gimple_operand_gsi (gsi, fold_convert (gcov_type_node, val),
true, NULL_TREE, true, GSI_SAME_STMT);
}
/* Output instructions as GIMPLE trees to increment the interval histogram
counter. VALUE is the expression whose value is profiled. TAG is the
tag of the section for counters, BASE is offset of the counter position. */
void
gimple_gen_interval_profiler (histogram_value value, unsigned tag)
{
gimple *stmt = value->hvalue.stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
tree ref = tree_coverage_counter_ref (tag, 0), ref_ptr;
gcall *call;
tree val;
tree start = build_int_cst_type (integer_type_node,
value->hdata.intvl.int_start);
tree steps = build_int_cst_type (unsigned_type_node,
value->hdata.intvl.steps);
ref_ptr = force_gimple_operand_gsi (&gsi,
build_addr (ref),
true, NULL_TREE, true, GSI_SAME_STMT);
val = prepare_instrumented_value (&gsi, value);
call = gimple_build_call (tree_interval_profiler_fn, 4,
ref_ptr, val, start, steps);
gsi_insert_before (&gsi, call, GSI_NEW_STMT);
}
/* Output instructions as GIMPLE trees to increment the power of two histogram
counter. VALUE is the expression whose value is profiled. TAG is the tag
of the section for counters. */
void
gimple_gen_pow2_profiler (histogram_value value, unsigned tag)
{
gimple *stmt = value->hvalue.stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
tree ref_ptr = tree_coverage_counter_addr (tag, 0);
gcall *call;
tree val;
ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr,
true, NULL_TREE, true, GSI_SAME_STMT);
val = prepare_instrumented_value (&gsi, value);
call = gimple_build_call (tree_pow2_profiler_fn, 2, ref_ptr, val);
gsi_insert_before (&gsi, call, GSI_NEW_STMT);
}
/* Output instructions as GIMPLE trees for code to find the most N common
values. VALUE is the expression whose value is profiled. TAG is the tag
of the section for counters. */
void
gimple_gen_topn_values_profiler (histogram_value value, unsigned tag)
{
gimple *stmt = value->hvalue.stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
tree ref_ptr = tree_coverage_counter_addr (tag, 0);
gcall *call;
tree val;
ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr,
true, NULL_TREE, true, GSI_SAME_STMT);
val = prepare_instrumented_value (&gsi, value);
call = gimple_build_call (tree_topn_values_profiler_fn, 2, ref_ptr, val);
gsi_insert_before (&gsi, call, GSI_NEW_STMT);
}
/* Output instructions as GIMPLE trees for code to find the most
common called function in indirect call.
VALUE is the call expression whose indirect callee is profiled.
TAG is the tag of the section for counters. */
void
gimple_gen_ic_profiler (histogram_value value, unsigned tag)
{
tree tmp1;
gassign *stmt1, *stmt2, *stmt3;
gimple *stmt = value->hvalue.stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
tree ref_ptr = tree_coverage_counter_addr (tag, 0);
ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr,
true, NULL_TREE, true, GSI_SAME_STMT);
/* Insert code:
stmt1: __gcov_indirect_call.counters = get_relevant_counter_ptr ();
stmt2: tmp1 = (void *) (indirect call argument value)
stmt3: __gcov_indirect_call.callee = tmp1;
Example:
f_1 = foo;
__gcov_indirect_call.counters = &__gcov4.main[0];
PROF_fn_9 = f_1;
__gcov_indirect_call.callee = PROF_fn_9;
_4 = f_1 ();
*/
tree gcov_type_ptr = build_pointer_type (get_gcov_type ());
tree counter_ref = build3 (COMPONENT_REF, gcov_type_ptr,
ic_tuple_var, ic_tuple_counters_field, NULL_TREE);
stmt1 = gimple_build_assign (counter_ref, ref_ptr);
tmp1 = make_temp_ssa_name (ptr_type_node, NULL, "PROF_fn");
stmt2 = gimple_build_assign (tmp1, unshare_expr (value->hvalue.value));
tree callee_ref = build3 (COMPONENT_REF, ptr_type_node,
ic_tuple_var, ic_tuple_callee_field, NULL_TREE);
stmt3 = gimple_build_assign (callee_ref, tmp1);
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
}
/* Output instructions as GIMPLE trees for code to find the most
common called function in indirect call. Insert instructions at the
beginning of every possible called function.
*/
void
gimple_gen_ic_func_profiler (void)
{
struct cgraph_node * c_node = cgraph_node::get (current_function_decl);
gcall *stmt1;
tree tree_uid, cur_func, void0;
/* Disable indirect call profiling for an IFUNC resolver and its
callees since it requires TLS which hasn't been set up yet when
the dynamic linker is resolving IFUNC symbols. See
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=114115
*/
if (c_node->only_called_directly_p ()
|| c_node->called_by_ifunc_resolver)
return;
gimple_init_gcov_profiler ();
basic_block entry = ENTRY_BLOCK_PTR_FOR_FN (cfun);
basic_block cond_bb = split_edge (single_succ_edge (entry));
basic_block update_bb = split_edge (single_succ_edge (cond_bb));
/* We need to do an extra split in order to not create an input
for a possible PHI node. */
split_edge (single_succ_edge (update_bb));
edge true_edge = single_succ_edge (cond_bb);
true_edge->flags = EDGE_TRUE_VALUE;
profile_probability probability;
if (DECL_VIRTUAL_P (current_function_decl))
probability = profile_probability::very_likely ();
else
probability = profile_probability::unlikely ();
true_edge->probability = probability;
edge e = make_edge (cond_bb, single_succ_edge (update_bb)->dest,
EDGE_FALSE_VALUE);
e->probability = true_edge->probability.invert ();
/* Insert code:
if (__gcov_indirect_call.callee != NULL)
__gcov_indirect_call_profiler_v3 (profile_id, ¤t_function_decl);
The function __gcov_indirect_call_profiler_v3 is responsible for
resetting __gcov_indirect_call.callee to NULL. */
gimple_stmt_iterator gsi = gsi_start_bb (cond_bb);
void0 = build_int_cst (ptr_type_node, 0);
tree callee_ref = build3 (COMPONENT_REF, ptr_type_node,
ic_tuple_var, ic_tuple_callee_field, NULL_TREE);
tree ref = force_gimple_operand_gsi (&gsi, callee_ref, true, NULL_TREE,
true, GSI_SAME_STMT);
gcond *cond = gimple_build_cond (NE_EXPR, ref,
void0, NULL, NULL);
gsi_insert_before (&gsi, cond, GSI_NEW_STMT);
gsi = gsi_after_labels (update_bb);
cur_func = force_gimple_operand_gsi (&gsi,
build_addr (current_function_decl),
true, NULL_TREE,
true, GSI_SAME_STMT);
tree_uid = build_int_cst
(gcov_type_node,
cgraph_node::get (current_function_decl)->profile_id);
stmt1 = gimple_build_call (tree_indirect_call_profiler_fn, 2,
tree_uid, cur_func);
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
}
/* Output instructions as GIMPLE tree at the beginning for each function.
TAG is the tag of the section for counters, BASE is offset of the
counter position and GSI is the iterator we place the counter. */
void
gimple_gen_time_profiler (unsigned tag)
{
tree type = get_gcov_type ();
basic_block entry = ENTRY_BLOCK_PTR_FOR_FN (cfun);
basic_block cond_bb = split_edge (single_succ_edge (entry));
basic_block update_bb = split_edge (single_succ_edge (cond_bb));
/* We need to do an extra split in order to not create an input
for a possible PHI node. */
split_edge (single_succ_edge (update_bb));
edge true_edge = single_succ_edge (cond_bb);
true_edge->flags = EDGE_TRUE_VALUE;
true_edge->probability = profile_probability::unlikely ();
edge e
= make_edge (cond_bb, single_succ_edge (update_bb)->dest, EDGE_FALSE_VALUE);
e->probability = true_edge->probability.invert ();
gimple_stmt_iterator gsi = gsi_start_bb (cond_bb);
tree original_ref = tree_coverage_counter_ref (tag, 0);
tree ref = force_gimple_operand_gsi (&gsi, original_ref, true, NULL_TREE,
true, GSI_SAME_STMT);
/* Emit: if (counters[0] != 0). */
gcond *cond = gimple_build_cond (EQ_EXPR, ref, build_int_cst (type, 0),
NULL, NULL);
gsi_insert_before (&gsi, cond, GSI_NEW_STMT);
/* Emit: counters[0] = ++__gcov_time_profiler_counter. */
gsi = gsi_start_bb (update_bb);
gen_counter_update (&gsi, tree_time_profiler_counter, original_ref,
"PROF_time_profile");
}
/* Output instructions as GIMPLE trees to increment the average histogram
counter. VALUE is the expression whose value is profiled. TAG is the
tag of the section for counters, BASE is offset of the counter position. */
void
gimple_gen_average_profiler (histogram_value value, unsigned tag)
{
gimple *stmt = value->hvalue.stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
tree ref_ptr = tree_coverage_counter_addr (tag, 0);
gcall *call;
tree val;
ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr,
true, NULL_TREE,
true, GSI_SAME_STMT);
val = prepare_instrumented_value (&gsi, value);
call = gimple_build_call (tree_average_profiler_fn, 2, ref_ptr, val);
gsi_insert_before (&gsi, call, GSI_NEW_STMT);
}
/* Output instructions as GIMPLE trees to increment the ior histogram
counter. VALUE is the expression whose value is profiled. TAG is the
tag of the section for counters, BASE is offset of the counter position. */
void
gimple_gen_ior_profiler (histogram_value value, unsigned tag)
{
gimple *stmt = value->hvalue.stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
tree ref_ptr = tree_coverage_counter_addr (tag, 0);
gcall *call;
tree val;
ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr,
true, NULL_TREE, true, GSI_SAME_STMT);
val = prepare_instrumented_value (&gsi, value);
call = gimple_build_call (tree_ior_profiler_fn, 2, ref_ptr, val);
gsi_insert_before (&gsi, call, GSI_NEW_STMT);
}
static vec<regex_t> profile_filter_files;
static vec<regex_t> profile_exclude_files;
/* Parse list of provided REGEX (separated with semi-collon) and
create expressions (of type regex_t) and save them into V vector.
If there is a regular expression parsing error, error message is
printed for FLAG_NAME. */
static void
parse_profile_filter (const char *regex, vec<regex_t> *v,
const char *flag_name)
{
v->create (4);
if (regex != NULL)
{
char *str = xstrdup (regex);
for (char *p = strtok (str, ";"); p != NULL; p = strtok (NULL, ";"))
{
regex_t r;
if (regcomp (&r, p, REG_EXTENDED | REG_NOSUB) != 0)
{
error ("invalid regular expression %qs in %qs",
p, flag_name);
return;
}
v->safe_push (r);
}
}
}
/* Parse values of -fprofile-filter-files and -fprofile-exclude-files
options. */
static void
parse_profile_file_filtering ()
{
parse_profile_filter (flag_profile_filter_files, &profile_filter_files,
"-fprofile-filter-files");
parse_profile_filter (flag_profile_exclude_files, &profile_exclude_files,
"-fprofile-exclude-files");
}
/* Parse vectors of regular expressions. */
static void
release_profile_file_filtering ()
{
profile_filter_files.release ();
profile_exclude_files.release ();
}
/* Return true when FILENAME should be instrumented based on
-fprofile-filter-files and -fprofile-exclude-files options. */
static bool
include_source_file_for_profile (const char *filename)
{
/* First check whether file is included in flag_profile_exclude_files. */
for (unsigned i = 0; i < profile_exclude_files.length (); i++)
if (regexec (&profile_exclude_files[i],
filename, 0, NULL, 0) == REG_NOERROR)
return false;
/* For non-empty flag_profile_filter_files include only files matching a
regex in the flag. */
if (profile_filter_files.is_empty ())
return true;
for (unsigned i = 0; i < profile_filter_files.length (); i++)
if (regexec (&profile_filter_files[i], filename, 0, NULL, 0) == REG_NOERROR)
return true;
return false;
}
#ifndef HAVE_sync_compare_and_swapsi
#define HAVE_sync_compare_and_swapsi 0
#endif
#ifndef HAVE_atomic_compare_and_swapsi
#define HAVE_atomic_compare_and_swapsi 0
#endif
#ifndef HAVE_sync_compare_and_swapdi
#define HAVE_sync_compare_and_swapdi 0
#endif
#ifndef HAVE_atomic_compare_and_swapdi
#define HAVE_atomic_compare_and_swapdi 0
#endif
/* Profile all functions in the callgraph. */
static unsigned int
tree_profiling (void)
{
struct cgraph_node *node;
/* Verify whether we can utilize atomic update operations. */
bool can_support_atomic = targetm.have_libatomic;
unsigned HOST_WIDE_INT gcov_type_size
= tree_to_uhwi (TYPE_SIZE_UNIT (get_gcov_type ()));
bool have_atomic_4
= HAVE_sync_compare_and_swapsi || HAVE_atomic_compare_and_swapsi;
bool have_atomic_8
= HAVE_sync_compare_and_swapdi || HAVE_atomic_compare_and_swapdi;
bool needs_split = gcov_type_size == 8 && !have_atomic_8 && have_atomic_4;
if (!can_support_atomic)
{
if (gcov_type_size == 4)
can_support_atomic = have_atomic_4;
else if (gcov_type_size == 8)
can_support_atomic = have_atomic_8;
}
if (flag_profile_update != PROFILE_UPDATE_SINGLE && needs_split)
counter_update = COUNTER_UPDATE_ATOMIC_PARTIAL;
if (flag_profile_update == PROFILE_UPDATE_ATOMIC
&& !can_support_atomic)
{
warning (0, "target does not support atomic profile update, "
"single mode is selected");
flag_profile_update = PROFILE_UPDATE_SINGLE;
}
else if (flag_profile_update == PROFILE_UPDATE_PREFER_ATOMIC)
flag_profile_update
= can_support_atomic ? PROFILE_UPDATE_ATOMIC : PROFILE_UPDATE_SINGLE;
if (flag_profile_update == PROFILE_UPDATE_ATOMIC)
{
if (needs_split)
counter_update = COUNTER_UPDATE_ATOMIC_SPLIT;
else
counter_update = COUNTER_UPDATE_ATOMIC_BUILTIN;
}
/* This is a small-ipa pass that gets called only once, from
cgraphunit.cc:ipa_passes(). */
gcc_assert (symtab->state == IPA_SSA);
init_node_map (true);
parse_profile_file_filtering ();
FOR_EACH_DEFINED_FUNCTION (node)
{
bool thunk = false;
if (!gimple_has_body_p (node->decl) && !node->thunk)
continue;
/* Don't profile functions produced for builtin stuff. */
if (DECL_SOURCE_LOCATION (node->decl) == BUILTINS_LOCATION)
continue;
if (lookup_attribute ("no_profile_instrument_function",
DECL_ATTRIBUTES (node->decl)))
continue;
/* Do not instrument extern inline functions when testing coverage.
While this is not perfectly consistent (early inlined extern inlines
will get acocunted), testsuite expects that. */
if (DECL_EXTERNAL (node->decl)
&& flag_test_coverage)
continue;
const char *file = LOCATION_FILE (DECL_SOURCE_LOCATION (node->decl));
if (!include_source_file_for_profile (file))
continue;
if (node->thunk)
{
/* We cannot expand variadic thunks to Gimple. */
if (stdarg_p (TREE_TYPE (node->decl)))
continue;
thunk = true;
/* When generate profile, expand thunk to gimple so it can be
instrumented same way as other functions. */
if (profile_arc_flag || condition_coverage_flag)
expand_thunk (node, false, true);
/* Read cgraph profile but keep function as thunk at profile-use
time. */
else
{
read_thunk_profile (node);
continue;
}
}
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
if (dump_file)
dump_function_header (dump_file, cfun->decl, dump_flags);
/* Local pure-const may imply need to fixup the cfg. */
if (gimple_has_body_p (node->decl)
&& (execute_fixup_cfg () & TODO_cleanup_cfg))
cleanup_tree_cfg ();
branch_prob (thunk);
if (! flag_branch_probabilities
&& flag_profile_values)
gimple_gen_ic_func_profiler ();
if (flag_branch_probabilities
&& !thunk
&& flag_profile_values
&& flag_value_profile_transformations
&& profile_status_for_fn (cfun) == PROFILE_READ)
gimple_value_profile_transformations ();
/* The above could hose dominator info. Currently there is
none coming in, this is a safety valve. It should be
easy to adjust it, if and when there is some. */
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
pop_cfun ();
}
release_profile_file_filtering ();
/* Drop pure/const flags from instrumented functions. */
if (profile_arc_flag || condition_coverage_flag || flag_test_coverage)
FOR_EACH_DEFINED_FUNCTION (node)
{
if (!gimple_has_body_p (node->decl)
|| !(!node->clone_of
|| node->decl != node->clone_of->decl))
continue;
/* Don't profile functions produced for builtin stuff. */
if (DECL_SOURCE_LOCATION (node->decl) == BUILTINS_LOCATION)
continue;
node->set_const_flag (false, false);
node->set_pure_flag (false, false);
}
/* Update call statements and rebuild the cgraph. */
FOR_EACH_DEFINED_FUNCTION (node)
{
basic_block bb;
if (!gimple_has_body_p (node->decl)
|| !(!node->clone_of
|| node->decl != node->clone_of->decl))
continue;
/* Don't profile functions produced for builtin stuff. */
if (DECL_SOURCE_LOCATION (node->decl) == BUILTINS_LOCATION)
continue;
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
if (profile_arc_flag || condition_coverage_flag || flag_test_coverage)
FOR_EACH_BB_FN (bb, cfun)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gcall *call = dyn_cast <gcall *> (gsi_stmt (gsi));
if (!call || gimple_call_internal_p (call))
continue;
/* We do not clear pure/const on decls without body. */
tree fndecl = gimple_call_fndecl (call);
cgraph_node *callee;
if (fndecl
&& (callee = cgraph_node::get (fndecl))
&& callee->get_availability (node) == AVAIL_NOT_AVAILABLE)
continue;
/* Drop the const attribute from the call type (the pure
attribute is not available on types). */
tree fntype = gimple_call_fntype (call);
if (fntype && TYPE_READONLY (fntype))
{
int quals = TYPE_QUALS (fntype) & ~TYPE_QUAL_CONST;
fntype = build_qualified_type (fntype, quals);
gimple_call_set_fntype (call, fntype);
}
/* Update virtual operands of calls to no longer const/pure
functions. */
update_stmt (call);
}
}
/* re-merge split blocks. */
cleanup_tree_cfg ();
update_ssa (TODO_update_ssa);
cgraph_edge::rebuild_edges ();
pop_cfun ();
}
handle_missing_profiles ();
del_node_map ();
return 0;
}
namespace {
const pass_data pass_data_ipa_tree_profile =
{
SIMPLE_IPA_PASS, /* type */
"profile", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_IPA_PROFILE, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_symtab, /* todo_flags_finish */
};
class pass_ipa_tree_profile : public simple_ipa_opt_pass
{
public:
pass_ipa_tree_profile (gcc::context *ctxt)
: simple_ipa_opt_pass (pass_data_ipa_tree_profile, ctxt)
{}
/* opt_pass methods: */
bool gate (function *) final override;
unsigned int execute (function *) final override { return tree_profiling (); }
}; // class pass_ipa_tree_profile
bool
pass_ipa_tree_profile::gate (function *)
{
/* When profile instrumentation, use or test coverage shall be performed.
But for AutoFDO, this there is no instrumentation, thus this pass is
disabled. */
return (!in_lto_p && !flag_auto_profile
&& (flag_branch_probabilities || flag_test_coverage
|| profile_arc_flag || condition_coverage_flag)
&& !seen_error ());
}
} // anon namespace
simple_ipa_opt_pass *
make_pass_ipa_tree_profile (gcc::context *ctxt)
{
return new pass_ipa_tree_profile (ctxt);
}
#include "gt-tree-profile.h"
|