aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-if-conv.c
blob: a5e17b85b08278c273caa9620578a72c85f350d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
/* If-conversion for vectorizer.
   Copyright (C) 2004-2015 Free Software Foundation, Inc.
   Contributed by Devang Patel <dpatel@apple.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* This pass implements a tree level if-conversion of loops.  Its
   initial goal is to help the vectorizer to vectorize loops with
   conditions.

   A short description of if-conversion:

     o Decide if a loop is if-convertible or not.
     o Walk all loop basic blocks in breadth first order (BFS order).
       o Remove conditional statements (at the end of basic block)
         and propagate condition into destination basic blocks'
	 predicate list.
       o Replace modify expression with conditional modify expression
         using current basic block's condition.
     o Merge all basic blocks
       o Replace phi nodes with conditional modify expr
       o Merge all basic blocks into header

     Sample transformation:

     INPUT
     -----

     # i_23 = PHI <0(0), i_18(10)>;
     <L0>:;
     j_15 = A[i_23];
     if (j_15 > 41) goto <L1>; else goto <L17>;

     <L17>:;
     goto <bb 3> (<L3>);

     <L1>:;

     # iftmp.2_4 = PHI <0(8), 42(2)>;
     <L3>:;
     A[i_23] = iftmp.2_4;
     i_18 = i_23 + 1;
     if (i_18 <= 15) goto <L19>; else goto <L18>;

     <L19>:;
     goto <bb 1> (<L0>);

     <L18>:;

     OUTPUT
     ------

     # i_23 = PHI <0(0), i_18(10)>;
     <L0>:;
     j_15 = A[i_23];

     <L3>:;
     iftmp.2_4 = j_15 > 41 ? 42 : 0;
     A[i_23] = iftmp.2_4;
     i_18 = i_23 + 1;
     if (i_18 <= 15) goto <L19>; else goto <L18>;

     <L19>:;
     goto <bb 1> (<L0>);

     <L18>:;
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "alias.h"
#include "symtab.h"
#include "tree.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "flags.h"
#include "predict.h"
#include "hard-reg-set.h"
#include "function.h"
#include "dominance.h"
#include "cfg.h"
#include "basic-block.h"
#include "gimple-pretty-print.h"
#include "tree-ssa-alias.h"
#include "internal-fn.h"
#include "gimple-fold.h"
#include "gimple-expr.h"
#include "gimple.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimple-ssa.h"
#include "tree-cfg.h"
#include "tree-phinodes.h"
#include "ssa-iterators.h"
#include "stringpool.h"
#include "tree-ssanames.h"
#include "tree-into-ssa.h"
#include "tree-ssa.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-address.h"
#include "tree-pass.h"
#include "dbgcnt.h"
#include "rtl.h"
#include "insn-config.h"
#include "expmed.h"
#include "dojump.h"
#include "explow.h"
#include "calls.h"
#include "emit-rtl.h"
#include "varasm.h"
#include "stmt.h"
#include "expr.h"
#include "insn-codes.h"
#include "optabs.h"

/* List of basic blocks in if-conversion-suitable order.  */
static basic_block *ifc_bbs;

/* Apply more aggressive (extended) if-conversion if true.  */
static bool aggressive_if_conv;

/* Structure used to predicate basic blocks.  This is attached to the
   ->aux field of the BBs in the loop to be if-converted.  */
typedef struct bb_predicate_s {

  /* The condition under which this basic block is executed.  */
  tree predicate;

  /* PREDICATE is gimplified, and the sequence of statements is
     recorded here, in order to avoid the duplication of computations
     that occur in previous conditions.  See PR44483.  */
  gimple_seq predicate_gimplified_stmts;
} *bb_predicate_p;

/* Returns true when the basic block BB has a predicate.  */

static inline bool
bb_has_predicate (basic_block bb)
{
  return bb->aux != NULL;
}

/* Returns the gimplified predicate for basic block BB.  */

static inline tree
bb_predicate (basic_block bb)
{
  return ((bb_predicate_p) bb->aux)->predicate;
}

/* Sets the gimplified predicate COND for basic block BB.  */

static inline void
set_bb_predicate (basic_block bb, tree cond)
{
  gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
	       && is_gimple_condexpr (TREE_OPERAND (cond, 0)))
	      || is_gimple_condexpr (cond));
  ((bb_predicate_p) bb->aux)->predicate = cond;
}

/* Returns the sequence of statements of the gimplification of the
   predicate for basic block BB.  */

static inline gimple_seq
bb_predicate_gimplified_stmts (basic_block bb)
{
  return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts;
}

/* Sets the sequence of statements STMTS of the gimplification of the
   predicate for basic block BB.  */

static inline void
set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
{
  ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts;
}

/* Adds the sequence of statements STMTS to the sequence of statements
   of the predicate for basic block BB.  */

static inline void
add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
{
  gimple_seq_add_seq
    (&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts);
}

/* Initializes to TRUE the predicate of basic block BB.  */

static inline void
init_bb_predicate (basic_block bb)
{
  bb->aux = XNEW (struct bb_predicate_s);
  set_bb_predicate_gimplified_stmts (bb, NULL);
  set_bb_predicate (bb, boolean_true_node);
}

/* Release the SSA_NAMEs associated with the predicate of basic block BB,
   but don't actually free it.  */

static inline void
release_bb_predicate (basic_block bb)
{
  gimple_seq stmts = bb_predicate_gimplified_stmts (bb);
  if (stmts)
    {
      gimple_stmt_iterator i;

      for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
	free_stmt_operands (cfun, gsi_stmt (i));
      set_bb_predicate_gimplified_stmts (bb, NULL);
    }
}

/* Free the predicate of basic block BB.  */

static inline void
free_bb_predicate (basic_block bb)
{
  if (!bb_has_predicate (bb))
    return;

  release_bb_predicate (bb);
  free (bb->aux);
  bb->aux = NULL;
}

/* Reinitialize predicate of BB with the true predicate.  */

static inline void
reset_bb_predicate (basic_block bb)
{
  if (!bb_has_predicate (bb))
    init_bb_predicate (bb);
  else
    {
      release_bb_predicate (bb);
      set_bb_predicate (bb, boolean_true_node);
    }
}

/* Returns a new SSA_NAME of type TYPE that is assigned the value of
   the expression EXPR.  Inserts the statement created for this
   computation before GSI and leaves the iterator GSI at the same
   statement.  */

static tree
ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
{
  tree new_name = make_temp_ssa_name (type, NULL, "_ifc_");
  gimple stmt = gimple_build_assign (new_name, expr);
  gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
  return new_name;
}

/* Return true when COND is a true predicate.  */

static inline bool
is_true_predicate (tree cond)
{
  return (cond == NULL_TREE
	  || cond == boolean_true_node
	  || integer_onep (cond));
}

/* Returns true when BB has a predicate that is not trivial: true or
   NULL_TREE.  */

static inline bool
is_predicated (basic_block bb)
{
  return !is_true_predicate (bb_predicate (bb));
}

/* Parses the predicate COND and returns its comparison code and
   operands OP0 and OP1.  */

static enum tree_code
parse_predicate (tree cond, tree *op0, tree *op1)
{
  gimple s;

  if (TREE_CODE (cond) == SSA_NAME
      && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
    {
      if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
	{
	  *op0 = gimple_assign_rhs1 (s);
	  *op1 = gimple_assign_rhs2 (s);
	  return gimple_assign_rhs_code (s);
	}

      else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
	{
	  tree op = gimple_assign_rhs1 (s);
	  tree type = TREE_TYPE (op);
	  enum tree_code code = parse_predicate (op, op0, op1);

	  return code == ERROR_MARK ? ERROR_MARK
	    : invert_tree_comparison (code, HONOR_NANS (type));
	}

      return ERROR_MARK;
    }

  if (COMPARISON_CLASS_P (cond))
    {
      *op0 = TREE_OPERAND (cond, 0);
      *op1 = TREE_OPERAND (cond, 1);
      return TREE_CODE (cond);
    }

  return ERROR_MARK;
}

/* Returns the fold of predicate C1 OR C2 at location LOC.  */

static tree
fold_or_predicates (location_t loc, tree c1, tree c2)
{
  tree op1a, op1b, op2a, op2b;
  enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
  enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);

  if (code1 != ERROR_MARK && code2 != ERROR_MARK)
    {
      tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
					  code2, op2a, op2b);
      if (t)
	return t;
    }

  return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
}

/* Returns true if N is either a constant or a SSA_NAME.  */

static bool
constant_or_ssa_name (tree n)
{
  switch (TREE_CODE (n))
    {
      case SSA_NAME:
      case INTEGER_CST:
      case REAL_CST:
      case COMPLEX_CST:
      case VECTOR_CST:
	return true;
      default:
	return false;
    }
}

/* Returns either a COND_EXPR or the folded expression if the folded
   expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR,
   a constant or a SSA_NAME. */

static tree
fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs)
{
  tree rhs1, lhs1, cond_expr;

  /* If COND is comparison r != 0 and r has boolean type, convert COND
     to SSA_NAME to accept by vect bool pattern.  */
  if (TREE_CODE (cond) == NE_EXPR)
    {
      tree op0 = TREE_OPERAND (cond, 0);
      tree op1 = TREE_OPERAND (cond, 1);
      if (TREE_CODE (op0) == SSA_NAME
	  && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
	  && (integer_zerop (op1)))
	cond = op0;
    }
  cond_expr = fold_ternary (COND_EXPR, type, cond,
			    rhs, lhs);

  if (cond_expr == NULL_TREE)
    return build3 (COND_EXPR, type, cond, rhs, lhs);

  STRIP_USELESS_TYPE_CONVERSION (cond_expr);

  if (constant_or_ssa_name (cond_expr))
    return cond_expr;

  if (TREE_CODE (cond_expr) == ABS_EXPR)
    {
      rhs1 = TREE_OPERAND (cond_expr, 1);
      STRIP_USELESS_TYPE_CONVERSION (rhs1);
      if (constant_or_ssa_name (rhs1))
	return build1 (ABS_EXPR, type, rhs1);
    }

  if (TREE_CODE (cond_expr) == MIN_EXPR
      || TREE_CODE (cond_expr) == MAX_EXPR)
    {
      lhs1 = TREE_OPERAND (cond_expr, 0);
      STRIP_USELESS_TYPE_CONVERSION (lhs1);
      rhs1 = TREE_OPERAND (cond_expr, 1);
      STRIP_USELESS_TYPE_CONVERSION (rhs1);
      if (constant_or_ssa_name (rhs1)
	  && constant_or_ssa_name (lhs1))
	return build2 (TREE_CODE (cond_expr), type, lhs1, rhs1);
    }
  return build3 (COND_EXPR, type, cond, rhs, lhs);
}

/* Add condition NC to the predicate list of basic block BB.  LOOP is
   the loop to be if-converted. Use predicate of cd-equivalent block
   for join bb if it exists: we call basic blocks bb1 and bb2 
   cd-equivalent if they are executed under the same condition.  */

static inline void
add_to_predicate_list (struct loop *loop, basic_block bb, tree nc)
{
  tree bc, *tp;
  basic_block dom_bb;

  if (is_true_predicate (nc))
    return;

  /* If dominance tells us this basic block is always executed,
     don't record any predicates for it.  */
  if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
    return;

  dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
  /* We use notion of cd equivalence to get simpler predicate for
     join block, e.g. if join block has 2 predecessors with predicates
     p1 & p2 and p1 & !p2, we'd like to get p1 for it instead of
     p1 & p2 | p1 & !p2.  */
  if (dom_bb != loop->header
      && get_immediate_dominator (CDI_POST_DOMINATORS, dom_bb) == bb)
    {
      gcc_assert (flow_bb_inside_loop_p (loop, dom_bb));
      bc = bb_predicate (dom_bb);
      if (!is_true_predicate (bc))
	set_bb_predicate (bb, bc);
      else
	gcc_assert (is_true_predicate (bb_predicate (bb)));
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Use predicate of bb#%d for bb#%d\n",
		 dom_bb->index, bb->index);
      return;
    }

  if (!is_predicated (bb))
    bc = nc;
  else
    {
      bc = bb_predicate (bb);
      bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
      if (is_true_predicate (bc))
	{
	  reset_bb_predicate (bb);
	  return;
	}
    }

  /* Allow a TRUTH_NOT_EXPR around the main predicate.  */
  if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
    tp = &TREE_OPERAND (bc, 0);
  else
    tp = &bc;
  if (!is_gimple_condexpr (*tp))
    {
      gimple_seq stmts;
      *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE);
      add_bb_predicate_gimplified_stmts (bb, stmts);
    }
  set_bb_predicate (bb, bc);
}

/* Add the condition COND to the previous condition PREV_COND, and add
   this to the predicate list of the destination of edge E.  LOOP is
   the loop to be if-converted.  */

static void
add_to_dst_predicate_list (struct loop *loop, edge e,
			   tree prev_cond, tree cond)
{
  if (!flow_bb_inside_loop_p (loop, e->dest))
    return;

  if (!is_true_predicate (prev_cond))
    cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
			prev_cond, cond);

  if (!dominated_by_p (CDI_DOMINATORS, loop->latch, e->dest))
    add_to_predicate_list (loop, e->dest, cond);
}

/* Return true if one of the successor edges of BB exits LOOP.  */

static bool
bb_with_exit_edge_p (struct loop *loop, basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->succs)
    if (loop_exit_edge_p (loop, e))
      return true;

  return false;
}

/* Return true when PHI is if-convertible.  PHI is part of loop LOOP
   and it belongs to basic block BB.

   PHI is not if-convertible if:
   - it has more than 2 arguments.

   When the flag_tree_loop_if_convert_stores is not set, PHI is not
   if-convertible if:
   - a virtual PHI is immediately used in another PHI node,
   - there is a virtual PHI in a BB other than the loop->header.
   When the aggressive_if_conv is set, PHI can have more than
   two arguments.  */

static bool
if_convertible_phi_p (struct loop *loop, basic_block bb, gphi *phi,
		      bool any_mask_load_store)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "-------------------------\n");
      print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
    }

  if (bb != loop->header)
    {
      if (gimple_phi_num_args (phi) != 2
	  && !aggressive_if_conv)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "More than two phi node args.\n");
	  return false;
        }
    }

  if (flag_tree_loop_if_convert_stores || any_mask_load_store)
    return true;

  /* When the flag_tree_loop_if_convert_stores is not set, check
     that there are no memory writes in the branches of the loop to be
     if-converted.  */
  if (virtual_operand_p (gimple_phi_result (phi)))
    {
      imm_use_iterator imm_iter;
      use_operand_p use_p;

      if (bb != loop->header)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Virtual phi not on loop->header.\n");
	  return false;
	}

      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi))
	{
	  if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
	      && USE_STMT (use_p) != (gimple) phi)
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file, "Difficult to handle this virtual phi.\n");
	      return false;
	    }
	}
    }

  return true;
}

/* Records the status of a data reference.  This struct is attached to
   each DR->aux field.  */

struct ifc_dr {
  /* -1 when not initialized, 0 when false, 1 when true.  */
  int written_at_least_once;

  /* -1 when not initialized, 0 when false, 1 when true.  */
  int rw_unconditionally;
};

#define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
#define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once)
#define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)

/* Returns true when the memory references of STMT are read or written
   unconditionally.  In other words, this function returns true when
   for every data reference A in STMT there exist other accesses to
   a data reference with the same base with predicates that add up (OR-up) to
   the true predicate: this ensures that the data reference A is touched
   (read or written) on every iteration of the if-converted loop.  */

static bool
memrefs_read_or_written_unconditionally (gimple stmt,
					 vec<data_reference_p> drs)
{
  int i, j;
  data_reference_p a, b;
  tree ca = bb_predicate (gimple_bb (stmt));

  for (i = 0; drs.iterate (i, &a); i++)
    if (DR_STMT (a) == stmt)
      {
	bool found = false;
	int x = DR_RW_UNCONDITIONALLY (a);

	if (x == 0)
	  return false;

	if (x == 1)
	  continue;

	for (j = 0; drs.iterate (j, &b); j++)
          {
            tree ref_base_a = DR_REF (a);
            tree ref_base_b = DR_REF (b);

            if (DR_STMT (b) == stmt)
              continue;

            while (TREE_CODE (ref_base_a) == COMPONENT_REF
                   || TREE_CODE (ref_base_a) == IMAGPART_EXPR
                   || TREE_CODE (ref_base_a) == REALPART_EXPR)
              ref_base_a = TREE_OPERAND (ref_base_a, 0);

            while (TREE_CODE (ref_base_b) == COMPONENT_REF
                   || TREE_CODE (ref_base_b) == IMAGPART_EXPR
                   || TREE_CODE (ref_base_b) == REALPART_EXPR)
              ref_base_b = TREE_OPERAND (ref_base_b, 0);

  	    if (!operand_equal_p (ref_base_a, ref_base_b, 0))
	      {
	        tree cb = bb_predicate (gimple_bb (DR_STMT (b)));

	        if (DR_RW_UNCONDITIONALLY (b) == 1
		    || is_true_predicate (cb)
		    || is_true_predicate (ca
                        = fold_or_predicates (EXPR_LOCATION (cb), ca, cb)))
		  {
		    DR_RW_UNCONDITIONALLY (a) = 1;
  		    DR_RW_UNCONDITIONALLY (b) = 1;
		    found = true;
		    break;
		  }
               }
	    }

	if (!found)
	  {
	    DR_RW_UNCONDITIONALLY (a) = 0;
	    return false;
	  }
      }

  return true;
}

/* Returns true when the memory references of STMT are unconditionally
   written.  In other words, this function returns true when for every
   data reference A written in STMT, there exist other writes to the
   same data reference with predicates that add up (OR-up) to the true
   predicate: this ensures that the data reference A is written on
   every iteration of the if-converted loop.  */

static bool
write_memrefs_written_at_least_once (gimple stmt,
				     vec<data_reference_p> drs)
{
  int i, j;
  data_reference_p a, b;
  tree ca = bb_predicate (gimple_bb (stmt));

  for (i = 0; drs.iterate (i, &a); i++)
    if (DR_STMT (a) == stmt
	&& DR_IS_WRITE (a))
      {
	bool found = false;
	int x = DR_WRITTEN_AT_LEAST_ONCE (a);

	if (x == 0)
	  return false;

	if (x == 1)
	  continue;

	for (j = 0; drs.iterate (j, &b); j++)
	  if (DR_STMT (b) != stmt
	      && DR_IS_WRITE (b)
	      && same_data_refs_base_objects (a, b))
	    {
	      tree cb = bb_predicate (gimple_bb (DR_STMT (b)));

	      if (DR_WRITTEN_AT_LEAST_ONCE (b) == 1
		  || is_true_predicate (cb)
		  || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
								 ca, cb)))
		{
		  DR_WRITTEN_AT_LEAST_ONCE (a) = 1;
		  DR_WRITTEN_AT_LEAST_ONCE (b) = 1;
		  found = true;
		  break;
		}
	    }

	if (!found)
	  {
	    DR_WRITTEN_AT_LEAST_ONCE (a) = 0;
	    return false;
	  }
      }

  return true;
}

/* Return true when the memory references of STMT won't trap in the
   if-converted code.  There are two things that we have to check for:

   - writes to memory occur to writable memory: if-conversion of
   memory writes transforms the conditional memory writes into
   unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
   into "A[i] = cond ? foo : A[i]", and as the write to memory may not
   be executed at all in the original code, it may be a readonly
   memory.  To check that A is not const-qualified, we check that
   there exists at least an unconditional write to A in the current
   function.

   - reads or writes to memory are valid memory accesses for every
   iteration.  To check that the memory accesses are correctly formed
   and that we are allowed to read and write in these locations, we
   check that the memory accesses to be if-converted occur at every
   iteration unconditionally.  */

static bool
ifcvt_memrefs_wont_trap (gimple stmt, vec<data_reference_p> refs)
{
  return write_memrefs_written_at_least_once (stmt, refs)
    && memrefs_read_or_written_unconditionally (stmt, refs);
}

/* Wrapper around gimple_could_trap_p refined for the needs of the
   if-conversion.  Try to prove that the memory accesses of STMT could
   not trap in the innermost loop containing STMT.  */

static bool
ifcvt_could_trap_p (gimple stmt, vec<data_reference_p> refs)
{
  if (gimple_vuse (stmt)
      && !gimple_could_trap_p_1 (stmt, false, false)
      && ifcvt_memrefs_wont_trap (stmt, refs))
    return false;

  return gimple_could_trap_p (stmt);
}

/* Return true if STMT could be converted into a masked load or store
   (conditional load or store based on a mask computed from bb predicate).  */

static bool
ifcvt_can_use_mask_load_store (gimple stmt)
{
  tree lhs, ref;
  machine_mode mode;
  basic_block bb = gimple_bb (stmt);
  bool is_load;

  if (!(flag_tree_loop_vectorize || bb->loop_father->force_vectorize)
      || bb->loop_father->dont_vectorize
      || !gimple_assign_single_p (stmt)
      || gimple_has_volatile_ops (stmt))
    return false;

  /* Check whether this is a load or store.  */
  lhs = gimple_assign_lhs (stmt);
  if (gimple_store_p (stmt))
    {
      if (!is_gimple_val (gimple_assign_rhs1 (stmt)))
	return false;
      is_load = false;
      ref = lhs;
    }
  else if (gimple_assign_load_p (stmt))
    {
      is_load = true;
      ref = gimple_assign_rhs1 (stmt);
    }
  else
    return false;

  if (may_be_nonaddressable_p (ref))
    return false;

  /* Mask should be integer mode of the same size as the load/store
     mode.  */
  mode = TYPE_MODE (TREE_TYPE (lhs));
  if (int_mode_for_mode (mode) == BLKmode
      || VECTOR_MODE_P (mode))
    return false;

  if (can_vec_mask_load_store_p (mode, is_load))
    return true;

  return false;
}

/* Return true when STMT is if-convertible.

   GIMPLE_ASSIGN statement is not if-convertible if,
   - it is not movable,
   - it could trap,
   - LHS is not var decl.  */

static bool
if_convertible_gimple_assign_stmt_p (gimple stmt,
				     vec<data_reference_p> refs,
				     bool *any_mask_load_store)
{
  tree lhs = gimple_assign_lhs (stmt);
  basic_block bb;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "-------------------------\n");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
    }

  if (!is_gimple_reg_type (TREE_TYPE (lhs)))
    return false;

  /* Some of these constrains might be too conservative.  */
  if (stmt_ends_bb_p (stmt)
      || gimple_has_volatile_ops (stmt)
      || (TREE_CODE (lhs) == SSA_NAME
          && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
      || gimple_has_side_effects (stmt))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "stmt not suitable for ifcvt\n");
      return false;
    }

  /* tree-into-ssa.c uses GF_PLF_1, so avoid it, because
     in between if_convertible_loop_p and combine_blocks
     we can perform loop versioning.  */
  gimple_set_plf (stmt, GF_PLF_2, false);

  if (flag_tree_loop_if_convert_stores)
    {
      if (ifcvt_could_trap_p (stmt, refs))
	{
	  if (ifcvt_can_use_mask_load_store (stmt))
	    {
	      gimple_set_plf (stmt, GF_PLF_2, true);
	      *any_mask_load_store = true;
	      return true;
	    }
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "tree could trap...\n");
	  return false;
	}
      return true;
    }

  if (gimple_assign_rhs_could_trap_p (stmt))
    {
      if (ifcvt_can_use_mask_load_store (stmt))
	{
	  gimple_set_plf (stmt, GF_PLF_2, true);
	  *any_mask_load_store = true;
	  return true;
	}
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "tree could trap...\n");
      return false;
    }

  bb = gimple_bb (stmt);

  if (TREE_CODE (lhs) != SSA_NAME
      && bb != bb->loop_father->header
      && !bb_with_exit_edge_p (bb->loop_father, bb))
    {
      if (ifcvt_can_use_mask_load_store (stmt))
	{
	  gimple_set_plf (stmt, GF_PLF_2, true);
	  *any_mask_load_store = true;
	  return true;
	}
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "LHS is not var\n");
	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	}
      return false;
    }

  return true;
}

/* Return true when STMT is if-convertible.

   A statement is if-convertible if:
   - it is an if-convertible GIMPLE_ASSIGN,
   - it is a GIMPLE_LABEL or a GIMPLE_COND,
   - it is builtins call.  */

static bool
if_convertible_stmt_p (gimple stmt, vec<data_reference_p> refs,
		       bool *any_mask_load_store)
{
  switch (gimple_code (stmt))
    {
    case GIMPLE_LABEL:
    case GIMPLE_DEBUG:
    case GIMPLE_COND:
      return true;

    case GIMPLE_ASSIGN:
      return if_convertible_gimple_assign_stmt_p (stmt, refs,
						  any_mask_load_store);

    case GIMPLE_CALL:
      {
	tree fndecl = gimple_call_fndecl (stmt);
	if (fndecl)
	  {
	    int flags = gimple_call_flags (stmt);
	    if ((flags & ECF_CONST)
		&& !(flags & ECF_LOOPING_CONST_OR_PURE)
		/* We can only vectorize some builtins at the moment,
		   so restrict if-conversion to those.  */
		&& DECL_BUILT_IN (fndecl))
	      return true;
	  }
	return false;
      }

    default:
      /* Don't know what to do with 'em so don't do anything.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "don't know what to do\n");
	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	}
      return false;
      break;
    }

  return true;
}

/* Assumes that BB has more than 1 predecessors.
   Returns false if at least one successor is not on critical edge
   and true otherwise.  */

static inline bool
all_preds_critical_p (basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->preds)
    if (EDGE_COUNT (e->src->succs) == 1)
      return false;
  return true;
}

/* Returns true if at least one successor in on critical edge.  */
static inline bool
has_pred_critical_p (basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->preds)
    if (EDGE_COUNT (e->src->succs) > 1)
      return true;
  return false;
}

/* Return true when BB is if-convertible.  This routine does not check
   basic block's statements and phis.

   A basic block is not if-convertible if:
   - it is non-empty and it is after the exit block (in BFS order),
   - it is after the exit block but before the latch,
   - its edges are not normal.

   Last restriction is valid if aggressive_if_conv is false.

   EXIT_BB is the basic block containing the exit of the LOOP.  BB is
   inside LOOP.  */

static bool
if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
{
  edge e;
  edge_iterator ei;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "----------[%d]-------------\n", bb->index);

  if (EDGE_COUNT (bb->succs) > 2)
    return false;

  if (EDGE_COUNT (bb->preds) > 2
      && !aggressive_if_conv)
    return false;

  if (exit_bb)
    {
      if (bb != loop->latch)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "basic block after exit bb but before latch\n");
	  return false;
	}
      else if (!empty_block_p (bb))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "non empty basic block after exit bb\n");
	  return false;
	}
      else if (bb == loop->latch
	       && bb != exit_bb
	       && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
	  {
	    if (dump_file && (dump_flags & TDF_DETAILS))
	      fprintf (dump_file, "latch is not dominated by exit_block\n");
	    return false;
	  }
    }

  /* Be less adventurous and handle only normal edges.  */
  FOR_EACH_EDGE (e, ei, bb->succs)
    if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
      {
	if (dump_file && (dump_flags & TDF_DETAILS))
	  fprintf (dump_file, "Difficult to handle edges\n");
	return false;
      }

  /* At least one incoming edge has to be non-critical as otherwise edge
     predicates are not equal to basic-block predicates of the edge
     source.  This check is skipped if aggressive_if_conv is true.  */
  if (!aggressive_if_conv
      && EDGE_COUNT (bb->preds) > 1
      && bb != loop->header
      && all_preds_critical_p (bb))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "only critical predecessors\n");
      return false;
    }

  return true;
}

/* Return true when all predecessor blocks of BB are visited.  The
   VISITED bitmap keeps track of the visited blocks.  */

static bool
pred_blocks_visited_p (basic_block bb, bitmap *visited)
{
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, bb->preds)
    if (!bitmap_bit_p (*visited, e->src->index))
      return false;

  return true;
}

/* Get body of a LOOP in suitable order for if-conversion.  It is
   caller's responsibility to deallocate basic block list.
   If-conversion suitable order is, breadth first sort (BFS) order
   with an additional constraint: select a block only if all its
   predecessors are already selected.  */

static basic_block *
get_loop_body_in_if_conv_order (const struct loop *loop)
{
  basic_block *blocks, *blocks_in_bfs_order;
  basic_block bb;
  bitmap visited;
  unsigned int index = 0;
  unsigned int visited_count = 0;

  gcc_assert (loop->num_nodes);
  gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));

  blocks = XCNEWVEC (basic_block, loop->num_nodes);
  visited = BITMAP_ALLOC (NULL);

  blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);

  index = 0;
  while (index < loop->num_nodes)
    {
      bb = blocks_in_bfs_order [index];

      if (bb->flags & BB_IRREDUCIBLE_LOOP)
	{
	  free (blocks_in_bfs_order);
	  BITMAP_FREE (visited);
	  free (blocks);
	  return NULL;
	}

      if (!bitmap_bit_p (visited, bb->index))
	{
	  if (pred_blocks_visited_p (bb, &visited)
	      || bb == loop->header)
	    {
	      /* This block is now visited.  */
	      bitmap_set_bit (visited, bb->index);
	      blocks[visited_count++] = bb;
	    }
	}

      index++;

      if (index == loop->num_nodes
	  && visited_count != loop->num_nodes)
	/* Not done yet.  */
	index = 0;
    }
  free (blocks_in_bfs_order);
  BITMAP_FREE (visited);
  return blocks;
}

/* Returns true when the analysis of the predicates for all the basic
   blocks in LOOP succeeded.

   predicate_bbs first allocates the predicates of the basic blocks.
   These fields are then initialized with the tree expressions
   representing the predicates under which a basic block is executed
   in the LOOP.  As the loop->header is executed at each iteration, it
   has the "true" predicate.  Other statements executed under a
   condition are predicated with that condition, for example

   | if (x)
   |   S1;
   | else
   |   S2;

   S1 will be predicated with "x", and
   S2 will be predicated with "!x".  */

static void
predicate_bbs (loop_p loop)
{
  unsigned int i;

  for (i = 0; i < loop->num_nodes; i++)
    init_bb_predicate (ifc_bbs[i]);

  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = ifc_bbs[i];
      tree cond;
      gimple stmt;

      /* The loop latch and loop exit block are always executed and
	 have no extra conditions to be processed: skip them.  */
      if (bb == loop->latch
	  || bb_with_exit_edge_p (loop, bb))
	{
	  reset_bb_predicate (bb);
	  continue;
	}

      cond = bb_predicate (bb);
      stmt = last_stmt (bb);
      if (stmt && gimple_code (stmt) == GIMPLE_COND)
	{
	  tree c2;
	  edge true_edge, false_edge;
	  location_t loc = gimple_location (stmt);
	  tree c = build2_loc (loc, gimple_cond_code (stmt),
				    boolean_type_node,
				    gimple_cond_lhs (stmt),
				    gimple_cond_rhs (stmt));

	  /* Add new condition into destination's predicate list.  */
	  extract_true_false_edges_from_block (gimple_bb (stmt),
					       &true_edge, &false_edge);

	  /* If C is true, then TRUE_EDGE is taken.  */
	  add_to_dst_predicate_list (loop, true_edge, unshare_expr (cond),
				     unshare_expr (c));

	  /* If C is false, then FALSE_EDGE is taken.  */
	  c2 = build1_loc (loc, TRUTH_NOT_EXPR, boolean_type_node,
			   unshare_expr (c));
	  add_to_dst_predicate_list (loop, false_edge,
				     unshare_expr (cond), c2);

	  cond = NULL_TREE;
	}

      /* If current bb has only one successor, then consider it as an
	 unconditional goto.  */
      if (single_succ_p (bb))
	{
	  basic_block bb_n = single_succ (bb);

	  /* The successor bb inherits the predicate of its
	     predecessor.  If there is no predicate in the predecessor
	     bb, then consider the successor bb as always executed.  */
	  if (cond == NULL_TREE)
	    cond = boolean_true_node;

	  add_to_predicate_list (loop, bb_n, cond);
	}
    }

  /* The loop header is always executed.  */
  reset_bb_predicate (loop->header);
  gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
	      && bb_predicate_gimplified_stmts (loop->latch) == NULL);
}

/* Return true when LOOP is if-convertible.  This is a helper function
   for if_convertible_loop_p.  REFS and DDRS are initialized and freed
   in if_convertible_loop_p.  */

static bool
if_convertible_loop_p_1 (struct loop *loop,
			 vec<loop_p> *loop_nest,
			 vec<data_reference_p> *refs,
			 vec<ddr_p> *ddrs, bool *any_mask_load_store)
{
  bool res;
  unsigned int i;
  basic_block exit_bb = NULL;

  /* Don't if-convert the loop when the data dependences cannot be
     computed: the loop won't be vectorized in that case.  */
  res = compute_data_dependences_for_loop (loop, true, loop_nest, refs, ddrs);
  if (!res)
    return false;

  calculate_dominance_info (CDI_DOMINATORS);
  calculate_dominance_info (CDI_POST_DOMINATORS);

  /* Allow statements that can be handled during if-conversion.  */
  ifc_bbs = get_loop_body_in_if_conv_order (loop);
  if (!ifc_bbs)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Irreducible loop\n");
      return false;
    }

  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = ifc_bbs[i];

      if (!if_convertible_bb_p (loop, bb, exit_bb))
	return false;

      if (bb_with_exit_edge_p (loop, bb))
	exit_bb = bb;
    }

  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = ifc_bbs[i];
      gimple_stmt_iterator gsi;

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	switch (gimple_code (gsi_stmt (gsi)))
	  {
	  case GIMPLE_LABEL:
	  case GIMPLE_ASSIGN:
	  case GIMPLE_CALL:
	  case GIMPLE_DEBUG:
	  case GIMPLE_COND:
	    break;
	  default:
	    return false;
	  }
    }

  if (flag_tree_loop_if_convert_stores)
    {
      data_reference_p dr;

      for (i = 0; refs->iterate (i, &dr); i++)
	{
	  dr->aux = XNEW (struct ifc_dr);
	  DR_WRITTEN_AT_LEAST_ONCE (dr) = -1;
	  DR_RW_UNCONDITIONALLY (dr) = -1;
	}
      predicate_bbs (loop);
    }

  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = ifc_bbs[i];
      gimple_stmt_iterator itr;

      /* Check the if-convertibility of statements in predicated BBs.  */
      if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
	for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
	  if (!if_convertible_stmt_p (gsi_stmt (itr), *refs,
				      any_mask_load_store))
	    return false;
    }

  if (flag_tree_loop_if_convert_stores)
    for (i = 0; i < loop->num_nodes; i++)
      free_bb_predicate (ifc_bbs[i]);

  /* Checking PHIs needs to be done after stmts, as the fact whether there
     are any masked loads or stores affects the tests.  */
  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = ifc_bbs[i];
      gphi_iterator itr;

      for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
	if (!if_convertible_phi_p (loop, bb, itr.phi (),
				   *any_mask_load_store))
	  return false;
    }

  if (dump_file)
    fprintf (dump_file, "Applying if-conversion\n");

  return true;
}

/* Return true when LOOP is if-convertible.
   LOOP is if-convertible if:
   - it is innermost,
   - it has two or more basic blocks,
   - it has only one exit,
   - loop header is not the exit edge,
   - if its basic blocks and phi nodes are if convertible.  */

static bool
if_convertible_loop_p (struct loop *loop, bool *any_mask_load_store)
{
  edge e;
  edge_iterator ei;
  bool res = false;
  vec<data_reference_p> refs;
  vec<ddr_p> ddrs;

  /* Handle only innermost loop.  */
  if (!loop || loop->inner)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "not innermost loop\n");
      return false;
    }

  /* If only one block, no need for if-conversion.  */
  if (loop->num_nodes <= 2)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "less than 2 basic blocks\n");
      return false;
    }

  /* More than one loop exit is too much to handle.  */
  if (!single_exit (loop))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "multiple exits\n");
      return false;
    }

  /* If one of the loop header's edge is an exit edge then do not
     apply if-conversion.  */
  FOR_EACH_EDGE (e, ei, loop->header->succs)
    if (loop_exit_edge_p (loop, e))
      return false;

  refs.create (5);
  ddrs.create (25);
  auto_vec<loop_p, 3> loop_nest;
  res = if_convertible_loop_p_1 (loop, &loop_nest, &refs, &ddrs,
				 any_mask_load_store);

  if (flag_tree_loop_if_convert_stores)
    {
      data_reference_p dr;
      unsigned int i;

      for (i = 0; refs.iterate (i, &dr); i++)
	free (dr->aux);
    }

  free_data_refs (refs);
  free_dependence_relations (ddrs);
  return res;
}

/* Returns true if def-stmt for phi argument ARG is simple increment/decrement
   which is in predicated basic block.
   In fact, the following PHI pattern is searching:
      loop-header:
	reduc_1 = PHI <..., reduc_2>
      ...
	if (...)
	  reduc_3 = ...
	reduc_2 = PHI <reduc_1, reduc_3>

   ARG_0 and ARG_1 are correspondent PHI arguments.
   REDUC, OP0 and OP1 contain reduction stmt and its operands.
   EXTENDED is true if PHI has > 2 arguments.  */

static bool
is_cond_scalar_reduction (gimple phi, gimple *reduc, tree arg_0, tree arg_1,
			  tree *op0, tree *op1, bool extended)
{
  tree lhs, r_op1, r_op2;
  gimple stmt;
  gimple header_phi = NULL;
  enum tree_code reduction_op;
  basic_block bb = gimple_bb (phi);
  struct loop *loop = bb->loop_father;
  edge latch_e = loop_latch_edge (loop);
  imm_use_iterator imm_iter;
  use_operand_p use_p;
  edge e;
  edge_iterator ei;
  bool result = false;
  if (TREE_CODE (arg_0) != SSA_NAME || TREE_CODE (arg_1) != SSA_NAME)
    return false;

  if (!extended && gimple_code (SSA_NAME_DEF_STMT (arg_0)) == GIMPLE_PHI)
    {
      lhs = arg_1;
      header_phi = SSA_NAME_DEF_STMT (arg_0);
      stmt = SSA_NAME_DEF_STMT (arg_1);
    }
  else if (gimple_code (SSA_NAME_DEF_STMT (arg_1)) == GIMPLE_PHI)
    {
      lhs = arg_0;
      header_phi = SSA_NAME_DEF_STMT (arg_1);
      stmt = SSA_NAME_DEF_STMT (arg_0);
    }
  else
    return false;
  if (gimple_bb (header_phi) != loop->header)
    return false;

  if (PHI_ARG_DEF_FROM_EDGE (header_phi, latch_e) != PHI_RESULT (phi))
    return false;

  if (gimple_code (stmt) != GIMPLE_ASSIGN
      || gimple_has_volatile_ops (stmt))
    return false;

  if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
    return false;

  if (!is_predicated (gimple_bb (stmt)))
    return false;

  /* Check that stmt-block is predecessor of phi-block.  */
  FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
    if (e->dest == bb)
      {
	result = true;
	break;
      }
  if (!result)
    return false;

  if (!has_single_use (lhs))
    return false;

  reduction_op = gimple_assign_rhs_code (stmt);
  if (reduction_op != PLUS_EXPR && reduction_op != MINUS_EXPR)
    return false;
  r_op1 = gimple_assign_rhs1 (stmt);
  r_op2 = gimple_assign_rhs2 (stmt);

  /* Make R_OP1 to hold reduction variable.  */
  if (r_op2 == PHI_RESULT (header_phi)
      && reduction_op == PLUS_EXPR)
    {
      tree tmp = r_op1;
      r_op1 = r_op2;
      r_op2 = tmp;
    }
  else if (r_op1 != PHI_RESULT (header_phi))
    return false;

  /* Check that R_OP1 is used in reduction stmt or in PHI only.  */
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, r_op1)
    {
      gimple use_stmt = USE_STMT (use_p);
      if (is_gimple_debug (use_stmt))
	continue;
      if (use_stmt == stmt)
	continue;
      if (gimple_code (use_stmt) != GIMPLE_PHI)
	return false;
    }

  *op0 = r_op1; *op1 = r_op2;
  *reduc = stmt;
  return true;
}

/* Converts conditional scalar reduction into unconditional form, e.g.
     bb_4
       if (_5 != 0) goto bb_5 else goto bb_6
     end_bb_4
     bb_5
       res_6 = res_13 + 1;
     end_bb_5
     bb_6
       # res_2 = PHI <res_13(4), res_6(5)>
     end_bb_6

   will be converted into sequence
    _ifc__1 = _5 != 0 ? 1 : 0;
    res_2 = res_13 + _ifc__1;
  Argument SWAP tells that arguments of conditional expression should be
  swapped.
  Returns rhs of resulting PHI assignment.  */

static tree
convert_scalar_cond_reduction (gimple reduc, gimple_stmt_iterator *gsi,
			       tree cond, tree op0, tree op1, bool swap)
{
  gimple_stmt_iterator stmt_it;
  gimple new_assign;
  tree rhs;
  tree rhs1 = gimple_assign_rhs1 (reduc);
  tree tmp = make_temp_ssa_name (TREE_TYPE (rhs1), NULL, "_ifc_");
  tree c;
  tree zero = build_zero_cst (TREE_TYPE (rhs1));

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Found cond scalar reduction.\n");
      print_gimple_stmt (dump_file, reduc, 0, TDF_SLIM);
    }

  /* Build cond expression using COND and constant operand
     of reduction rhs.  */
  c = fold_build_cond_expr (TREE_TYPE (rhs1),
			    unshare_expr (cond),
			    swap ? zero : op1,
			    swap ? op1 : zero);

  /* Create assignment stmt and insert it at GSI.  */
  new_assign = gimple_build_assign (tmp, c);
  gsi_insert_before (gsi, new_assign, GSI_SAME_STMT);
  /* Build rhs for unconditional increment/decrement.  */
  rhs = fold_build2 (gimple_assign_rhs_code (reduc),
		     TREE_TYPE (rhs1), op0, tmp);

  /* Delete original reduction stmt.  */
  stmt_it = gsi_for_stmt (reduc);
  gsi_remove (&stmt_it, true);
  release_defs (reduc);
  return rhs;
}

/* Helpers for PHI arguments hashtable map.  */

struct phi_args_hash_traits : default_hashmap_traits
{
  static inline hashval_t hash (tree);
  static inline bool equal_keys (tree, tree);
};

inline hashval_t
phi_args_hash_traits::hash (tree value)
{
  return iterative_hash_expr (value, 0);
}

inline bool
phi_args_hash_traits::equal_keys (tree value1, tree value2)
{
  return operand_equal_p (value1, value2, 0);
}

  /* Produce condition for all occurrences of ARG in PHI node.  */

static tree
gen_phi_arg_condition (gphi *phi, vec<int> *occur,
		       gimple_stmt_iterator *gsi)
{
  int len;
  int i;
  tree cond = NULL_TREE;
  tree c;
  edge e;

  len = occur->length ();
  gcc_assert (len > 0);
  for (i = 0; i < len; i++)
    {
      e = gimple_phi_arg_edge (phi, (*occur)[i]);
      c = bb_predicate (e->src);
      if (is_true_predicate (c))
	continue;
      c = force_gimple_operand_gsi_1 (gsi, unshare_expr (c),
				      is_gimple_condexpr, NULL_TREE,
				      true, GSI_SAME_STMT);
      if (cond != NULL_TREE)
	{
	  /* Must build OR expression.  */
	  cond = fold_or_predicates (EXPR_LOCATION (c), c, cond);
	  cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
					     is_gimple_condexpr, NULL_TREE,
					     true, GSI_SAME_STMT);
	}
      else
	cond = c;
    }
  gcc_assert (cond != NULL_TREE);
  return cond;
}

/* Replace a scalar PHI node with a COND_EXPR using COND as condition.
   This routine can handle PHI nodes with more than two arguments.

   For example,
     S1: A = PHI <x1(1), x2(5)>
   is converted into,
     S2: A = cond ? x1 : x2;

   The generated code is inserted at GSI that points to the top of
   basic block's statement list.
   If PHI node has more than two arguments a chain of conditional
   expression is produced.  */


static void
predicate_scalar_phi (gphi *phi, gimple_stmt_iterator *gsi)
{
  gimple new_stmt = NULL, reduc;
  tree rhs, res, arg0, arg1, op0, op1, scev;
  tree cond;
  unsigned int index0;
  unsigned int max, args_len;
  edge e;
  basic_block bb;
  unsigned int i;

  res = gimple_phi_result (phi);
  if (virtual_operand_p (res))
    return;

  if ((rhs = degenerate_phi_result (phi))
      || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
					    res))
	  && !chrec_contains_undetermined (scev)
	  && scev != res
	  && (rhs = gimple_phi_arg_def (phi, 0))))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Degenerate phi!\n");
	  print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
	}
      new_stmt = gimple_build_assign (res, rhs);
      gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
      update_stmt (new_stmt);
      return;
    }

  bb = gimple_bb (phi);
  if (EDGE_COUNT (bb->preds) == 2)
    {
      /* Predicate ordinary PHI node with 2 arguments.  */
      edge first_edge, second_edge;
      basic_block true_bb;
      first_edge = EDGE_PRED (bb, 0);
      second_edge = EDGE_PRED (bb, 1);
      cond = bb_predicate (first_edge->src);
      if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
	{
	  edge tmp_edge = first_edge;
	  first_edge = second_edge;
	  second_edge = tmp_edge;
	}
      if (EDGE_COUNT (first_edge->src->succs) > 1)
	{
	  cond = bb_predicate (second_edge->src);
	  if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
	    cond = TREE_OPERAND (cond, 0);
	  else
	    first_edge = second_edge;
	}
      else
	cond = bb_predicate (first_edge->src);
      /* Gimplify the condition to a valid cond-expr conditonal operand.  */
      cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
					 is_gimple_condexpr, NULL_TREE,
					 true, GSI_SAME_STMT);
      true_bb = first_edge->src;
      if (EDGE_PRED (bb, 1)->src == true_bb)
	{
	  arg0 = gimple_phi_arg_def (phi, 1);
	  arg1 = gimple_phi_arg_def (phi, 0);
	}
      else
	{
	  arg0 = gimple_phi_arg_def (phi, 0);
	  arg1 = gimple_phi_arg_def (phi, 1);
	}
      if (is_cond_scalar_reduction (phi, &reduc, arg0, arg1,
				    &op0, &op1, false))
	/* Convert reduction stmt into vectorizable form.  */
	rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
					     true_bb != gimple_bb (reduc));
      else
	/* Build new RHS using selected condition and arguments.  */
	rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
				    arg0, arg1);
      new_stmt = gimple_build_assign (res, rhs);
      gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
      update_stmt (new_stmt);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "new phi replacement stmt\n");
	  print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
	}
      return;
    }

  /* Create hashmap for PHI node which contain vector of argument indexes
     having the same value.  */
  bool swap = false;
  hash_map<tree, auto_vec<int>, phi_args_hash_traits> phi_arg_map;
  unsigned int num_args = gimple_phi_num_args (phi);
  int max_ind = -1;
  /* Vector of different PHI argument values.  */
  auto_vec<tree> args (num_args);

  /* Compute phi_arg_map.  */
  for (i = 0; i < num_args; i++)
    {
      tree arg;

      arg = gimple_phi_arg_def (phi, i);
      if (!phi_arg_map.get (arg))
	args.quick_push (arg);
      phi_arg_map.get_or_insert (arg).safe_push (i);
    }

  /* Determine element with max number of occurrences.  */
  max_ind = -1;
  max = 1;
  args_len = args.length ();
  for (i = 0; i < args_len; i++)
    {
      unsigned int len;
      if ((len = phi_arg_map.get (args[i])->length ()) > max)
	{
	  max_ind = (int) i;
	  max = len;
	}
    }

  /* Put element with max number of occurences to the end of ARGS.  */
  if (max_ind != -1 && max_ind +1 != (int) args_len)
    {
      tree tmp = args[args_len - 1];
      args[args_len - 1] = args[max_ind];
      args[max_ind] = tmp;
    }

  /* Handle one special case when number of arguments with different values
     is equal 2 and one argument has the only occurrence.  Such PHI can be
     handled as if would have only 2 arguments.  */
  if (args_len == 2 && phi_arg_map.get (args[0])->length () == 1)
    {
      vec<int> *indexes;
      indexes = phi_arg_map.get (args[0]);
      index0 = (*indexes)[0];
      arg0 = args[0];
      arg1 = args[1];
      e = gimple_phi_arg_edge (phi, index0);
      cond = bb_predicate (e->src);
      if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
	{
	  swap = true;
	  cond = TREE_OPERAND (cond, 0);
	}
      /* Gimplify the condition to a valid cond-expr conditonal operand.  */
      cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond),
					 is_gimple_condexpr, NULL_TREE,
					 true, GSI_SAME_STMT);
      if (!(is_cond_scalar_reduction (phi, &reduc, arg0 , arg1,
				      &op0, &op1, true)))
	rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
				    swap? arg1 : arg0,
				    swap? arg0 : arg1);
      else
	/* Convert reduction stmt into vectorizable form.  */
	rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
					     swap);
      new_stmt = gimple_build_assign (res, rhs);
      gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
      update_stmt (new_stmt);
    }
  else
    {
      /* Common case.  */
      vec<int> *indexes;
      tree type = TREE_TYPE (gimple_phi_result (phi));
      tree lhs;
      arg1 = args[1];
      for (i = 0; i < args_len; i++)
	{
	  arg0 = args[i];
	  indexes = phi_arg_map.get (args[i]);
	  if (i != args_len - 1)
	    lhs = make_temp_ssa_name (type, NULL, "_ifc_");
	  else
	    lhs = res;
	  cond = gen_phi_arg_condition (phi, indexes, gsi);
	  rhs = fold_build_cond_expr (type, unshare_expr (cond),
				      arg0, arg1);
	  new_stmt = gimple_build_assign (lhs, rhs);
	  gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
	  update_stmt (new_stmt);
	  arg1 = lhs;
	}
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "new extended phi replacement stmt\n");
      print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
    }
}

/* Replaces in LOOP all the scalar phi nodes other than those in the
   LOOP->header block with conditional modify expressions.  */

static void
predicate_all_scalar_phis (struct loop *loop)
{
  basic_block bb;
  unsigned int orig_loop_num_nodes = loop->num_nodes;
  unsigned int i;

  for (i = 1; i < orig_loop_num_nodes; i++)
    {
      gphi *phi;
      gimple_stmt_iterator gsi;
      gphi_iterator phi_gsi;
      bb = ifc_bbs[i];

      if (bb == loop->header)
	continue;

      if (EDGE_COUNT (bb->preds) == 1)
	continue;

      phi_gsi = gsi_start_phis (bb);
      if (gsi_end_p (phi_gsi))
	continue;

      gsi = gsi_after_labels (bb);
      while (!gsi_end_p (phi_gsi))
	{
	  phi = phi_gsi.phi ();
	  predicate_scalar_phi (phi, &gsi);
	  release_phi_node (phi);
	  gsi_next (&phi_gsi);
	}

      set_phi_nodes (bb, NULL);
    }
}

/* Insert in each basic block of LOOP the statements produced by the
   gimplification of the predicates.  */

static void
insert_gimplified_predicates (loop_p loop, bool any_mask_load_store)
{
  unsigned int i;

  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = ifc_bbs[i];
      gimple_seq stmts;
      if (!is_predicated (bb))
	gcc_assert (bb_predicate_gimplified_stmts (bb) == NULL);
      if (!is_predicated (bb))
	{
	  /* Do not insert statements for a basic block that is not
	     predicated.  Also make sure that the predicate of the
	     basic block is set to true.  */
	  reset_bb_predicate (bb);
	  continue;
	}

      stmts = bb_predicate_gimplified_stmts (bb);
      if (stmts)
	{
	  if (flag_tree_loop_if_convert_stores
	      || any_mask_load_store)
	    {
	      /* Insert the predicate of the BB just after the label,
		 as the if-conversion of memory writes will use this
		 predicate.  */
	      gimple_stmt_iterator gsi = gsi_after_labels (bb);
	      gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
	    }
	  else
	    {
	      /* Insert the predicate of the BB at the end of the BB
		 as this would reduce the register pressure: the only
		 use of this predicate will be in successor BBs.  */
	      gimple_stmt_iterator gsi = gsi_last_bb (bb);

	      if (gsi_end_p (gsi)
		  || stmt_ends_bb_p (gsi_stmt (gsi)))
		gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
	      else
		gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
	    }

	  /* Once the sequence is code generated, set it to NULL.  */
	  set_bb_predicate_gimplified_stmts (bb, NULL);
	}
    }
}

/* Helper function for predicate_mem_writes. Returns index of existent
   mask if it was created for given SIZE and -1 otherwise.  */

static int
mask_exists (int size, vec<int> vec)
{
  unsigned int ix;
  int v;
  FOR_EACH_VEC_ELT (vec, ix, v)
    if (v == size)
      return (int) ix;
  return -1;
}

/* Predicate each write to memory in LOOP.

   This function transforms control flow constructs containing memory
   writes of the form:

   | for (i = 0; i < N; i++)
   |   if (cond)
   |     A[i] = expr;

   into the following form that does not contain control flow:

   | for (i = 0; i < N; i++)
   |   A[i] = cond ? expr : A[i];

   The original CFG looks like this:

   | bb_0
   |   i = 0
   | end_bb_0
   |
   | bb_1
   |   if (i < N) goto bb_5 else goto bb_2
   | end_bb_1
   |
   | bb_2
   |   cond = some_computation;
   |   if (cond) goto bb_3 else goto bb_4
   | end_bb_2
   |
   | bb_3
   |   A[i] = expr;
   |   goto bb_4
   | end_bb_3
   |
   | bb_4
   |   goto bb_1
   | end_bb_4

   insert_gimplified_predicates inserts the computation of the COND
   expression at the beginning of the destination basic block:

   | bb_0
   |   i = 0
   | end_bb_0
   |
   | bb_1
   |   if (i < N) goto bb_5 else goto bb_2
   | end_bb_1
   |
   | bb_2
   |   cond = some_computation;
   |   if (cond) goto bb_3 else goto bb_4
   | end_bb_2
   |
   | bb_3
   |   cond = some_computation;
   |   A[i] = expr;
   |   goto bb_4
   | end_bb_3
   |
   | bb_4
   |   goto bb_1
   | end_bb_4

   predicate_mem_writes is then predicating the memory write as follows:

   | bb_0
   |   i = 0
   | end_bb_0
   |
   | bb_1
   |   if (i < N) goto bb_5 else goto bb_2
   | end_bb_1
   |
   | bb_2
   |   if (cond) goto bb_3 else goto bb_4
   | end_bb_2
   |
   | bb_3
   |   cond = some_computation;
   |   A[i] = cond ? expr : A[i];
   |   goto bb_4
   | end_bb_3
   |
   | bb_4
   |   goto bb_1
   | end_bb_4

   and finally combine_blocks removes the basic block boundaries making
   the loop vectorizable:

   | bb_0
   |   i = 0
   |   if (i < N) goto bb_5 else goto bb_1
   | end_bb_0
   |
   | bb_1
   |   cond = some_computation;
   |   A[i] = cond ? expr : A[i];
   |   if (i < N) goto bb_5 else goto bb_4
   | end_bb_1
   |
   | bb_4
   |   goto bb_1
   | end_bb_4
*/

static void
predicate_mem_writes (loop_p loop)
{
  unsigned int i, orig_loop_num_nodes = loop->num_nodes;
  auto_vec<int, 1> vect_sizes;
  auto_vec<tree, 1> vect_masks;

  for (i = 1; i < orig_loop_num_nodes; i++)
    {
      gimple_stmt_iterator gsi;
      basic_block bb = ifc_bbs[i];
      tree cond = bb_predicate (bb);
      bool swap;
      gimple stmt;
      int index;

      if (is_true_predicate (cond))
	continue;

      swap = false;
      if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
	{
	  swap = true;
	  cond = TREE_OPERAND (cond, 0);
	}

      vect_sizes.truncate (0);
      vect_masks.truncate (0);

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	if (!gimple_assign_single_p (stmt = gsi_stmt (gsi)))
	  continue;
	else if (gimple_plf (stmt, GF_PLF_2))
	  {
	    tree lhs = gimple_assign_lhs (stmt);
	    tree rhs = gimple_assign_rhs1 (stmt);
	    tree ref, addr, ptr, masktype, mask_op0, mask_op1, mask;
	    gimple new_stmt;
	    int bitsize = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (lhs)));
	    ref = TREE_CODE (lhs) == SSA_NAME ? rhs : lhs;
	    mark_addressable (ref);
	    addr = force_gimple_operand_gsi (&gsi, build_fold_addr_expr (ref),
					     true, NULL_TREE, true,
					     GSI_SAME_STMT);
	    if (!vect_sizes.is_empty ()
		&& (index = mask_exists (bitsize, vect_sizes)) != -1)
	      /* Use created mask.  */
	      mask = vect_masks[index];
	    else
	      {
		masktype = build_nonstandard_integer_type (bitsize, 1);
		mask_op0 = build_int_cst (masktype, swap ? 0 : -1);
		mask_op1 = build_int_cst (masktype, swap ? -1 : 0);
		cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
						   is_gimple_condexpr,
						   NULL_TREE,
						   true, GSI_SAME_STMT);
		mask = fold_build_cond_expr (masktype, unshare_expr (cond),
					     mask_op0, mask_op1);
		mask = ifc_temp_var (masktype, mask, &gsi);
		/* Save mask and its size for further use.  */
	        vect_sizes.safe_push (bitsize);
		vect_masks.safe_push (mask);
	      }
	    ptr = build_int_cst (reference_alias_ptr_type (ref), 0);
	    /* Copy points-to info if possible.  */
	    if (TREE_CODE (addr) == SSA_NAME && !SSA_NAME_PTR_INFO (addr))
	      copy_ref_info (build2 (MEM_REF, TREE_TYPE (ref), addr, ptr),
			     ref);
	    if (TREE_CODE (lhs) == SSA_NAME)
	      {
		new_stmt
		  = gimple_build_call_internal (IFN_MASK_LOAD, 3, addr,
						ptr, mask);
		gimple_call_set_lhs (new_stmt, lhs);
	      }
	    else
	      new_stmt
		= gimple_build_call_internal (IFN_MASK_STORE, 4, addr, ptr,
					      mask, rhs);
	    gsi_replace (&gsi, new_stmt, true);
	  }
	else if (gimple_vdef (stmt))
	  {
	    tree lhs = gimple_assign_lhs (stmt);
	    tree rhs = gimple_assign_rhs1 (stmt);
	    tree type = TREE_TYPE (lhs);

	    lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
	    rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
	    if (swap)
	      {
		tree tem = lhs;
		lhs = rhs;
		rhs = tem;
	      }
	    cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
					       is_gimple_condexpr, NULL_TREE,
					       true, GSI_SAME_STMT);
	    rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs);
	    gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
	    update_stmt (stmt);
	  }
    }
}

/* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
   other than the exit and latch of the LOOP.  Also resets the
   GIMPLE_DEBUG information.  */

static void
remove_conditions_and_labels (loop_p loop)
{
  gimple_stmt_iterator gsi;
  unsigned int i;

  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = ifc_bbs[i];

      if (bb_with_exit_edge_p (loop, bb)
        || bb == loop->latch)
      continue;

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
	switch (gimple_code (gsi_stmt (gsi)))
	  {
	  case GIMPLE_COND:
	  case GIMPLE_LABEL:
	    gsi_remove (&gsi, true);
	    break;

	  case GIMPLE_DEBUG:
	    /* ??? Should there be conditional GIMPLE_DEBUG_BINDs?  */
	    if (gimple_debug_bind_p (gsi_stmt (gsi)))
	      {
		gimple_debug_bind_reset_value (gsi_stmt (gsi));
		update_stmt (gsi_stmt (gsi));
	      }
	    gsi_next (&gsi);
	    break;

	  default:
	    gsi_next (&gsi);
	  }
    }
}

/* Combine all the basic blocks from LOOP into one or two super basic
   blocks.  Replace PHI nodes with conditional modify expressions.  */

static void
combine_blocks (struct loop *loop, bool any_mask_load_store)
{
  basic_block bb, exit_bb, merge_target_bb;
  unsigned int orig_loop_num_nodes = loop->num_nodes;
  unsigned int i;
  edge e;
  edge_iterator ei;

  predicate_bbs (loop);
  remove_conditions_and_labels (loop);
  insert_gimplified_predicates (loop, any_mask_load_store);
  predicate_all_scalar_phis (loop);

  if (flag_tree_loop_if_convert_stores || any_mask_load_store)
    predicate_mem_writes (loop);

  /* Merge basic blocks: first remove all the edges in the loop,
     except for those from the exit block.  */
  exit_bb = NULL;
  for (i = 0; i < orig_loop_num_nodes; i++)
    {
      bb = ifc_bbs[i];
      free_bb_predicate (bb);
      if (bb_with_exit_edge_p (loop, bb))
	{
	  gcc_assert (exit_bb == NULL);
	  exit_bb = bb;
	}
    }
  gcc_assert (exit_bb != loop->latch);

  for (i = 1; i < orig_loop_num_nodes; i++)
    {
      bb = ifc_bbs[i];

      for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
	{
	  if (e->src == exit_bb)
	    ei_next (&ei);
	  else
	    remove_edge (e);
	}
    }

  if (exit_bb != NULL)
    {
      if (exit_bb != loop->header)
	{
	  /* Connect this node to loop header.  */
	  make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
	  set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
	}

      /* Redirect non-exit edges to loop->latch.  */
      FOR_EACH_EDGE (e, ei, exit_bb->succs)
	{
	  if (!loop_exit_edge_p (loop, e))
	    redirect_edge_and_branch (e, loop->latch);
	}
      set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
    }
  else
    {
      /* If the loop does not have an exit, reconnect header and latch.  */
      make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
      set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
    }

  merge_target_bb = loop->header;
  for (i = 1; i < orig_loop_num_nodes; i++)
    {
      gimple_stmt_iterator gsi;
      gimple_stmt_iterator last;

      bb = ifc_bbs[i];

      if (bb == exit_bb || bb == loop->latch)
	continue;

      /* Make stmts member of loop->header.  */
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	gimple_set_bb (gsi_stmt (gsi), merge_target_bb);

      /* Update stmt list.  */
      last = gsi_last_bb (merge_target_bb);
      gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT);
      set_bb_seq (bb, NULL);

      delete_basic_block (bb);
    }

  /* If possible, merge loop header to the block with the exit edge.
     This reduces the number of basic blocks to two, to please the
     vectorizer that handles only loops with two nodes.  */
  if (exit_bb
      && exit_bb != loop->header
      && can_merge_blocks_p (loop->header, exit_bb))
    merge_blocks (loop->header, exit_bb);

  free (ifc_bbs);
  ifc_bbs = NULL;
}

/* Version LOOP before if-converting it, the original loop
   will be then if-converted, the new copy of the loop will not,
   and the LOOP_VECTORIZED internal call will be guarding which
   loop to execute.  The vectorizer pass will fold this
   internal call into either true or false.  */

static bool
version_loop_for_if_conversion (struct loop *loop)
{
  basic_block cond_bb;
  tree cond = make_ssa_name (boolean_type_node);
  struct loop *new_loop;
  gimple g;
  gimple_stmt_iterator gsi;

  g = gimple_build_call_internal (IFN_LOOP_VECTORIZED, 2,
				  build_int_cst (integer_type_node, loop->num),
				  integer_zero_node);
  gimple_call_set_lhs (g, cond);

  initialize_original_copy_tables ();
  new_loop = loop_version (loop, cond, &cond_bb,
			   REG_BR_PROB_BASE, REG_BR_PROB_BASE,
			   REG_BR_PROB_BASE, true);
  free_original_copy_tables ();
  if (new_loop == NULL)
    return false;
  new_loop->dont_vectorize = true;
  new_loop->force_vectorize = false;
  gsi = gsi_last_bb (cond_bb);
  gimple_call_set_arg (g, 1, build_int_cst (integer_type_node, new_loop->num));
  gsi_insert_before (&gsi, g, GSI_SAME_STMT);
  update_ssa (TODO_update_ssa);
  return true;
}

/* Performs splitting of critical edges if aggressive_if_conv is true.
   Returns false if loop won't be if converted and true otherwise.  */

static bool
ifcvt_split_critical_edges (struct loop *loop)
{
  basic_block *body;
  basic_block bb;
  unsigned int num = loop->num_nodes;
  unsigned int i;
  gimple stmt;
  edge e;
  edge_iterator ei;

  if (num <= 2)
    return false;
  if (loop->inner)
    return false;
  if (!single_exit (loop))
    return false;

  body = get_loop_body (loop);
  for (i = 0; i < num; i++)
    {
      bb = body[i];
      if (bb == loop->latch
	  || bb_with_exit_edge_p (loop, bb))
	continue;
      stmt = last_stmt (bb);
      /* Skip basic blocks not ending with conditional branch.  */
      if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
	continue;
      FOR_EACH_EDGE (e, ei, bb->succs)
	if (EDGE_CRITICAL_P (e) && e->dest->loop_father == loop)
	  split_edge (e);
    }
  free (body);
  return true;
}

/* Assumes that lhs of DEF_STMT have multiple uses.
   Delete one use by (1) creation of copy DEF_STMT with
   unique lhs; (2) change original use of lhs in one
   use statement with newly created lhs.  */

static void
ifcvt_split_def_stmt (gimple def_stmt, gimple use_stmt)
{
  tree var;
  tree lhs;
  gimple copy_stmt;
  gimple_stmt_iterator gsi;
  use_operand_p use_p;
  imm_use_iterator imm_iter;

  var = gimple_assign_lhs (def_stmt);
  copy_stmt = gimple_copy (def_stmt);
  lhs = make_temp_ssa_name (TREE_TYPE (var), NULL, "_ifc_");
  gimple_assign_set_lhs (copy_stmt, lhs);
  SSA_NAME_DEF_STMT (lhs) = copy_stmt;
  /* Insert copy of DEF_STMT.  */
  gsi = gsi_for_stmt (def_stmt);
  gsi_insert_after (&gsi, copy_stmt, GSI_SAME_STMT);
  /* Change use of var to lhs in use_stmt.  */
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Change use of var  ");
      print_generic_expr (dump_file, var, TDF_SLIM);
      fprintf (dump_file, " to ");
      print_generic_expr (dump_file, lhs, TDF_SLIM);
      fprintf (dump_file, "\n");
    }
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
    {
      if (USE_STMT (use_p) != use_stmt)
	continue;
      SET_USE (use_p, lhs);
      break;
    }
}

/* Traverse bool pattern recursively starting from VAR.
   Save its def and use statements to defuse_list if VAR does
   not have single use.  */

static void
ifcvt_walk_pattern_tree (tree var, vec<gimple> *defuse_list,
			 gimple use_stmt)
{
  tree rhs1, rhs2;
  enum tree_code code;
  gimple def_stmt;

  def_stmt = SSA_NAME_DEF_STMT (var);
  if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
    return;
  if (!has_single_use (var))
    {
      /* Put def and use stmts into defuse_list.  */
      defuse_list->safe_push (def_stmt);
      defuse_list->safe_push (use_stmt);
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Multiple lhs uses in stmt\n");
	  print_gimple_stmt (dump_file, def_stmt, 0, TDF_SLIM);
	}
    }
  rhs1 = gimple_assign_rhs1 (def_stmt);
  code = gimple_assign_rhs_code (def_stmt);
  switch (code)
    {
    case SSA_NAME:
      ifcvt_walk_pattern_tree (rhs1, defuse_list, def_stmt);
      break;
    CASE_CONVERT:
      if ((TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
	   || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
	  && TREE_CODE (TREE_TYPE (rhs1)) != BOOLEAN_TYPE)
	break;
      ifcvt_walk_pattern_tree (rhs1, defuse_list, def_stmt);
      break;
    case BIT_NOT_EXPR:
      ifcvt_walk_pattern_tree (rhs1, defuse_list, def_stmt);
      break;
    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
      ifcvt_walk_pattern_tree (rhs1, defuse_list, def_stmt);
      rhs2 = gimple_assign_rhs2 (def_stmt);
      ifcvt_walk_pattern_tree (rhs2, defuse_list, def_stmt);
      break;
    default:
      break;
    }
  return;
}

/* Returns true if STMT can be a root of bool pattern apllied
   by vectorizer.  */

static bool
stmt_is_root_of_bool_pattern (gimple stmt)
{
  enum tree_code code;
  tree lhs, rhs;

  code = gimple_assign_rhs_code (stmt);
  if (CONVERT_EXPR_CODE_P (code))
    {
      lhs = gimple_assign_lhs (stmt);
      rhs = gimple_assign_rhs1 (stmt);
      if (TREE_CODE (TREE_TYPE (rhs)) != BOOLEAN_TYPE)
	return false;
      if (TREE_CODE (TREE_TYPE (lhs)) == BOOLEAN_TYPE)
	return false;
      return true;
    }
  else if (code == COND_EXPR)
    {
      rhs = gimple_assign_rhs1 (stmt);
      if (TREE_CODE (rhs) != SSA_NAME)
	return false;
      return true;
    }
  return false;
}

/*  Traverse all statements in BB which correspondent to loop header to
    find out all statements which can start bool pattern applied by
    vectorizer and convert multiple uses in it to conform pattern
    restrictions.  Such case can occur if the same predicate is used both
    for phi node conversion and load/store mask.  */

static void
ifcvt_repair_bool_pattern (basic_block bb)
{
  tree rhs;
  gimple stmt;
  gimple_stmt_iterator gsi;
  vec<gimple> defuse_list = vNULL;
  vec<gimple> pattern_roots = vNULL;
  bool repeat = true;
  int niter = 0;
  unsigned int ix;

  /* Collect all root pattern statements.  */
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      stmt = gsi_stmt (gsi);
      if (gimple_code (stmt) != GIMPLE_ASSIGN)
	continue;
      if (!stmt_is_root_of_bool_pattern (stmt))
	continue;
      pattern_roots.safe_push (stmt);
    }

  if (pattern_roots.is_empty ())
    return;

  /* Split all statements with multiple uses iteratively since splitting
     may create new multiple uses.  */
  while (repeat)
    {
      repeat = false;
      niter++;
      FOR_EACH_VEC_ELT (pattern_roots, ix, stmt)
	{
	  rhs = gimple_assign_rhs1 (stmt);
	  ifcvt_walk_pattern_tree (rhs, &defuse_list, stmt);
	  while (defuse_list.length () > 0)
	    {
	      repeat = true;
	      gimple def_stmt, use_stmt;
	      use_stmt = defuse_list.pop ();
	      def_stmt = defuse_list.pop ();
	      ifcvt_split_def_stmt (def_stmt, use_stmt);
	    }

	}
    }
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Repair bool pattern takes %d iterations. \n",
	     niter);
}

/* Delete redundant statements produced by predication which prevents
   loop vectorization.  */

static void
ifcvt_local_dce (basic_block bb)
{
  gimple stmt;
  gimple stmt1;
  gimple phi;
  gimple_stmt_iterator gsi;
  vec<gimple> worklist;
  enum gimple_code code;
  use_operand_p use_p;
  imm_use_iterator imm_iter;

  worklist.create (64);
  /* Consider all phi as live statements.  */
  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      phi = gsi_stmt (gsi);
      gimple_set_plf (phi, GF_PLF_2, true);
      worklist.safe_push (phi);
    }
  /* Consider load/store statemnts, CALL and COND as live.  */
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      stmt = gsi_stmt (gsi);
      if (gimple_store_p (stmt)
	  || gimple_assign_load_p (stmt)
	  || is_gimple_debug (stmt))
	{
	  gimple_set_plf (stmt, GF_PLF_2, true);
	  worklist.safe_push (stmt);
	  continue;
	}
      code = gimple_code (stmt);
      if (code == GIMPLE_COND || code == GIMPLE_CALL)
	{
	  gimple_set_plf (stmt, GF_PLF_2, true);
	  worklist.safe_push (stmt);
	  continue;
	}
      gimple_set_plf (stmt, GF_PLF_2, false);

      if (code == GIMPLE_ASSIGN)
	{
	  tree lhs = gimple_assign_lhs (stmt);
	  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
	    {
	      stmt1 = USE_STMT (use_p);
	      if (gimple_bb (stmt1) != bb)
		{
		  gimple_set_plf (stmt, GF_PLF_2, true);
		  worklist.safe_push (stmt);
		  break;
		}
	    }
	}
    }
  /* Propagate liveness through arguments of live stmt.  */
  while (worklist.length () > 0)
    {
      ssa_op_iter iter;
      use_operand_p use_p;
      tree use;

      stmt = worklist.pop ();
      FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
	{
	  use = USE_FROM_PTR (use_p);
	  if (TREE_CODE (use) != SSA_NAME)
	    continue;
	  stmt1 = SSA_NAME_DEF_STMT (use);
	  if (gimple_bb (stmt1) != bb
	      || gimple_plf (stmt1, GF_PLF_2))
	    continue;
	  gimple_set_plf (stmt1, GF_PLF_2, true);
	  worklist.safe_push (stmt1);
	}
    }
  /* Delete dead statements.  */
  gsi = gsi_start_bb (bb);
  while (!gsi_end_p (gsi))
    {
      stmt = gsi_stmt (gsi);
      if (gimple_plf (stmt, GF_PLF_2))
	{
	  gsi_next (&gsi);
	  continue;
	}
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Delete dead stmt in bb#%d\n", bb->index);
	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	}
      gsi_remove (&gsi, true);
      release_defs (stmt);
    }
}

/* If-convert LOOP when it is legal.  For the moment this pass has no
   profitability analysis.  Returns non-zero todo flags when something
   changed.  */

static unsigned int
tree_if_conversion (struct loop *loop)
{
  unsigned int todo = 0;
  ifc_bbs = NULL;
  bool any_mask_load_store = false;

  /* Set-up aggressive if-conversion for loops marked with simd pragma.  */
  aggressive_if_conv = loop->force_vectorize;
  /* Check either outer loop was marked with simd pragma.  */
  if (!aggressive_if_conv)
    {
      struct loop *outer_loop = loop_outer (loop);
      if (outer_loop && outer_loop->force_vectorize)
	aggressive_if_conv = true;
    }

  if (aggressive_if_conv)
    if (!ifcvt_split_critical_edges (loop))
      goto cleanup;

  if (!if_convertible_loop_p (loop, &any_mask_load_store)
      || !dbg_cnt (if_conversion_tree))
    goto cleanup;

  if (any_mask_load_store
      && ((!flag_tree_loop_vectorize && !loop->force_vectorize)
	  || loop->dont_vectorize))
    goto cleanup;

  if (any_mask_load_store && !version_loop_for_if_conversion (loop))
    goto cleanup;

  /* Now all statements are if-convertible.  Combine all the basic
     blocks into one huge basic block doing the if-conversion
     on-the-fly.  */
  combine_blocks (loop, any_mask_load_store);

  /* Delete dead predicate computations and repair tree correspondent
     to bool pattern to delete multiple uses of preidcates.  */
  if (aggressive_if_conv)
    {
      ifcvt_local_dce (loop->header);
      ifcvt_repair_bool_pattern (loop->header);
    }

  todo |= TODO_cleanup_cfg;
  if (flag_tree_loop_if_convert_stores || any_mask_load_store)
    {
      mark_virtual_operands_for_renaming (cfun);
      todo |= TODO_update_ssa_only_virtuals;
    }

 cleanup:
  if (ifc_bbs)
    {
      unsigned int i;

      for (i = 0; i < loop->num_nodes; i++)
	free_bb_predicate (ifc_bbs[i]);

      free (ifc_bbs);
      ifc_bbs = NULL;
    }
  free_dominance_info (CDI_POST_DOMINATORS);

  return todo;
}

/* Tree if-conversion pass management.  */

namespace {

const pass_data pass_data_if_conversion =
{
  GIMPLE_PASS, /* type */
  "ifcvt", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_if_conversion : public gimple_opt_pass
{
public:
  pass_if_conversion (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_if_conversion, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *);
  virtual unsigned int execute (function *);

}; // class pass_if_conversion

bool
pass_if_conversion::gate (function *fun)
{
  return (((flag_tree_loop_vectorize || fun->has_force_vectorize_loops)
	   && flag_tree_loop_if_convert != 0)
	  || flag_tree_loop_if_convert == 1
	  || flag_tree_loop_if_convert_stores == 1);
}

unsigned int
pass_if_conversion::execute (function *fun)
{
  struct loop *loop;
  unsigned todo = 0;

  if (number_of_loops (fun) <= 1)
    return 0;

  FOR_EACH_LOOP (loop, 0)
    if (flag_tree_loop_if_convert == 1
	|| flag_tree_loop_if_convert_stores == 1
	|| ((flag_tree_loop_vectorize || loop->force_vectorize)
	    && !loop->dont_vectorize))
      todo |= tree_if_conversion (loop);

#ifdef ENABLE_CHECKING
  {
    basic_block bb;
    FOR_EACH_BB_FN (bb, fun)
      gcc_assert (!bb->aux);
  }
#endif

  return todo;
}

} // anon namespace

gimple_opt_pass *
make_pass_if_conversion (gcc::context *ctxt)
{
  return new pass_if_conversion (ctxt);
}