aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-dfa.c
blob: 5342f1973a411fcd7681a543bb9c81bd90c9aebb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
/* Data flow functions for trees.
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "hashtab.h"
#include "pointer-set.h"
#include "tree.h"
#include "tm_p.h"
#include "basic-block.h"
#include "ggc.h"
#include "langhooks.h"
#include "flags.h"
#include "function.h"
#include "tree-pretty-print.h"
#include "gimple.h"
#include "tree-flow.h"
#include "tree-inline.h"
#include "tree-pass.h"
#include "convert.h"
#include "params.h"
#include "cgraph.h"

/* Build and maintain data flow information for trees.  */

/* Counters used to display DFA and SSA statistics.  */
struct dfa_stats_d
{
  long num_defs;
  long num_uses;
  long num_phis;
  long num_phi_args;
  size_t max_num_phi_args;
  long num_vdefs;
  long num_vuses;
};


/* Local functions.  */
static void collect_dfa_stats (struct dfa_stats_d *);


/*---------------------------------------------------------------------------
			Dataflow analysis (DFA) routines
---------------------------------------------------------------------------*/

/* Renumber all of the gimple stmt uids.  */

void
renumber_gimple_stmt_uids (void)
{
  basic_block bb;

  set_gimple_stmt_max_uid (cfun, 0);
  FOR_ALL_BB (bb)
    {
      gimple_stmt_iterator bsi;
      for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
	{
	  gimple stmt = gsi_stmt (bsi);
	  gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
	}
      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
	{
	  gimple stmt = gsi_stmt (bsi);
	  gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
	}
    }
}

/* Like renumber_gimple_stmt_uids, but only do work on the basic blocks
   in BLOCKS, of which there are N_BLOCKS.  Also renumbers PHIs.  */

void
renumber_gimple_stmt_uids_in_blocks (basic_block *blocks, int n_blocks)
{
  int i;

  set_gimple_stmt_max_uid (cfun, 0);
  for (i = 0; i < n_blocks; i++)
    {
      basic_block bb = blocks[i];
      gimple_stmt_iterator bsi;
      for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
	{
	  gimple stmt = gsi_stmt (bsi);
	  gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
	}
      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
	{
	  gimple stmt = gsi_stmt (bsi);
	  gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
	}
    }
}



/*---------------------------------------------------------------------------
			      Debugging functions
---------------------------------------------------------------------------*/

/* Dump variable VAR and its may-aliases to FILE.  */

void
dump_variable (FILE *file, tree var)
{
  if (TREE_CODE (var) == SSA_NAME)
    {
      if (POINTER_TYPE_P (TREE_TYPE (var)))
	dump_points_to_info_for (file, var);
      var = SSA_NAME_VAR (var);
    }

  if (var == NULL_TREE)
    {
      fprintf (file, "<nil>");
      return;
    }

  print_generic_expr (file, var, dump_flags);

  fprintf (file, ", UID D.%u", (unsigned) DECL_UID (var));
  if (DECL_PT_UID (var) != DECL_UID (var))
    fprintf (file, ", PT-UID D.%u", (unsigned) DECL_PT_UID (var));

  fprintf (file, ", ");
  print_generic_expr (file, TREE_TYPE (var), dump_flags);

  if (TREE_ADDRESSABLE (var))
    fprintf (file, ", is addressable");

  if (is_global_var (var))
    fprintf (file, ", is global");

  if (TREE_THIS_VOLATILE (var))
    fprintf (file, ", is volatile");

  if (cfun && ssa_default_def (cfun, var))
    {
      fprintf (file, ", default def: ");
      print_generic_expr (file, ssa_default_def (cfun, var), dump_flags);
    }

  if (DECL_INITIAL (var))
    {
      fprintf (file, ", initial: ");
      print_generic_expr (file, DECL_INITIAL (var), dump_flags);
    }

  fprintf (file, "\n");
}


/* Dump variable VAR and its may-aliases to stderr.  */

DEBUG_FUNCTION void
debug_variable (tree var)
{
  dump_variable (stderr, var);
}


/* Dump various DFA statistics to FILE.  */

void
dump_dfa_stats (FILE *file)
{
  struct dfa_stats_d dfa_stats;

  unsigned long size, total = 0;
  const char * const fmt_str   = "%-30s%-13s%12s\n";
  const char * const fmt_str_1 = "%-30s%13lu%11lu%c\n";
  const char * const fmt_str_3 = "%-43s%11lu%c\n";
  const char *funcname
    = lang_hooks.decl_printable_name (current_function_decl, 2);

  collect_dfa_stats (&dfa_stats);

  fprintf (file, "\nDFA Statistics for %s\n\n", funcname);

  fprintf (file, "---------------------------------------------------------\n");
  fprintf (file, fmt_str, "", "  Number of  ", "Memory");
  fprintf (file, fmt_str, "", "  instances  ", "used ");
  fprintf (file, "---------------------------------------------------------\n");

  size = dfa_stats.num_uses * sizeof (tree *);
  total += size;
  fprintf (file, fmt_str_1, "USE operands", dfa_stats.num_uses,
	   SCALE (size), LABEL (size));

  size = dfa_stats.num_defs * sizeof (tree *);
  total += size;
  fprintf (file, fmt_str_1, "DEF operands", dfa_stats.num_defs,
	   SCALE (size), LABEL (size));

  size = dfa_stats.num_vuses * sizeof (tree *);
  total += size;
  fprintf (file, fmt_str_1, "VUSE operands", dfa_stats.num_vuses,
	   SCALE (size), LABEL (size));

  size = dfa_stats.num_vdefs * sizeof (tree *);
  total += size;
  fprintf (file, fmt_str_1, "VDEF operands", dfa_stats.num_vdefs,
	   SCALE (size), LABEL (size));

  size = dfa_stats.num_phis * sizeof (struct gimple_statement_phi);
  total += size;
  fprintf (file, fmt_str_1, "PHI nodes", dfa_stats.num_phis,
	   SCALE (size), LABEL (size));

  size = dfa_stats.num_phi_args * sizeof (struct phi_arg_d);
  total += size;
  fprintf (file, fmt_str_1, "PHI arguments", dfa_stats.num_phi_args,
 	   SCALE (size), LABEL (size));

  fprintf (file, "---------------------------------------------------------\n");
  fprintf (file, fmt_str_3, "Total memory used by DFA/SSA data", SCALE (total),
	   LABEL (total));
  fprintf (file, "---------------------------------------------------------\n");
  fprintf (file, "\n");

  if (dfa_stats.num_phis)
    fprintf (file, "Average number of arguments per PHI node: %.1f (max: %ld)\n",
	     (float) dfa_stats.num_phi_args / (float) dfa_stats.num_phis,
	     (long) dfa_stats.max_num_phi_args);

  fprintf (file, "\n");
}


/* Dump DFA statistics on stderr.  */

DEBUG_FUNCTION void
debug_dfa_stats (void)
{
  dump_dfa_stats (stderr);
}


/* Collect DFA statistics and store them in the structure pointed to by
   DFA_STATS_P.  */

static void
collect_dfa_stats (struct dfa_stats_d *dfa_stats_p ATTRIBUTE_UNUSED)
{
  basic_block bb;

  gcc_assert (dfa_stats_p);

  memset ((void *)dfa_stats_p, 0, sizeof (struct dfa_stats_d));

  /* Walk all the statements in the function counting references.  */
  FOR_EACH_BB (bb)
    {
      gimple_stmt_iterator si;

      for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
	{
	  gimple phi = gsi_stmt (si);
	  dfa_stats_p->num_phis++;
	  dfa_stats_p->num_phi_args += gimple_phi_num_args (phi);
	  if (gimple_phi_num_args (phi) > dfa_stats_p->max_num_phi_args)
	    dfa_stats_p->max_num_phi_args = gimple_phi_num_args (phi);
	}

      for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
	{
	  gimple stmt = gsi_stmt (si);
	  dfa_stats_p->num_defs += NUM_SSA_OPERANDS (stmt, SSA_OP_DEF);
	  dfa_stats_p->num_uses += NUM_SSA_OPERANDS (stmt, SSA_OP_USE);
	  dfa_stats_p->num_vdefs += gimple_vdef (stmt) ? 1 : 0;
	  dfa_stats_p->num_vuses += gimple_vuse (stmt) ? 1 : 0;
	}
    }
}


/*---------------------------------------------------------------------------
			     Miscellaneous helpers
---------------------------------------------------------------------------*/

/* Lookup VAR UID in the default_defs hashtable and return the associated
   variable.  */

tree
ssa_default_def (struct function *fn, tree var)
{
  struct tree_decl_minimal ind;
  struct tree_ssa_name in;
  gcc_assert (TREE_CODE (var) == VAR_DECL
	      || TREE_CODE (var) == PARM_DECL
	      || TREE_CODE (var) == RESULT_DECL);
  in.var = (tree)&ind;
  ind.uid = DECL_UID (var);
  return (tree) htab_find_with_hash (DEFAULT_DEFS (fn), &in, DECL_UID (var));
}

/* Insert the pair VAR's UID, DEF into the default_defs hashtable
   of function FN.  */

void
set_ssa_default_def (struct function *fn, tree var, tree def)
{
  struct tree_decl_minimal ind;
  struct tree_ssa_name in;
  void **loc;

  gcc_assert (TREE_CODE (var) == VAR_DECL
	      || TREE_CODE (var) == PARM_DECL
	      || TREE_CODE (var) == RESULT_DECL);
  in.var = (tree)&ind;
  ind.uid = DECL_UID (var);
  if (!def)
    {
      loc = htab_find_slot_with_hash (DEFAULT_DEFS (fn), &in,
				      DECL_UID (var), NO_INSERT);
      if (*loc)
	{
	  SSA_NAME_IS_DEFAULT_DEF (*(tree *)loc) = false;
	  htab_clear_slot (DEFAULT_DEFS (fn), loc);
	}
      return;
    }
  gcc_assert (TREE_CODE (def) == SSA_NAME && SSA_NAME_VAR (def) == var);
  loc = htab_find_slot_with_hash (DEFAULT_DEFS (fn), &in,
                                  DECL_UID (var), INSERT);

  /* Default definition might be changed by tail call optimization.  */
  if (*loc)
    SSA_NAME_IS_DEFAULT_DEF (*(tree *) loc) = false;

   /* Mark DEF as the default definition for VAR.  */
  *(tree *) loc = def;
  SSA_NAME_IS_DEFAULT_DEF (def) = true;
}

/* Retrieve or create a default definition for VAR.  */

tree
get_or_create_ssa_default_def (struct function *fn, tree var)
{
  tree ddef = ssa_default_def (fn, var);
  if (ddef == NULL_TREE)
    {
      ddef = make_ssa_name (var, gimple_build_nop ());
      set_ssa_default_def (cfun, var, ddef);
    }
  return ddef;
}


/* If EXP is a handled component reference for a structure, return the
   base variable.  The access range is delimited by bit positions *POFFSET and
   *POFFSET + *PMAX_SIZE.  The access size is *PSIZE bits.  If either
   *PSIZE or *PMAX_SIZE is -1, they could not be determined.  If *PSIZE
   and *PMAX_SIZE are equal, the access is non-variable.  */

tree
get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
			 HOST_WIDE_INT *psize,
			 HOST_WIDE_INT *pmax_size)
{
  HOST_WIDE_INT bitsize = -1;
  HOST_WIDE_INT maxsize = -1;
  tree size_tree = NULL_TREE;
  double_int bit_offset = double_int_zero;
  HOST_WIDE_INT hbit_offset;
  bool seen_variable_array_ref = false;
  tree base_type;

  /* First get the final access size from just the outermost expression.  */
  if (TREE_CODE (exp) == COMPONENT_REF)
    size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
  else if (TREE_CODE (exp) == BIT_FIELD_REF)
    size_tree = TREE_OPERAND (exp, 1);
  else if (!VOID_TYPE_P (TREE_TYPE (exp)))
    {
      enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
      if (mode == BLKmode)
	size_tree = TYPE_SIZE (TREE_TYPE (exp));
      else
	bitsize = GET_MODE_BITSIZE (mode);
    }
  if (size_tree != NULL_TREE)
    {
      if (! host_integerp (size_tree, 1))
	bitsize = -1;
      else
	bitsize = TREE_INT_CST_LOW (size_tree);
    }

  /* Initially, maxsize is the same as the accessed element size.
     In the following it will only grow (or become -1).  */
  maxsize = bitsize;

  /* Compute cumulative bit-offset for nested component-refs and array-refs,
     and find the ultimate containing object.  */
  while (1)
    {
      base_type = TREE_TYPE (exp);

      switch (TREE_CODE (exp))
	{
	case BIT_FIELD_REF:
	  bit_offset
	    = double_int_add (bit_offset,
			      tree_to_double_int (TREE_OPERAND (exp, 2)));
	  break;

	case COMPONENT_REF:
	  {
	    tree field = TREE_OPERAND (exp, 1);
	    tree this_offset = component_ref_field_offset (exp);

	    if (this_offset && TREE_CODE (this_offset) == INTEGER_CST)
	      {
		double_int doffset = tree_to_double_int (this_offset);
		doffset = double_int_lshift (doffset,
					     BITS_PER_UNIT == 8
					     ? 3 : exact_log2 (BITS_PER_UNIT),
					     HOST_BITS_PER_DOUBLE_INT, true);
		doffset = double_int_add (doffset,
					  tree_to_double_int
					  (DECL_FIELD_BIT_OFFSET (field)));
		bit_offset = double_int_add (bit_offset, doffset);

		/* If we had seen a variable array ref already and we just
		   referenced the last field of a struct or a union member
		   then we have to adjust maxsize by the padding at the end
		   of our field.  */
		if (seen_variable_array_ref && maxsize != -1)
		  {
		    tree stype = TREE_TYPE (TREE_OPERAND (exp, 0));
		    tree next = DECL_CHAIN (field);
		    while (next && TREE_CODE (next) != FIELD_DECL)
		      next = DECL_CHAIN (next);
		    if (!next
			|| TREE_CODE (stype) != RECORD_TYPE)
		      {
			tree fsize = DECL_SIZE_UNIT (field);
			tree ssize = TYPE_SIZE_UNIT (stype);
			if (host_integerp (fsize, 0)
			    && host_integerp (ssize, 0)
			    && double_int_fits_in_shwi_p (doffset))
			  maxsize += ((TREE_INT_CST_LOW (ssize)
				       - TREE_INT_CST_LOW (fsize))
				      * BITS_PER_UNIT
					- double_int_to_shwi (doffset));
			else
			  maxsize = -1;
		      }
		  }
	      }
	    else
	      {
		tree csize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
		/* We need to adjust maxsize to the whole structure bitsize.
		   But we can subtract any constant offset seen so far,
		   because that would get us out of the structure otherwise.  */
		if (maxsize != -1
		    && csize
		    && host_integerp (csize, 1)
		    && double_int_fits_in_shwi_p (bit_offset))
		  maxsize = TREE_INT_CST_LOW (csize)
			    - double_int_to_shwi (bit_offset);
		else
		  maxsize = -1;
	      }
	  }
	  break;

	case ARRAY_REF:
	case ARRAY_RANGE_REF:
	  {
	    tree index = TREE_OPERAND (exp, 1);
	    tree low_bound, unit_size;

	    /* If the resulting bit-offset is constant, track it.  */
	    if (TREE_CODE (index) == INTEGER_CST
		&& (low_bound = array_ref_low_bound (exp),
 		    TREE_CODE (low_bound) == INTEGER_CST)
		&& (unit_size = array_ref_element_size (exp),
		    TREE_CODE (unit_size) == INTEGER_CST))
	      {
		double_int doffset
		  = double_int_sext
		    (double_int_sub (TREE_INT_CST (index),
				     TREE_INT_CST (low_bound)),
		     TYPE_PRECISION (TREE_TYPE (index)));
		doffset = double_int_mul (doffset,
					  tree_to_double_int (unit_size));
		doffset = double_int_lshift (doffset,
					     BITS_PER_UNIT == 8
					     ? 3 : exact_log2 (BITS_PER_UNIT),
					     HOST_BITS_PER_DOUBLE_INT, true);
		bit_offset = double_int_add (bit_offset, doffset);

		/* An array ref with a constant index up in the structure
		   hierarchy will constrain the size of any variable array ref
		   lower in the access hierarchy.  */
		seen_variable_array_ref = false;
	      }
	    else
	      {
		tree asize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
		/* We need to adjust maxsize to the whole array bitsize.
		   But we can subtract any constant offset seen so far,
		   because that would get us outside of the array otherwise.  */
		if (maxsize != -1
		    && asize
		    && host_integerp (asize, 1)
		    && double_int_fits_in_shwi_p (bit_offset))
		  maxsize = TREE_INT_CST_LOW (asize)
			    - double_int_to_shwi (bit_offset);
		else
		  maxsize = -1;

		/* Remember that we have seen an array ref with a variable
		   index.  */
		seen_variable_array_ref = true;
	      }
	  }
	  break;

	case REALPART_EXPR:
	  break;

	case IMAGPART_EXPR:
	  bit_offset
	    = double_int_add (bit_offset, uhwi_to_double_int (bitsize));
	  break;

	case VIEW_CONVERT_EXPR:
	  break;

	case MEM_REF:
	  /* Hand back the decl for MEM[&decl, off].  */
	  if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
	    {
	      if (integer_zerop (TREE_OPERAND (exp, 1)))
		exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
	      else
		{
		  double_int off = mem_ref_offset (exp);
		  off = double_int_lshift (off,
					   BITS_PER_UNIT == 8
					   ? 3 : exact_log2 (BITS_PER_UNIT),
					   HOST_BITS_PER_DOUBLE_INT, true);
		  off = double_int_add (off, bit_offset);
		  if (double_int_fits_in_shwi_p (off))
		    {
		      bit_offset = off;
		      exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
		    }
		}
	    }
	  goto done;

	case TARGET_MEM_REF:
	  /* Hand back the decl for MEM[&decl, off].  */
	  if (TREE_CODE (TMR_BASE (exp)) == ADDR_EXPR)
	    {
	      /* Via the variable index or index2 we can reach the
		 whole object.  */
	      if (TMR_INDEX (exp) || TMR_INDEX2 (exp))
		{
		  exp = TREE_OPERAND (TMR_BASE (exp), 0);
		  bit_offset = double_int_zero;
		  maxsize = -1;
		  goto done;
		}
	      if (integer_zerop (TMR_OFFSET (exp)))
		exp = TREE_OPERAND (TMR_BASE (exp), 0);
	      else
		{
		  double_int off = mem_ref_offset (exp);
		  off = double_int_lshift (off,
					   BITS_PER_UNIT == 8
					   ? 3 : exact_log2 (BITS_PER_UNIT),
					   HOST_BITS_PER_DOUBLE_INT, true);
		  off = double_int_add (off, bit_offset);
		  if (double_int_fits_in_shwi_p (off))
		    {
		      bit_offset = off;
		      exp = TREE_OPERAND (TMR_BASE (exp), 0);
		    }
		}
	    }
	  goto done;

	default:
	  goto done;
	}

      exp = TREE_OPERAND (exp, 0);
    }
 done:

  if (!double_int_fits_in_shwi_p (bit_offset))
    {
      *poffset = 0;
      *psize = bitsize;
      *pmax_size = -1;

      return exp;
    }

  hbit_offset = double_int_to_shwi (bit_offset);

  /* We need to deal with variable arrays ending structures such as
       struct { int length; int a[1]; } x;           x.a[d]
       struct { struct { int a; int b; } a[1]; } x;  x.a[d].a
       struct { struct { int a[1]; } a[1]; } x;      x.a[0][d], x.a[d][0]
       struct { int len; union { int a[1]; struct X x; } u; } x; x.u.a[d]
     where we do not know maxsize for variable index accesses to
     the array.  The simplest way to conservatively deal with this
     is to punt in the case that offset + maxsize reaches the
     base type boundary.  This needs to include possible trailing padding
     that is there for alignment purposes.  */

  if (seen_variable_array_ref
      && maxsize != -1
      && (!host_integerp (TYPE_SIZE (base_type), 1)
	  || (hbit_offset + maxsize
	      == (signed) TREE_INT_CST_LOW (TYPE_SIZE (base_type)))))
    maxsize = -1;

  /* In case of a decl or constant base object we can do better.  */

  if (DECL_P (exp))
    {
      /* If maxsize is unknown adjust it according to the size of the
         base decl.  */
      if (maxsize == -1
	  && host_integerp (DECL_SIZE (exp), 1))
	maxsize = TREE_INT_CST_LOW (DECL_SIZE (exp)) - hbit_offset;
    }
  else if (CONSTANT_CLASS_P (exp))
    {
      /* If maxsize is unknown adjust it according to the size of the
         base type constant.  */
      if (maxsize == -1
	  && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1))
	maxsize = TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp))) - hbit_offset;
    }

  /* ???  Due to negative offsets in ARRAY_REF we can end up with
     negative bit_offset here.  We might want to store a zero offset
     in this case.  */
  *poffset = hbit_offset;
  *psize = bitsize;
  *pmax_size = maxsize;

  return exp;
}

/* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
   denotes the starting address of the memory access EXP.
   Returns NULL_TREE if the offset is not constant or any component
   is not BITS_PER_UNIT-aligned.  */

tree
get_addr_base_and_unit_offset (tree exp, HOST_WIDE_INT *poffset)
{
  return get_addr_base_and_unit_offset_1 (exp, poffset, NULL);
}

/* Returns true if STMT references an SSA_NAME that has
   SSA_NAME_OCCURS_IN_ABNORMAL_PHI set, otherwise false.  */

bool
stmt_references_abnormal_ssa_name (gimple stmt)
{
  ssa_op_iter oi;
  use_operand_p use_p;

  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, oi, SSA_OP_USE)
    {
      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (use_p)))
	return true;
    }

  return false;
}

/* Pair of tree and a sorting index, for dump_enumerated_decls.  */
struct GTY(()) numbered_tree_d
{
  tree t;
  int num;
};
typedef struct numbered_tree_d numbered_tree;

DEF_VEC_O (numbered_tree);
DEF_VEC_ALLOC_O (numbered_tree, heap);

/* Compare two declarations references by their DECL_UID / sequence number.
   Called via qsort.  */

static int
compare_decls_by_uid (const void *pa, const void *pb)
{
  const numbered_tree *nt_a = ((const numbered_tree *)pa);
  const numbered_tree *nt_b = ((const numbered_tree *)pb);

  if (DECL_UID (nt_a->t) != DECL_UID (nt_b->t))
    return  DECL_UID (nt_a->t) - DECL_UID (nt_b->t);
  return nt_a->num - nt_b->num;
}

/* Called via walk_gimple_stmt / walk_gimple_op by dump_enumerated_decls.  */
static tree
dump_enumerated_decls_push (tree *tp, int *walk_subtrees, void *data)
{
  struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
  VEC (numbered_tree, heap) **list = (VEC (numbered_tree, heap) **) &wi->info;
  numbered_tree nt;

  if (!DECL_P (*tp))
    return NULL_TREE;
  nt.t = *tp;
  nt.num = VEC_length (numbered_tree, *list);
  VEC_safe_push (numbered_tree, heap, *list, &nt);
  *walk_subtrees = 0;
  return NULL_TREE;
}

/* Find all the declarations used by the current function, sort them by uid,
   and emit the sorted list.  Each declaration is tagged with a sequence
   number indicating when it was found during statement / tree walking,
   so that TDF_NOUID comparisons of anonymous declarations are still
   meaningful.  Where a declaration was encountered more than once, we
   emit only the sequence number of the first encounter.
   FILE is the dump file where to output the list and FLAGS is as in
   print_generic_expr.  */
void
dump_enumerated_decls (FILE *file, int flags)
{
  basic_block bb;
  struct walk_stmt_info wi;
  VEC (numbered_tree, heap) *decl_list = VEC_alloc (numbered_tree, heap, 40);

  memset (&wi, '\0', sizeof (wi));
  wi.info = (void*) decl_list;
  FOR_EACH_BB (bb)
    {
      gimple_stmt_iterator gsi;

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	if (!is_gimple_debug (gsi_stmt (gsi)))
	  walk_gimple_stmt (&gsi, NULL, dump_enumerated_decls_push, &wi);
    }
  decl_list = (VEC (numbered_tree, heap) *) wi.info;
  VEC_qsort (numbered_tree, decl_list, compare_decls_by_uid);
  if (VEC_length (numbered_tree, decl_list))
    {
      unsigned ix;
      numbered_tree *ntp;
      tree last = NULL_TREE;

      fprintf (file, "Declarations used by %s, sorted by DECL_UID:\n",
	       current_function_name ());
      FOR_EACH_VEC_ELT (numbered_tree, decl_list, ix, ntp)
	{
	  if (ntp->t == last)
	    continue;
	  fprintf (file, "%d: ", ntp->num);
	  print_generic_decl (file, ntp->t, flags);
	  fprintf (file, "\n");
	  last = ntp->t;
	}
    }
  VEC_free (numbered_tree, heap, decl_list);
}