1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
|
/* If-conversion for vectorizer.
Copyright (C) 2004-2023 Free Software Foundation, Inc.
Contributed by Devang Patel <dpatel@apple.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This pass implements a tree level if-conversion of loops. Its
initial goal is to help the vectorizer to vectorize loops with
conditions.
A short description of if-conversion:
o Decide if a loop is if-convertible or not.
o Walk all loop basic blocks in breadth first order (BFS order).
o Remove conditional statements (at the end of basic block)
and propagate condition into destination basic blocks'
predicate list.
o Replace modify expression with conditional modify expression
using current basic block's condition.
o Merge all basic blocks
o Replace phi nodes with conditional modify expr
o Merge all basic blocks into header
Sample transformation:
INPUT
-----
# i_23 = PHI <0(0), i_18(10)>;
<L0>:;
j_15 = A[i_23];
if (j_15 > 41) goto <L1>; else goto <L17>;
<L17>:;
goto <bb 3> (<L3>);
<L1>:;
# iftmp.2_4 = PHI <0(8), 42(2)>;
<L3>:;
A[i_23] = iftmp.2_4;
i_18 = i_23 + 1;
if (i_18 <= 15) goto <L19>; else goto <L18>;
<L19>:;
goto <bb 1> (<L0>);
<L18>:;
OUTPUT
------
# i_23 = PHI <0(0), i_18(10)>;
<L0>:;
j_15 = A[i_23];
<L3>:;
iftmp.2_4 = j_15 > 41 ? 42 : 0;
A[i_23] = iftmp.2_4;
i_18 = i_23 + 1;
if (i_18 <= 15) goto <L19>; else goto <L18>;
<L19>:;
goto <bb 1> (<L0>);
<L18>:;
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "expmed.h"
#include "expr.h"
#include "optabs-tree.h"
#include "gimple-pretty-print.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "gimple-iterator.h"
#include "gimple-fold.h"
#include "gimplify.h"
#include "gimplify-me.h"
#include "tree-cfg.h"
#include "tree-into-ssa.h"
#include "tree-ssa.h"
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-ssa-loop.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-address.h"
#include "dbgcnt.h"
#include "tree-hash-traits.h"
#include "varasm.h"
#include "builtins.h"
#include "cfganal.h"
#include "internal-fn.h"
#include "fold-const.h"
#include "tree-ssa-sccvn.h"
#include "tree-cfgcleanup.h"
#include "tree-ssa-dse.h"
#include "tree-vectorizer.h"
#include "tree-eh.h"
#include "cgraph.h"
/* For lang_hooks.types.type_for_mode. */
#include "langhooks.h"
/* Only handle PHIs with no more arguments unless we are asked to by
simd pragma. */
#define MAX_PHI_ARG_NUM \
((unsigned) param_max_tree_if_conversion_phi_args)
/* True if we've converted a statement that was only executed when some
condition C was true, and if for correctness we need to predicate the
statement to ensure that it is a no-op when C is false. See
predicate_statements for the kinds of predication we support. */
static bool need_to_predicate;
/* True if we have to rewrite stmts that may invoke undefined behavior
when a condition C was false so it doesn't if it is always executed.
See predicate_statements for the kinds of predication we support. */
static bool need_to_rewrite_undefined;
/* Indicate if there are any complicated PHIs that need to be handled in
if-conversion. Complicated PHI has more than two arguments and can't
be degenerated to two arguments PHI. See more information in comment
before phi_convertible_by_degenerating_args. */
static bool any_complicated_phi;
/* True if we have bitfield accesses we can lower. */
static bool need_to_lower_bitfields;
/* True if there is any ifcvting to be done. */
static bool need_to_ifcvt;
/* Hash for struct innermost_loop_behavior. It depends on the user to
free the memory. */
struct innermost_loop_behavior_hash : nofree_ptr_hash <innermost_loop_behavior>
{
static inline hashval_t hash (const value_type &);
static inline bool equal (const value_type &,
const compare_type &);
};
inline hashval_t
innermost_loop_behavior_hash::hash (const value_type &e)
{
hashval_t hash;
hash = iterative_hash_expr (e->base_address, 0);
hash = iterative_hash_expr (e->offset, hash);
hash = iterative_hash_expr (e->init, hash);
return iterative_hash_expr (e->step, hash);
}
inline bool
innermost_loop_behavior_hash::equal (const value_type &e1,
const compare_type &e2)
{
if ((e1->base_address && !e2->base_address)
|| (!e1->base_address && e2->base_address)
|| (!e1->offset && e2->offset)
|| (e1->offset && !e2->offset)
|| (!e1->init && e2->init)
|| (e1->init && !e2->init)
|| (!e1->step && e2->step)
|| (e1->step && !e2->step))
return false;
if (e1->base_address && e2->base_address
&& !operand_equal_p (e1->base_address, e2->base_address, 0))
return false;
if (e1->offset && e2->offset
&& !operand_equal_p (e1->offset, e2->offset, 0))
return false;
if (e1->init && e2->init
&& !operand_equal_p (e1->init, e2->init, 0))
return false;
if (e1->step && e2->step
&& !operand_equal_p (e1->step, e2->step, 0))
return false;
return true;
}
/* List of basic blocks in if-conversion-suitable order. */
static basic_block *ifc_bbs;
/* Hash table to store <DR's innermost loop behavior, DR> pairs. */
static hash_map<innermost_loop_behavior_hash,
data_reference_p> *innermost_DR_map;
/* Hash table to store <base reference, DR> pairs. */
static hash_map<tree_operand_hash, data_reference_p> *baseref_DR_map;
/* List of redundant SSA names: the first should be replaced by the second. */
static vec< std::pair<tree, tree> > redundant_ssa_names;
/* Structure used to predicate basic blocks. This is attached to the
->aux field of the BBs in the loop to be if-converted. */
struct bb_predicate {
/* The condition under which this basic block is executed. */
tree predicate;
/* PREDICATE is gimplified, and the sequence of statements is
recorded here, in order to avoid the duplication of computations
that occur in previous conditions. See PR44483. */
gimple_seq predicate_gimplified_stmts;
/* Records the number of statements recorded into
PREDICATE_GIMPLIFIED_STMTS. */
unsigned no_predicate_stmts;
};
/* Returns true when the basic block BB has a predicate. */
static inline bool
bb_has_predicate (basic_block bb)
{
return bb->aux != NULL;
}
/* Returns the gimplified predicate for basic block BB. */
static inline tree
bb_predicate (basic_block bb)
{
return ((struct bb_predicate *) bb->aux)->predicate;
}
/* Sets the gimplified predicate COND for basic block BB. */
static inline void
set_bb_predicate (basic_block bb, tree cond)
{
auto aux = (struct bb_predicate *) bb->aux;
gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
&& is_gimple_val (TREE_OPERAND (cond, 0)))
|| is_gimple_val (cond));
aux->predicate = cond;
aux->no_predicate_stmts++;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Recording block %d value %d\n", bb->index,
aux->no_predicate_stmts);
}
/* Returns the sequence of statements of the gimplification of the
predicate for basic block BB. */
static inline gimple_seq
bb_predicate_gimplified_stmts (basic_block bb)
{
return ((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts;
}
/* Sets the sequence of statements STMTS of the gimplification of the
predicate for basic block BB. If PRESERVE_COUNTS then don't clear the predicate
counts. */
static inline void
set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts,
bool preserve_counts)
{
((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts = stmts;
if (stmts == NULL && !preserve_counts)
((struct bb_predicate *) bb->aux)->no_predicate_stmts = 0;
}
/* Adds the sequence of statements STMTS to the sequence of statements
of the predicate for basic block BB. */
static inline void
add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
{
/* We might have updated some stmts in STMTS via force_gimple_operand
calling fold_stmt and that producing multiple stmts. Delink immediate
uses so update_ssa after loop versioning doesn't get confused for
the not yet inserted predicates.
??? This should go away once we reliably avoid updating stmts
not in any BB. */
for (gimple_stmt_iterator gsi = gsi_start (stmts);
!gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
delink_stmt_imm_use (stmt);
gimple_set_modified (stmt, true);
((struct bb_predicate *) bb->aux)->no_predicate_stmts++;
}
gimple_seq_add_seq_without_update
(&(((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts), stmts);
}
/* Return the number of statements the predicate of the basic block consists
of. */
static inline unsigned
get_bb_num_predicate_stmts (basic_block bb)
{
return ((struct bb_predicate *) bb->aux)->no_predicate_stmts;
}
/* Initializes to TRUE the predicate of basic block BB. */
static inline void
init_bb_predicate (basic_block bb)
{
bb->aux = XNEW (struct bb_predicate);
set_bb_predicate_gimplified_stmts (bb, NULL, false);
set_bb_predicate (bb, boolean_true_node);
}
/* Release the SSA_NAMEs associated with the predicate of basic block BB. */
static inline void
release_bb_predicate (basic_block bb)
{
gimple_seq stmts = bb_predicate_gimplified_stmts (bb);
if (stmts)
{
/* Ensure that these stmts haven't yet been added to a bb. */
if (flag_checking)
for (gimple_stmt_iterator i = gsi_start (stmts);
!gsi_end_p (i); gsi_next (&i))
gcc_assert (! gimple_bb (gsi_stmt (i)));
/* Discard them. */
gimple_seq_discard (stmts);
set_bb_predicate_gimplified_stmts (bb, NULL, false);
}
}
/* Free the predicate of basic block BB. */
static inline void
free_bb_predicate (basic_block bb)
{
if (!bb_has_predicate (bb))
return;
release_bb_predicate (bb);
free (bb->aux);
bb->aux = NULL;
}
/* Reinitialize predicate of BB with the true predicate. */
static inline void
reset_bb_predicate (basic_block bb)
{
if (!bb_has_predicate (bb))
init_bb_predicate (bb);
else
{
release_bb_predicate (bb);
set_bb_predicate (bb, boolean_true_node);
}
}
/* Returns a new SSA_NAME of type TYPE that is assigned the value of
the expression EXPR. Inserts the statement created for this
computation before GSI and leaves the iterator GSI at the same
statement. */
static tree
ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
{
tree new_name = make_temp_ssa_name (type, NULL, "_ifc_");
gimple *stmt = gimple_build_assign (new_name, expr);
gimple_set_vuse (stmt, gimple_vuse (gsi_stmt (*gsi)));
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
return new_name;
}
/* Return true when COND is a false predicate. */
static inline bool
is_false_predicate (tree cond)
{
return (cond != NULL_TREE
&& (cond == boolean_false_node
|| integer_zerop (cond)));
}
/* Return true when COND is a true predicate. */
static inline bool
is_true_predicate (tree cond)
{
return (cond == NULL_TREE
|| cond == boolean_true_node
|| integer_onep (cond));
}
/* Returns true when BB has a predicate that is not trivial: true or
NULL_TREE. */
static inline bool
is_predicated (basic_block bb)
{
return !is_true_predicate (bb_predicate (bb));
}
/* Parses the predicate COND and returns its comparison code and
operands OP0 and OP1. */
static enum tree_code
parse_predicate (tree cond, tree *op0, tree *op1)
{
gimple *s;
if (TREE_CODE (cond) == SSA_NAME
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
{
if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
{
*op0 = gimple_assign_rhs1 (s);
*op1 = gimple_assign_rhs2 (s);
return gimple_assign_rhs_code (s);
}
else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
{
tree op = gimple_assign_rhs1 (s);
tree type = TREE_TYPE (op);
enum tree_code code = parse_predicate (op, op0, op1);
return code == ERROR_MARK ? ERROR_MARK
: invert_tree_comparison (code, HONOR_NANS (type));
}
return ERROR_MARK;
}
if (COMPARISON_CLASS_P (cond))
{
*op0 = TREE_OPERAND (cond, 0);
*op1 = TREE_OPERAND (cond, 1);
return TREE_CODE (cond);
}
return ERROR_MARK;
}
/* Returns the fold of predicate C1 OR C2 at location LOC. */
static tree
fold_or_predicates (location_t loc, tree c1, tree c2)
{
tree op1a, op1b, op2a, op2b;
enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
if (code1 != ERROR_MARK && code2 != ERROR_MARK)
{
tree t = maybe_fold_or_comparisons (boolean_type_node, code1, op1a, op1b,
code2, op2a, op2b);
if (t)
return t;
}
return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
}
/* Returns either a COND_EXPR or the folded expression if the folded
expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR,
a constant or a SSA_NAME. */
static tree
fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs)
{
/* If COND is comparison r != 0 and r has boolean type, convert COND
to SSA_NAME to accept by vect bool pattern. */
if (TREE_CODE (cond) == NE_EXPR)
{
tree op0 = TREE_OPERAND (cond, 0);
tree op1 = TREE_OPERAND (cond, 1);
if (TREE_CODE (op0) == SSA_NAME
&& TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
&& (integer_zerop (op1)))
cond = op0;
}
gimple_match_op cexpr (gimple_match_cond::UNCOND, COND_EXPR,
type, cond, rhs, lhs);
if (cexpr.resimplify (NULL, follow_all_ssa_edges))
{
if (gimple_simplified_result_is_gimple_val (&cexpr))
return cexpr.ops[0];
else if (cexpr.code == ABS_EXPR)
return build1 (ABS_EXPR, type, cexpr.ops[0]);
else if (cexpr.code == MIN_EXPR
|| cexpr.code == MAX_EXPR)
return build2 ((tree_code)cexpr.code, type, cexpr.ops[0], cexpr.ops[1]);
}
return build3 (COND_EXPR, type, cond, rhs, lhs);
}
/* Add condition NC to the predicate list of basic block BB. LOOP is
the loop to be if-converted. Use predicate of cd-equivalent block
for join bb if it exists: we call basic blocks bb1 and bb2
cd-equivalent if they are executed under the same condition. */
static inline void
add_to_predicate_list (class loop *loop, basic_block bb, tree nc)
{
tree bc, *tp;
basic_block dom_bb;
if (is_true_predicate (nc))
return;
/* If dominance tells us this basic block is always executed,
don't record any predicates for it. */
if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
return;
dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
/* We use notion of cd equivalence to get simpler predicate for
join block, e.g. if join block has 2 predecessors with predicates
p1 & p2 and p1 & !p2, we'd like to get p1 for it instead of
p1 & p2 | p1 & !p2. */
if (dom_bb != loop->header
&& get_immediate_dominator (CDI_POST_DOMINATORS, dom_bb) == bb)
{
gcc_assert (flow_bb_inside_loop_p (loop, dom_bb));
bc = bb_predicate (dom_bb);
if (!is_true_predicate (bc))
set_bb_predicate (bb, bc);
else
gcc_assert (is_true_predicate (bb_predicate (bb)));
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Use predicate of bb#%d for bb#%d\n",
dom_bb->index, bb->index);
return;
}
if (!is_predicated (bb))
bc = nc;
else
{
bc = bb_predicate (bb);
bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
if (is_true_predicate (bc))
{
reset_bb_predicate (bb);
return;
}
}
/* Allow a TRUTH_NOT_EXPR around the main predicate. */
if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
tp = &TREE_OPERAND (bc, 0);
else
tp = &bc;
if (!is_gimple_val (*tp))
{
gimple_seq stmts;
*tp = force_gimple_operand (*tp, &stmts, true, NULL_TREE);
add_bb_predicate_gimplified_stmts (bb, stmts);
}
set_bb_predicate (bb, bc);
}
/* Add the condition COND to the previous condition PREV_COND, and add
this to the predicate list of the destination of edge E. LOOP is
the loop to be if-converted. */
static void
add_to_dst_predicate_list (class loop *loop, edge e,
tree prev_cond, tree cond)
{
if (!flow_bb_inside_loop_p (loop, e->dest))
return;
if (!is_true_predicate (prev_cond))
cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
prev_cond, cond);
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, e->dest))
add_to_predicate_list (loop, e->dest, cond);
}
/* Return true if one of the successor edges of BB exits LOOP. */
static bool
bb_with_exit_edge_p (const class loop *loop, basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if (loop_exit_edge_p (loop, e))
return true;
return false;
}
/* Given PHI which has more than two arguments, this function checks if
it's if-convertible by degenerating its arguments. Specifically, if
below two conditions are satisfied:
1) Number of PHI arguments with different values equals to 2 and one
argument has the only occurrence.
2) The edge corresponding to the unique argument isn't critical edge.
Such PHI can be handled as PHIs have only two arguments. For example,
below PHI:
res = PHI <A_1(e1), A_1(e2), A_2(e3)>;
can be transformed into:
res = (predicate of e3) ? A_2 : A_1;
Return TRUE if it is the case, FALSE otherwise. */
static bool
phi_convertible_by_degenerating_args (gphi *phi)
{
edge e;
tree arg, t1 = NULL, t2 = NULL;
unsigned int i, i1 = 0, i2 = 0, n1 = 0, n2 = 0;
unsigned int num_args = gimple_phi_num_args (phi);
gcc_assert (num_args > 2);
for (i = 0; i < num_args; i++)
{
arg = gimple_phi_arg_def (phi, i);
if (t1 == NULL || operand_equal_p (t1, arg, 0))
{
n1++;
i1 = i;
t1 = arg;
}
else if (t2 == NULL || operand_equal_p (t2, arg, 0))
{
n2++;
i2 = i;
t2 = arg;
}
else
return false;
}
if (n1 != 1 && n2 != 1)
return false;
/* Check if the edge corresponding to the unique arg is critical. */
e = gimple_phi_arg_edge (phi, (n1 == 1) ? i1 : i2);
if (EDGE_COUNT (e->src->succs) > 1)
return false;
return true;
}
/* Return true when PHI is if-convertible. PHI is part of loop LOOP
and it belongs to basic block BB. Note at this point, it is sure
that PHI is if-convertible. This function updates global variable
ANY_COMPLICATED_PHI if PHI is complicated. */
static bool
if_convertible_phi_p (class loop *loop, basic_block bb, gphi *phi)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "-------------------------\n");
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
}
if (bb != loop->header
&& gimple_phi_num_args (phi) > 2
&& !phi_convertible_by_degenerating_args (phi))
any_complicated_phi = true;
return true;
}
/* Records the status of a data reference. This struct is attached to
each DR->aux field. */
struct ifc_dr {
bool rw_unconditionally;
bool w_unconditionally;
bool written_at_least_once;
tree rw_predicate;
tree w_predicate;
tree base_w_predicate;
};
#define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
#define DR_BASE_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->written_at_least_once)
#define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
#define DR_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->w_unconditionally)
/* Iterates over DR's and stores refs, DR and base refs, DR pairs in
HASH tables. While storing them in HASH table, it checks if the
reference is unconditionally read or written and stores that as a flag
information. For base reference it checks if it is written atlest once
unconditionally and stores it as flag information along with DR.
In other words for every data reference A in STMT there exist other
accesses to a data reference with the same base with predicates that
add up (OR-up) to the true predicate: this ensures that the data
reference A is touched (read or written) on every iteration of the
if-converted loop. */
static void
hash_memrefs_baserefs_and_store_DRs_read_written_info (data_reference_p a)
{
data_reference_p *master_dr, *base_master_dr;
tree base_ref = DR_BASE_OBJECT (a);
innermost_loop_behavior *innermost = &DR_INNERMOST (a);
tree ca = bb_predicate (gimple_bb (DR_STMT (a)));
bool exist1, exist2;
master_dr = &innermost_DR_map->get_or_insert (innermost, &exist1);
if (!exist1)
*master_dr = a;
if (DR_IS_WRITE (a))
{
IFC_DR (*master_dr)->w_predicate
= fold_or_predicates (UNKNOWN_LOCATION, ca,
IFC_DR (*master_dr)->w_predicate);
if (is_true_predicate (IFC_DR (*master_dr)->w_predicate))
DR_W_UNCONDITIONALLY (*master_dr) = true;
}
IFC_DR (*master_dr)->rw_predicate
= fold_or_predicates (UNKNOWN_LOCATION, ca,
IFC_DR (*master_dr)->rw_predicate);
if (is_true_predicate (IFC_DR (*master_dr)->rw_predicate))
DR_RW_UNCONDITIONALLY (*master_dr) = true;
if (DR_IS_WRITE (a))
{
base_master_dr = &baseref_DR_map->get_or_insert (base_ref, &exist2);
if (!exist2)
*base_master_dr = a;
IFC_DR (*base_master_dr)->base_w_predicate
= fold_or_predicates (UNKNOWN_LOCATION, ca,
IFC_DR (*base_master_dr)->base_w_predicate);
if (is_true_predicate (IFC_DR (*base_master_dr)->base_w_predicate))
DR_BASE_W_UNCONDITIONALLY (*base_master_dr) = true;
}
}
/* Return TRUE if can prove the index IDX of an array reference REF is
within array bound. Return false otherwise. */
static bool
idx_within_array_bound (tree ref, tree *idx, void *dta)
{
wi::overflow_type overflow;
widest_int niter, valid_niter, delta, wi_step;
tree ev, init, step;
tree low, high;
class loop *loop = (class loop*) dta;
/* Only support within-bound access for array references. */
if (TREE_CODE (ref) != ARRAY_REF)
return false;
/* For arrays that might have flexible sizes, it is not guaranteed that they
do not extend over their declared size. */
if (array_ref_flexible_size_p (ref))
return false;
ev = analyze_scalar_evolution (loop, *idx);
ev = instantiate_parameters (loop, ev);
init = initial_condition (ev);
step = evolution_part_in_loop_num (ev, loop->num);
if (!init || TREE_CODE (init) != INTEGER_CST
|| (step && TREE_CODE (step) != INTEGER_CST))
return false;
low = array_ref_low_bound (ref);
high = array_ref_up_bound (ref);
/* The case of nonconstant bounds could be handled, but it would be
complicated. */
if (TREE_CODE (low) != INTEGER_CST
|| !high || TREE_CODE (high) != INTEGER_CST)
return false;
/* Check if the intial idx is within bound. */
if (wi::to_widest (init) < wi::to_widest (low)
|| wi::to_widest (init) > wi::to_widest (high))
return false;
/* The idx is always within bound. */
if (!step || integer_zerop (step))
return true;
if (!max_loop_iterations (loop, &niter))
return false;
if (wi::to_widest (step) < 0)
{
delta = wi::to_widest (init) - wi::to_widest (low);
wi_step = -wi::to_widest (step);
}
else
{
delta = wi::to_widest (high) - wi::to_widest (init);
wi_step = wi::to_widest (step);
}
valid_niter = wi::div_floor (delta, wi_step, SIGNED, &overflow);
/* The iteration space of idx is within array bound. */
if (!overflow && niter <= valid_niter)
return true;
return false;
}
/* Return TRUE if ref is a within bound array reference. */
static bool
ref_within_array_bound (gimple *stmt, tree ref)
{
class loop *loop = loop_containing_stmt (stmt);
gcc_assert (loop != NULL);
return for_each_index (&ref, idx_within_array_bound, loop);
}
/* Given a memory reference expression T, return TRUE if base object
it refers to is writable. The base object of a memory reference
is the main object being referenced, which is returned by function
get_base_address. */
static bool
base_object_writable (tree ref)
{
tree base_tree = get_base_address (ref);
return (base_tree
&& DECL_P (base_tree)
&& decl_binds_to_current_def_p (base_tree)
&& !TREE_READONLY (base_tree));
}
/* Return true when the memory references of STMT won't trap in the
if-converted code. There are two things that we have to check for:
- writes to memory occur to writable memory: if-conversion of
memory writes transforms the conditional memory writes into
unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
into "A[i] = cond ? foo : A[i]", and as the write to memory may not
be executed at all in the original code, it may be a readonly
memory. To check that A is not const-qualified, we check that
there exists at least an unconditional write to A in the current
function.
- reads or writes to memory are valid memory accesses for every
iteration. To check that the memory accesses are correctly formed
and that we are allowed to read and write in these locations, we
check that the memory accesses to be if-converted occur at every
iteration unconditionally.
Returns true for the memory reference in STMT, same memory reference
is read or written unconditionally atleast once and the base memory
reference is written unconditionally once. This is to check reference
will not write fault. Also retuns true if the memory reference is
unconditionally read once then we are conditionally writing to memory
which is defined as read and write and is bound to the definition
we are seeing. */
static bool
ifcvt_memrefs_wont_trap (gimple *stmt, vec<data_reference_p> drs)
{
/* If DR didn't see a reference here we can't use it to tell
whether the ref traps or not. */
if (gimple_uid (stmt) == 0)
return false;
data_reference_p *master_dr, *base_master_dr;
data_reference_p a = drs[gimple_uid (stmt) - 1];
tree base = DR_BASE_OBJECT (a);
innermost_loop_behavior *innermost = &DR_INNERMOST (a);
gcc_assert (DR_STMT (a) == stmt);
gcc_assert (DR_BASE_ADDRESS (a) || DR_OFFSET (a)
|| DR_INIT (a) || DR_STEP (a));
master_dr = innermost_DR_map->get (innermost);
gcc_assert (master_dr != NULL);
base_master_dr = baseref_DR_map->get (base);
/* If a is unconditionally written to it doesn't trap. */
if (DR_W_UNCONDITIONALLY (*master_dr))
return true;
/* If a is unconditionally accessed then ...
Even a is conditional access, we can treat it as an unconditional
one if it's an array reference and all its index are within array
bound. */
if (DR_RW_UNCONDITIONALLY (*master_dr)
|| ref_within_array_bound (stmt, DR_REF (a)))
{
/* an unconditional read won't trap. */
if (DR_IS_READ (a))
return true;
/* an unconditionaly write won't trap if the base is written
to unconditionally. */
if (base_master_dr
&& DR_BASE_W_UNCONDITIONALLY (*base_master_dr))
return flag_store_data_races;
/* or the base is known to be not readonly. */
else if (base_object_writable (DR_REF (a)))
return flag_store_data_races;
}
return false;
}
/* Return true if STMT could be converted into a masked load or store
(conditional load or store based on a mask computed from bb predicate). */
static bool
ifcvt_can_use_mask_load_store (gimple *stmt)
{
/* Check whether this is a load or store. */
tree lhs = gimple_assign_lhs (stmt);
bool is_load;
tree ref;
if (gimple_store_p (stmt))
{
if (!is_gimple_val (gimple_assign_rhs1 (stmt)))
return false;
is_load = false;
ref = lhs;
}
else if (gimple_assign_load_p (stmt))
{
is_load = true;
ref = gimple_assign_rhs1 (stmt);
}
else
return false;
if (may_be_nonaddressable_p (ref))
return false;
/* Mask should be integer mode of the same size as the load/store
mode. */
machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
if (!int_mode_for_mode (mode).exists () || VECTOR_MODE_P (mode))
return false;
if (can_vec_mask_load_store_p (mode, VOIDmode, is_load))
return true;
return false;
}
/* Return true if STMT could be converted from an operation that is
unconditional to one that is conditional on a bb predicate mask. */
static bool
ifcvt_can_predicate (gimple *stmt)
{
basic_block bb = gimple_bb (stmt);
if (!(flag_tree_loop_vectorize || bb->loop_father->force_vectorize)
|| bb->loop_father->dont_vectorize
|| gimple_has_volatile_ops (stmt))
return false;
if (gimple_assign_single_p (stmt))
return ifcvt_can_use_mask_load_store (stmt);
tree_code code = gimple_assign_rhs_code (stmt);
tree lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
if (!types_compatible_p (lhs_type, rhs_type))
return false;
internal_fn cond_fn = get_conditional_internal_fn (code);
return (cond_fn != IFN_LAST
&& vectorized_internal_fn_supported_p (cond_fn, lhs_type));
}
/* Return true when STMT is if-convertible.
GIMPLE_ASSIGN statement is not if-convertible if,
- it is not movable,
- it could trap,
- LHS is not var decl. */
static bool
if_convertible_gimple_assign_stmt_p (gimple *stmt,
vec<data_reference_p> refs)
{
tree lhs = gimple_assign_lhs (stmt);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "-------------------------\n");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
}
if (!is_gimple_reg_type (TREE_TYPE (lhs)))
return false;
/* Some of these constrains might be too conservative. */
if (stmt_ends_bb_p (stmt)
|| gimple_has_volatile_ops (stmt)
|| (TREE_CODE (lhs) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
|| gimple_has_side_effects (stmt))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "stmt not suitable for ifcvt\n");
return false;
}
/* tree-into-ssa.cc uses GF_PLF_1, so avoid it, because
in between if_convertible_loop_p and combine_blocks
we can perform loop versioning. */
gimple_set_plf (stmt, GF_PLF_2, false);
if ((! gimple_vuse (stmt)
|| gimple_could_trap_p_1 (stmt, false, false)
|| ! ifcvt_memrefs_wont_trap (stmt, refs))
&& gimple_could_trap_p (stmt))
{
if (ifcvt_can_predicate (stmt))
{
gimple_set_plf (stmt, GF_PLF_2, true);
need_to_predicate = true;
return true;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "tree could trap...\n");
return false;
}
else if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|| POINTER_TYPE_P (TREE_TYPE (lhs)))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (lhs))
&& arith_code_with_undefined_signed_overflow
(gimple_assign_rhs_code (stmt)))
/* We have to rewrite stmts with undefined overflow. */
need_to_rewrite_undefined = true;
/* When if-converting stores force versioning, likewise if we
ended up generating store data races. */
if (gimple_vdef (stmt))
need_to_predicate = true;
return true;
}
/* Return true when STMT is if-convertible.
A statement is if-convertible if:
- it is an if-convertible GIMPLE_ASSIGN,
- it is a GIMPLE_LABEL or a GIMPLE_COND,
- it is builtins call,
- it is a call to a function with a SIMD clone. */
static bool
if_convertible_stmt_p (gimple *stmt, vec<data_reference_p> refs)
{
switch (gimple_code (stmt))
{
case GIMPLE_LABEL:
case GIMPLE_DEBUG:
case GIMPLE_COND:
return true;
case GIMPLE_ASSIGN:
return if_convertible_gimple_assign_stmt_p (stmt, refs);
case GIMPLE_CALL:
{
/* There are some IFN_s that are used to replace builtins but have the
same semantics. Even if MASK_CALL cannot handle them vectorable_call
will insert the proper selection, so do not block conversion. */
int flags = gimple_call_flags (stmt);
if ((flags & ECF_CONST)
&& !(flags & ECF_LOOPING_CONST_OR_PURE)
&& gimple_call_combined_fn (stmt) != CFN_LAST)
return true;
tree fndecl = gimple_call_fndecl (stmt);
if (fndecl)
{
/* We can vectorize some builtins and functions with SIMD
"inbranch" clones. */
struct cgraph_node *node = cgraph_node::get (fndecl);
if (node && node->simd_clones != NULL)
/* Ensure that at least one clone can be "inbranch". */
for (struct cgraph_node *n = node->simd_clones; n != NULL;
n = n->simdclone->next_clone)
if (n->simdclone->inbranch)
{
gimple_set_plf (stmt, GF_PLF_2, true);
need_to_predicate = true;
return true;
}
}
return false;
}
default:
/* Don't know what to do with 'em so don't do anything. */
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "don't know what to do\n");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
}
return false;
}
}
/* Assumes that BB has more than 1 predecessors.
Returns false if at least one successor is not on critical edge
and true otherwise. */
static inline bool
all_preds_critical_p (basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
if (EDGE_COUNT (e->src->succs) == 1)
return false;
return true;
}
/* Return true when BB is if-convertible. This routine does not check
basic block's statements and phis.
A basic block is not if-convertible if:
- it is non-empty and it is after the exit block (in BFS order),
- it is after the exit block but before the latch,
- its edges are not normal.
EXIT_BB is the basic block containing the exit of the LOOP. BB is
inside LOOP. */
static bool
if_convertible_bb_p (class loop *loop, basic_block bb, basic_block exit_bb)
{
edge e;
edge_iterator ei;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "----------[%d]-------------\n", bb->index);
if (EDGE_COUNT (bb->succs) > 2)
return false;
if (gcall *call = safe_dyn_cast <gcall *> (*gsi_last_bb (bb)))
if (gimple_call_ctrl_altering_p (call))
return false;
if (exit_bb)
{
if (bb != loop->latch)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "basic block after exit bb but before latch\n");
return false;
}
else if (!empty_block_p (bb))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "non empty basic block after exit bb\n");
return false;
}
else if (bb == loop->latch
&& bb != exit_bb
&& !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "latch is not dominated by exit_block\n");
return false;
}
}
/* Be less adventurous and handle only normal edges. */
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Difficult to handle edges\n");
return false;
}
return true;
}
/* Return true when all predecessor blocks of BB are visited. The
VISITED bitmap keeps track of the visited blocks. */
static bool
pred_blocks_visited_p (basic_block bb, bitmap *visited)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
if (!bitmap_bit_p (*visited, e->src->index))
return false;
return true;
}
/* Get body of a LOOP in suitable order for if-conversion. It is
caller's responsibility to deallocate basic block list.
If-conversion suitable order is, breadth first sort (BFS) order
with an additional constraint: select a block only if all its
predecessors are already selected. */
static basic_block *
get_loop_body_in_if_conv_order (const class loop *loop)
{
basic_block *blocks, *blocks_in_bfs_order;
basic_block bb;
bitmap visited;
unsigned int index = 0;
unsigned int visited_count = 0;
gcc_assert (loop->num_nodes);
gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
blocks = XCNEWVEC (basic_block, loop->num_nodes);
visited = BITMAP_ALLOC (NULL);
blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
index = 0;
while (index < loop->num_nodes)
{
bb = blocks_in_bfs_order [index];
if (bb->flags & BB_IRREDUCIBLE_LOOP)
{
free (blocks_in_bfs_order);
BITMAP_FREE (visited);
free (blocks);
return NULL;
}
if (!bitmap_bit_p (visited, bb->index))
{
if (pred_blocks_visited_p (bb, &visited)
|| bb == loop->header)
{
/* This block is now visited. */
bitmap_set_bit (visited, bb->index);
blocks[visited_count++] = bb;
}
}
index++;
if (index == loop->num_nodes
&& visited_count != loop->num_nodes)
/* Not done yet. */
index = 0;
}
free (blocks_in_bfs_order);
BITMAP_FREE (visited);
/* Go through loop and reject if-conversion or lowering of bitfields if we
encounter statements we do not believe the vectorizer will be able to
handle. If adding a new type of statement here, make sure
'ifcvt_local_dce' is also able to handle it propertly. */
for (index = 0; index < loop->num_nodes; index++)
{
basic_block bb = blocks[index];
gimple_stmt_iterator gsi;
bool may_have_nonlocal_labels
= bb_with_exit_edge_p (loop, bb) || bb == loop->latch;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
switch (gimple_code (gsi_stmt (gsi)))
{
case GIMPLE_LABEL:
if (!may_have_nonlocal_labels)
{
tree label
= gimple_label_label (as_a <glabel *> (gsi_stmt (gsi)));
if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
{
free (blocks);
return NULL;
}
}
/* Fallthru. */
case GIMPLE_ASSIGN:
case GIMPLE_CALL:
case GIMPLE_DEBUG:
case GIMPLE_COND:
gimple_set_uid (gsi_stmt (gsi), 0);
break;
default:
free (blocks);
return NULL;
}
}
return blocks;
}
/* Returns true when the analysis of the predicates for all the basic
blocks in LOOP succeeded.
predicate_bbs first allocates the predicates of the basic blocks.
These fields are then initialized with the tree expressions
representing the predicates under which a basic block is executed
in the LOOP. As the loop->header is executed at each iteration, it
has the "true" predicate. Other statements executed under a
condition are predicated with that condition, for example
| if (x)
| S1;
| else
| S2;
S1 will be predicated with "x", and
S2 will be predicated with "!x". */
static void
predicate_bbs (loop_p loop)
{
unsigned int i;
for (i = 0; i < loop->num_nodes; i++)
init_bb_predicate (ifc_bbs[i]);
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = ifc_bbs[i];
tree cond;
/* The loop latch and loop exit block are always executed and
have no extra conditions to be processed: skip them. */
if (bb == loop->latch
|| bb_with_exit_edge_p (loop, bb))
{
reset_bb_predicate (bb);
continue;
}
cond = bb_predicate (bb);
if (gcond *stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (bb)))
{
tree c2;
edge true_edge, false_edge;
location_t loc = gimple_location (stmt);
tree c;
/* gcc.dg/fold-bopcond-1.c shows that despite all forwprop passes
conditions can remain unfolded because of multiple uses so
try to re-fold here, especially to get precision changing
conversions sorted out. Do not simply fold the stmt since
this is analysis only. When conditions were embedded in
COND_EXPRs those were folded separately before folding the
COND_EXPR but as they are now outside we have to make sure
to fold them. Do it here - another opportunity would be to
fold predicates as they are inserted. */
gimple_match_op cexpr (gimple_match_cond::UNCOND,
gimple_cond_code (stmt),
boolean_type_node,
gimple_cond_lhs (stmt),
gimple_cond_rhs (stmt));
if (cexpr.resimplify (NULL, follow_all_ssa_edges)
&& cexpr.code.is_tree_code ()
&& TREE_CODE_CLASS ((tree_code)cexpr.code) == tcc_comparison)
c = build2_loc (loc, (tree_code)cexpr.code, boolean_type_node,
cexpr.ops[0], cexpr.ops[1]);
else
c = build2_loc (loc, gimple_cond_code (stmt),
boolean_type_node,
gimple_cond_lhs (stmt),
gimple_cond_rhs (stmt));
/* Add new condition into destination's predicate list. */
extract_true_false_edges_from_block (gimple_bb (stmt),
&true_edge, &false_edge);
/* If C is true, then TRUE_EDGE is taken. */
add_to_dst_predicate_list (loop, true_edge, unshare_expr (cond),
unshare_expr (c));
/* If C is false, then FALSE_EDGE is taken. */
c2 = build1_loc (loc, TRUTH_NOT_EXPR, boolean_type_node,
unshare_expr (c));
add_to_dst_predicate_list (loop, false_edge,
unshare_expr (cond), c2);
cond = NULL_TREE;
}
/* If current bb has only one successor, then consider it as an
unconditional goto. */
if (single_succ_p (bb))
{
basic_block bb_n = single_succ (bb);
/* The successor bb inherits the predicate of its
predecessor. If there is no predicate in the predecessor
bb, then consider the successor bb as always executed. */
if (cond == NULL_TREE)
cond = boolean_true_node;
add_to_predicate_list (loop, bb_n, cond);
}
}
/* The loop header is always executed. */
reset_bb_predicate (loop->header);
gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
&& bb_predicate_gimplified_stmts (loop->latch) == NULL);
}
/* Build region by adding loop pre-header and post-header blocks. */
static vec<basic_block>
build_region (class loop *loop)
{
vec<basic_block> region = vNULL;
basic_block exit_bb = NULL;
gcc_assert (ifc_bbs);
/* The first element is loop pre-header. */
region.safe_push (loop_preheader_edge (loop)->src);
for (unsigned int i = 0; i < loop->num_nodes; i++)
{
basic_block bb = ifc_bbs[i];
region.safe_push (bb);
/* Find loop postheader. */
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if (loop_exit_edge_p (loop, e))
{
exit_bb = e->dest;
break;
}
}
/* The last element is loop post-header. */
gcc_assert (exit_bb);
region.safe_push (exit_bb);
return region;
}
/* Return true when LOOP is if-convertible. This is a helper function
for if_convertible_loop_p. REFS and DDRS are initialized and freed
in if_convertible_loop_p. */
static bool
if_convertible_loop_p_1 (class loop *loop, vec<data_reference_p> *refs)
{
unsigned int i;
basic_block exit_bb = NULL;
vec<basic_block> region;
calculate_dominance_info (CDI_DOMINATORS);
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = ifc_bbs[i];
if (!if_convertible_bb_p (loop, bb, exit_bb))
return false;
if (bb_with_exit_edge_p (loop, bb))
exit_bb = bb;
}
data_reference_p dr;
innermost_DR_map
= new hash_map<innermost_loop_behavior_hash, data_reference_p>;
baseref_DR_map = new hash_map<tree_operand_hash, data_reference_p>;
/* Compute post-dominator tree locally. */
region = build_region (loop);
calculate_dominance_info_for_region (CDI_POST_DOMINATORS, region);
predicate_bbs (loop);
/* Free post-dominator tree since it is not used after predication. */
free_dominance_info_for_region (cfun, CDI_POST_DOMINATORS, region);
region.release ();
for (i = 0; refs->iterate (i, &dr); i++)
{
tree ref = DR_REF (dr);
dr->aux = XNEW (struct ifc_dr);
DR_BASE_W_UNCONDITIONALLY (dr) = false;
DR_RW_UNCONDITIONALLY (dr) = false;
DR_W_UNCONDITIONALLY (dr) = false;
IFC_DR (dr)->rw_predicate = boolean_false_node;
IFC_DR (dr)->w_predicate = boolean_false_node;
IFC_DR (dr)->base_w_predicate = boolean_false_node;
if (gimple_uid (DR_STMT (dr)) == 0)
gimple_set_uid (DR_STMT (dr), i + 1);
/* If DR doesn't have innermost loop behavior or it's a compound
memory reference, we synthesize its innermost loop behavior
for hashing. */
if (TREE_CODE (ref) == COMPONENT_REF
|| TREE_CODE (ref) == IMAGPART_EXPR
|| TREE_CODE (ref) == REALPART_EXPR
|| !(DR_BASE_ADDRESS (dr) || DR_OFFSET (dr)
|| DR_INIT (dr) || DR_STEP (dr)))
{
while (TREE_CODE (ref) == COMPONENT_REF
|| TREE_CODE (ref) == IMAGPART_EXPR
|| TREE_CODE (ref) == REALPART_EXPR)
ref = TREE_OPERAND (ref, 0);
memset (&DR_INNERMOST (dr), 0, sizeof (DR_INNERMOST (dr)));
DR_BASE_ADDRESS (dr) = ref;
}
hash_memrefs_baserefs_and_store_DRs_read_written_info (dr);
}
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = ifc_bbs[i];
gimple_stmt_iterator itr;
/* Check the if-convertibility of statements in predicated BBs. */
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
if (!if_convertible_stmt_p (gsi_stmt (itr), *refs))
return false;
}
/* Checking PHIs needs to be done after stmts, as the fact whether there
are any masked loads or stores affects the tests. */
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = ifc_bbs[i];
gphi_iterator itr;
for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
if (!if_convertible_phi_p (loop, bb, itr.phi ()))
return false;
}
if (dump_file)
fprintf (dump_file, "Applying if-conversion\n");
return true;
}
/* Return true when LOOP is if-convertible.
LOOP is if-convertible if:
- it is innermost,
- it has two or more basic blocks,
- it has only one exit,
- loop header is not the exit edge,
- if its basic blocks and phi nodes are if convertible. */
static bool
if_convertible_loop_p (class loop *loop, vec<data_reference_p> *refs)
{
edge e;
edge_iterator ei;
bool res = false;
/* Handle only innermost loop. */
if (!loop || loop->inner)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "not innermost loop\n");
return false;
}
/* If only one block, no need for if-conversion. */
if (loop->num_nodes <= 2)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "less than 2 basic blocks\n");
return false;
}
/* If one of the loop header's edge is an exit edge then do not
apply if-conversion. */
FOR_EACH_EDGE (e, ei, loop->header->succs)
if (loop_exit_edge_p (loop, e))
return false;
res = if_convertible_loop_p_1 (loop, refs);
delete innermost_DR_map;
innermost_DR_map = NULL;
delete baseref_DR_map;
baseref_DR_map = NULL;
return res;
}
/* Return reduc_1 if has_nop.
if (...)
tmp1 = (unsigned type) reduc_1;
tmp2 = tmp1 + rhs2;
reduc_3 = (signed type) tmp2. */
static tree
strip_nop_cond_scalar_reduction (bool has_nop, tree op)
{
if (!has_nop)
return op;
if (TREE_CODE (op) != SSA_NAME)
return NULL_TREE;
gassign *stmt = safe_dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op));
if (!stmt
|| !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
|| !tree_nop_conversion_p (TREE_TYPE (op), TREE_TYPE
(gimple_assign_rhs1 (stmt))))
return NULL_TREE;
return gimple_assign_rhs1 (stmt);
}
/* Returns true if def-stmt for phi argument ARG is simple increment/decrement
which is in predicated basic block.
In fact, the following PHI pattern is searching:
loop-header:
reduc_1 = PHI <..., reduc_2>
...
if (...)
reduc_3 = ...
reduc_2 = PHI <reduc_1, reduc_3>
ARG_0 and ARG_1 are correspondent PHI arguments.
REDUC, OP0 and OP1 contain reduction stmt and its operands.
EXTENDED is true if PHI has > 2 arguments. */
static bool
is_cond_scalar_reduction (gimple *phi, gimple **reduc, tree arg_0, tree arg_1,
tree *op0, tree *op1, bool extended, bool* has_nop,
gimple **nop_reduc)
{
tree lhs, r_op1, r_op2, r_nop1, r_nop2;
gimple *stmt;
gimple *header_phi = NULL;
enum tree_code reduction_op;
basic_block bb = gimple_bb (phi);
class loop *loop = bb->loop_father;
edge latch_e = loop_latch_edge (loop);
imm_use_iterator imm_iter;
use_operand_p use_p;
edge e;
edge_iterator ei;
bool result = *has_nop = false;
if (TREE_CODE (arg_0) != SSA_NAME || TREE_CODE (arg_1) != SSA_NAME)
return false;
if (!extended && gimple_code (SSA_NAME_DEF_STMT (arg_0)) == GIMPLE_PHI)
{
lhs = arg_1;
header_phi = SSA_NAME_DEF_STMT (arg_0);
stmt = SSA_NAME_DEF_STMT (arg_1);
}
else if (gimple_code (SSA_NAME_DEF_STMT (arg_1)) == GIMPLE_PHI)
{
lhs = arg_0;
header_phi = SSA_NAME_DEF_STMT (arg_1);
stmt = SSA_NAME_DEF_STMT (arg_0);
}
else
return false;
if (gimple_bb (header_phi) != loop->header)
return false;
if (PHI_ARG_DEF_FROM_EDGE (header_phi, latch_e) != PHI_RESULT (phi))
return false;
if (gimple_code (stmt) != GIMPLE_ASSIGN
|| gimple_has_volatile_ops (stmt))
return false;
if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
return false;
if (!is_predicated (gimple_bb (stmt)))
return false;
/* Check that stmt-block is predecessor of phi-block. */
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
if (e->dest == bb)
{
result = true;
break;
}
if (!result)
return false;
if (!has_single_use (lhs))
return false;
reduction_op = gimple_assign_rhs_code (stmt);
/* Catch something like below
loop-header:
reduc_1 = PHI <..., reduc_2>
...
if (...)
tmp1 = (unsigned type) reduc_1;
tmp2 = tmp1 + rhs2;
reduc_3 = (signed type) tmp2;
reduc_2 = PHI <reduc_1, reduc_3>
and convert to
reduc_2 = PHI <0, reduc_1>
tmp1 = (unsigned type)reduc_1;
ifcvt = cond_expr ? rhs2 : 0
tmp2 = tmp1 +/- ifcvt;
reduc_1 = (signed type)tmp2; */
if (CONVERT_EXPR_CODE_P (reduction_op))
{
lhs = gimple_assign_rhs1 (stmt);
if (TREE_CODE (lhs) != SSA_NAME
|| !has_single_use (lhs))
return false;
*nop_reduc = stmt;
stmt = SSA_NAME_DEF_STMT (lhs);
if (gimple_bb (stmt) != gimple_bb (*nop_reduc)
|| !is_gimple_assign (stmt))
return false;
*has_nop = true;
reduction_op = gimple_assign_rhs_code (stmt);
}
if (reduction_op != PLUS_EXPR
&& reduction_op != MINUS_EXPR
&& reduction_op != MULT_EXPR
&& reduction_op != BIT_IOR_EXPR
&& reduction_op != BIT_XOR_EXPR
&& reduction_op != BIT_AND_EXPR)
return false;
r_op1 = gimple_assign_rhs1 (stmt);
r_op2 = gimple_assign_rhs2 (stmt);
r_nop1 = strip_nop_cond_scalar_reduction (*has_nop, r_op1);
r_nop2 = strip_nop_cond_scalar_reduction (*has_nop, r_op2);
/* Make R_OP1 to hold reduction variable. */
if (r_nop2 == PHI_RESULT (header_phi)
&& commutative_tree_code (reduction_op))
{
std::swap (r_op1, r_op2);
std::swap (r_nop1, r_nop2);
}
else if (r_nop1 != PHI_RESULT (header_phi))
return false;
if (*has_nop)
{
/* Check that R_NOP1 is used in nop_stmt or in PHI only. */
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, r_nop1)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (use_stmt == SSA_NAME_DEF_STMT (r_op1))
continue;
if (use_stmt != phi)
return false;
}
}
/* Check that R_OP1 is used in reduction stmt or in PHI only. */
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, r_op1)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (use_stmt == stmt)
continue;
if (gimple_code (use_stmt) != GIMPLE_PHI)
return false;
}
*op0 = r_op1; *op1 = r_op2;
*reduc = stmt;
return true;
}
/* Converts conditional scalar reduction into unconditional form, e.g.
bb_4
if (_5 != 0) goto bb_5 else goto bb_6
end_bb_4
bb_5
res_6 = res_13 + 1;
end_bb_5
bb_6
# res_2 = PHI <res_13(4), res_6(5)>
end_bb_6
will be converted into sequence
_ifc__1 = _5 != 0 ? 1 : 0;
res_2 = res_13 + _ifc__1;
Argument SWAP tells that arguments of conditional expression should be
swapped.
If LOOP_VERSIONED is true if we assume that we versioned the loop for
vectorization. In that case we can create a COND_OP.
Returns rhs of resulting PHI assignment. */
static tree
convert_scalar_cond_reduction (gimple *reduc, gimple_stmt_iterator *gsi,
tree cond, tree op0, tree op1, bool swap,
bool has_nop, gimple* nop_reduc,
bool loop_versioned)
{
gimple_stmt_iterator stmt_it;
gimple *new_assign;
tree rhs;
tree rhs1 = gimple_assign_rhs1 (reduc);
tree lhs = gimple_assign_lhs (reduc);
tree tmp = make_temp_ssa_name (TREE_TYPE (rhs1), NULL, "_ifc_");
tree c;
enum tree_code reduction_op = gimple_assign_rhs_code (reduc);
tree op_nochange = neutral_op_for_reduction (TREE_TYPE (rhs1), reduction_op,
NULL, false);
gimple_seq stmts = NULL;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Found cond scalar reduction.\n");
print_gimple_stmt (dump_file, reduc, 0, TDF_SLIM);
}
/* If possible create a COND_OP instead of a COND_EXPR and an OP_EXPR.
The COND_OP will have a neutral_op else value. */
internal_fn ifn;
ifn = get_conditional_internal_fn (reduction_op);
if (loop_versioned && ifn != IFN_LAST
&& vectorized_internal_fn_supported_p (ifn, TREE_TYPE (lhs))
&& !swap)
{
gcall *cond_call = gimple_build_call_internal (ifn, 4,
unshare_expr (cond),
op0, op1, op0);
gsi_insert_before (gsi, cond_call, GSI_SAME_STMT);
gimple_call_set_lhs (cond_call, tmp);
rhs = tmp;
}
else
{
/* Build cond expression using COND and constant operand
of reduction rhs. */
c = fold_build_cond_expr (TREE_TYPE (rhs1),
unshare_expr (cond),
swap ? op_nochange : op1,
swap ? op1 : op_nochange);
/* Create assignment stmt and insert it at GSI. */
new_assign = gimple_build_assign (tmp, c);
gsi_insert_before (gsi, new_assign, GSI_SAME_STMT);
/* Build rhs for unconditional increment/decrement/logic_operation. */
rhs = gimple_build (&stmts, reduction_op,
TREE_TYPE (rhs1), op0, tmp);
}
if (has_nop)
{
rhs = gimple_convert (&stmts,
TREE_TYPE (gimple_assign_lhs (nop_reduc)), rhs);
stmt_it = gsi_for_stmt (nop_reduc);
gsi_remove (&stmt_it, true);
release_defs (nop_reduc);
}
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
/* Delete original reduction stmt. */
stmt_it = gsi_for_stmt (reduc);
gsi_remove (&stmt_it, true);
release_defs (reduc);
return rhs;
}
/* Generate a simplified conditional. */
static tree
gen_simplified_condition (tree cond, scalar_cond_masked_set_type &cond_set)
{
/* Check if the value is already live in a previous branch. This resolves
nested conditionals from diamond PHI reductions. */
if (TREE_CODE (cond) == SSA_NAME)
{
gimple *stmt = SSA_NAME_DEF_STMT (cond);
gassign *assign = NULL;
if ((assign = as_a <gassign *> (stmt))
&& gimple_assign_rhs_code (assign) == BIT_AND_EXPR)
{
tree arg1 = gimple_assign_rhs1 (assign);
tree arg2 = gimple_assign_rhs2 (assign);
if (cond_set.contains ({ arg1, 1 }))
arg1 = boolean_true_node;
else
arg1 = gen_simplified_condition (arg1, cond_set);
if (cond_set.contains ({ arg2, 1 }))
arg2 = boolean_true_node;
else
arg2 = gen_simplified_condition (arg2, cond_set);
cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, arg1, arg2);
}
}
return cond;
}
/* Structure used to track meta-data on PHI arguments used to generate
most efficient comparison sequence to slatten a PHI node. */
typedef struct ifcvt_arg_entry
{
/* The PHI node argument value. */
tree arg;
/* The number of compares required to reach this PHI node from start of the
BB being if-converted. */
unsigned num_compares;
/* The number of times this PHI node argument appears in the current PHI
node. */
unsigned occurs;
/* The indices at which this PHI arg occurs inside the PHI node. */
vec <int> *indexes;
} ifcvt_arg_entry_t;
/* Produce condition for all occurrences of ARG in PHI node. Set *INVERT
as to whether the condition is inverted. */
static tree
gen_phi_arg_condition (gphi *phi, ifcvt_arg_entry_t &arg,
gimple_stmt_iterator *gsi,
scalar_cond_masked_set_type &cond_set, bool *invert)
{
int len;
int i;
tree cond = NULL_TREE;
tree c;
edge e;
*invert = false;
len = arg.indexes->length ();
gcc_assert (len > 0);
for (i = 0; i < len; i++)
{
e = gimple_phi_arg_edge (phi, (*arg.indexes)[i]);
c = bb_predicate (e->src);
if (is_true_predicate (c))
{
cond = c;
break;
}
/* If we have just a single inverted predicate, signal that and
instead invert the COND_EXPR arms. */
if (len == 1 && TREE_CODE (c) == TRUTH_NOT_EXPR)
{
c = TREE_OPERAND (c, 0);
*invert = true;
}
c = gen_simplified_condition (c, cond_set);
c = force_gimple_operand_gsi (gsi, unshare_expr (c),
true, NULL_TREE, true, GSI_SAME_STMT);
if (cond != NULL_TREE)
{
/* Must build OR expression. */
cond = fold_or_predicates (EXPR_LOCATION (c), c, cond);
cond = force_gimple_operand_gsi (gsi, unshare_expr (cond), true,
NULL_TREE, true, GSI_SAME_STMT);
}
else
cond = c;
/* Register the new possibly simplified conditional. When more than 2
entries in a phi node we chain entries in the false branch, so the
inverted condition is active. */
scalar_cond_masked_key pred_cond ({ cond, 1 });
if (!*invert)
pred_cond.inverted_p = !pred_cond.inverted_p;
cond_set.add (pred_cond);
}
gcc_assert (cond != NULL_TREE);
return cond;
}
/* Create the smallest nested conditional possible. On pre-order we record
which conditionals are live, and on post-order rewrite the chain by removing
already active conditions.
As an example we simplify:
_7 = a_10 < 0;
_21 = a_10 >= 0;
_22 = a_10 < e_11(D);
_23 = _21 & _22;
_ifc__42 = _23 ? t_13 : 0;
t_6 = _7 ? 1 : _ifc__42
into
_7 = a_10 < 0;
_22 = a_10 < e_11(D);
_ifc__42 = _22 ? t_13 : 0;
t_6 = _7 ? 1 : _ifc__42;
which produces better code. */
static tree
gen_phi_nest_statement (gphi *phi, gimple_stmt_iterator *gsi,
scalar_cond_masked_set_type &cond_set, tree type,
gimple **res_stmt, tree lhs0,
vec<struct ifcvt_arg_entry> &args, unsigned idx)
{
if (idx == args.length ())
return args[idx - 1].arg;
bool invert;
tree cond = gen_phi_arg_condition (phi, args[idx - 1], gsi, cond_set,
&invert);
tree arg1 = gen_phi_nest_statement (phi, gsi, cond_set, type, res_stmt, lhs0,
args, idx + 1);
unsigned prev = idx;
unsigned curr = prev - 1;
tree arg0 = args[curr].arg;
tree rhs, lhs;
if (idx > 1)
lhs = make_temp_ssa_name (type, NULL, "_ifc_");
else
lhs = lhs0;
if (invert)
rhs = fold_build_cond_expr (type, unshare_expr (cond),
arg1, arg0);
else
rhs = fold_build_cond_expr (type, unshare_expr (cond),
arg0, arg1);
gassign *new_stmt = gimple_build_assign (lhs, rhs);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
update_stmt (new_stmt);
*res_stmt = new_stmt;
return lhs;
}
/* When flattening a PHI node we have a choice of which conditions to test to
for all the paths from the start of the dominator block of the BB with the
PHI node. If the PHI node has X arguments we have to only test X - 1
conditions as the last one is implicit. It does matter which conditions we
test first. We should test the shortest condition first (distance here is
measures in the number of logical operators in the condition) and the
longest one last. This allows us to skip testing the most expensive
condition. To accomplish this we need to sort the conditions. P1 and P2
are sorted first based on the number of logical operations (num_compares)
and then by how often they occur in the PHI node. */
static int
cmp_arg_entry (const void *p1, const void *p2, void * /* data. */)
{
const ifcvt_arg_entry sval1 = *(const ifcvt_arg_entry *)p1;
const ifcvt_arg_entry sval2 = *(const ifcvt_arg_entry *)p2;
if (sval1.num_compares < sval2.num_compares)
return -1;
else if (sval1.num_compares > sval2.num_compares)
return 1;
if (sval1.occurs < sval2.occurs)
return -1;
else if (sval1.occurs > sval2.occurs)
return 1;
return 0;
}
/* Replace a scalar PHI node with a COND_EXPR using COND as condition.
This routine can handle PHI nodes with more than two arguments.
For example,
S1: A = PHI <x1(1), x2(5)>
is converted into,
S2: A = cond ? x1 : x2;
The generated code is inserted at GSI that points to the top of
basic block's statement list.
If PHI node has more than two arguments a chain of conditional
expression is produced.
LOOP_VERSIONED should be true if we know that the loop was versioned for
vectorization. */
static void
predicate_scalar_phi (gphi *phi, gimple_stmt_iterator *gsi, bool loop_versioned)
{
gimple *new_stmt = NULL, *reduc, *nop_reduc;
tree rhs, res, arg0, arg1, op0, op1, scev;
tree cond;
unsigned int index0;
edge e;
basic_block bb;
unsigned int i;
bool has_nop;
res = gimple_phi_result (phi);
if (virtual_operand_p (res))
return;
if ((rhs = degenerate_phi_result (phi))
|| ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
res))
&& !chrec_contains_undetermined (scev)
&& scev != res
&& (rhs = gimple_phi_arg_def (phi, 0))))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Degenerate phi!\n");
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
}
new_stmt = gimple_build_assign (res, rhs);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
update_stmt (new_stmt);
return;
}
bb = gimple_bb (phi);
/* Keep track of conditionals already seen. */
scalar_cond_masked_set_type cond_set;
if (EDGE_COUNT (bb->preds) == 2)
{
/* Predicate ordinary PHI node with 2 arguments. */
edge first_edge, second_edge;
basic_block true_bb;
first_edge = EDGE_PRED (bb, 0);
second_edge = EDGE_PRED (bb, 1);
cond = bb_predicate (first_edge->src);
cond_set.add ({ cond, 1 });
if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
std::swap (first_edge, second_edge);
if (EDGE_COUNT (first_edge->src->succs) > 1)
{
cond = bb_predicate (second_edge->src);
if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
cond = TREE_OPERAND (cond, 0);
else
first_edge = second_edge;
}
else
cond = bb_predicate (first_edge->src);
/* Gimplify the condition to a valid cond-expr conditonal operand. */
cond = gen_simplified_condition (cond, cond_set);
cond = force_gimple_operand_gsi (gsi, unshare_expr (cond), true,
NULL_TREE, true, GSI_SAME_STMT);
true_bb = first_edge->src;
if (EDGE_PRED (bb, 1)->src == true_bb)
{
arg0 = gimple_phi_arg_def (phi, 1);
arg1 = gimple_phi_arg_def (phi, 0);
}
else
{
arg0 = gimple_phi_arg_def (phi, 0);
arg1 = gimple_phi_arg_def (phi, 1);
}
if (is_cond_scalar_reduction (phi, &reduc, arg0, arg1,
&op0, &op1, false, &has_nop,
&nop_reduc))
{
/* Convert reduction stmt into vectorizable form. */
rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
true_bb != gimple_bb (reduc),
has_nop, nop_reduc,
loop_versioned);
redundant_ssa_names.safe_push (std::make_pair (res, rhs));
}
else
/* Build new RHS using selected condition and arguments. */
rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
arg0, arg1);
new_stmt = gimple_build_assign (res, rhs);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
gimple_stmt_iterator new_gsi = gsi_for_stmt (new_stmt);
if (fold_stmt (&new_gsi, follow_all_ssa_edges))
{
new_stmt = gsi_stmt (new_gsi);
update_stmt (new_stmt);
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "new phi replacement stmt\n");
print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
}
return;
}
/* Create hashmap for PHI node which contain vector of argument indexes
having the same value. */
bool swap = false;
hash_map<tree_operand_hash, auto_vec<int> > phi_arg_map;
unsigned int num_args = gimple_phi_num_args (phi);
/* Vector of different PHI argument values. */
auto_vec<ifcvt_arg_entry_t> args;
/* Compute phi_arg_map, determine the list of unique PHI args and the indices
where they are in the PHI node. The indices will be used to determine
the conditions to apply and their complexity. */
for (i = 0; i < num_args; i++)
{
tree arg;
arg = gimple_phi_arg_def (phi, i);
if (!phi_arg_map.get (arg))
args.safe_push ({ arg, 0, 0, NULL });
phi_arg_map.get_or_insert (arg).safe_push (i);
}
/* Determine element with max number of occurrences and complexity. Looking
at only number of occurrences as a measure for complexity isn't enough as
all usages can be unique but the comparisons to reach the PHI node differ
per branch. */
for (unsigned i = 0; i < args.length (); i++)
{
unsigned int len = 0;
vec<int> *indices = phi_arg_map.get (args[i].arg);
for (int index : *indices)
{
edge e = gimple_phi_arg_edge (phi, index);
len += get_bb_num_predicate_stmts (e->src);
}
unsigned occur = indices->length ();
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Ranking %d as len=%d, idx=%d\n", i, len, occur);
args[i].num_compares = len;
args[i].occurs = occur;
args[i].indexes = indices;
}
/* Sort elements based on rankings ARGS. */
args.stablesort (cmp_arg_entry, NULL);
/* Handle one special case when number of arguments with different values
is equal 2 and one argument has the only occurrence. Such PHI can be
handled as if would have only 2 arguments. */
if (args.length () == 2
&& args[0].indexes->length () == 1)
{
index0 = (*args[0].indexes)[0];
arg0 = args[0].arg;
arg1 = args[1].arg;
e = gimple_phi_arg_edge (phi, index0);
cond = bb_predicate (e->src);
if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
{
swap = true;
cond = TREE_OPERAND (cond, 0);
}
/* Gimplify the condition to a valid cond-expr conditonal operand. */
cond = force_gimple_operand_gsi (gsi, unshare_expr (cond), true,
NULL_TREE, true, GSI_SAME_STMT);
if (!(is_cond_scalar_reduction (phi, &reduc, arg0 , arg1,
&op0, &op1, true, &has_nop, &nop_reduc)))
rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
swap ? arg1 : arg0,
swap ? arg0 : arg1);
else
{
/* Convert reduction stmt into vectorizable form. */
rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
swap, has_nop, nop_reduc,
loop_versioned);
redundant_ssa_names.safe_push (std::make_pair (res, rhs));
}
new_stmt = gimple_build_assign (res, rhs);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
update_stmt (new_stmt);
}
else
{
/* Common case. */
tree type = TREE_TYPE (gimple_phi_result (phi));
gen_phi_nest_statement (phi, gsi, cond_set, type, &new_stmt, res,
args, 1);
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "new extended phi replacement stmt\n");
print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
}
}
/* Replaces in LOOP all the scalar phi nodes other than those in the
LOOP->header block with conditional modify expressions.
LOOP_VERSIONED should be true if we know that the loop was versioned for
vectorization. */
static void
predicate_all_scalar_phis (class loop *loop, bool loop_versioned)
{
basic_block bb;
unsigned int orig_loop_num_nodes = loop->num_nodes;
unsigned int i;
for (i = 1; i < orig_loop_num_nodes; i++)
{
gphi *phi;
gimple_stmt_iterator gsi;
gphi_iterator phi_gsi;
bb = ifc_bbs[i];
if (bb == loop->header)
continue;
phi_gsi = gsi_start_phis (bb);
if (gsi_end_p (phi_gsi))
continue;
gsi = gsi_after_labels (bb);
while (!gsi_end_p (phi_gsi))
{
phi = phi_gsi.phi ();
if (virtual_operand_p (gimple_phi_result (phi)))
gsi_next (&phi_gsi);
else
{
predicate_scalar_phi (phi, &gsi, loop_versioned);
remove_phi_node (&phi_gsi, false);
}
}
}
}
/* Insert in each basic block of LOOP the statements produced by the
gimplification of the predicates. */
static void
insert_gimplified_predicates (loop_p loop)
{
unsigned int i;
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = ifc_bbs[i];
gimple_seq stmts;
if (!is_predicated (bb))
gcc_assert (bb_predicate_gimplified_stmts (bb) == NULL);
if (!is_predicated (bb))
{
/* Do not insert statements for a basic block that is not
predicated. Also make sure that the predicate of the
basic block is set to true. */
reset_bb_predicate (bb);
continue;
}
stmts = bb_predicate_gimplified_stmts (bb);
if (stmts)
{
if (need_to_predicate)
{
/* Insert the predicate of the BB just after the label,
as the if-conversion of memory writes will use this
predicate. */
gimple_stmt_iterator gsi = gsi_after_labels (bb);
gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
}
else
{
/* Insert the predicate of the BB at the end of the BB
as this would reduce the register pressure: the only
use of this predicate will be in successor BBs. */
gimple_stmt_iterator gsi = gsi_last_bb (bb);
if (gsi_end_p (gsi)
|| stmt_ends_bb_p (gsi_stmt (gsi)))
gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
else
gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
}
/* Once the sequence is code generated, set it to NULL. */
set_bb_predicate_gimplified_stmts (bb, NULL, true);
}
}
}
/* Helper function for predicate_statements. Returns index of existent
mask if it was created for given SIZE and -1 otherwise. */
static int
mask_exists (int size, const vec<int> &vec)
{
unsigned int ix;
int v;
FOR_EACH_VEC_ELT (vec, ix, v)
if (v == size)
return (int) ix;
return -1;
}
/* Helper function for predicate_statements. STMT is a memory read or
write and it needs to be predicated by MASK. Return a statement
that does so. */
static gimple *
predicate_load_or_store (gimple_stmt_iterator *gsi, gassign *stmt, tree mask)
{
gcall *new_stmt;
tree lhs = gimple_assign_lhs (stmt);
tree rhs = gimple_assign_rhs1 (stmt);
tree ref = TREE_CODE (lhs) == SSA_NAME ? rhs : lhs;
mark_addressable (ref);
tree addr = force_gimple_operand_gsi (gsi, build_fold_addr_expr (ref),
true, NULL_TREE, true, GSI_SAME_STMT);
tree ptr = build_int_cst (reference_alias_ptr_type (ref),
get_object_alignment (ref));
/* Copy points-to info if possible. */
if (TREE_CODE (addr) == SSA_NAME && !SSA_NAME_PTR_INFO (addr))
copy_ref_info (build2 (MEM_REF, TREE_TYPE (ref), addr, ptr),
ref);
if (TREE_CODE (lhs) == SSA_NAME)
{
new_stmt
= gimple_build_call_internal (IFN_MASK_LOAD, 3, addr,
ptr, mask);
gimple_call_set_lhs (new_stmt, lhs);
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
}
else
{
new_stmt
= gimple_build_call_internal (IFN_MASK_STORE, 4, addr, ptr,
mask, rhs);
gimple_move_vops (new_stmt, stmt);
}
gimple_call_set_nothrow (new_stmt, true);
return new_stmt;
}
/* STMT uses OP_LHS. Check whether it is equivalent to:
... = OP_MASK ? OP_LHS : X;
Return X if so, otherwise return null. OP_MASK is an SSA_NAME that is
known to have value OP_COND. */
static tree
check_redundant_cond_expr (gimple *stmt, tree op_mask, tree op_cond,
tree op_lhs)
{
gassign *assign = dyn_cast <gassign *> (stmt);
if (!assign || gimple_assign_rhs_code (assign) != COND_EXPR)
return NULL_TREE;
tree use_cond = gimple_assign_rhs1 (assign);
tree if_true = gimple_assign_rhs2 (assign);
tree if_false = gimple_assign_rhs3 (assign);
if ((use_cond == op_mask || operand_equal_p (use_cond, op_cond, 0))
&& if_true == op_lhs)
return if_false;
if (inverse_conditions_p (use_cond, op_cond) && if_false == op_lhs)
return if_true;
return NULL_TREE;
}
/* Return true if VALUE is available for use at STMT. SSA_NAMES is
the set of SSA names defined earlier in STMT's block. */
static bool
value_available_p (gimple *stmt, hash_set<tree_ssa_name_hash> *ssa_names,
tree value)
{
if (is_gimple_min_invariant (value))
return true;
if (TREE_CODE (value) == SSA_NAME)
{
if (SSA_NAME_IS_DEFAULT_DEF (value))
return true;
basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (value));
basic_block use_bb = gimple_bb (stmt);
return (def_bb == use_bb
? ssa_names->contains (value)
: dominated_by_p (CDI_DOMINATORS, use_bb, def_bb));
}
return false;
}
/* Helper function for predicate_statements. STMT is a potentially-trapping
arithmetic operation that needs to be predicated by MASK, an SSA_NAME that
has value COND. Return a statement that does so. SSA_NAMES is the set of
SSA names defined earlier in STMT's block. */
static gimple *
predicate_rhs_code (gassign *stmt, tree mask, tree cond,
hash_set<tree_ssa_name_hash> *ssa_names)
{
tree lhs = gimple_assign_lhs (stmt);
tree_code code = gimple_assign_rhs_code (stmt);
unsigned int nops = gimple_num_ops (stmt);
internal_fn cond_fn = get_conditional_internal_fn (code);
/* Construct the arguments to the conditional internal function. */
auto_vec<tree, 8> args;
args.safe_grow (nops + 1, true);
args[0] = mask;
for (unsigned int i = 1; i < nops; ++i)
args[i] = gimple_op (stmt, i);
args[nops] = NULL_TREE;
/* Look for uses of the result to see whether they are COND_EXPRs that can
be folded into the conditional call. */
imm_use_iterator imm_iter;
gimple *use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
{
tree new_else = check_redundant_cond_expr (use_stmt, mask, cond, lhs);
if (new_else && value_available_p (stmt, ssa_names, new_else))
{
if (!args[nops])
args[nops] = new_else;
if (operand_equal_p (new_else, args[nops], 0))
{
/* We have:
LHS = IFN_COND (MASK, ..., ELSE);
X = MASK ? LHS : ELSE;
which makes X equivalent to LHS. */
tree use_lhs = gimple_assign_lhs (use_stmt);
redundant_ssa_names.safe_push (std::make_pair (use_lhs, lhs));
}
}
}
if (!args[nops])
args[nops] = targetm.preferred_else_value (cond_fn, TREE_TYPE (lhs),
nops - 1, &args[1]);
/* Create and insert the call. */
gcall *new_stmt = gimple_build_call_internal_vec (cond_fn, args);
gimple_call_set_lhs (new_stmt, lhs);
gimple_call_set_nothrow (new_stmt, true);
return new_stmt;
}
/* Predicate each write to memory in LOOP.
This function transforms control flow constructs containing memory
writes of the form:
| for (i = 0; i < N; i++)
| if (cond)
| A[i] = expr;
into the following form that does not contain control flow:
| for (i = 0; i < N; i++)
| A[i] = cond ? expr : A[i];
The original CFG looks like this:
| bb_0
| i = 0
| end_bb_0
|
| bb_1
| if (i < N) goto bb_5 else goto bb_2
| end_bb_1
|
| bb_2
| cond = some_computation;
| if (cond) goto bb_3 else goto bb_4
| end_bb_2
|
| bb_3
| A[i] = expr;
| goto bb_4
| end_bb_3
|
| bb_4
| goto bb_1
| end_bb_4
insert_gimplified_predicates inserts the computation of the COND
expression at the beginning of the destination basic block:
| bb_0
| i = 0
| end_bb_0
|
| bb_1
| if (i < N) goto bb_5 else goto bb_2
| end_bb_1
|
| bb_2
| cond = some_computation;
| if (cond) goto bb_3 else goto bb_4
| end_bb_2
|
| bb_3
| cond = some_computation;
| A[i] = expr;
| goto bb_4
| end_bb_3
|
| bb_4
| goto bb_1
| end_bb_4
predicate_statements is then predicating the memory write as follows:
| bb_0
| i = 0
| end_bb_0
|
| bb_1
| if (i < N) goto bb_5 else goto bb_2
| end_bb_1
|
| bb_2
| if (cond) goto bb_3 else goto bb_4
| end_bb_2
|
| bb_3
| cond = some_computation;
| A[i] = cond ? expr : A[i];
| goto bb_4
| end_bb_3
|
| bb_4
| goto bb_1
| end_bb_4
and finally combine_blocks removes the basic block boundaries making
the loop vectorizable:
| bb_0
| i = 0
| if (i < N) goto bb_5 else goto bb_1
| end_bb_0
|
| bb_1
| cond = some_computation;
| A[i] = cond ? expr : A[i];
| if (i < N) goto bb_5 else goto bb_4
| end_bb_1
|
| bb_4
| goto bb_1
| end_bb_4
*/
static void
predicate_statements (loop_p loop)
{
unsigned int i, orig_loop_num_nodes = loop->num_nodes;
auto_vec<int, 1> vect_sizes;
auto_vec<tree, 1> vect_masks;
hash_set<tree_ssa_name_hash> ssa_names;
for (i = 1; i < orig_loop_num_nodes; i++)
{
gimple_stmt_iterator gsi;
basic_block bb = ifc_bbs[i];
tree cond = bb_predicate (bb);
bool swap;
int index;
if (is_true_predicate (cond))
continue;
swap = false;
if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
{
swap = true;
cond = TREE_OPERAND (cond, 0);
}
vect_sizes.truncate (0);
vect_masks.truncate (0);
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
{
gassign *stmt = dyn_cast <gassign *> (gsi_stmt (gsi));
tree lhs;
if (!stmt)
;
else if (is_false_predicate (cond)
&& gimple_vdef (stmt))
{
unlink_stmt_vdef (stmt);
gsi_remove (&gsi, true);
release_defs (stmt);
continue;
}
else if (gimple_plf (stmt, GF_PLF_2)
&& is_gimple_assign (stmt))
{
tree lhs = gimple_assign_lhs (stmt);
tree mask;
gimple *new_stmt;
gimple_seq stmts = NULL;
machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
/* We checked before setting GF_PLF_2 that an equivalent
integer mode exists. */
int bitsize = GET_MODE_BITSIZE (mode).to_constant ();
if (!vect_sizes.is_empty ()
&& (index = mask_exists (bitsize, vect_sizes)) != -1)
/* Use created mask. */
mask = vect_masks[index];
else
{
if (COMPARISON_CLASS_P (cond))
mask = gimple_build (&stmts, TREE_CODE (cond),
boolean_type_node,
TREE_OPERAND (cond, 0),
TREE_OPERAND (cond, 1));
else
mask = cond;
if (swap)
{
tree true_val
= constant_boolean_node (true, TREE_TYPE (mask));
mask = gimple_build (&stmts, BIT_XOR_EXPR,
TREE_TYPE (mask), mask, true_val);
}
gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
/* Save mask and its size for further use. */
vect_sizes.safe_push (bitsize);
vect_masks.safe_push (mask);
}
if (gimple_assign_single_p (stmt))
new_stmt = predicate_load_or_store (&gsi, stmt, mask);
else
new_stmt = predicate_rhs_code (stmt, mask, cond, &ssa_names);
gsi_replace (&gsi, new_stmt, true);
}
else if (((lhs = gimple_assign_lhs (stmt)), true)
&& (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|| POINTER_TYPE_P (TREE_TYPE (lhs)))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (lhs))
&& arith_code_with_undefined_signed_overflow
(gimple_assign_rhs_code (stmt)))
rewrite_to_defined_overflow (&gsi);
else if (gimple_vdef (stmt))
{
tree lhs = gimple_assign_lhs (stmt);
tree rhs = gimple_assign_rhs1 (stmt);
tree type = TREE_TYPE (lhs);
lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
if (swap)
std::swap (lhs, rhs);
cond = force_gimple_operand_gsi (&gsi, unshare_expr (cond), true,
NULL_TREE, true, GSI_SAME_STMT);
rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs);
gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
update_stmt (stmt);
}
if (gimple_plf (gsi_stmt (gsi), GF_PLF_2)
&& is_gimple_call (gsi_stmt (gsi)))
{
/* Convert functions that have a SIMD clone to IFN_MASK_CALL.
This will cause the vectorizer to match the "in branch"
clone variants, and serves to build the mask vector
in a natural way. */
gcall *call = dyn_cast <gcall *> (gsi_stmt (gsi));
tree orig_fn = gimple_call_fn (call);
int orig_nargs = gimple_call_num_args (call);
auto_vec<tree> args;
args.safe_push (orig_fn);
for (int i = 0; i < orig_nargs; i++)
args.safe_push (gimple_call_arg (call, i));
args.safe_push (cond);
/* Replace the call with a IFN_MASK_CALL that has the extra
condition parameter. */
gcall *new_call = gimple_build_call_internal_vec (IFN_MASK_CALL,
args);
gimple_call_set_lhs (new_call, gimple_call_lhs (call));
gsi_replace (&gsi, new_call, true);
}
lhs = gimple_get_lhs (gsi_stmt (gsi));
if (lhs && TREE_CODE (lhs) == SSA_NAME)
ssa_names.add (lhs);
gsi_next (&gsi);
}
ssa_names.empty ();
}
}
/* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
other than the exit and latch of the LOOP. Also resets the
GIMPLE_DEBUG information. */
static void
remove_conditions_and_labels (loop_p loop)
{
gimple_stmt_iterator gsi;
unsigned int i;
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = ifc_bbs[i];
if (bb_with_exit_edge_p (loop, bb)
|| bb == loop->latch)
continue;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
switch (gimple_code (gsi_stmt (gsi)))
{
case GIMPLE_COND:
case GIMPLE_LABEL:
gsi_remove (&gsi, true);
break;
case GIMPLE_DEBUG:
/* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
if (gimple_debug_bind_p (gsi_stmt (gsi)))
{
gimple_debug_bind_reset_value (gsi_stmt (gsi));
update_stmt (gsi_stmt (gsi));
}
gsi_next (&gsi);
break;
default:
gsi_next (&gsi);
}
}
}
/* Combine all the basic blocks from LOOP into one or two super basic
blocks. Replace PHI nodes with conditional modify expressions.
LOOP_VERSIONED should be true if we know that the loop was versioned for
vectorization. */
static void
combine_blocks (class loop *loop, bool loop_versioned)
{
basic_block bb, exit_bb, merge_target_bb;
unsigned int orig_loop_num_nodes = loop->num_nodes;
unsigned int i;
edge e;
edge_iterator ei;
remove_conditions_and_labels (loop);
insert_gimplified_predicates (loop);
predicate_all_scalar_phis (loop, loop_versioned);
if (need_to_predicate || need_to_rewrite_undefined)
predicate_statements (loop);
/* Merge basic blocks. */
exit_bb = NULL;
bool *predicated = XNEWVEC (bool, orig_loop_num_nodes);
for (i = 0; i < orig_loop_num_nodes; i++)
{
bb = ifc_bbs[i];
predicated[i] = !is_true_predicate (bb_predicate (bb));
free_bb_predicate (bb);
if (bb_with_exit_edge_p (loop, bb))
{
gcc_assert (exit_bb == NULL);
exit_bb = bb;
}
}
gcc_assert (exit_bb != loop->latch);
merge_target_bb = loop->header;
/* Get at the virtual def valid for uses starting at the first block
we merge into the header. Without a virtual PHI the loop has the
same virtual use on all stmts. */
gphi *vphi = get_virtual_phi (loop->header);
tree last_vdef = NULL_TREE;
if (vphi)
{
last_vdef = gimple_phi_result (vphi);
for (gimple_stmt_iterator gsi = gsi_start_bb (loop->header);
! gsi_end_p (gsi); gsi_next (&gsi))
if (gimple_vdef (gsi_stmt (gsi)))
last_vdef = gimple_vdef (gsi_stmt (gsi));
}
for (i = 1; i < orig_loop_num_nodes; i++)
{
gimple_stmt_iterator gsi;
gimple_stmt_iterator last;
bb = ifc_bbs[i];
if (bb == exit_bb || bb == loop->latch)
continue;
/* We release virtual PHIs late because we have to propagate them
out using the current VUSE. The def might be the one used
after the loop. */
vphi = get_virtual_phi (bb);
if (vphi)
{
/* When there's just loads inside the loop a stray virtual
PHI merging the uses can appear, update last_vdef from
it. */
if (!last_vdef)
last_vdef = gimple_phi_arg_def (vphi, 0);
imm_use_iterator iter;
use_operand_p use_p;
gimple *use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, iter, gimple_phi_result (vphi))
{
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p, last_vdef);
}
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (vphi)))
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (last_vdef) = 1;
gsi = gsi_for_stmt (vphi);
remove_phi_node (&gsi, true);
}
/* Make stmts member of loop->header and clear range info from all stmts
in BB which is now no longer executed conditional on a predicate we
could have derived it from. */
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
gimple_set_bb (stmt, merge_target_bb);
/* Update virtual operands. */
if (last_vdef)
{
use_operand_p use_p = ssa_vuse_operand (stmt);
if (use_p
&& USE_FROM_PTR (use_p) != last_vdef)
SET_USE (use_p, last_vdef);
if (gimple_vdef (stmt))
last_vdef = gimple_vdef (stmt);
}
else
/* If this is the first load we arrive at update last_vdef
so we handle stray PHIs correctly. */
last_vdef = gimple_vuse (stmt);
if (predicated[i])
{
ssa_op_iter i;
tree op;
FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
reset_flow_sensitive_info (op);
}
}
/* Update stmt list. */
last = gsi_last_bb (merge_target_bb);
gsi_insert_seq_after_without_update (&last, bb_seq (bb), GSI_NEW_STMT);
set_bb_seq (bb, NULL);
}
/* Fixup virtual operands in the exit block. */
if (exit_bb
&& exit_bb != loop->header)
{
/* We release virtual PHIs late because we have to propagate them
out using the current VUSE. The def might be the one used
after the loop. */
vphi = get_virtual_phi (exit_bb);
if (vphi)
{
/* When there's just loads inside the loop a stray virtual
PHI merging the uses can appear, update last_vdef from
it. */
if (!last_vdef)
last_vdef = gimple_phi_arg_def (vphi, 0);
imm_use_iterator iter;
use_operand_p use_p;
gimple *use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, iter, gimple_phi_result (vphi))
{
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p, last_vdef);
}
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (vphi)))
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (last_vdef) = 1;
gimple_stmt_iterator gsi = gsi_for_stmt (vphi);
remove_phi_node (&gsi, true);
}
}
/* Now remove all the edges in the loop, except for those from the exit
block and delete the blocks we elided. */
for (i = 1; i < orig_loop_num_nodes; i++)
{
bb = ifc_bbs[i];
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
{
if (e->src == exit_bb)
ei_next (&ei);
else
remove_edge (e);
}
}
for (i = 1; i < orig_loop_num_nodes; i++)
{
bb = ifc_bbs[i];
if (bb == exit_bb || bb == loop->latch)
continue;
delete_basic_block (bb);
}
/* Re-connect the exit block. */
if (exit_bb != NULL)
{
if (exit_bb != loop->header)
{
/* Connect this node to loop header. */
make_single_succ_edge (loop->header, exit_bb, EDGE_FALLTHRU);
set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
}
/* Redirect non-exit edges to loop->latch. */
FOR_EACH_EDGE (e, ei, exit_bb->succs)
{
if (!loop_exit_edge_p (loop, e))
redirect_edge_and_branch (e, loop->latch);
}
set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
}
else
{
/* If the loop does not have an exit, reconnect header and latch. */
make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
}
/* If possible, merge loop header to the block with the exit edge.
This reduces the number of basic blocks to two, to please the
vectorizer that handles only loops with two nodes. */
if (exit_bb
&& exit_bb != loop->header)
{
if (can_merge_blocks_p (loop->header, exit_bb))
merge_blocks (loop->header, exit_bb);
}
free (ifc_bbs);
ifc_bbs = NULL;
free (predicated);
}
/* Version LOOP before if-converting it; the original loop
will be if-converted, the new copy of the loop will not,
and the LOOP_VECTORIZED internal call will be guarding which
loop to execute. The vectorizer pass will fold this
internal call into either true or false.
Note that this function intentionally invalidates profile. Both edges
out of LOOP_VECTORIZED must have 100% probability so the profile remains
consistent after the condition is folded in the vectorizer. */
static class loop *
version_loop_for_if_conversion (class loop *loop, vec<gimple *> *preds)
{
basic_block cond_bb;
tree cond = make_ssa_name (boolean_type_node);
class loop *new_loop;
gimple *g;
gimple_stmt_iterator gsi;
unsigned int save_length = 0;
g = gimple_build_call_internal (IFN_LOOP_VECTORIZED, 2,
build_int_cst (integer_type_node, loop->num),
integer_zero_node);
gimple_call_set_lhs (g, cond);
void **saved_preds = NULL;
if (any_complicated_phi || need_to_predicate)
{
/* Save BB->aux around loop_version as that uses the same field. */
save_length = loop->inner ? loop->inner->num_nodes : loop->num_nodes;
saved_preds = XALLOCAVEC (void *, save_length);
for (unsigned i = 0; i < save_length; i++)
saved_preds[i] = ifc_bbs[i]->aux;
}
initialize_original_copy_tables ();
/* At this point we invalidate porfile confistency until IFN_LOOP_VECTORIZED
is re-merged in the vectorizer. */
new_loop = loop_version (loop, cond, &cond_bb,
profile_probability::always (),
profile_probability::always (),
profile_probability::always (),
profile_probability::always (), true);
free_original_copy_tables ();
if (any_complicated_phi || need_to_predicate)
for (unsigned i = 0; i < save_length; i++)
ifc_bbs[i]->aux = saved_preds[i];
if (new_loop == NULL)
return NULL;
new_loop->dont_vectorize = true;
new_loop->force_vectorize = false;
gsi = gsi_last_bb (cond_bb);
gimple_call_set_arg (g, 1, build_int_cst (integer_type_node, new_loop->num));
if (preds)
preds->safe_push (g);
gsi_insert_before (&gsi, g, GSI_SAME_STMT);
update_ssa (TODO_update_ssa_no_phi);
return new_loop;
}
/* Return true when LOOP satisfies the follow conditions that will
allow it to be recognized by the vectorizer for outer-loop
vectorization:
- The loop is not the root node of the loop tree.
- The loop has exactly one inner loop.
- The loop has a single exit.
- The loop header has a single successor, which is the inner
loop header.
- Each of the inner and outer loop latches have a single
predecessor.
- The loop exit block has a single predecessor, which is the
inner loop's exit block. */
static bool
versionable_outer_loop_p (class loop *loop)
{
if (!loop_outer (loop)
|| loop->dont_vectorize
|| !loop->inner
|| loop->inner->next
|| !single_exit (loop)
|| !single_succ_p (loop->header)
|| single_succ (loop->header) != loop->inner->header
|| !single_pred_p (loop->latch)
|| !single_pred_p (loop->inner->latch))
return false;
basic_block outer_exit = single_pred (loop->latch);
basic_block inner_exit = single_pred (loop->inner->latch);
if (!single_pred_p (outer_exit) || single_pred (outer_exit) != inner_exit)
return false;
if (dump_file)
fprintf (dump_file, "Found vectorizable outer loop for versioning\n");
return true;
}
/* Performs splitting of critical edges. Skip splitting and return false
if LOOP will not be converted because:
- LOOP is not well formed.
- LOOP has PHI with more than MAX_PHI_ARG_NUM arguments.
Last restriction is valid only if AGGRESSIVE_IF_CONV is false. */
static bool
ifcvt_split_critical_edges (class loop *loop, bool aggressive_if_conv)
{
basic_block *body;
basic_block bb;
unsigned int num = loop->num_nodes;
unsigned int i;
edge e;
edge_iterator ei;
auto_vec<edge> critical_edges;
/* Loop is not well formed. */
if (loop->inner)
return false;
body = get_loop_body (loop);
for (i = 0; i < num; i++)
{
bb = body[i];
if (!aggressive_if_conv
&& phi_nodes (bb)
&& EDGE_COUNT (bb->preds) > MAX_PHI_ARG_NUM)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"BB %d has complicated PHI with more than %u args.\n",
bb->index, MAX_PHI_ARG_NUM);
free (body);
return false;
}
if (bb == loop->latch || bb_with_exit_edge_p (loop, bb))
continue;
/* Skip basic blocks not ending with conditional branch. */
if (!safe_is_a <gcond *> (*gsi_last_bb (bb)))
continue;
FOR_EACH_EDGE (e, ei, bb->succs)
if (EDGE_CRITICAL_P (e) && e->dest->loop_father == loop)
critical_edges.safe_push (e);
}
free (body);
while (critical_edges.length () > 0)
{
e = critical_edges.pop ();
/* Don't split if bb can be predicated along non-critical edge. */
if (EDGE_COUNT (e->dest->preds) > 2 || all_preds_critical_p (e->dest))
split_edge (e);
}
return true;
}
/* Delete redundant statements produced by predication which prevents
loop vectorization. */
static void
ifcvt_local_dce (class loop *loop)
{
gimple *stmt;
gimple *stmt1;
gimple *phi;
gimple_stmt_iterator gsi;
auto_vec<gimple *> worklist;
enum gimple_code code;
use_operand_p use_p;
imm_use_iterator imm_iter;
/* The loop has a single BB only. */
basic_block bb = loop->header;
tree latch_vdef = NULL_TREE;
worklist.create (64);
/* Consider all phi as live statements. */
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
phi = gsi_stmt (gsi);
gimple_set_plf (phi, GF_PLF_2, true);
worklist.safe_push (phi);
if (virtual_operand_p (gimple_phi_result (phi)))
latch_vdef = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
}
/* Consider load/store statements, CALL and COND as live. */
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
{
gimple_set_plf (stmt, GF_PLF_2, true);
continue;
}
if (gimple_store_p (stmt) || gimple_assign_load_p (stmt))
{
gimple_set_plf (stmt, GF_PLF_2, true);
worklist.safe_push (stmt);
continue;
}
code = gimple_code (stmt);
if (code == GIMPLE_COND || code == GIMPLE_CALL)
{
gimple_set_plf (stmt, GF_PLF_2, true);
worklist.safe_push (stmt);
continue;
}
gimple_set_plf (stmt, GF_PLF_2, false);
if (code == GIMPLE_ASSIGN)
{
tree lhs = gimple_assign_lhs (stmt);
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
{
stmt1 = USE_STMT (use_p);
if (!is_gimple_debug (stmt1) && gimple_bb (stmt1) != bb)
{
gimple_set_plf (stmt, GF_PLF_2, true);
worklist.safe_push (stmt);
break;
}
}
}
}
/* Propagate liveness through arguments of live stmt. */
while (worklist.length () > 0)
{
ssa_op_iter iter;
use_operand_p use_p;
tree use;
stmt = worklist.pop ();
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
{
use = USE_FROM_PTR (use_p);
if (TREE_CODE (use) != SSA_NAME)
continue;
stmt1 = SSA_NAME_DEF_STMT (use);
if (gimple_bb (stmt1) != bb || gimple_plf (stmt1, GF_PLF_2))
continue;
gimple_set_plf (stmt1, GF_PLF_2, true);
worklist.safe_push (stmt1);
}
}
/* Delete dead statements. */
gsi = gsi_last_bb (bb);
while (!gsi_end_p (gsi))
{
gimple_stmt_iterator gsiprev = gsi;
gsi_prev (&gsiprev);
stmt = gsi_stmt (gsi);
if (gimple_store_p (stmt) && gimple_vdef (stmt))
{
tree lhs = gimple_get_lhs (stmt);
ao_ref write;
ao_ref_init (&write, lhs);
if (dse_classify_store (&write, stmt, false, NULL, NULL, latch_vdef)
== DSE_STORE_DEAD)
delete_dead_or_redundant_assignment (&gsi, "dead");
gsi = gsiprev;
continue;
}
if (gimple_plf (stmt, GF_PLF_2))
{
gsi = gsiprev;
continue;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Delete dead stmt in bb#%d\n", bb->index);
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
}
gsi_remove (&gsi, true);
release_defs (stmt);
gsi = gsiprev;
}
}
/* Return true if VALUE is already available on edge PE. */
static bool
ifcvt_available_on_edge_p (edge pe, tree value)
{
if (is_gimple_min_invariant (value))
return true;
if (TREE_CODE (value) == SSA_NAME)
{
basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (value));
if (!def_bb || dominated_by_p (CDI_DOMINATORS, pe->dest, def_bb))
return true;
}
return false;
}
/* Return true if STMT can be hoisted from if-converted loop LOOP to
edge PE. */
static bool
ifcvt_can_hoist (class loop *loop, edge pe, gimple *stmt)
{
if (auto *call = dyn_cast<gcall *> (stmt))
{
if (gimple_call_internal_p (call)
&& internal_fn_mask_index (gimple_call_internal_fn (call)) >= 0)
return false;
}
else if (auto *assign = dyn_cast<gassign *> (stmt))
{
if (gimple_assign_rhs_code (assign) == COND_EXPR)
return false;
}
else
return false;
if (gimple_has_side_effects (stmt)
|| gimple_could_trap_p (stmt)
|| stmt_could_throw_p (cfun, stmt)
|| gimple_vdef (stmt)
|| gimple_vuse (stmt))
return false;
int num_args = gimple_num_args (stmt);
if (pe != loop_preheader_edge (loop))
{
for (int i = 0; i < num_args; ++i)
if (!ifcvt_available_on_edge_p (pe, gimple_arg (stmt, i)))
return false;
}
else
{
for (int i = 0; i < num_args; ++i)
if (!expr_invariant_in_loop_p (loop, gimple_arg (stmt, i)))
return false;
}
return true;
}
/* Hoist invariant statements from LOOP to edge PE. */
static void
ifcvt_hoist_invariants (class loop *loop, edge pe)
{
gimple_stmt_iterator hoist_gsi = {};
unsigned int num_blocks = loop->num_nodes;
basic_block *body = get_loop_body (loop);
for (unsigned int i = 0; i < num_blocks; ++i)
for (gimple_stmt_iterator gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);)
{
gimple *stmt = gsi_stmt (gsi);
if (ifcvt_can_hoist (loop, pe, stmt))
{
/* Once we've hoisted one statement, insert other statements
after it. */
gsi_remove (&gsi, false);
if (hoist_gsi.ptr)
gsi_insert_after (&hoist_gsi, stmt, GSI_NEW_STMT);
else
{
gsi_insert_on_edge_immediate (pe, stmt);
hoist_gsi = gsi_for_stmt (stmt);
}
continue;
}
gsi_next (&gsi);
}
free (body);
}
/* Returns the DECL_FIELD_BIT_OFFSET of the bitfield accesse in stmt iff its
type mode is not BLKmode. If BITPOS is not NULL it will hold the poly_int64
value of the DECL_FIELD_BIT_OFFSET of the bitfield access and STRUCT_EXPR,
if not NULL, will hold the tree representing the base struct of this
bitfield. */
static tree
get_bitfield_rep (gassign *stmt, bool write, tree *bitpos,
tree *struct_expr)
{
tree comp_ref = write ? gimple_assign_lhs (stmt)
: gimple_assign_rhs1 (stmt);
tree field_decl = TREE_OPERAND (comp_ref, 1);
tree ref_offset = component_ref_field_offset (comp_ref);
tree rep_decl = DECL_BIT_FIELD_REPRESENTATIVE (field_decl);
/* Bail out if the representative is not a suitable type for a scalar
register variable. */
if (!is_gimple_reg_type (TREE_TYPE (rep_decl)))
return NULL_TREE;
/* Bail out if the DECL_SIZE of the field_decl isn't the same as the BF's
precision. */
unsigned HOST_WIDE_INT bf_prec
= TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (stmt)));
if (compare_tree_int (DECL_SIZE (field_decl), bf_prec) != 0)
return NULL_TREE;
if (TREE_CODE (DECL_FIELD_OFFSET (rep_decl)) != INTEGER_CST
|| TREE_CODE (ref_offset) != INTEGER_CST)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\t Bitfield NOT OK to lower,"
" offset is non-constant.\n");
return NULL_TREE;
}
if (struct_expr)
*struct_expr = TREE_OPERAND (comp_ref, 0);
if (bitpos)
{
/* To calculate the bitposition of the BITFIELD_REF we have to determine
where our bitfield starts in relation to the container REP_DECL. The
DECL_FIELD_OFFSET of the original bitfield's member FIELD_DECL tells
us how many bytes from the start of the structure there are until the
start of the group of bitfield members the FIELD_DECL belongs to,
whereas DECL_FIELD_BIT_OFFSET will tell us how many bits from that
position our actual bitfield member starts. For the container
REP_DECL adding DECL_FIELD_OFFSET and DECL_FIELD_BIT_OFFSET will tell
us the distance between the start of the structure and the start of
the container, though the first is in bytes and the later other in
bits. With this in mind we calculate the bit position of our new
BITFIELD_REF by subtracting the number of bits between the start of
the structure and the container from the number of bits from the start
of the structure and the actual bitfield member. */
tree bf_pos = fold_build2 (MULT_EXPR, bitsizetype,
ref_offset,
build_int_cst (bitsizetype, BITS_PER_UNIT));
bf_pos = fold_build2 (PLUS_EXPR, bitsizetype, bf_pos,
DECL_FIELD_BIT_OFFSET (field_decl));
tree rep_pos = fold_build2 (MULT_EXPR, bitsizetype,
DECL_FIELD_OFFSET (rep_decl),
build_int_cst (bitsizetype, BITS_PER_UNIT));
rep_pos = fold_build2 (PLUS_EXPR, bitsizetype, rep_pos,
DECL_FIELD_BIT_OFFSET (rep_decl));
*bitpos = fold_build2 (MINUS_EXPR, bitsizetype, bf_pos, rep_pos);
}
return rep_decl;
}
/* Lowers the bitfield described by DATA.
For a write like:
struct.bf = _1;
lower to:
__ifc_1 = struct.<representative>;
__ifc_2 = BIT_INSERT_EXPR (__ifc_1, _1, bitpos);
struct.<representative> = __ifc_2;
For a read:
_1 = struct.bf;
lower to:
__ifc_1 = struct.<representative>;
_1 = BIT_FIELD_REF (__ifc_1, bitsize, bitpos);
where representative is a legal load that contains the bitfield value,
bitsize is the size of the bitfield and bitpos the offset to the start of
the bitfield within the representative. */
static void
lower_bitfield (gassign *stmt, bool write)
{
tree struct_expr;
tree bitpos;
tree rep_decl = get_bitfield_rep (stmt, write, &bitpos, &struct_expr);
tree rep_type = TREE_TYPE (rep_decl);
tree bf_type = TREE_TYPE (gimple_assign_lhs (stmt));
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Lowering:\n");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
fprintf (dump_file, "to:\n");
}
/* REP_COMP_REF is a COMPONENT_REF for the representative. NEW_VAL is it's
defining SSA_NAME. */
tree rep_comp_ref = build3 (COMPONENT_REF, rep_type, struct_expr, rep_decl,
NULL_TREE);
tree new_val = ifc_temp_var (rep_type, rep_comp_ref, &gsi);
if (dump_file && (dump_flags & TDF_DETAILS))
print_gimple_stmt (dump_file, SSA_NAME_DEF_STMT (new_val), 0, TDF_SLIM);
if (write)
{
new_val = ifc_temp_var (rep_type,
build3 (BIT_INSERT_EXPR, rep_type, new_val,
unshare_expr (gimple_assign_rhs1 (stmt)),
bitpos), &gsi);
if (dump_file && (dump_flags & TDF_DETAILS))
print_gimple_stmt (dump_file, SSA_NAME_DEF_STMT (new_val), 0, TDF_SLIM);
gimple *new_stmt = gimple_build_assign (unshare_expr (rep_comp_ref),
new_val);
gimple_move_vops (new_stmt, stmt);
gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
if (dump_file && (dump_flags & TDF_DETAILS))
print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
}
else
{
tree bfr = build3 (BIT_FIELD_REF, bf_type, new_val,
build_int_cst (bitsizetype, TYPE_PRECISION (bf_type)),
bitpos);
new_val = ifc_temp_var (bf_type, bfr, &gsi);
gimple *new_stmt = gimple_build_assign (gimple_assign_lhs (stmt),
new_val);
gimple_move_vops (new_stmt, stmt);
gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
if (dump_file && (dump_flags & TDF_DETAILS))
print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
}
gsi_remove (&gsi, true);
}
/* Return TRUE if there are bitfields to lower in this LOOP. Fill TO_LOWER
with data structures representing these bitfields. */
static bool
bitfields_to_lower_p (class loop *loop,
vec <gassign *> &reads_to_lower,
vec <gassign *> &writes_to_lower)
{
gimple_stmt_iterator gsi;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Analyzing loop %d for bitfields:\n", loop->num);
}
for (unsigned i = 0; i < loop->num_nodes; ++i)
{
basic_block bb = ifc_bbs[i];
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gassign *stmt = dyn_cast<gassign*> (gsi_stmt (gsi));
if (!stmt)
continue;
tree op = gimple_assign_lhs (stmt);
bool write = TREE_CODE (op) == COMPONENT_REF;
if (!write)
op = gimple_assign_rhs1 (stmt);
if (TREE_CODE (op) != COMPONENT_REF)
continue;
if (DECL_BIT_FIELD_TYPE (TREE_OPERAND (op, 1)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
if (!INTEGRAL_TYPE_P (TREE_TYPE (op)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\t Bitfield NO OK to lower,"
" field type is not Integral.\n");
return false;
}
if (!get_bitfield_rep (stmt, write, NULL, NULL))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\t Bitfield NOT OK to lower,"
" representative is BLKmode.\n");
return false;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\tBitfield OK to lower.\n");
if (write)
writes_to_lower.safe_push (stmt);
else
reads_to_lower.safe_push (stmt);
}
}
}
return !reads_to_lower.is_empty () || !writes_to_lower.is_empty ();
}
/* If-convert LOOP when it is legal. For the moment this pass has no
profitability analysis. Returns non-zero todo flags when something
changed. */
unsigned int
tree_if_conversion (class loop *loop, vec<gimple *> *preds)
{
unsigned int todo = 0;
bool aggressive_if_conv;
class loop *rloop;
auto_vec <gassign *, 4> reads_to_lower;
auto_vec <gassign *, 4> writes_to_lower;
bitmap exit_bbs;
edge pe;
auto_vec<data_reference_p, 10> refs;
bool loop_versioned;
again:
rloop = NULL;
ifc_bbs = NULL;
need_to_lower_bitfields = false;
need_to_ifcvt = false;
need_to_predicate = false;
need_to_rewrite_undefined = false;
any_complicated_phi = false;
loop_versioned = false;
/* Apply more aggressive if-conversion when loop or its outer loop were
marked with simd pragma. When that's the case, we try to if-convert
loop containing PHIs with more than MAX_PHI_ARG_NUM arguments. */
aggressive_if_conv = loop->force_vectorize;
if (!aggressive_if_conv)
{
class loop *outer_loop = loop_outer (loop);
if (outer_loop && outer_loop->force_vectorize)
aggressive_if_conv = true;
}
/* If there are more than two BBs in the loop then there is at least one if
to convert. */
if (loop->num_nodes > 2
&& !ifcvt_split_critical_edges (loop, aggressive_if_conv))
goto cleanup;
ifc_bbs = get_loop_body_in_if_conv_order (loop);
if (!ifc_bbs)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Irreducible loop\n");
goto cleanup;
}
if (find_data_references_in_loop (loop, &refs) == chrec_dont_know)
goto cleanup;
if (loop->num_nodes > 2)
{
/* More than one loop exit is too much to handle. */
if (!single_exit (loop))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Can not ifcvt due to multiple exits\n");
}
else
{
need_to_ifcvt = true;
if (!if_convertible_loop_p (loop, &refs)
|| !dbg_cnt (if_conversion_tree))
goto cleanup;
if ((need_to_predicate || any_complicated_phi)
&& ((!flag_tree_loop_vectorize && !loop->force_vectorize)
|| loop->dont_vectorize))
goto cleanup;
}
}
if ((flag_tree_loop_vectorize || loop->force_vectorize)
&& !loop->dont_vectorize)
need_to_lower_bitfields = bitfields_to_lower_p (loop, reads_to_lower,
writes_to_lower);
if (!need_to_ifcvt && !need_to_lower_bitfields)
goto cleanup;
/* The edge to insert invariant stmts on. */
pe = loop_preheader_edge (loop);
/* Since we have no cost model, always version loops unless the user
specified -ftree-loop-if-convert or unless versioning is required.
Either version this loop, or if the pattern is right for outer-loop
vectorization, version the outer loop. In the latter case we will
still if-convert the original inner loop. */
if (need_to_lower_bitfields
|| need_to_predicate
|| any_complicated_phi
|| flag_tree_loop_if_convert != 1)
{
class loop *vloop
= (versionable_outer_loop_p (loop_outer (loop))
? loop_outer (loop) : loop);
class loop *nloop = version_loop_for_if_conversion (vloop, preds);
if (nloop == NULL)
goto cleanup;
if (vloop != loop)
{
/* If versionable_outer_loop_p decided to version the
outer loop, version also the inner loop of the non-vectorized
loop copy. So we transform:
loop1
loop2
into:
if (LOOP_VECTORIZED (1, 3))
{
loop1
loop2
}
else
loop3 (copy of loop1)
if (LOOP_VECTORIZED (4, 5))
loop4 (copy of loop2)
else
loop5 (copy of loop4) */
gcc_assert (nloop->inner && nloop->inner->next == NULL);
rloop = nloop->inner;
}
else
/* If we versioned loop then make sure to insert invariant
stmts before the .LOOP_VECTORIZED check since the vectorizer
will re-use that for things like runtime alias versioning
whose condition can end up using those invariants. */
pe = single_pred_edge (gimple_bb (preds->last ()));
loop_versioned = true;
}
if (need_to_lower_bitfields)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "-------------------------\n");
fprintf (dump_file, "Start lowering bitfields\n");
}
while (!reads_to_lower.is_empty ())
lower_bitfield (reads_to_lower.pop (), false);
while (!writes_to_lower.is_empty ())
lower_bitfield (writes_to_lower.pop (), true);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Done lowering bitfields\n");
fprintf (dump_file, "-------------------------\n");
}
}
if (need_to_ifcvt)
{
/* Before we rewrite edges we'll record their original position in the
edge map such that we can map the edges between the ifcvt and the
non-ifcvt loop during peeling. */
uintptr_t idx = 0;
for (edge exit : get_loop_exit_edges (loop))
exit->aux = (void*)idx++;
/* Now all statements are if-convertible. Combine all the basic
blocks into one huge basic block doing the if-conversion
on-the-fly. */
combine_blocks (loop, loop_versioned);
}
/* Perform local CSE, this esp. helps the vectorizer analysis if loads
and stores are involved. CSE only the loop body, not the entry
PHIs, those are to be kept in sync with the non-if-converted copy.
??? We'll still keep dead stores though. */
exit_bbs = BITMAP_ALLOC (NULL);
for (edge exit : get_loop_exit_edges (loop))
bitmap_set_bit (exit_bbs, exit->dest->index);
bitmap_set_bit (exit_bbs, loop->latch->index);
std::pair <tree, tree> *name_pair;
unsigned ssa_names_idx;
FOR_EACH_VEC_ELT (redundant_ssa_names, ssa_names_idx, name_pair)
replace_uses_by (name_pair->first, name_pair->second);
redundant_ssa_names.release ();
todo |= do_rpo_vn (cfun, loop_preheader_edge (loop), exit_bbs);
/* Delete dead predicate computations. */
ifcvt_local_dce (loop);
BITMAP_FREE (exit_bbs);
ifcvt_hoist_invariants (loop, pe);
todo |= TODO_cleanup_cfg;
cleanup:
data_reference_p dr;
unsigned int i;
for (i = 0; refs.iterate (i, &dr); i++)
{
free (dr->aux);
free_data_ref (dr);
}
refs.truncate (0);
if (ifc_bbs)
{
unsigned int i;
for (i = 0; i < loop->num_nodes; i++)
free_bb_predicate (ifc_bbs[i]);
free (ifc_bbs);
ifc_bbs = NULL;
}
if (rloop != NULL)
{
loop = rloop;
reads_to_lower.truncate (0);
writes_to_lower.truncate (0);
goto again;
}
return todo;
}
/* Tree if-conversion pass management. */
namespace {
const pass_data pass_data_if_conversion =
{
GIMPLE_PASS, /* type */
"ifcvt", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_LOOP_IFCVT, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_if_conversion : public gimple_opt_pass
{
public:
pass_if_conversion (gcc::context *ctxt)
: gimple_opt_pass (pass_data_if_conversion, ctxt)
{}
/* opt_pass methods: */
bool gate (function *) final override;
unsigned int execute (function *) final override;
}; // class pass_if_conversion
bool
pass_if_conversion::gate (function *fun)
{
return (((flag_tree_loop_vectorize || fun->has_force_vectorize_loops)
&& flag_tree_loop_if_convert != 0)
|| flag_tree_loop_if_convert == 1);
}
unsigned int
pass_if_conversion::execute (function *fun)
{
unsigned todo = 0;
if (number_of_loops (fun) <= 1)
return 0;
auto_vec<gimple *> preds;
for (auto loop : loops_list (cfun, 0))
if (flag_tree_loop_if_convert == 1
|| ((flag_tree_loop_vectorize || loop->force_vectorize)
&& !loop->dont_vectorize))
todo |= tree_if_conversion (loop, &preds);
if (todo)
{
free_numbers_of_iterations_estimates (fun);
scev_reset ();
}
if (flag_checking)
{
basic_block bb;
FOR_EACH_BB_FN (bb, fun)
gcc_assert (!bb->aux);
}
/* Perform IL update now, it might elide some loops. */
if (todo & TODO_cleanup_cfg)
{
cleanup_tree_cfg ();
if (need_ssa_update_p (fun))
todo |= TODO_update_ssa;
}
if (todo & TODO_update_ssa_any)
update_ssa (todo & TODO_update_ssa_any);
/* If if-conversion elided the loop fall back to the original one. */
for (unsigned i = 0; i < preds.length (); ++i)
{
gimple *g = preds[i];
if (!gimple_bb (g))
continue;
unsigned ifcvt_loop = tree_to_uhwi (gimple_call_arg (g, 0));
unsigned orig_loop = tree_to_uhwi (gimple_call_arg (g, 1));
if (!get_loop (fun, ifcvt_loop) || !get_loop (fun, orig_loop))
{
if (dump_file)
fprintf (dump_file, "If-converted loop vanished\n");
fold_loop_internal_call (g, boolean_false_node);
}
}
return 0;
}
} // anon namespace
gimple_opt_pass *
make_pass_if_conversion (gcc::context *ctxt)
{
return new pass_if_conversion (ctxt);
}
|