aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-parloops.c
blob: 1729f230115479b56e158fdcb1156936290e1bc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
/* Loop autoparallelization.
   Copyright (C) 2006-2013 Free Software Foundation, Inc.
   Contributed by Sebastian Pop <pop@cri.ensmp.fr> 
   Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree-flow.h"
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "gimple-pretty-print.h"
#include "tree-pass.h"
#include "langhooks.h"
#include "tree-vectorizer.h"

/* This pass tries to distribute iterations of loops into several threads.
   The implementation is straightforward -- for each loop we test whether its
   iterations are independent, and if it is the case (and some additional
   conditions regarding profitability and correctness are satisfied), we
   add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
   machinery do its job.

   The most of the complexity is in bringing the code into shape expected
   by the omp expanders:
   -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
      variable and that the exit test is at the start of the loop body
   -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
      variables by accesses through pointers, and breaking up ssa chains
      by storing the values incoming to the parallelized loop to a structure
      passed to the new function as an argument (something similar is done
      in omp gimplification, unfortunately only a small part of the code
      can be shared).

   TODO:
   -- if there are several parallelizable loops in a function, it may be
      possible to generate the threads just once (using synchronization to
      ensure that cross-loop dependences are obeyed).
   -- handling of common reduction patterns for outer loops.  
    
   More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC  */
/*
  Reduction handling:
  currently we use vect_force_simple_reduction() to detect reduction patterns.
  The code transformation will be introduced by an example.


parloop
{
  int sum=1;

  for (i = 0; i < N; i++)
   {
    x[i] = i + 3;
    sum+=x[i];
   }
}

gimple-like code:
header_bb:

  # sum_29 = PHI <sum_11(5), 1(3)>
  # i_28 = PHI <i_12(5), 0(3)>
  D.1795_8 = i_28 + 3;
  x[i_28] = D.1795_8;
  sum_11 = D.1795_8 + sum_29;
  i_12 = i_28 + 1;
  if (N_6(D) > i_12)
    goto header_bb;


exit_bb:

  # sum_21 = PHI <sum_11(4)>
  printf (&"%d"[0], sum_21);


after reduction transformation (only relevant parts):

parloop
{

....


  # Storing the initial value given by the user.  #

  .paral_data_store.32.sum.27 = 1;

  #pragma omp parallel num_threads(4)

  #pragma omp for schedule(static)

  # The neutral element corresponding to the particular
  reduction's operation, e.g. 0 for PLUS_EXPR,
  1 for MULT_EXPR, etc. replaces the user's initial value.  #

  # sum.27_29 = PHI <sum.27_11, 0>

  sum.27_11 = D.1827_8 + sum.27_29;

  GIMPLE_OMP_CONTINUE

  # Adding this reduction phi is done at create_phi_for_local_result() #
  # sum.27_56 = PHI <sum.27_11, 0>
  GIMPLE_OMP_RETURN

  # Creating the atomic operation is done at
  create_call_for_reduction_1()  #

  #pragma omp atomic_load
  D.1839_59 = *&.paral_data_load.33_51->reduction.23;
  D.1840_60 = sum.27_56 + D.1839_59;
  #pragma omp atomic_store (D.1840_60);

  GIMPLE_OMP_RETURN

 # collecting the result after the join of the threads is done at
  create_loads_for_reductions().
  The value computed by the threads is loaded from the
  shared struct.  #


  .paral_data_load.33_52 = &.paral_data_store.32;
  sum_37 =  .paral_data_load.33_52->sum.27;
  sum_43 = D.1795_41 + sum_37;

  exit bb:
  # sum_21 = PHI <sum_43, sum_26>
  printf (&"%d"[0], sum_21);

...

}

*/

/* Minimal number of iterations of a loop that should be executed in each
   thread.  */
#define MIN_PER_THREAD 100

/* Element of the hashtable, representing a
   reduction in the current loop.  */
struct reduction_info
{
  gimple reduc_stmt;		/* reduction statement.  */
  gimple reduc_phi;		/* The phi node defining the reduction.  */
  enum tree_code reduction_code;/* code for the reduction operation.  */
  unsigned reduc_version;	/* SSA_NAME_VERSION of original reduc_phi
				   result.  */
  gimple keep_res;		/* The PHI_RESULT of this phi is the resulting value
				   of the reduction variable when existing the loop. */
  tree initial_value;		/* The initial value of the reduction var before entering the loop.  */
  tree field;			/*  the name of the field in the parloop data structure intended for reduction.  */
  tree init;			/* reduction initialization value.  */
  gimple new_phi;		/* (helper field) Newly created phi node whose result
				   will be passed to the atomic operation.  Represents
				   the local result each thread computed for the reduction
				   operation.  */
};

/* Equality and hash functions for hashtab code.  */

static int
reduction_info_eq (const void *aa, const void *bb)
{
  const struct reduction_info *a = (const struct reduction_info *) aa;
  const struct reduction_info *b = (const struct reduction_info *) bb;

  return (a->reduc_phi == b->reduc_phi);
}

static hashval_t
reduction_info_hash (const void *aa)
{
  const struct reduction_info *a = (const struct reduction_info *) aa;

  return a->reduc_version;
}

static struct reduction_info *
reduction_phi (htab_t reduction_list, gimple phi)
{
  struct reduction_info tmpred, *red;

  if (htab_elements (reduction_list) == 0 || phi == NULL)
    return NULL;

  tmpred.reduc_phi = phi;
  tmpred.reduc_version = gimple_uid (phi);
  red = (struct reduction_info *) htab_find (reduction_list, &tmpred);

  return red;
}

/* Element of hashtable of names to copy.  */

struct name_to_copy_elt
{
  unsigned version;	/* The version of the name to copy.  */
  tree new_name;	/* The new name used in the copy.  */
  tree field;		/* The field of the structure used to pass the
			   value.  */
};

/* Equality and hash functions for hashtab code.  */

static int
name_to_copy_elt_eq (const void *aa, const void *bb)
{
  const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
  const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb;

  return a->version == b->version;
}

static hashval_t
name_to_copy_elt_hash (const void *aa)
{
  const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;

  return (hashval_t) a->version;
}

/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
   matrix.  Rather than use floats, we simply keep a single DENOMINATOR that
   represents the denominator for every element in the matrix.  */
typedef struct lambda_trans_matrix_s
{
  lambda_matrix matrix;
  int rowsize;
  int colsize;
  int denominator;
} *lambda_trans_matrix;
#define LTM_MATRIX(T) ((T)->matrix)
#define LTM_ROWSIZE(T) ((T)->rowsize)
#define LTM_COLSIZE(T) ((T)->colsize)
#define LTM_DENOMINATOR(T) ((T)->denominator)

/* Allocate a new transformation matrix.  */

static lambda_trans_matrix
lambda_trans_matrix_new (int colsize, int rowsize,
			 struct obstack * lambda_obstack)
{
  lambda_trans_matrix ret;

  ret = (lambda_trans_matrix)
    obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
  LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
  LTM_ROWSIZE (ret) = rowsize;
  LTM_COLSIZE (ret) = colsize;
  LTM_DENOMINATOR (ret) = 1;
  return ret;
}

/* Multiply a vector VEC by a matrix MAT.
   MAT is an M*N matrix, and VEC is a vector with length N.  The result
   is stored in DEST which must be a vector of length M.  */

static void
lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
			   lambda_vector vec, lambda_vector dest)
{
  int i, j;

  lambda_vector_clear (dest, m);
  for (i = 0; i < m; i++)
    for (j = 0; j < n; j++)
      dest[i] += matrix[i][j] * vec[j];
}

/* Return true if TRANS is a legal transformation matrix that respects
   the dependence vectors in DISTS and DIRS.  The conservative answer
   is false.

   "Wolfe proves that a unimodular transformation represented by the
   matrix T is legal when applied to a loop nest with a set of
   lexicographically non-negative distance vectors RDG if and only if
   for each vector d in RDG, (T.d >= 0) is lexicographically positive.
   i.e.: if and only if it transforms the lexicographically positive
   distance vectors to lexicographically positive vectors.  Note that
   a unimodular matrix must transform the zero vector (and only it) to
   the zero vector." S.Muchnick.  */

static bool
lambda_transform_legal_p (lambda_trans_matrix trans,
			  int nb_loops,
			  vec<ddr_p> dependence_relations)
{
  unsigned int i, j;
  lambda_vector distres;
  struct data_dependence_relation *ddr;

  gcc_assert (LTM_COLSIZE (trans) == nb_loops
	      && LTM_ROWSIZE (trans) == nb_loops);

  /* When there are no dependences, the transformation is correct.  */
  if (dependence_relations.length () == 0)
    return true;

  ddr = dependence_relations[0];
  if (ddr == NULL)
    return true;

  /* When there is an unknown relation in the dependence_relations, we
     know that it is no worth looking at this loop nest: give up.  */
  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
    return false;

  distres = lambda_vector_new (nb_loops);

  /* For each distance vector in the dependence graph.  */
  FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
    {
      /* Don't care about relations for which we know that there is no
	 dependence, nor about read-read (aka. output-dependences):
	 these data accesses can happen in any order.  */
      if (DDR_ARE_DEPENDENT (ddr) == chrec_known
	  || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
	continue;

      /* Conservatively answer: "this transformation is not valid".  */
      if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
	return false;

      /* If the dependence could not be captured by a distance vector,
	 conservatively answer that the transform is not valid.  */
      if (DDR_NUM_DIST_VECTS (ddr) == 0)
	return false;

      /* Compute trans.dist_vect */
      for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
	{
	  lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
				     DDR_DIST_VECT (ddr, j), distres);

	  if (!lambda_vector_lexico_pos (distres, nb_loops))
	    return false;
	}
    }
  return true;
}

/* Data dependency analysis. Returns true if the iterations of LOOP
   are independent on each other (that is, if we can execute them
   in parallel).  */

static bool
loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
{
  vec<loop_p> loop_nest;
  vec<ddr_p> dependence_relations;
  vec<data_reference_p> datarefs;
  lambda_trans_matrix trans;
  bool ret = false;

  if (dump_file && (dump_flags & TDF_DETAILS))
  {
    fprintf (dump_file, "Considering loop %d\n", loop->num);
    if (!loop->inner)
      fprintf (dump_file, "loop is innermost\n");
    else
      fprintf (dump_file, "loop NOT innermost\n");
   }

  /* Check for problems with dependences.  If the loop can be reversed,
     the iterations are independent.  */
  datarefs.create (10);
  dependence_relations.create (10 * 10);
  loop_nest.create (3);
  if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
					   &dependence_relations))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "  FAILED: cannot analyze data dependencies\n");
      ret = false;
      goto end;
    }
  if (dump_file && (dump_flags & TDF_DETAILS))
    dump_data_dependence_relations (dump_file, dependence_relations);

  trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
  LTM_MATRIX (trans)[0][0] = -1;

  if (lambda_transform_legal_p (trans, 1, dependence_relations))
    {
      ret = true;
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "  SUCCESS: may be parallelized\n");
    }
  else if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file,
	     "  FAILED: data dependencies exist across iterations\n");

 end:
  loop_nest.release ();
  free_dependence_relations (dependence_relations);
  free_data_refs (datarefs);

  return ret;
}

/* Return true when LOOP contains basic blocks marked with the
   BB_IRREDUCIBLE_LOOP flag.  */

static inline bool
loop_has_blocks_with_irreducible_flag (struct loop *loop)
{
  unsigned i;
  basic_block *bbs = get_loop_body_in_dom_order (loop);
  bool res = true;

  for (i = 0; i < loop->num_nodes; i++)
    if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
      goto end;

  res = false;
 end:
  free (bbs);
  return res;
}

/* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
   The assignment statement is placed on edge ENTRY.  DECL_ADDRESS maps decls
   to their addresses that can be reused.  The address of OBJ is known to
   be invariant in the whole function.  Other needed statements are placed
   right before GSI.  */

static tree
take_address_of (tree obj, tree type, edge entry, htab_t decl_address,
		 gimple_stmt_iterator *gsi)
{
  int uid;
  void **dslot;
  struct int_tree_map ielt, *nielt;
  tree *var_p, name, addr;
  gimple stmt;
  gimple_seq stmts;

  /* Since the address of OBJ is invariant, the trees may be shared.
     Avoid rewriting unrelated parts of the code.  */
  obj = unshare_expr (obj);
  for (var_p = &obj;
       handled_component_p (*var_p);
       var_p = &TREE_OPERAND (*var_p, 0))
    continue;

  /* Canonicalize the access to base on a MEM_REF.  */
  if (DECL_P (*var_p))
    *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));

  /* Assign a canonical SSA name to the address of the base decl used
     in the address and share it for all accesses and addresses based
     on it.  */
  uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
  ielt.uid = uid;
  dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT);
  if (!*dslot)
    {
      if (gsi == NULL)
	return NULL;
      addr = TREE_OPERAND (*var_p, 0);
      name = make_temp_ssa_name (TREE_TYPE (addr), NULL,
				 get_name (TREE_OPERAND
					   (TREE_OPERAND (*var_p, 0), 0)));
      stmt = gimple_build_assign (name, addr);
      gsi_insert_on_edge_immediate (entry, stmt);

      nielt = XNEW (struct int_tree_map);
      nielt->uid = uid;
      nielt->to = name;
      *dslot = nielt;
    }
  else
    name = ((struct int_tree_map *) *dslot)->to;

  /* Express the address in terms of the canonical SSA name.  */
  TREE_OPERAND (*var_p, 0) = name;
  if (gsi == NULL)
    return build_fold_addr_expr_with_type (obj, type);

  name = force_gimple_operand (build_addr (obj, current_function_decl),
			       &stmts, true, NULL_TREE);
  if (!gimple_seq_empty_p (stmts))
    gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);

  if (!useless_type_conversion_p (type, TREE_TYPE (name)))
    {
      name = force_gimple_operand (fold_convert (type, name), &stmts, true,
				   NULL_TREE);
      if (!gimple_seq_empty_p (stmts))
	gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
    }

  return name;
}

/* Callback for htab_traverse.  Create the initialization statement
   for reduction described in SLOT, and place it at the preheader of
   the loop described in DATA.  */

static int
initialize_reductions (void **slot, void *data)
{
  tree init, c;
  tree bvar, type, arg;
  edge e;

  struct reduction_info *const reduc = (struct reduction_info *) *slot;
  struct loop *loop = (struct loop *) data;

  /* Create initialization in preheader:
     reduction_variable = initialization value of reduction.  */

  /* In the phi node at the header, replace the argument coming
     from the preheader with the reduction initialization value.  */

  /* Create a new variable to initialize the reduction.  */
  type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
  bvar = create_tmp_var (type, "reduction");

  c = build_omp_clause (gimple_location (reduc->reduc_stmt),
			OMP_CLAUSE_REDUCTION);
  OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
  OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));

  init = omp_reduction_init (c, TREE_TYPE (bvar));
  reduc->init = init;

  /* Replace the argument representing the initialization value
     with the initialization value for the reduction (neutral
     element for the particular operation, e.g. 0 for PLUS_EXPR,
     1 for MULT_EXPR, etc).
     Keep the old value in a new variable "reduction_initial",
     that will be taken in consideration after the parallel
     computing is done.  */

  e = loop_preheader_edge (loop);
  arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
  /* Create new variable to hold the initial value.  */

  SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
	   (reduc->reduc_phi, loop_preheader_edge (loop)), init);
  reduc->initial_value = arg;
  return 1;
}

struct elv_data
{
  struct walk_stmt_info info;
  edge entry;
  htab_t decl_address;
  gimple_stmt_iterator *gsi;
  bool changed;
  bool reset;
};

/* Eliminates references to local variables in *TP out of the single
   entry single exit region starting at DTA->ENTRY.
   DECL_ADDRESS contains addresses of the references that had their
   address taken already.  If the expression is changed, CHANGED is
   set to true.  Callback for walk_tree.  */

static tree
eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
{
  struct elv_data *const dta = (struct elv_data *) data;
  tree t = *tp, var, addr, addr_type, type, obj;

  if (DECL_P (t))
    {
      *walk_subtrees = 0;

      if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
	return NULL_TREE;

      type = TREE_TYPE (t);
      addr_type = build_pointer_type (type);
      addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
			      dta->gsi);
      if (dta->gsi == NULL && addr == NULL_TREE)
	{
	  dta->reset = true;
	  return NULL_TREE;
	}

      *tp = build_simple_mem_ref (addr);

      dta->changed = true;
      return NULL_TREE;
    }

  if (TREE_CODE (t) == ADDR_EXPR)
    {
      /* ADDR_EXPR may appear in two contexts:
	 -- as a gimple operand, when the address taken is a function invariant
	 -- as gimple rhs, when the resulting address in not a function
	    invariant
	 We do not need to do anything special in the latter case (the base of
	 the memory reference whose address is taken may be replaced in the
	 DECL_P case).  The former case is more complicated, as we need to
	 ensure that the new address is still a gimple operand.  Thus, it
	 is not sufficient to replace just the base of the memory reference --
	 we need to move the whole computation of the address out of the
	 loop.  */
      if (!is_gimple_val (t))
	return NULL_TREE;

      *walk_subtrees = 0;
      obj = TREE_OPERAND (t, 0);
      var = get_base_address (obj);
      if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
	return NULL_TREE;

      addr_type = TREE_TYPE (t);
      addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
			      dta->gsi);
      if (dta->gsi == NULL && addr == NULL_TREE)
	{
	  dta->reset = true;
	  return NULL_TREE;
	}
      *tp = addr;

      dta->changed = true;
      return NULL_TREE;
    }

  if (!EXPR_P (t))
    *walk_subtrees = 0;

  return NULL_TREE;
}

/* Moves the references to local variables in STMT at *GSI out of the single
   entry single exit region starting at ENTRY.  DECL_ADDRESS contains
   addresses of the references that had their address taken
   already.  */

static void
eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
				htab_t decl_address)
{
  struct elv_data dta;
  gimple stmt = gsi_stmt (*gsi);

  memset (&dta.info, '\0', sizeof (dta.info));
  dta.entry = entry;
  dta.decl_address = decl_address;
  dta.changed = false;
  dta.reset = false;

  if (gimple_debug_bind_p (stmt))
    {
      dta.gsi = NULL;
      walk_tree (gimple_debug_bind_get_value_ptr (stmt),
		 eliminate_local_variables_1, &dta.info, NULL);
      if (dta.reset)
	{
	  gimple_debug_bind_reset_value (stmt);
	  dta.changed = true;
	}
    }
  else
    {
      dta.gsi = gsi;
      walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
    }

  if (dta.changed)
    update_stmt (stmt);
}

/* Eliminates the references to local variables from the single entry
   single exit region between the ENTRY and EXIT edges.

   This includes:
   1) Taking address of a local variable -- these are moved out of the
   region (and temporary variable is created to hold the address if
   necessary).

   2) Dereferencing a local variable -- these are replaced with indirect
   references.  */

static void
eliminate_local_variables (edge entry, edge exit)
{
  basic_block bb;
  vec<basic_block> body;
  body.create (3);
  unsigned i;
  gimple_stmt_iterator gsi;
  bool has_debug_stmt = false;
  htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq,
				     free);
  basic_block entry_bb = entry->src;
  basic_block exit_bb = exit->dest;

  gather_blocks_in_sese_region (entry_bb, exit_bb, &body);

  FOR_EACH_VEC_ELT (body, i, bb)
    if (bb != entry_bb && bb != exit_bb)
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	if (is_gimple_debug (gsi_stmt (gsi)))
	  {
	    if (gimple_debug_bind_p (gsi_stmt (gsi)))
	      has_debug_stmt = true;
	  }
	else
	  eliminate_local_variables_stmt (entry, &gsi, decl_address);

  if (has_debug_stmt)
    FOR_EACH_VEC_ELT (body, i, bb)
      if (bb != entry_bb && bb != exit_bb)
	for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	  if (gimple_debug_bind_p (gsi_stmt (gsi)))
	    eliminate_local_variables_stmt (entry, &gsi, decl_address);

  htab_delete (decl_address);
  body.release ();
}

/* Returns true if expression EXPR is not defined between ENTRY and
   EXIT, i.e. if all its operands are defined outside of the region.  */

static bool
expr_invariant_in_region_p (edge entry, edge exit, tree expr)
{
  basic_block entry_bb = entry->src;
  basic_block exit_bb = exit->dest;
  basic_block def_bb;

  if (is_gimple_min_invariant (expr))
    return true;

  if (TREE_CODE (expr) == SSA_NAME)
    {
      def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
      if (def_bb
	  && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
	  && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
	return false;

      return true;
    }

  return false;
}

/* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
   The copies are stored to NAME_COPIES, if NAME was already duplicated,
   its duplicate stored in NAME_COPIES is returned.

   Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
   duplicated, storing the copies in DECL_COPIES.  */

static tree
separate_decls_in_region_name (tree name,
			       htab_t name_copies, htab_t decl_copies,
			       bool copy_name_p)
{
  tree copy, var, var_copy;
  unsigned idx, uid, nuid;
  struct int_tree_map ielt, *nielt;
  struct name_to_copy_elt elt, *nelt;
  void **slot, **dslot;

  if (TREE_CODE (name) != SSA_NAME)
    return name;

  idx = SSA_NAME_VERSION (name);
  elt.version = idx;
  slot = htab_find_slot_with_hash (name_copies, &elt, idx,
				   copy_name_p ? INSERT : NO_INSERT);
  if (slot && *slot)
    return ((struct name_to_copy_elt *) *slot)->new_name;

  if (copy_name_p)
    {
      copy = duplicate_ssa_name (name, NULL);
      nelt = XNEW (struct name_to_copy_elt);
      nelt->version = idx;
      nelt->new_name = copy;
      nelt->field = NULL_TREE;
      *slot = nelt;
    }
  else
    {
      gcc_assert (!slot);
      copy = name;
    }

  var = SSA_NAME_VAR (name);
  if (!var)
    return copy;

  uid = DECL_UID (var);
  ielt.uid = uid;
  dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT);
  if (!*dslot)
    {
      var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
      DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
      nielt = XNEW (struct int_tree_map);
      nielt->uid = uid;
      nielt->to = var_copy;
      *dslot = nielt;

      /* Ensure that when we meet this decl next time, we won't duplicate
         it again.  */
      nuid = DECL_UID (var_copy);
      ielt.uid = nuid;
      dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT);
      gcc_assert (!*dslot);
      nielt = XNEW (struct int_tree_map);
      nielt->uid = nuid;
      nielt->to = var_copy;
      *dslot = nielt;
    }
  else
    var_copy = ((struct int_tree_map *) *dslot)->to;

  replace_ssa_name_symbol (copy, var_copy);
  return copy;
}

/* Finds the ssa names used in STMT that are defined outside the
   region between ENTRY and EXIT and replaces such ssa names with
   their duplicates.  The duplicates are stored to NAME_COPIES.  Base
   decls of all ssa names used in STMT (including those defined in
   LOOP) are replaced with the new temporary variables; the
   replacement decls are stored in DECL_COPIES.  */

static void
separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
			       htab_t name_copies, htab_t decl_copies)
{
  use_operand_p use;
  def_operand_p def;
  ssa_op_iter oi;
  tree name, copy;
  bool copy_name_p;

  FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
  {
    name = DEF_FROM_PTR (def);
    gcc_assert (TREE_CODE (name) == SSA_NAME);
    copy = separate_decls_in_region_name (name, name_copies, decl_copies,
					  false);
    gcc_assert (copy == name);
  }

  FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
  {
    name = USE_FROM_PTR (use);
    if (TREE_CODE (name) != SSA_NAME)
      continue;

    copy_name_p = expr_invariant_in_region_p (entry, exit, name);
    copy = separate_decls_in_region_name (name, name_copies, decl_copies,
					  copy_name_p);
    SET_USE (use, copy);
  }
}

/* Finds the ssa names used in STMT that are defined outside the
   region between ENTRY and EXIT and replaces such ssa names with
   their duplicates.  The duplicates are stored to NAME_COPIES.  Base
   decls of all ssa names used in STMT (including those defined in
   LOOP) are replaced with the new temporary variables; the
   replacement decls are stored in DECL_COPIES.  */

static bool
separate_decls_in_region_debug (gimple stmt, htab_t name_copies,
				htab_t decl_copies)
{
  use_operand_p use;
  ssa_op_iter oi;
  tree var, name;
  struct int_tree_map ielt;
  struct name_to_copy_elt elt;
  void **slot, **dslot;

  if (gimple_debug_bind_p (stmt))
    var = gimple_debug_bind_get_var (stmt);
  else if (gimple_debug_source_bind_p (stmt))
    var = gimple_debug_source_bind_get_var (stmt);
  else
    return true;
  if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
    return true;
  gcc_assert (DECL_P (var) && SSA_VAR_P (var));
  ielt.uid = DECL_UID (var);
  dslot = htab_find_slot_with_hash (decl_copies, &ielt, ielt.uid, NO_INSERT);
  if (!dslot)
    return true;
  if (gimple_debug_bind_p (stmt))
    gimple_debug_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
  else if (gimple_debug_source_bind_p (stmt))
    gimple_debug_source_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);

  FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
  {
    name = USE_FROM_PTR (use);
    if (TREE_CODE (name) != SSA_NAME)
      continue;

    elt.version = SSA_NAME_VERSION (name);
    slot = htab_find_slot_with_hash (name_copies, &elt, elt.version, NO_INSERT);
    if (!slot)
      {
	gimple_debug_bind_reset_value (stmt);
	update_stmt (stmt);
	break;
      }

    SET_USE (use, ((struct name_to_copy_elt *) *slot)->new_name);
  }

  return false;
}

/* Callback for htab_traverse.  Adds a field corresponding to the reduction
   specified in SLOT. The type is passed in DATA.  */

static int
add_field_for_reduction (void **slot, void *data)
{

  struct reduction_info *const red = (struct reduction_info *) *slot;
  tree const type = (tree) data;
  tree var = SSA_NAME_VAR (gimple_assign_lhs (red->reduc_stmt));
  tree field = build_decl (gimple_location (red->reduc_stmt),
			   FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));

  insert_field_into_struct (type, field);

  red->field = field;

  return 1;
}

/* Callback for htab_traverse.  Adds a field corresponding to a ssa name
   described in SLOT. The type is passed in DATA.  */

static int
add_field_for_name (void **slot, void *data)
{
  struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
  tree type = (tree) data;
  tree name = ssa_name (elt->version);
  tree field = build_decl (UNKNOWN_LOCATION,
			   FIELD_DECL, SSA_NAME_IDENTIFIER (name),
			   TREE_TYPE (name));

  insert_field_into_struct (type, field);
  elt->field = field;

  return 1;
}

/* Callback for htab_traverse.  A local result is the intermediate result
   computed by a single
   thread, or the initial value in case no iteration was executed.
   This function creates a phi node reflecting these values.
   The phi's result will be stored in NEW_PHI field of the
   reduction's data structure.  */

static int
create_phi_for_local_result (void **slot, void *data)
{
  struct reduction_info *const reduc = (struct reduction_info *) *slot;
  const struct loop *const loop = (const struct loop *) data;
  edge e;
  gimple new_phi;
  basic_block store_bb;
  tree local_res;
  source_location locus;

  /* STORE_BB is the block where the phi
     should be stored.  It is the destination of the loop exit.
     (Find the fallthru edge from GIMPLE_OMP_CONTINUE).  */
  store_bb = FALLTHRU_EDGE (loop->latch)->dest;

  /* STORE_BB has two predecessors.  One coming from  the loop
     (the reduction's result is computed at the loop),
     and another coming from a block preceding the loop,
     when no iterations
     are executed (the initial value should be taken).  */
  if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
    e = EDGE_PRED (store_bb, 1);
  else
    e = EDGE_PRED (store_bb, 0);
  local_res = copy_ssa_name (gimple_assign_lhs (reduc->reduc_stmt), NULL);
  locus = gimple_location (reduc->reduc_stmt);
  new_phi = create_phi_node (local_res, store_bb);
  add_phi_arg (new_phi, reduc->init, e, locus);
  add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
	       FALLTHRU_EDGE (loop->latch), locus);
  reduc->new_phi = new_phi;

  return 1;
}

struct clsn_data
{
  tree store;
  tree load;

  basic_block store_bb;
  basic_block load_bb;
};

/* Callback for htab_traverse.  Create an atomic instruction for the
   reduction described in SLOT.
   DATA annotates the place in memory the atomic operation relates to,
   and the basic block it needs to be generated in.  */

static int
create_call_for_reduction_1 (void **slot, void *data)
{
  struct reduction_info *const reduc = (struct reduction_info *) *slot;
  struct clsn_data *const clsn_data = (struct clsn_data *) data;
  gimple_stmt_iterator gsi;
  tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
  tree load_struct;
  basic_block bb;
  basic_block new_bb;
  edge e;
  tree t, addr, ref, x;
  tree tmp_load, name;
  gimple load;

  load_struct = build_simple_mem_ref (clsn_data->load);
  t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);

  addr = build_addr (t, current_function_decl);

  /* Create phi node.  */
  bb = clsn_data->load_bb;

  e = split_block (bb, t);
  new_bb = e->dest;

  tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
  tmp_load = make_ssa_name (tmp_load, NULL);
  load = gimple_build_omp_atomic_load (tmp_load, addr);
  SSA_NAME_DEF_STMT (tmp_load) = load;
  gsi = gsi_start_bb (new_bb);
  gsi_insert_after (&gsi, load, GSI_NEW_STMT);

  e = split_block (new_bb, load);
  new_bb = e->dest;
  gsi = gsi_start_bb (new_bb);
  ref = tmp_load;
  x = fold_build2 (reduc->reduction_code,
		   TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
		   PHI_RESULT (reduc->new_phi));

  name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
				   GSI_CONTINUE_LINKING);

  gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
  return 1;
}

/* Create the atomic operation at the join point of the threads.
   REDUCTION_LIST describes the reductions in the LOOP.
   LD_ST_DATA describes the shared data structure where
   shared data is stored in and loaded from.  */
static void
create_call_for_reduction (struct loop *loop, htab_t reduction_list,
			   struct clsn_data *ld_st_data)
{
  htab_traverse (reduction_list, create_phi_for_local_result, loop);
  /* Find the fallthru edge from GIMPLE_OMP_CONTINUE.  */
  ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
  htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data);
}

/* Callback for htab_traverse.  Loads the final reduction value at the
   join point of all threads, and inserts it in the right place.  */

static int
create_loads_for_reductions (void **slot, void *data)
{
  struct reduction_info *const red = (struct reduction_info *) *slot;
  struct clsn_data *const clsn_data = (struct clsn_data *) data;
  gimple stmt;
  gimple_stmt_iterator gsi;
  tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
  tree load_struct;
  tree name;
  tree x;

  gsi = gsi_after_labels (clsn_data->load_bb);
  load_struct = build_simple_mem_ref (clsn_data->load);
  load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
			NULL_TREE);

  x = load_struct;
  name = PHI_RESULT (red->keep_res);
  stmt = gimple_build_assign (name, x);
  SSA_NAME_DEF_STMT (name) = stmt;

  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);

  for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
       !gsi_end_p (gsi); gsi_next (&gsi))
    if (gsi_stmt (gsi) == red->keep_res)
      {
	remove_phi_node (&gsi, false);
	return 1;
      }
  gcc_unreachable ();
}

/* Load the reduction result that was stored in LD_ST_DATA.
   REDUCTION_LIST describes the list of reductions that the
   loads should be generated for.  */
static void
create_final_loads_for_reduction (htab_t reduction_list,
				  struct clsn_data *ld_st_data)
{
  gimple_stmt_iterator gsi;
  tree t;
  gimple stmt;

  gsi = gsi_after_labels (ld_st_data->load_bb);
  t = build_fold_addr_expr (ld_st_data->store);
  stmt = gimple_build_assign (ld_st_data->load, t);

  gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
  SSA_NAME_DEF_STMT (ld_st_data->load) = stmt;

  htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data);

}

/* Callback for htab_traverse.  Store the neutral value for the
  particular reduction's operation, e.g. 0 for PLUS_EXPR,
  1 for MULT_EXPR, etc. into the reduction field.
  The reduction is specified in SLOT. The store information is
  passed in DATA.  */

static int
create_stores_for_reduction (void **slot, void *data)
{
  struct reduction_info *const red = (struct reduction_info *) *slot;
  struct clsn_data *const clsn_data = (struct clsn_data *) data;
  tree t;
  gimple stmt;
  gimple_stmt_iterator gsi;
  tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));

  gsi = gsi_last_bb (clsn_data->store_bb);
  t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
  stmt = gimple_build_assign (t, red->initial_value);
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);

  return 1;
}

/* Callback for htab_traverse.  Creates loads to a field of LOAD in LOAD_BB and
   store to a field of STORE in STORE_BB for the ssa name and its duplicate
   specified in SLOT.  */

static int
create_loads_and_stores_for_name (void **slot, void *data)
{
  struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
  struct clsn_data *const clsn_data = (struct clsn_data *) data;
  tree t;
  gimple stmt;
  gimple_stmt_iterator gsi;
  tree type = TREE_TYPE (elt->new_name);
  tree load_struct;

  gsi = gsi_last_bb (clsn_data->store_bb);
  t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
  stmt = gimple_build_assign (t, ssa_name (elt->version));
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);

  gsi = gsi_last_bb (clsn_data->load_bb);
  load_struct = build_simple_mem_ref (clsn_data->load);
  t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
  stmt = gimple_build_assign (elt->new_name, t);
  SSA_NAME_DEF_STMT (elt->new_name) = stmt;
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);

  return 1;
}

/* Moves all the variables used in LOOP and defined outside of it (including
   the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
   name) to a structure created for this purpose.  The code

   while (1)
     {
       use (a);
       use (b);
     }

   is transformed this way:

   bb0:
   old.a = a;
   old.b = b;

   bb1:
   a' = new->a;
   b' = new->b;
   while (1)
     {
       use (a');
       use (b');
     }

   `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT.  The
   pointer `new' is intentionally not initialized (the loop will be split to a
   separate function later, and `new' will be initialized from its arguments).
   LD_ST_DATA holds information about the shared data structure used to pass
   information among the threads.  It is initialized here, and
   gen_parallel_loop will pass it to create_call_for_reduction that
   needs this information.  REDUCTION_LIST describes the reductions
   in LOOP.  */

static void
separate_decls_in_region (edge entry, edge exit, htab_t reduction_list,
			  tree *arg_struct, tree *new_arg_struct,
			  struct clsn_data *ld_st_data)

{
  basic_block bb1 = split_edge (entry);
  basic_block bb0 = single_pred (bb1);
  htab_t name_copies = htab_create (10, name_to_copy_elt_hash,
				    name_to_copy_elt_eq, free);
  htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq,
				    free);
  unsigned i;
  tree type, type_name, nvar;
  gimple_stmt_iterator gsi;
  struct clsn_data clsn_data;
  vec<basic_block> body;
  body.create (3);
  basic_block bb;
  basic_block entry_bb = bb1;
  basic_block exit_bb = exit->dest;
  bool has_debug_stmt = false;

  entry = single_succ_edge (entry_bb);
  gather_blocks_in_sese_region (entry_bb, exit_bb, &body);

  FOR_EACH_VEC_ELT (body, i, bb)
    {
      if (bb != entry_bb && bb != exit_bb)
	{
	  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	    separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
					   name_copies, decl_copies);

	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	    {
	      gimple stmt = gsi_stmt (gsi);

	      if (is_gimple_debug (stmt))
		has_debug_stmt = true;
	      else
		separate_decls_in_region_stmt (entry, exit, stmt,
					       name_copies, decl_copies);
	    }
	}
    }

  /* Now process debug bind stmts.  We must not create decls while
     processing debug stmts, so we defer their processing so as to
     make sure we will have debug info for as many variables as
     possible (all of those that were dealt with in the loop above),
     and discard those for which we know there's nothing we can
     do.  */
  if (has_debug_stmt)
    FOR_EACH_VEC_ELT (body, i, bb)
      if (bb != entry_bb && bb != exit_bb)
	{
	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
	    {
	      gimple stmt = gsi_stmt (gsi);

	      if (is_gimple_debug (stmt))
		{
		  if (separate_decls_in_region_debug (stmt, name_copies,
						      decl_copies))
		    {
		      gsi_remove (&gsi, true);
		      continue;
		    }
		}

	      gsi_next (&gsi);
	    }
	}

  body.release ();

  if (htab_elements (name_copies) == 0 && htab_elements (reduction_list) == 0)
    {
      /* It may happen that there is nothing to copy (if there are only
         loop carried and external variables in the loop).  */
      *arg_struct = NULL;
      *new_arg_struct = NULL;
    }
  else
    {
      /* Create the type for the structure to store the ssa names to.  */
      type = lang_hooks.types.make_type (RECORD_TYPE);
      type_name = build_decl (UNKNOWN_LOCATION,
			      TYPE_DECL, create_tmp_var_name (".paral_data"),
			      type);
      TYPE_NAME (type) = type_name;

      htab_traverse (name_copies, add_field_for_name, type);
      if (reduction_list && htab_elements (reduction_list) > 0)
	{
	  /* Create the fields for reductions.  */
	  htab_traverse (reduction_list, add_field_for_reduction,
                         type);
	}
      layout_type (type);

      /* Create the loads and stores.  */
      *arg_struct = create_tmp_var (type, ".paral_data_store");
      nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
      *new_arg_struct = make_ssa_name (nvar, NULL);

      ld_st_data->store = *arg_struct;
      ld_st_data->load = *new_arg_struct;
      ld_st_data->store_bb = bb0;
      ld_st_data->load_bb = bb1;

      htab_traverse (name_copies, create_loads_and_stores_for_name,
		     ld_st_data);

      /* Load the calculation from memory (after the join of the threads).  */

      if (reduction_list && htab_elements (reduction_list) > 0)
	{
	  htab_traverse (reduction_list, create_stores_for_reduction,
                        ld_st_data);
	  clsn_data.load = make_ssa_name (nvar, NULL);
	  clsn_data.load_bb = exit->dest;
	  clsn_data.store = ld_st_data->store;
	  create_final_loads_for_reduction (reduction_list, &clsn_data);
	}
    }

  htab_delete (decl_copies);
  htab_delete (name_copies);
}

/* Bitmap containing uids of functions created by parallelization.  We cannot
   allocate it from the default obstack, as it must live across compilation
   of several functions; we make it gc allocated instead.  */

static GTY(()) bitmap parallelized_functions;

/* Returns true if FN was created by create_loop_fn.  */

bool
parallelized_function_p (tree fn)
{
  if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
    return false;

  return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
}

/* Creates and returns an empty function that will receive the body of
   a parallelized loop.  */

static tree
create_loop_fn (location_t loc)
{
  char buf[100];
  char *tname;
  tree decl, type, name, t;
  struct function *act_cfun = cfun;
  static unsigned loopfn_num;

  loc = LOCATION_LOCUS (loc);
  snprintf (buf, 100, "%s.$loopfn", current_function_name ());
  ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
  clean_symbol_name (tname);
  name = get_identifier (tname);
  type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);

  decl = build_decl (loc, FUNCTION_DECL, name, type);
  if (!parallelized_functions)
    parallelized_functions = BITMAP_GGC_ALLOC ();
  bitmap_set_bit (parallelized_functions, DECL_UID (decl));

  TREE_STATIC (decl) = 1;
  TREE_USED (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  DECL_IGNORED_P (decl) = 0;
  TREE_PUBLIC (decl) = 0;
  DECL_UNINLINABLE (decl) = 1;
  DECL_EXTERNAL (decl) = 0;
  DECL_CONTEXT (decl) = NULL_TREE;
  DECL_INITIAL (decl) = make_node (BLOCK);

  t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
  DECL_ARTIFICIAL (t) = 1;
  DECL_IGNORED_P (t) = 1;
  DECL_RESULT (decl) = t;

  t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
		  ptr_type_node);
  DECL_ARTIFICIAL (t) = 1;
  DECL_ARG_TYPE (t) = ptr_type_node;
  DECL_CONTEXT (t) = decl;
  TREE_USED (t) = 1;
  DECL_ARGUMENTS (decl) = t;

  allocate_struct_function (decl, false);

  /* The call to allocate_struct_function clobbers CFUN, so we need to restore
     it.  */
  set_cfun (act_cfun);

  return decl;
}

/* Moves the exit condition of LOOP to the beginning of its header, and
   duplicates the part of the last iteration that gets disabled to the
   exit of the loop.  NIT is the number of iterations of the loop
   (used to initialize the variables in the duplicated part).

   TODO: the common case is that latch of the loop is empty and immediately
   follows the loop exit.  In this case, it would be better not to copy the
   body of the loop, but only move the entry of the loop directly before the
   exit check and increase the number of iterations of the loop by one.
   This may need some additional preconditioning in case NIT = ~0.
   REDUCTION_LIST describes the reductions in LOOP.  */

static void
transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit)
{
  basic_block *bbs, *nbbs, ex_bb, orig_header;
  unsigned n;
  bool ok;
  edge exit = single_dom_exit (loop), hpred;
  tree control, control_name, res, t;
  gimple phi, nphi, cond_stmt, stmt, cond_nit;
  gimple_stmt_iterator gsi;
  tree nit_1;

  split_block_after_labels (loop->header);
  orig_header = single_succ (loop->header);
  hpred = single_succ_edge (loop->header);

  cond_stmt = last_stmt (exit->src);
  control = gimple_cond_lhs (cond_stmt);
  gcc_assert (gimple_cond_rhs (cond_stmt) == nit);

  /* Make sure that we have phi nodes on exit for all loop header phis
     (create_parallel_loop requires that).  */
  for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      phi = gsi_stmt (gsi);
      res = PHI_RESULT (phi);
      t = copy_ssa_name (res, phi);
      SET_PHI_RESULT (phi, t);
      nphi = create_phi_node (res, orig_header);
      add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);

      if (res == control)
	{
	  gimple_cond_set_lhs (cond_stmt, t);
	  update_stmt (cond_stmt);
	  control = t;
	}
    }

  bbs = get_loop_body_in_dom_order (loop);

  for (n = 0; bbs[n] != exit->src; n++)
   continue;
  nbbs = XNEWVEC (basic_block, n);
  ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
				   bbs + 1, n, nbbs);
  gcc_assert (ok);
  free (bbs);
  ex_bb = nbbs[0];
  free (nbbs);

  /* Other than reductions, the only gimple reg that should be copied
     out of the loop is the control variable.  */
  exit = single_dom_exit (loop);
  control_name = NULL_TREE;
  for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
    {
      phi = gsi_stmt (gsi);
      res = PHI_RESULT (phi);
      if (virtual_operand_p (res))
	{
	  gsi_next (&gsi);
	  continue;
	}

      /* Check if it is a part of reduction.  If it is,
         keep the phi at the reduction's keep_res field.  The
         PHI_RESULT of this phi is the resulting value of the reduction
         variable when exiting the loop.  */

      if (htab_elements (reduction_list) > 0)
	{
	  struct reduction_info *red;

	  tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
	  red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
	  if (red)
	    {
	      red->keep_res = phi;
	      gsi_next (&gsi);
	      continue;
	    }
	}
      gcc_assert (control_name == NULL_TREE
		  && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
      control_name = res;
      remove_phi_node (&gsi, false);
    }
  gcc_assert (control_name != NULL_TREE);

  /* Initialize the control variable to number of iterations
     according to the rhs of the exit condition.  */
  gsi = gsi_after_labels (ex_bb);
  cond_nit = last_stmt (exit->src);
  nit_1 =  gimple_cond_rhs (cond_nit);
  nit_1 = force_gimple_operand_gsi (&gsi,
				  fold_convert (TREE_TYPE (control_name), nit_1),
				  false, NULL_TREE, false, GSI_SAME_STMT);
  stmt = gimple_build_assign (control_name, nit_1);
  gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
  SSA_NAME_DEF_STMT (control_name) = stmt;
}

/* Create the parallel constructs for LOOP as described in gen_parallel_loop.
   LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
   NEW_DATA is the variable that should be initialized from the argument
   of LOOP_FN.  N_THREADS is the requested number of threads.  Returns the
   basic block containing GIMPLE_OMP_PARALLEL tree.  */

static basic_block
create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
		      tree new_data, unsigned n_threads, location_t loc)
{
  gimple_stmt_iterator gsi;
  basic_block bb, paral_bb, for_bb, ex_bb;
  tree t, param;
  gimple stmt, for_stmt, phi, cond_stmt;
  tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
  edge exit, nexit, guard, end, e;

  /* Prepare the GIMPLE_OMP_PARALLEL statement.  */
  bb = loop_preheader_edge (loop)->src;
  paral_bb = single_pred (bb);
  gsi = gsi_last_bb (paral_bb);

  t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
  OMP_CLAUSE_NUM_THREADS_EXPR (t)
    = build_int_cst (integer_type_node, n_threads);
  stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
  gimple_set_location (stmt, loc);

  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);

  /* Initialize NEW_DATA.  */
  if (data)
    {
      gsi = gsi_after_labels (bb);

      param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
      stmt = gimple_build_assign (param, build_fold_addr_expr (data));
      gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
      SSA_NAME_DEF_STMT (param) = stmt;

      stmt = gimple_build_assign (new_data,
				  fold_convert (TREE_TYPE (new_data), param));
      gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
      SSA_NAME_DEF_STMT (new_data) = stmt;
    }

  /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL.  */
  bb = split_loop_exit_edge (single_dom_exit (loop));
  gsi = gsi_last_bb (bb);
  stmt = gimple_build_omp_return (false);
  gimple_set_location (stmt, loc);
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);

  /* Extract data for GIMPLE_OMP_FOR.  */
  gcc_assert (loop->header == single_dom_exit (loop)->src);
  cond_stmt = last_stmt (loop->header);

  cvar = gimple_cond_lhs (cond_stmt);
  cvar_base = SSA_NAME_VAR (cvar);
  phi = SSA_NAME_DEF_STMT (cvar);
  cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
  initvar = copy_ssa_name (cvar, NULL);
  SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
	   initvar);
  cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));

  gsi = gsi_last_nondebug_bb (loop->latch);
  gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
  gsi_remove (&gsi, true);

  /* Prepare cfg.  */
  for_bb = split_edge (loop_preheader_edge (loop));
  ex_bb = split_loop_exit_edge (single_dom_exit (loop));
  extract_true_false_edges_from_block (loop->header, &nexit, &exit);
  gcc_assert (exit == single_dom_exit (loop));

  guard = make_edge (for_bb, ex_bb, 0);
  single_succ_edge (loop->latch)->flags = 0;
  end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
  for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      source_location locus;
      tree def;
      phi = gsi_stmt (gsi);
      stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));

      def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
      locus = gimple_phi_arg_location_from_edge (stmt,
						 loop_preheader_edge (loop));
      add_phi_arg (phi, def, guard, locus);

      def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
      locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
      add_phi_arg (phi, def, end, locus);
    }
  e = redirect_edge_and_branch (exit, nexit->dest);
  PENDING_STMT (e) = NULL;

  /* Emit GIMPLE_OMP_FOR.  */
  gimple_cond_set_lhs (cond_stmt, cvar_base);
  type = TREE_TYPE (cvar);
  t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
  OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;

  for_stmt = gimple_build_omp_for (NULL, t, 1, NULL);
  gimple_set_location (for_stmt, loc);
  gimple_omp_for_set_index (for_stmt, 0, initvar);
  gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
  gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
  gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
  gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
						cvar_base,
						build_int_cst (type, 1)));

  gsi = gsi_last_bb (for_bb);
  gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
  SSA_NAME_DEF_STMT (initvar) = for_stmt;

  /* Emit GIMPLE_OMP_CONTINUE.  */
  gsi = gsi_last_bb (loop->latch);
  stmt = gimple_build_omp_continue (cvar_next, cvar);
  gimple_set_location (stmt, loc);
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
  SSA_NAME_DEF_STMT (cvar_next) = stmt;

  /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR.  */
  gsi = gsi_last_bb (ex_bb);
  stmt = gimple_build_omp_return (true);
  gimple_set_location (stmt, loc);
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);

  /* After the above dom info is hosed.  Re-compute it.  */
  free_dominance_info (CDI_DOMINATORS);
  calculate_dominance_info (CDI_DOMINATORS);

  return paral_bb;
}

/* Generates code to execute the iterations of LOOP in N_THREADS
   threads in parallel.

   NITER describes number of iterations of LOOP.
   REDUCTION_LIST describes the reductions existent in the LOOP.  */

static void
gen_parallel_loop (struct loop *loop, htab_t reduction_list,
		   unsigned n_threads, struct tree_niter_desc *niter)
{
  loop_iterator li;
  tree many_iterations_cond, type, nit;
  tree arg_struct, new_arg_struct;
  gimple_seq stmts;
  basic_block parallel_head;
  edge entry, exit;
  struct clsn_data clsn_data;
  unsigned prob;
  location_t loc;
  gimple cond_stmt;
  unsigned int m_p_thread=2;

  /* From

     ---------------------------------------------------------------------
     loop
       {
	 IV = phi (INIT, IV + STEP)
	 BODY1;
	 if (COND)
	   break;
	 BODY2;
       }
     ---------------------------------------------------------------------

     with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
     we generate the following code:

     ---------------------------------------------------------------------

     if (MAY_BE_ZERO
     || NITER < MIN_PER_THREAD * N_THREADS)
     goto original;

     BODY1;
     store all local loop-invariant variables used in body of the loop to DATA.
     GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
     load the variables from DATA.
     GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
     BODY2;
     BODY1;
     GIMPLE_OMP_CONTINUE;
     GIMPLE_OMP_RETURN         -- GIMPLE_OMP_FOR
     GIMPLE_OMP_RETURN         -- GIMPLE_OMP_PARALLEL
     goto end;

     original:
     loop
       {
	 IV = phi (INIT, IV + STEP)
	 BODY1;
	 if (COND)
	   break;
	 BODY2;
       }

     end:

   */

  /* Create two versions of the loop -- in the old one, we know that the
     number of iterations is large enough, and we will transform it into the
     loop that will be split to loop_fn, the new one will be used for the
     remaining iterations.  */

  /* We should compute a better number-of-iterations value for outer loops.
     That is, if we have
 
    for (i = 0; i < n; ++i)
      for (j = 0; j < m; ++j)
        ...

    we should compute nit = n * m, not nit = n.  
    Also may_be_zero handling would need to be adjusted.  */

  type = TREE_TYPE (niter->niter);
  nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
			      NULL_TREE);
  if (stmts)
    gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);

  if (loop->inner)
    m_p_thread=2;
  else
    m_p_thread=MIN_PER_THREAD;

   many_iterations_cond =
     fold_build2 (GE_EXPR, boolean_type_node,
                nit, build_int_cst (type, m_p_thread * n_threads));

  many_iterations_cond
    = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
		   invert_truthvalue (unshare_expr (niter->may_be_zero)),
		   many_iterations_cond);
  many_iterations_cond
    = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
  if (stmts)
    gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
  if (!is_gimple_condexpr (many_iterations_cond))
    {
      many_iterations_cond
	= force_gimple_operand (many_iterations_cond, &stmts,
				true, NULL_TREE);
      if (stmts)
	gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
    }

  initialize_original_copy_tables ();

  /* We assume that the loop usually iterates a lot.  */
  prob = 4 * REG_BR_PROB_BASE / 5;
  loop_version (loop, many_iterations_cond, NULL,
		prob, prob, REG_BR_PROB_BASE - prob, true);
  update_ssa (TODO_update_ssa);
  free_original_copy_tables ();

  /* Base all the induction variables in LOOP on a single control one.  */
  canonicalize_loop_ivs (loop, &nit, true);

  /* Ensure that the exit condition is the first statement in the loop.  */
  transform_to_exit_first_loop (loop, reduction_list, nit);

  /* Generate initializations for reductions.  */
  if (htab_elements (reduction_list) > 0)
    htab_traverse (reduction_list, initialize_reductions, loop);

  /* Eliminate the references to local variables from the loop.  */
  gcc_assert (single_exit (loop));
  entry = loop_preheader_edge (loop);
  exit = single_dom_exit (loop);

  eliminate_local_variables (entry, exit);
  /* In the old loop, move all variables non-local to the loop to a structure
     and back, and create separate decls for the variables used in loop.  */
  separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
			    &new_arg_struct, &clsn_data);

  /* Create the parallel constructs.  */
  loc = UNKNOWN_LOCATION;
  cond_stmt = last_stmt (loop->header);
  if (cond_stmt)
    loc = gimple_location (cond_stmt);
  parallel_head = create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
					new_arg_struct, n_threads, loc);
  if (htab_elements (reduction_list) > 0)
    create_call_for_reduction (loop, reduction_list, &clsn_data);

  scev_reset ();

  /* Cancel the loop (it is simpler to do it here rather than to teach the
     expander to do it).  */
  cancel_loop_tree (loop);

  /* Free loop bound estimations that could contain references to
     removed statements.  */
  FOR_EACH_LOOP (li, loop, 0)
    free_numbers_of_iterations_estimates_loop (loop);

  /* Expand the parallel constructs.  We do it directly here instead of running
     a separate expand_omp pass, since it is more efficient, and less likely to
     cause troubles with further analyses not being able to deal with the
     OMP trees.  */

  omp_expand_local (parallel_head);
}

/* Returns true when LOOP contains vector phi nodes.  */

static bool
loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
{
  unsigned i;
  basic_block *bbs = get_loop_body_in_dom_order (loop);
  gimple_stmt_iterator gsi;
  bool res = true;

  for (i = 0; i < loop->num_nodes; i++)
    for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
      if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
	goto end;

  res = false;
 end:
  free (bbs);
  return res;
}

/* Create a reduction_info struct, initialize it with REDUC_STMT
   and PHI, insert it to the REDUCTION_LIST.  */

static void
build_new_reduction (htab_t reduction_list, gimple reduc_stmt, gimple phi)
{
  PTR *slot;
  struct reduction_info *new_reduction;

  gcc_assert (reduc_stmt);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file,
	       "Detected reduction. reduction stmt is: \n");
      print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
      fprintf (dump_file, "\n");
    }

  new_reduction = XCNEW (struct reduction_info);

  new_reduction->reduc_stmt = reduc_stmt;
  new_reduction->reduc_phi = phi;
  new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
  new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
  slot = htab_find_slot (reduction_list, new_reduction, INSERT);
  *slot = new_reduction;
}

/* Callback for htab_traverse.  Sets gimple_uid of reduc_phi stmts.  */

static int
set_reduc_phi_uids (void **slot, void *data ATTRIBUTE_UNUSED)
{
  struct reduction_info *const red = (struct reduction_info *) *slot;
  gimple_set_uid (red->reduc_phi, red->reduc_version);
  return 1;
}

/* Detect all reductions in the LOOP, insert them into REDUCTION_LIST.  */

static void
gather_scalar_reductions (loop_p loop, htab_t reduction_list)
{
  gimple_stmt_iterator gsi;
  loop_vec_info simple_loop_info;

  simple_loop_info = vect_analyze_loop_form (loop);

  for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple phi = gsi_stmt (gsi);
      affine_iv iv;
      tree res = PHI_RESULT (phi);
      bool double_reduc;

      if (virtual_operand_p (res))
	continue;

      if (!simple_iv (loop, loop, res, &iv, true)
	&& simple_loop_info)
	{
           gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
							    phi, true,
							    &double_reduc);
	   if (reduc_stmt && !double_reduc)
              build_new_reduction (reduction_list, reduc_stmt, phi);
        }
    }
  destroy_loop_vec_info (simple_loop_info, true);

  /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
     and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
     only now.  */
  htab_traverse (reduction_list, set_reduc_phi_uids, NULL);
}

/* Try to initialize NITER for code generation part.  */

static bool
try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
{
  edge exit = single_dom_exit (loop);

  gcc_assert (exit);

  /* We need to know # of iterations, and there should be no uses of values
     defined inside loop outside of it, unless the values are invariants of
     the loop.  */
  if (!number_of_iterations_exit (loop, exit, niter, false))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "  FAILED: number of iterations not known\n");
      return false;
    }

  return true;
}

/* Try to initialize REDUCTION_LIST for code generation part.
   REDUCTION_LIST describes the reductions.  */

static bool
try_create_reduction_list (loop_p loop, htab_t reduction_list)
{
  edge exit = single_dom_exit (loop);
  gimple_stmt_iterator gsi;

  gcc_assert (exit);

  gather_scalar_reductions (loop, reduction_list);


  for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple phi = gsi_stmt (gsi);
      struct reduction_info *red;
      imm_use_iterator imm_iter;
      use_operand_p use_p;
      gimple reduc_phi;
      tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);

      if (!virtual_operand_p (val))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "phi is ");
	      print_gimple_stmt (dump_file, phi, 0, 0);
	      fprintf (dump_file, "arg of phi to exit:   value ");
	      print_generic_expr (dump_file, val, 0);
	      fprintf (dump_file, " used outside loop\n");
	      fprintf (dump_file,
		       "  checking if it a part of reduction pattern:  \n");
	    }
	  if (htab_elements (reduction_list) == 0)
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file,
			 "  FAILED: it is not a part of reduction.\n");
	      return false;
	    }
	  reduc_phi = NULL;
	  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
	    {
	      if (!gimple_debug_bind_p (USE_STMT (use_p))
		  && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
		{
		  reduc_phi = USE_STMT (use_p);
		  break;
		}
	    }
	  red = reduction_phi (reduction_list, reduc_phi);
	  if (red == NULL)
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file,
			 "  FAILED: it is not a part of reduction.\n");
	      return false;
	    }
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "reduction phi is  ");
	      print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
	      fprintf (dump_file, "reduction stmt is  ");
	      print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
	    }
	}
    }

  /* The iterations of the loop may communicate only through bivs whose
     iteration space can be distributed efficiently.  */
  for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple phi = gsi_stmt (gsi);
      tree def = PHI_RESULT (phi);
      affine_iv iv;

      if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
	{
	  struct reduction_info *red;

	  red = reduction_phi (reduction_list, phi);
	  if (red == NULL)
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file,
			 "  FAILED: scalar dependency between iterations\n");
	      return false;
	    }
	}
    }


  return true;
}

/* Detect parallel loops and generate parallel code using libgomp
   primitives.  Returns true if some loop was parallelized, false
   otherwise.  */

bool
parallelize_loops (void)
{
  unsigned n_threads = flag_tree_parallelize_loops;
  bool changed = false;
  struct loop *loop;
  struct tree_niter_desc niter_desc;
  loop_iterator li;
  htab_t reduction_list;
  struct obstack parloop_obstack;
  HOST_WIDE_INT estimated;
  LOC loop_loc;

  /* Do not parallelize loops in the functions created by parallelization.  */
  if (parallelized_function_p (cfun->decl))
    return false;
  if (cfun->has_nonlocal_label)
    return false;

  gcc_obstack_init (&parloop_obstack);
  reduction_list = htab_create (10, reduction_info_hash,
				     reduction_info_eq, free);
  init_stmt_vec_info_vec ();

  FOR_EACH_LOOP (li, loop, 0)
    {
      htab_empty (reduction_list);
      if (dump_file && (dump_flags & TDF_DETAILS))
      {
        fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
	if (loop->inner)
	  fprintf (dump_file, "loop %d is not innermost\n",loop->num);
	else
	  fprintf (dump_file, "loop %d is innermost\n",loop->num);
      }

      /* If we use autopar in graphite pass, we use its marked dependency
      checking results.  */
      if (flag_loop_parallelize_all && !loop->can_be_parallel)
      {
        if (dump_file && (dump_flags & TDF_DETAILS))
	   fprintf (dump_file, "loop is not parallel according to graphite\n");
	continue;
      }

      if (!single_dom_exit (loop))
      {

        if (dump_file && (dump_flags & TDF_DETAILS))
	  fprintf (dump_file, "loop is !single_dom_exit\n");

	continue;
      }

      if (/* And of course, the loop must be parallelizable.  */
	  !can_duplicate_loop_p (loop)
	  || loop_has_blocks_with_irreducible_flag (loop)
	  || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
	  /* FIXME: the check for vector phi nodes could be removed.  */
	  || loop_has_vector_phi_nodes (loop))
	continue;

      estimated = estimated_stmt_executions_int (loop);
      if (estimated == -1)
	estimated = max_stmt_executions_int (loop);
      /* FIXME: Bypass this check as graphite doesn't update the
	 count and frequency correctly now.  */
      if (!flag_loop_parallelize_all
	  && ((estimated != -1
	       && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
	      /* Do not bother with loops in cold areas.  */
	      || optimize_loop_nest_for_size_p (loop)))
	continue;

      if (!try_get_loop_niter (loop, &niter_desc))
	continue;

      if (!try_create_reduction_list (loop, reduction_list))
	continue;

      if (!flag_loop_parallelize_all
	  && !loop_parallel_p (loop, &parloop_obstack))
	continue;

      changed = true;
      if (dump_file && (dump_flags & TDF_DETAILS))
      {
	if (loop->inner)
	  fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
	else
	  fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
	loop_loc = find_loop_location (loop);
	if (loop_loc != UNKNOWN_LOC)
	  fprintf (dump_file, "\nloop at %s:%d: ",
		   LOC_FILE (loop_loc), LOC_LINE (loop_loc));
      }
      gen_parallel_loop (loop, reduction_list,
			 n_threads, &niter_desc);
#ifdef ENABLE_CHECKING
      verify_flow_info ();
      verify_loop_structure ();
      verify_loop_closed_ssa (true);
#endif
    }

  free_stmt_vec_info_vec ();
  htab_delete (reduction_list);
  obstack_free (&parloop_obstack, NULL);

  /* Parallelization will cause new function calls to be inserted through
     which local variables will escape.  Reset the points-to solution
     for ESCAPED.  */
  if (changed)
    pt_solution_reset (&cfun->gimple_df->escaped);

  return changed;
}

#include "gt-tree-parloops.h"