1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
|
/* If-conversion for vectorizer.
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Contributed by Devang Patel <dpatel@apple.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This pass implements a tree level if-conversion of loops. Its
initial goal is to help the vectorizer to vectorize loops with
conditions.
A short description of if-conversion:
o Decide if a loop is if-convertible or not.
o Walk all loop basic blocks in breadth first order (BFS order).
o Remove conditional statements (at the end of basic block)
and propagate condition into destination basic blocks'
predicate list.
o Replace modify expression with conditional modify expression
using current basic block's condition.
o Merge all basic blocks
o Replace phi nodes with conditional modify expr
o Merge all basic blocks into header
Sample transformation:
INPUT
-----
# i_23 = PHI <0(0), i_18(10)>;
<L0>:;
j_15 = A[i_23];
if (j_15 > 41) goto <L1>; else goto <L17>;
<L17>:;
goto <bb 3> (<L3>);
<L1>:;
# iftmp.2_4 = PHI <0(8), 42(2)>;
<L3>:;
A[i_23] = iftmp.2_4;
i_18 = i_23 + 1;
if (i_18 <= 15) goto <L19>; else goto <L18>;
<L19>:;
goto <bb 1> (<L0>);
<L18>:;
OUTPUT
------
# i_23 = PHI <0(0), i_18(10)>;
<L0>:;
j_15 = A[i_23];
<L3>:;
iftmp.2_4 = j_15 > 41 ? 42 : 0;
A[i_23] = iftmp.2_4;
i_18 = i_23 + 1;
if (i_18 <= 15) goto <L19>; else goto <L18>;
<L19>:;
goto <bb 1> (<L0>);
<L18>:;
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "timevar.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "target.h"
/* List of basic blocks in if-conversion-suitable order. */
static basic_block *ifc_bbs;
/* Create a new temp variable of type TYPE. Add GIMPLE_ASSIGN to assign EXP
to the new variable. */
static gimple
ifc_temp_var (tree type, tree exp)
{
const char *name = "_ifc_";
tree var, new_name;
gimple stmt;
/* Create new temporary variable. */
var = create_tmp_var (type, name);
add_referenced_var (var);
/* Build new statement to assign EXP to new variable. */
stmt = gimple_build_assign (var, exp);
/* Get SSA name for the new variable and set make new statement
its definition statement. */
new_name = make_ssa_name (var, stmt);
gimple_assign_set_lhs (stmt, new_name);
SSA_NAME_DEF_STMT (new_name) = stmt;
update_stmt (stmt);
return stmt;
}
/* Add condition NEW_COND to the predicate list of basic block BB. */
static void
add_to_predicate_list (basic_block bb, tree new_cond)
{
tree cond = (tree) bb->aux;
if (cond)
cond = fold_build2_loc (EXPR_LOCATION (cond),
TRUTH_OR_EXPR, boolean_type_node,
unshare_expr (cond), new_cond);
else
cond = new_cond;
bb->aux = cond;
}
/* Add the condition COND to the previous condition PREV_COND, and add this
to the predicate list of the destination of edge E. GSI is the
place where the gimplification of the resulting condition should
output code. LOOP is the loop to be if-converted. */
static tree
add_to_dst_predicate_list (struct loop *loop, edge e,
tree prev_cond, tree cond,
gimple_stmt_iterator *gsi)
{
tree new_cond = NULL_TREE;
if (!flow_bb_inside_loop_p (loop, e->dest))
return NULL_TREE;
if (prev_cond == boolean_true_node || !prev_cond)
new_cond = unshare_expr (cond);
else
{
tree tmp;
gimple tmp_stmt = NULL;
prev_cond = force_gimple_operand_gsi (gsi, unshare_expr (prev_cond),
true, NULL, true, GSI_SAME_STMT);
cond = force_gimple_operand_gsi (gsi, unshare_expr (cond),
true, NULL, true, GSI_SAME_STMT);
/* Add the condition COND to the e->aux field. In case the edge
destination is a PHI node, this condition will be added to
the block predicate to construct a complete condition. */
e->aux = cond;
tmp = build2 (TRUTH_AND_EXPR, boolean_type_node,
unshare_expr (prev_cond), cond);
tmp_stmt = ifc_temp_var (boolean_type_node, tmp);
gsi_insert_before (gsi, tmp_stmt, GSI_SAME_STMT);
new_cond = gimple_assign_lhs (tmp_stmt);
}
add_to_predicate_list (e->dest, new_cond);
return new_cond;
}
/* Return true if one of the successor edges of BB exits LOOP. */
static bool
bb_with_exit_edge_p (struct loop *loop, basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if (loop_exit_edge_p (loop, e))
return true;
return false;
}
/* STMT is a GIMPLE_COND. Update two destination's predicate list.
Remove COND_EXPR, if it is not the exit condition of LOOP.
Otherwise update the exit condition of LOOP appropriately. GSI
points to the statement STMT. */
static void
tree_if_convert_cond_stmt (struct loop *loop, gimple stmt, tree cond,
gimple_stmt_iterator *gsi)
{
tree c2;
edge true_edge, false_edge;
location_t loc = gimple_location (stmt);
tree c = fold_build2_loc (loc, gimple_cond_code (stmt), boolean_type_node,
gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
extract_true_false_edges_from_block (gimple_bb (stmt),
&true_edge, &false_edge);
/* Add new condition into destination's predicate list. */
/* If C is true, then TRUE_EDGE is taken. */
add_to_dst_predicate_list (loop, true_edge, cond, c, gsi);
/* If C is false, then FALSE_EDGE is taken. */
c2 = invert_truthvalue_loc (loc, unshare_expr (c));
add_to_dst_predicate_list (loop, false_edge, cond, c2, gsi);
/* Now this conditional statement is redundant. Remove it. But, do
not remove the exit condition! Update the exit condition using
the new condition. */
if (!bb_with_exit_edge_p (loop, gimple_bb (stmt)))
{
gsi_remove (gsi, true);
cond = NULL_TREE;
}
}
/* If-convert stmt T which is part of LOOP.
If T is a GIMPLE_ASSIGN then it is converted into a conditional
modify expression using COND. For conditional expressions, add
a condition in the destination basic block's predicate list and
remove the conditional expression itself. GSI points to the
statement T. */
static tree
tree_if_convert_stmt (struct loop *loop, gimple t, tree cond,
gimple_stmt_iterator *gsi)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "------if-convert stmt\n");
print_gimple_stmt (dump_file, t, 0, TDF_SLIM);
print_generic_stmt (dump_file, cond, TDF_SLIM);
}
switch (gimple_code (t))
{
/* Labels are harmless here. */
case GIMPLE_LABEL:
break;
case GIMPLE_DEBUG:
/* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
if (gimple_debug_bind_p (gsi_stmt (*gsi)))
{
gimple_debug_bind_reset_value (gsi_stmt (*gsi));
update_stmt (gsi_stmt (*gsi));
}
break;
case GIMPLE_ASSIGN:
/* This GIMPLE_ASSIGN is killing previous value of LHS. Appropriate
value will be selected by PHI node based on condition. It is possible
that before this transformation, PHI nodes was selecting default
value and now it will use this new value. This is OK because it does
not change the validity of the program. */
break;
case GIMPLE_COND:
/* Update destination blocks' predicate list and remove this
condition expression. */
tree_if_convert_cond_stmt (loop, t, cond, gsi);
cond = NULL_TREE;
break;
default:
gcc_unreachable ();
}
return cond;
}
/* Return true when PHI is if-convertible. PHI is part of loop LOOP
and it belongs to basic block BB.
PHI is not if-convertible if:
- it has more than 2 arguments,
- virtual PHI is immediately used in another PHI node,
- virtual PHI on BB other than header. */
static bool
if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "-------------------------\n");
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
}
if (bb != loop->header && gimple_phi_num_args (phi) != 2)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "More than two phi node args.\n");
return false;
}
if (!is_gimple_reg (SSA_NAME_VAR (gimple_phi_result (phi))))
{
imm_use_iterator imm_iter;
use_operand_p use_p;
if (bb != loop->header)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Virtual phi not on loop header.\n");
return false;
}
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi))
{
if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Difficult to handle this virtual phi.\n");
return false;
}
}
}
return true;
}
/* Return true when STMT is if-convertible.
GIMPLE_ASSIGN statement is not if-convertible if,
- it is not movable,
- it could trap,
- LHS is not var decl.
GIMPLE_ASSIGN is part of block BB, which is inside loop LOOP. */
static bool
if_convertible_gimple_assign_stmt_p (struct loop *loop, basic_block bb,
gimple stmt)
{
tree lhs = gimple_assign_lhs (stmt);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "-------------------------\n");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
}
/* Some of these constrains might be too conservative. */
if (stmt_ends_bb_p (stmt)
|| gimple_has_volatile_ops (stmt)
|| (TREE_CODE (lhs) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
|| gimple_has_side_effects (stmt))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "stmt not suitable for ifcvt\n");
return false;
}
/* See if it needs speculative loading or not. */
if (bb != loop->header
&& gimple_assign_rhs_could_trap_p (stmt))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "tree could trap...\n");
return false;
}
if (TREE_CODE (lhs) != SSA_NAME
&& bb != loop->header
&& !bb_with_exit_edge_p (loop, bb))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "LHS is not var\n");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
}
return false;
}
return true;
}
/* Return true when STMT is if-convertible.
A statement is if-convertible if:
- it is an if-convertible GIMPLE_ASSGIN,
- it is a GIMPLE_LABEL or a GIMPLE_COND.
STMT is inside BB, which is inside loop LOOP. */
static bool
if_convertible_stmt_p (struct loop *loop, basic_block bb, gimple stmt)
{
switch (gimple_code (stmt))
{
case GIMPLE_LABEL:
case GIMPLE_DEBUG:
case GIMPLE_COND:
return true;
case GIMPLE_ASSIGN:
return if_convertible_gimple_assign_stmt_p (loop, bb, stmt);
default:
/* Don't know what to do with 'em so don't do anything. */
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "don't know what to do\n");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
}
return false;
break;
}
return true;
}
/* Return true when BB is if-convertible. This routine does not check
basic block's statements and phis.
A basic block is not if-convertible if:
- it is non-empty and it is after the exit block (in BFS order),
- it is after the exit block but before the latch,
- its edges are not normal.
EXIT_BB is the basic block containing the exit of the LOOP. BB is
inside LOOP. */
static bool
if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
{
edge e;
edge_iterator ei;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "----------[%d]-------------\n", bb->index);
if (exit_bb)
{
if (bb != loop->latch)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "basic block after exit bb but before latch\n");
return false;
}
else if (!empty_block_p (bb))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "non empty basic block after exit bb\n");
return false;
}
else if (bb == loop->latch
&& bb != exit_bb
&& !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "latch is not dominated by exit_block\n");
return false;
}
}
/* Be less adventurous and handle only normal edges. */
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->flags &
(EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Difficult to handle edges\n");
return false;
}
return true;
}
/* Return true when all predecessor blocks of BB are visited. The
VISITED bitmap keeps track of the visited blocks. */
static bool
pred_blocks_visited_p (basic_block bb, bitmap *visited)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
if (!bitmap_bit_p (*visited, e->src->index))
return false;
return true;
}
/* Get body of a LOOP in suitable order for if-conversion. It is
caller's responsibility to deallocate basic block list.
If-conversion suitable order is, breadth first sort (BFS) order
with an additional constraint: select a block only if all its
predecessors are already selected. */
static basic_block *
get_loop_body_in_if_conv_order (const struct loop *loop)
{
basic_block *blocks, *blocks_in_bfs_order;
basic_block bb;
bitmap visited;
unsigned int index = 0;
unsigned int visited_count = 0;
gcc_assert (loop->num_nodes);
gcc_assert (loop->latch != EXIT_BLOCK_PTR);
blocks = XCNEWVEC (basic_block, loop->num_nodes);
visited = BITMAP_ALLOC (NULL);
blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
index = 0;
while (index < loop->num_nodes)
{
bb = blocks_in_bfs_order [index];
if (bb->flags & BB_IRREDUCIBLE_LOOP)
{
free (blocks_in_bfs_order);
BITMAP_FREE (visited);
free (blocks);
return NULL;
}
if (!bitmap_bit_p (visited, bb->index))
{
if (pred_blocks_visited_p (bb, &visited)
|| bb == loop->header)
{
/* This block is now visited. */
bitmap_set_bit (visited, bb->index);
blocks[visited_count++] = bb;
}
}
index++;
if (index == loop->num_nodes
&& visited_count != loop->num_nodes)
/* Not done yet. */
index = 0;
}
free (blocks_in_bfs_order);
BITMAP_FREE (visited);
return blocks;
}
/* Return true when LOOP is if-convertible.
LOOP is if-convertible if:
- it is innermost,
- it has two or more basic blocks,
- it has only one exit,
- loop header is not the exit edge,
- if its basic blocks and phi nodes are if convertible. */
static bool
if_convertible_loop_p (struct loop *loop)
{
basic_block bb;
gimple_stmt_iterator itr;
unsigned int i;
edge e;
edge_iterator ei;
basic_block exit_bb = NULL;
/* Handle only inner most loop. */
if (!loop || loop->inner)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "not inner most loop\n");
return false;
}
/* If only one block, no need for if-conversion. */
if (loop->num_nodes <= 2)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "less than 2 basic blocks\n");
return false;
}
/* More than one loop exit is too much to handle. */
if (!single_exit (loop))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "multiple exits\n");
return false;
}
/* ??? Check target's vector conditional operation support for vectorizer. */
/* If one of the loop header's edge is exit edge then do not apply
if-conversion. */
FOR_EACH_EDGE (e, ei, loop->header->succs)
{
if (loop_exit_edge_p (loop, e))
return false;
}
calculate_dominance_info (CDI_DOMINATORS);
calculate_dominance_info (CDI_POST_DOMINATORS);
/* Allow statements that can be handled during if-conversion. */
ifc_bbs = get_loop_body_in_if_conv_order (loop);
if (!ifc_bbs)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,"Irreducible loop\n");
free_dominance_info (CDI_POST_DOMINATORS);
return false;
}
for (i = 0; i < loop->num_nodes; i++)
{
bb = ifc_bbs[i];
if (!if_convertible_bb_p (loop, bb, exit_bb))
return false;
for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
if (!if_convertible_stmt_p (loop, bb, gsi_stmt (itr)))
return false;
itr = gsi_start_phis (bb);
if (!gsi_end_p (itr))
FOR_EACH_EDGE (e, ei, bb->preds)
e->aux = NULL;
for (; !gsi_end_p (itr); gsi_next (&itr))
if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr)))
return false;
if (bb_with_exit_edge_p (loop, bb))
exit_bb = bb;
}
if (dump_file)
fprintf (dump_file,"Applying if-conversion\n");
free_dominance_info (CDI_POST_DOMINATORS);
return true;
}
/* During if-conversion, the bb->aux field is used to hold a predicate
list. This function cleans for all the basic blocks in the given
LOOP their predicate list. It also cleans up the e->aux field of
all the successor edges: e->aux is used to hold the true and false
conditions for conditional expressions. */
static void
clean_predicate_lists (struct loop *loop)
{
basic_block *bb;
unsigned int i;
edge e;
edge_iterator ei;
bb = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
bb[i]->aux = NULL;
FOR_EACH_EDGE (e, ei, bb[i]->succs)
e->aux = NULL;
}
free (bb);
}
/* Basic block BB has two predecessors. Using predecessor's bb->aux
field, set appropriate condition COND for the PHI node replacement.
Return true block whose phi arguments are selected when cond is
true. LOOP is the loop containing the if-converted region, GSI is
the place to insert the code for the if-conversion. */
static basic_block
find_phi_replacement_condition (struct loop *loop,
basic_block bb, tree *cond,
gimple_stmt_iterator *gsi)
{
edge first_edge, second_edge;
tree tmp_cond;
gcc_assert (EDGE_COUNT (bb->preds) == 2);
first_edge = EDGE_PRED (bb, 0);
second_edge = EDGE_PRED (bb, 1);
/* Use condition based on following criteria:
1)
S1: x = !c ? a : b;
S2: x = c ? b : a;
S2 is preferred over S1. Make 'b' first_bb and use its condition.
2) Do not make loop header first_bb.
3)
S1: x = !(c == d)? a : b;
S21: t1 = c == d;
S22: x = t1 ? b : a;
S3: x = (c == d) ? b : a;
S3 is preferred over S1 and S2*, Make 'b' first_bb and use
its condition.
4) If pred B is dominated by pred A then use pred B's condition.
See PR23115. */
/* Select condition that is not TRUTH_NOT_EXPR. */
tmp_cond = (tree) (first_edge->src)->aux;
gcc_assert (tmp_cond);
if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
{
edge tmp_edge;
tmp_edge = first_edge;
first_edge = second_edge;
second_edge = tmp_edge;
}
/* Check if FIRST_BB is loop header or not and make sure that
FIRST_BB does not dominate SECOND_BB. */
if (first_edge->src == loop->header
|| dominated_by_p (CDI_DOMINATORS,
second_edge->src, first_edge->src))
{
*cond = (tree) (second_edge->src)->aux;
/* If there is a condition on an incoming edge, add it to the
incoming bb predicate. */
if (second_edge->aux)
*cond = build2 (TRUTH_AND_EXPR, boolean_type_node,
*cond, (tree) second_edge->aux);
if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
*cond = invert_truthvalue (*cond);
else
/* Select non loop header bb. */
first_edge = second_edge;
}
else
{
*cond = (tree) (first_edge->src)->aux;
/* If there is a condition on an incoming edge, add it to the
incoming bb predicate. */
if (first_edge->aux)
*cond = build2 (TRUTH_AND_EXPR, boolean_type_node,
*cond, (tree) first_edge->aux);
}
/* Gimplify the condition: the vectorizer prefers to have gimple
values as conditions. Various targets use different means to
communicate conditions in vector compare operations. Using a
gimple value allows the compiler to emit vector compare and
select RTL without exposing compare's result. */
*cond = force_gimple_operand_gsi (gsi, unshare_expr (*cond),
false, NULL_TREE,
true, GSI_SAME_STMT);
if (!is_gimple_reg (*cond) && !is_gimple_condexpr (*cond))
{
gimple new_stmt;
new_stmt = ifc_temp_var (TREE_TYPE (*cond), unshare_expr (*cond));
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
*cond = gimple_assign_lhs (new_stmt);
}
gcc_assert (*cond);
return first_edge->src;
}
/* Replace PHI node with conditional modify expr using COND. This
routine does not handle PHI nodes with more than two arguments.
For example,
S1: A = PHI <x1(1), x2(5)
is converted into,
S2: A = cond ? x1 : x2;
The generated code is inserted at GSI that points to the top of
basic block's statement list. When COND is true, phi arg from
TRUE_BB is selected. */
static void
replace_phi_with_cond_gimple_assign_stmt (gimple phi, tree cond,
basic_block true_bb,
gimple_stmt_iterator *gsi)
{
gimple new_stmt;
basic_block bb;
tree rhs;
tree arg_0, arg_1;
gcc_assert (gimple_code (phi) == GIMPLE_PHI
&& gimple_phi_num_args (phi) == 2);
bb = gimple_bb (phi);
/* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr. */
if (EDGE_PRED (bb, 1)->src == true_bb)
{
arg_0 = gimple_phi_arg_def (phi, 1);
arg_1 = gimple_phi_arg_def (phi, 0);
}
else
{
arg_0 = gimple_phi_arg_def (phi, 0);
arg_1 = gimple_phi_arg_def (phi, 1);
}
/* Build new RHS using selected condition and arguments. */
rhs = build3 (COND_EXPR, TREE_TYPE (PHI_RESULT (phi)),
unshare_expr (cond), unshare_expr (arg_0),
unshare_expr (arg_1));
new_stmt = gimple_build_assign (unshare_expr (PHI_RESULT (phi)), rhs);
SSA_NAME_DEF_STMT (gimple_phi_result (phi)) = new_stmt;
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
update_stmt (new_stmt);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "new phi replacement stmt\n");
print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
}
}
/* Process phi nodes for the given LOOP. Replace phi nodes with
conditional modify expressions. */
static void
process_phi_nodes (struct loop *loop)
{
basic_block bb;
unsigned int orig_loop_num_nodes = loop->num_nodes;
unsigned int i;
for (i = 1; i < orig_loop_num_nodes; i++)
{
gimple phi;
tree cond = NULL_TREE;
gimple_stmt_iterator gsi, phi_gsi;
basic_block true_bb = NULL;
bb = ifc_bbs[i];
if (bb == loop->header)
continue;
phi_gsi = gsi_start_phis (bb);
gsi = gsi_after_labels (bb);
/* BB has two predecessors. Using predecessor's aux field, set
appropriate condition for the PHI node replacement. */
if (!gsi_end_p (phi_gsi))
true_bb = find_phi_replacement_condition (loop, bb, &cond, &gsi);
while (!gsi_end_p (phi_gsi))
{
phi = gsi_stmt (phi_gsi);
replace_phi_with_cond_gimple_assign_stmt (phi, cond, true_bb, &gsi);
release_phi_node (phi);
gsi_next (&phi_gsi);
}
set_phi_nodes (bb, NULL);
}
}
/* Combine all the basic blocks from LOOP into one or two super basic
blocks. Replace PHI nodes with conditional modify expressions. */
static void
combine_blocks (struct loop *loop)
{
basic_block bb, exit_bb, merge_target_bb;
unsigned int orig_loop_num_nodes = loop->num_nodes;
unsigned int i;
edge e;
edge_iterator ei;
/* Process phi nodes to prepare blocks for merge. */
process_phi_nodes (loop);
/* Merge basic blocks: first remove all the edges in the loop,
except for those from the exit block. */
exit_bb = NULL;
for (i = 0; i < orig_loop_num_nodes; i++)
{
bb = ifc_bbs[i];
if (bb_with_exit_edge_p (loop, bb))
{
exit_bb = bb;
break;
}
}
gcc_assert (exit_bb != loop->latch);
for (i = 1; i < orig_loop_num_nodes; i++)
{
bb = ifc_bbs[i];
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
{
if (e->src == exit_bb)
ei_next (&ei);
else
remove_edge (e);
}
}
if (exit_bb != NULL)
{
if (exit_bb != loop->header)
{
/* Connect this node to loop header. */
make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
}
/* Redirect non-exit edges to loop->latch. */
FOR_EACH_EDGE (e, ei, exit_bb->succs)
{
if (!loop_exit_edge_p (loop, e))
redirect_edge_and_branch (e, loop->latch);
}
set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
}
else
{
/* If the loop does not have an exit, reconnect header and latch. */
make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
}
merge_target_bb = loop->header;
for (i = 1; i < orig_loop_num_nodes; i++)
{
gimple_stmt_iterator gsi;
gimple_stmt_iterator last;
bb = ifc_bbs[i];
if (bb == exit_bb || bb == loop->latch)
continue;
/* Remove labels and make stmts member of loop->header. */
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
{
if (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL)
gsi_remove (&gsi, true);
else
{
gimple_set_bb (gsi_stmt (gsi), merge_target_bb);
gsi_next (&gsi);
}
}
/* Update stmt list. */
last = gsi_last_bb (merge_target_bb);
gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT);
set_bb_seq (bb, NULL);
delete_basic_block (bb);
}
/* If possible, merge loop header to the block with the exit edge.
This reduces the number of basic blocks to two, to please the
vectorizer that handles only loops with two nodes.
FIXME: Call cleanup_tree_cfg. */
if (exit_bb
&& exit_bb != loop->header
&& can_merge_blocks_p (loop->header, exit_bb))
merge_blocks (loop->header, exit_bb);
}
/* Main entry point: return true when LOOP is if-converted, otherwise
the loop remains unchanged. */
static bool
tree_if_conversion (struct loop *loop)
{
gimple_stmt_iterator itr;
unsigned int i;
ifc_bbs = NULL;
/* If-conversion is not appropriate for all loops. First, check if
the loop is if-convertible. */
if (!if_convertible_loop_p (loop))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,"-------------------------\n");
if (ifc_bbs)
{
free (ifc_bbs);
ifc_bbs = NULL;
}
free_dominance_info (CDI_POST_DOMINATORS);
return false;
}
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = ifc_bbs [i];
tree cond = (tree) bb->aux;
/* Process all the statements in this basic block.
Remove conditional expression, if any, and annotate
destination basic block(s) appropriately. */
for (itr = gsi_start_bb (bb); !gsi_end_p (itr); /* empty */)
{
gimple t = gsi_stmt (itr);
cond = tree_if_convert_stmt (loop, t, cond, &itr);
if (!gsi_end_p (itr))
gsi_next (&itr);
}
/* If current bb has only one successor, then consider it as an
unconditional goto. */
if (single_succ_p (bb))
{
basic_block bb_n = single_succ (bb);
/* The successor bb inherits the predicate of its
predecessor. If there is no predicate in the predecessor
bb, then consider the successor bb as always executed. */
if (cond == NULL_TREE)
cond = boolean_true_node;
add_to_predicate_list (bb_n, cond);
}
}
/* Now, all statements are if-converted and basic blocks are
annotated appropriately. Combine all the basic blocks into one
huge basic block. */
combine_blocks (loop);
/* clean up */
clean_predicate_lists (loop);
free (ifc_bbs);
ifc_bbs = NULL;
return true;
}
/* Tree if-conversion pass management. */
static unsigned int
main_tree_if_conversion (void)
{
loop_iterator li;
struct loop *loop;
if (number_of_loops () <= 1)
return 0;
FOR_EACH_LOOP (li, loop, 0)
tree_if_conversion (loop);
return 0;
}
static bool
gate_tree_if_conversion (void)
{
return flag_tree_vectorize != 0;
}
struct gimple_opt_pass pass_if_conversion =
{
{
GIMPLE_PASS,
"ifcvt", /* name */
gate_tree_if_conversion, /* gate */
main_tree_if_conversion, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_NONE, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func | TODO_verify_stmts | TODO_verify_flow
/* todo_flags_finish */
}
};
|