1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
|
/* Lower complex number and vector operations to scalar operations.
Copyright (C) 2004 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "tm.h"
#include "rtl.h"
#include "expr.h"
#include "insn-codes.h"
#include "diagnostic.h"
#include "optabs.h"
#include "machmode.h"
#include "langhooks.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-iterator.h"
#include "tree-pass.h"
#include "flags.h"
/* Extract the real or imaginary part of a complex variable or constant.
Make sure that it's a proper gimple_val and gimplify it if not.
Emit any new code before BSI. */
static tree
extract_component (block_stmt_iterator *bsi, tree t, bool imagpart_p)
{
tree ret, inner_type;
inner_type = TREE_TYPE (TREE_TYPE (t));
switch (TREE_CODE (t))
{
case COMPLEX_CST:
ret = (imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t));
break;
case COMPLEX_EXPR:
ret = TREE_OPERAND (t, imagpart_p);
break;
case VAR_DECL:
case PARM_DECL:
ret = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
inner_type, t);
break;
default:
abort ();
}
return gimplify_val (bsi, inner_type, ret);
}
/* Update an assignment to a complex variable in place. */
static void
update_complex_assignment (block_stmt_iterator *bsi, tree r, tree i)
{
tree stmt = bsi_stmt (*bsi);
tree type;
modify_stmt (stmt);
if (TREE_CODE (stmt) == RETURN_EXPR)
stmt = TREE_OPERAND (stmt, 0);
type = TREE_TYPE (TREE_OPERAND (stmt, 1));
TREE_OPERAND (stmt, 1) = build (COMPLEX_EXPR, type, r, i);
}
/* Expand complex addition to scalars:
a + b = (ar + br) + i(ai + bi)
a - b = (ar - br) + i(ai + bi)
*/
static void
expand_complex_addition (block_stmt_iterator *bsi, tree inner_type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code)
{
tree rr, ri;
rr = gimplify_build2 (bsi, code, inner_type, ar, br);
ri = gimplify_build2 (bsi, code, inner_type, ai, bi);
update_complex_assignment (bsi, rr, ri);
}
/* Expand complex multiplication to scalars:
a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
*/
static void
expand_complex_multiplication (block_stmt_iterator *bsi, tree inner_type,
tree ar, tree ai, tree br, tree bi)
{
tree t1, t2, t3, t4, rr, ri;
t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br);
t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi);
t3 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, bi);
/* Avoid expanding redundant multiplication for the common
case of squaring a complex number. */
if (ar == br && ai == bi)
t4 = t3;
else
t4 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br);
rr = gimplify_build2 (bsi, MINUS_EXPR, inner_type, t1, t2);
ri = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t3, t4);
update_complex_assignment (bsi, rr, ri);
}
/* Expand complex division to scalars, straightforward algorithm.
a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
t = br*br + bi*bi
*/
static void
expand_complex_div_straight (block_stmt_iterator *bsi, tree inner_type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code)
{
tree rr, ri, div, t1, t2, t3;
t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, br, br);
t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, bi, bi);
div = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, t2);
t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br);
t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi);
t3 = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, t2);
rr = gimplify_build2 (bsi, code, inner_type, t3, div);
t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br);
t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, bi);
t3 = gimplify_build2 (bsi, MINUS_EXPR, inner_type, t1, t2);
ri = gimplify_build2 (bsi, code, inner_type, t3, div);
update_complex_assignment (bsi, rr, ri);
}
/* Expand complex division to scalars, modified algorithm to minimize
overflow with wide input ranges. */
static void
expand_complex_div_wide (block_stmt_iterator *bsi, tree inner_type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code)
{
tree rr, ri, ratio, div, t1, t2, min, max, cond;
/* Examine |br| < |bi|, and branch. */
t1 = gimplify_build1 (bsi, ABS_EXPR, inner_type, br);
t2 = gimplify_build1 (bsi, ABS_EXPR, inner_type, bi);
cond = fold (build (LT_EXPR, boolean_type_node, t1, t2));
STRIP_NOPS (cond);
if (TREE_CONSTANT (cond))
{
if (integer_zerop (cond))
min = bi, max = br;
else
min = br, max = bi;
}
else
{
basic_block bb_cond, bb_true, bb_false, bb_join;
tree l1, l2, l3;
edge e;
l1 = create_artificial_label ();
t1 = build (GOTO_EXPR, void_type_node, l1);
l2 = create_artificial_label ();
t2 = build (GOTO_EXPR, void_type_node, l2);
cond = build (COND_EXPR, void_type_node, cond, t1, t2);
bsi_insert_before (bsi, cond, BSI_SAME_STMT);
min = make_rename_temp (inner_type, NULL);
max = make_rename_temp (inner_type, NULL);
l3 = create_artificial_label ();
/* Split the original block, and create the TRUE and FALSE blocks. */
e = split_block (bsi->bb, cond);
bb_cond = e->src;
bb_join = e->dest;
bb_true = create_empty_bb (bb_cond);
bb_false = create_empty_bb (bb_true);
/* Wire the blocks together. */
e->flags = EDGE_TRUE_VALUE;
redirect_edge_succ (e, bb_true);
make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
make_edge (bb_true, bb_join, 0);
make_edge (bb_false, bb_join, 0);
/* Update dominance info. Note that bb_join's data was
updated by split_block. */
if (dom_computed[CDI_DOMINATORS] >= DOM_CONS_OK)
{
set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
}
/* Compute min and max for TRUE block. */
*bsi = bsi_start (bb_true);
t1 = build (LABEL_EXPR, void_type_node, l1);
bsi_insert_after (bsi, t1, BSI_NEW_STMT);
t1 = build (MODIFY_EXPR, inner_type, min, br);
bsi_insert_after (bsi, t1, BSI_NEW_STMT);
t1 = build (MODIFY_EXPR, inner_type, max, bi);
bsi_insert_after (bsi, t1, BSI_NEW_STMT);
/* Compute min and max for FALSE block. */
*bsi = bsi_start (bb_false);
t1 = build (LABEL_EXPR, void_type_node, l2);
bsi_insert_after (bsi, t1, BSI_NEW_STMT);
t1 = build (MODIFY_EXPR, inner_type, min, bi);
bsi_insert_after (bsi, t1, BSI_NEW_STMT);
t1 = build (MODIFY_EXPR, inner_type, max, br);
bsi_insert_after (bsi, t1, BSI_NEW_STMT);
/* Insert the join label into the tail of the original block. */
*bsi = bsi_start (bb_join);
t1 = build (LABEL_EXPR, void_type_node, l3);
bsi_insert_before (bsi, t1, BSI_SAME_STMT);
}
/* Now we have MIN(|br|, |bi|) and MAX(|br|, |bi|). We now use the
ratio min/max to scale both the dividend and divisor. */
ratio = gimplify_build2 (bsi, code, inner_type, min, max);
/* Calculate the divisor: min*ratio + max. */
t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, min, ratio);
div = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, max);
/* Result is now ((ar + ai*ratio)/div) + i((ai - ar*ratio)/div). */
t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, ratio);
t2 = gimplify_build2 (bsi, PLUS_EXPR, inner_type, ar, t1);
rr = gimplify_build2 (bsi, code, inner_type, t2, div);
t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, ratio);
t2 = gimplify_build2 (bsi, MINUS_EXPR, inner_type, ai, t1);
ri = gimplify_build2 (bsi, code, inner_type, t2, div);
update_complex_assignment (bsi, rr, ri);
}
/* Expand complex division to scalars. */
static void
expand_complex_division (block_stmt_iterator *bsi, tree inner_type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code)
{
switch (flag_complex_divide_method)
{
case 0:
/* straightforward implementation of complex divide acceptable. */
expand_complex_div_straight (bsi, inner_type, ar, ai, br, bi, code);
break;
case 1:
/* wide ranges of inputs must work for complex divide. */
expand_complex_div_wide (bsi, inner_type, ar, ai, br, bi, code);
break;
default:
/* C99-like requirements for complex divide (not yet implemented). */
abort ();
}
}
/* Expand complex negation to scalars:
-a = (-ar) + i(-ai)
*/
static void
expand_complex_negation (block_stmt_iterator *bsi, tree inner_type,
tree ar, tree ai)
{
tree rr, ri;
rr = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ar);
ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ai);
update_complex_assignment (bsi, rr, ri);
}
/* Expand complex conjugate to scalars:
~a = (ar) + i(-ai)
*/
static void
expand_complex_conjugate (block_stmt_iterator *bsi, tree inner_type,
tree ar, tree ai)
{
tree ri;
ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ai);
update_complex_assignment (bsi, ar, ri);
}
/* Expand complex comparison (EQ or NE only). */
static void
expand_complex_comparison (block_stmt_iterator *bsi, tree ar, tree ai,
tree br, tree bi, enum tree_code code)
{
tree cr, ci, cc, stmt, type;
cr = gimplify_build2 (bsi, code, boolean_type_node, ar, br);
ci = gimplify_build2 (bsi, code, boolean_type_node, ai, bi);
cc = gimplify_build2 (bsi,
(code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
boolean_type_node, cr, ci);
stmt = bsi_stmt (*bsi);
modify_stmt (stmt);
switch (TREE_CODE (stmt))
{
case RETURN_EXPR:
stmt = TREE_OPERAND (stmt, 0);
/* FALLTHRU */
case MODIFY_EXPR:
type = TREE_TYPE (TREE_OPERAND (stmt, 1));
TREE_OPERAND (stmt, 1) = fold_convert (type, cc);
break;
case COND_EXPR:
TREE_OPERAND (stmt, 0) = cc;
break;
default:
abort ();
}
}
/* Process one statement. If we identify a complex operation, expand it. */
static void
expand_complex_operations_1 (block_stmt_iterator *bsi)
{
tree stmt = bsi_stmt (*bsi);
tree rhs, type, inner_type;
tree ac, ar, ai, bc, br, bi;
enum tree_code code;
switch (TREE_CODE (stmt))
{
case RETURN_EXPR:
stmt = TREE_OPERAND (stmt, 0);
if (!stmt)
return;
if (TREE_CODE (stmt) != MODIFY_EXPR)
return;
/* FALLTHRU */
case MODIFY_EXPR:
rhs = TREE_OPERAND (stmt, 1);
break;
case COND_EXPR:
rhs = TREE_OPERAND (stmt, 0);
break;
default:
return;
}
type = TREE_TYPE (rhs);
code = TREE_CODE (rhs);
/* Initial filter for operations we handle. */
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case RDIV_EXPR:
case NEGATE_EXPR:
case CONJ_EXPR:
if (TREE_CODE (type) != COMPLEX_TYPE)
return;
inner_type = TREE_TYPE (type);
break;
case EQ_EXPR:
case NE_EXPR:
inner_type = TREE_TYPE (TREE_OPERAND (rhs, 1));
if (TREE_CODE (inner_type) != COMPLEX_TYPE)
return;
break;
default:
return;
}
/* Extract the components of the two complex values. Make sure and
handle the common case of the same value used twice specially. */
ac = TREE_OPERAND (rhs, 0);
ar = extract_component (bsi, ac, 0);
ai = extract_component (bsi, ac, 1);
if (TREE_CODE_CLASS (code) == '1')
bc = br = bi = NULL;
else
{
bc = TREE_OPERAND (rhs, 1);
if (ac == bc)
br = ar, bi = ai;
else
{
br = extract_component (bsi, bc, 0);
bi = extract_component (bsi, bc, 1);
}
}
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
expand_complex_addition (bsi, inner_type, ar, ai, br, bi, code);
break;
case MULT_EXPR:
expand_complex_multiplication (bsi, inner_type, ar, ai, br, bi);
break;
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case RDIV_EXPR:
expand_complex_division (bsi, inner_type, ar, ai, br, bi, code);
break;
case NEGATE_EXPR:
expand_complex_negation (bsi, inner_type, ar, ai);
break;
case CONJ_EXPR:
expand_complex_conjugate (bsi, inner_type, ar, ai);
break;
case EQ_EXPR:
case NE_EXPR:
expand_complex_comparison (bsi, ar, ai, br, bi, code);
break;
default:
abort ();
}
}
/* Build a constant of type TYPE, made of VALUE's bits replicated
every TYPE_SIZE (INNER_TYPE) bits to fit TYPE's precision. */
static tree
build_replicated_const (tree type, tree inner_type, HOST_WIDE_INT value)
{
int width = tree_low_cst (TYPE_SIZE (inner_type), 1);
int n = HOST_BITS_PER_WIDE_INT / width;
unsigned HOST_WIDE_INT low, high, mask;
tree ret;
if (n == 0)
abort ();
if (width == HOST_BITS_PER_WIDE_INT)
low = value;
else
{
mask = ((HOST_WIDE_INT)1 << width) - 1;
low = (unsigned HOST_WIDE_INT) ~0 / mask * (value & mask);
}
if (TYPE_PRECISION (type) < HOST_BITS_PER_WIDE_INT)
low &= ((HOST_WIDE_INT)1 << TYPE_PRECISION (type)) - 1, high = 0;
else if (TYPE_PRECISION (type) == HOST_BITS_PER_WIDE_INT)
high = 0;
else if (TYPE_PRECISION (type) == 2 * HOST_BITS_PER_WIDE_INT)
high = low;
else
abort ();
ret = build_int_2 (low, high);
TREE_TYPE (ret) = type;
return ret;
}
/* Return a suitable vector types made of SUBPARTS units each of mode
"word_mode" (the global variable). */
static tree
build_word_mode_vector_type (int nunits)
{
static tree innertype;
static tree last;
static int last_nunits;
if (!innertype)
innertype = lang_hooks.types.type_for_mode (word_mode, 1);
else if (last_nunits == nunits)
return last;
/* We build a new type, but we canonicalize it nevertheless,
because it still saves some memory. */
last_nunits = nunits;
last = type_hash_canon (nunits, build_vector_type (innertype, nunits));
return last;
}
typedef tree (*elem_op_func) (block_stmt_iterator *,
tree, tree, tree, tree, tree, enum tree_code);
static inline tree
tree_vec_extract (block_stmt_iterator *bsi, tree type,
tree t, tree bitsize, tree bitpos)
{
if (bitpos)
return gimplify_build3 (bsi, BIT_FIELD_REF, type, t, bitsize, bitpos);
else
return gimplify_build1 (bsi, VIEW_CONVERT_EXPR, type, t);
}
static tree
do_unop (block_stmt_iterator *bsi, tree inner_type, tree a,
tree b ATTRIBUTE_UNUSED, tree bitpos, tree bitsize,
enum tree_code code)
{
a = tree_vec_extract (bsi, inner_type, a, bitsize, bitpos);
return gimplify_build1 (bsi, code, inner_type, a);
}
static tree
do_binop (block_stmt_iterator *bsi, tree inner_type, tree a, tree b,
tree bitpos, tree bitsize, enum tree_code code)
{
a = tree_vec_extract (bsi, inner_type, a, bitsize, bitpos);
b = tree_vec_extract (bsi, inner_type, b, bitsize, bitpos);
return gimplify_build2 (bsi, code, inner_type, a, b);
}
/* Expand vector addition to scalars. This does bit twiddling
in order to increase parallelism:
a + b = (((int) a & 0x7f7f7f7f) + ((int) b & 0x7f7f7f7f)) ^
(a ^ b) & 0x80808080
a - b = (((int) a | 0x80808080) - ((int) b & 0x7f7f7f7f)) ^
(a ^ ~b) & 0x80808080
-b = (0x80808080 - ((int) b & 0x7f7f7f7f)) ^ (~b & 0x80808080)
This optimization should be done only if 4 vector items or more
fit into a word. */
static tree
do_plus_minus (block_stmt_iterator *bsi, tree word_type, tree a, tree b,
tree bitpos ATTRIBUTE_UNUSED, tree bitsize ATTRIBUTE_UNUSED,
enum tree_code code)
{
tree inner_type = TREE_TYPE (TREE_TYPE (a));
unsigned HOST_WIDE_INT max;
tree low_bits, high_bits, a_low, b_low, result_low, signs;
max = GET_MODE_MASK (TYPE_MODE (inner_type));
low_bits = build_replicated_const (word_type, inner_type, max >> 1);
high_bits = build_replicated_const (word_type, inner_type, max & ~(max >> 1));
a = tree_vec_extract (bsi, word_type, a, bitsize, bitpos);
b = tree_vec_extract (bsi, word_type, b, bitsize, bitpos);
signs = gimplify_build2 (bsi, BIT_XOR_EXPR, word_type, a, b);
b_low = gimplify_build2 (bsi, BIT_AND_EXPR, word_type, b, low_bits);
if (code == PLUS_EXPR)
a_low = gimplify_build2 (bsi, BIT_AND_EXPR, word_type, a, low_bits);
else
{
a_low = gimplify_build2 (bsi, BIT_IOR_EXPR, word_type, a, high_bits);
signs = gimplify_build1 (bsi, BIT_NOT_EXPR, word_type, signs);
}
signs = gimplify_build2 (bsi, BIT_AND_EXPR, word_type, signs, high_bits);
result_low = gimplify_build2 (bsi, code, word_type, a_low, b_low);
return gimplify_build2 (bsi, BIT_XOR_EXPR, word_type, result_low, signs);
}
static tree
do_negate (block_stmt_iterator *bsi, tree word_type, tree b,
tree unused ATTRIBUTE_UNUSED, tree bitpos ATTRIBUTE_UNUSED,
tree bitsize ATTRIBUTE_UNUSED,
enum tree_code code ATTRIBUTE_UNUSED)
{
tree inner_type = TREE_TYPE (TREE_TYPE (b));
HOST_WIDE_INT max;
tree low_bits, high_bits, b_low, result_low, signs;
max = GET_MODE_MASK (TYPE_MODE (inner_type));
low_bits = build_replicated_const (word_type, inner_type, max >> 1);
high_bits = build_replicated_const (word_type, inner_type, max & ~(max >> 1));
b = tree_vec_extract (bsi, word_type, b, bitsize, bitpos);
b_low = gimplify_build2 (bsi, BIT_AND_EXPR, word_type, b, low_bits);
signs = gimplify_build1 (bsi, BIT_NOT_EXPR, word_type, b);
signs = gimplify_build2 (bsi, BIT_AND_EXPR, word_type, signs, high_bits);
result_low = gimplify_build2 (bsi, MINUS_EXPR, word_type, high_bits, b_low);
return gimplify_build2 (bsi, BIT_XOR_EXPR, word_type, result_low, signs);
}
/* Expand a vector operation to scalars, by using many operations
whose type is the vector type's inner type. */
static tree
expand_vector_piecewise (block_stmt_iterator *bsi, elem_op_func f,
tree type, tree inner_type,
tree a, tree b, enum tree_code code)
{
tree head, *chain = &head;
tree part_width = TYPE_SIZE (inner_type);
tree index = bitsize_int (0);
int nunits = TYPE_VECTOR_SUBPARTS (type);
int delta = tree_low_cst (part_width, 1)
/ tree_low_cst (TYPE_SIZE (TREE_TYPE (type)), 1);
int i;
for (i = 0; i < nunits;
i += delta, index = int_const_binop (PLUS_EXPR, index, part_width, 0))
{
tree result = f (bsi, inner_type, a, b, index, part_width, code);
*chain = tree_cons (NULL_TREE, result, NULL_TREE);
chain = &TREE_CHAIN (*chain);
}
return build1 (CONSTRUCTOR, type, head);
}
/* Expand a vector operation to scalars with the freedom to use
a scalar integer type, or to use a different size for the items
in the vector type. */
static tree
expand_vector_parallel (block_stmt_iterator *bsi, elem_op_func f, tree type,
tree a, tree b,
enum tree_code code)
{
tree result, compute_type;
enum machine_mode mode;
int n_words = tree_low_cst (TYPE_SIZE_UNIT (type), 1) / UNITS_PER_WORD;
/* We have three strategies. If the type is already correct, just do
the operation an element at a time. Else, if the vector is wider than
one word, do it a word at a time; finally, if the vector is smaller
than one word, do it as a scalar. */
if (TYPE_MODE (TREE_TYPE (type)) == word_mode)
return expand_vector_piecewise (bsi, f,
type, TREE_TYPE (type),
a, b, code);
else if (n_words > 1)
{
tree word_type = build_word_mode_vector_type (n_words);
result = expand_vector_piecewise (bsi, f,
word_type, TREE_TYPE (word_type),
a, b, code);
result = gimplify_val (bsi, word_type, result);
}
else
{
/* Use a single scalar operation with a mode no wider than word_mode. */
mode = mode_for_size (tree_low_cst (TYPE_SIZE (type), 1), MODE_INT, 0);
compute_type = lang_hooks.types.type_for_mode (mode, 1);
result = f (bsi, compute_type, a, b, NULL_TREE, NULL_TREE, code);
}
return build1 (VIEW_CONVERT_EXPR, type, result);
}
/* Expand a vector operation to scalars; for integer types we can use
special bit twiddling tricks to do the sums a word at a time, using
function F_PARALLEL instead of F. These tricks are done only if
they can process at least four items, that is, only if the vector
holds at least four items and if a word can hold four items. */
static tree
expand_vector_addition (block_stmt_iterator *bsi,
elem_op_func f, elem_op_func f_parallel,
tree type, tree a, tree b, enum tree_code code)
{
int parts_per_word = UNITS_PER_WORD
/ tree_low_cst (TYPE_SIZE_UNIT (TREE_TYPE (type)), 1);
if (INTEGRAL_TYPE_P (TREE_TYPE (type))
&& parts_per_word >= 4
&& TYPE_VECTOR_SUBPARTS (type) >= 4)
return expand_vector_parallel (bsi, f_parallel,
type, a, b, code);
else
return expand_vector_piecewise (bsi, f,
type, TREE_TYPE (type),
a, b, code);
}
/* Return a type for the widest vector mode whose components are of mode
INNER_MODE, or NULL_TREE if none is found. */
static tree
type_for_widest_vector_mode (enum machine_mode inner_mode, optab op)
{
enum machine_mode best_mode = VOIDmode, mode;
int best_nunits = 0;
if (GET_MODE_CLASS (inner_mode) == MODE_FLOAT)
mode = MIN_MODE_VECTOR_FLOAT;
else
mode = MIN_MODE_VECTOR_INT;
for (; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
if (GET_MODE_INNER (mode) == inner_mode
&& GET_MODE_NUNITS (mode) > best_nunits
&& op->handlers[mode].insn_code != CODE_FOR_nothing)
best_mode = mode, best_nunits = GET_MODE_NUNITS (mode);
if (best_mode == VOIDmode)
return NULL_TREE;
else
return lang_hooks.types.type_for_mode (best_mode, 1);
}
/* Process one statement. If we identify a vector operation, expand it. */
static void
expand_vector_operations_1 (block_stmt_iterator *bsi)
{
tree stmt = bsi_stmt (*bsi);
tree *p_rhs, rhs, type, compute_type;
enum tree_code code;
enum machine_mode compute_mode;
optab op;
switch (TREE_CODE (stmt))
{
case RETURN_EXPR:
stmt = TREE_OPERAND (stmt, 0);
if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
return;
/* FALLTHRU */
case MODIFY_EXPR:
p_rhs = &TREE_OPERAND (stmt, 1);
rhs = *p_rhs;
break;
default:
return;
}
type = TREE_TYPE (rhs);
if (TREE_CODE (type) != VECTOR_TYPE)
return;
code = TREE_CODE (rhs);
if (TREE_CODE_CLASS (code) != '1'
&& TREE_CODE_CLASS (code) != '2')
return;
if (code == NOP_EXPR || code == VIEW_CONVERT_EXPR)
return;
if (code == CONVERT_EXPR)
abort ();
op = optab_for_tree_code (code, type);
/* Optabs will try converting a negation into a subtraction, so
look for it as well. TODO: negation of floating-point vectors
might be turned into an exclusive OR toggling the sign bit. */
if (op == NULL
&& code == NEGATE_EXPR
&& INTEGRAL_TYPE_P (TREE_TYPE (type)))
op = optab_for_tree_code (MINUS_EXPR, type);
/* For very wide vectors, try using a smaller vector mode. */
compute_type = type;
if (TYPE_MODE (type) == BLKmode && op)
{
tree vector_compute_type
= type_for_widest_vector_mode (TYPE_MODE (TREE_TYPE (type)), op);
if (vector_compute_type != NULL_TREE)
compute_type = vector_compute_type;
}
compute_mode = TYPE_MODE (compute_type);
/* If we are breaking a BLKmode vector into smaller pieces,
type_for_widest_vector_mode has already looked into the optab,
so skip these checks. */
if (compute_type == type)
{
if ((GET_MODE_CLASS (compute_mode) == MODE_VECTOR_INT
|| GET_MODE_CLASS (compute_mode) == MODE_VECTOR_FLOAT)
&& op != NULL
&& op->handlers[compute_mode].insn_code != CODE_FOR_nothing)
return;
else
{
/* There is no operation in hardware, so fall back to scalars. */
compute_type = TREE_TYPE (type);
compute_mode = TYPE_MODE (compute_type);
}
}
/* If the compute mode is not a vector mode (hence we are decomposing
a BLKmode vector to smaller, hardware-supported vectors), we may
want to expand the operations in parallel. */
if (GET_MODE_CLASS (compute_mode) != MODE_VECTOR_INT
&& GET_MODE_CLASS (compute_mode) != MODE_VECTOR_FLOAT)
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
if (TYPE_TRAP_SIGNED (type))
break;
*p_rhs = expand_vector_addition (bsi, do_binop, do_plus_minus, type,
TREE_OPERAND (rhs, 0),
TREE_OPERAND (rhs, 1), code);
modify_stmt (bsi_stmt (*bsi));
return;
case NEGATE_EXPR:
if (TYPE_TRAP_SIGNED (type))
break;
*p_rhs = expand_vector_addition (bsi, do_unop, do_negate, type,
TREE_OPERAND (rhs, 0),
NULL_TREE, code);
modify_stmt (bsi_stmt (*bsi));
return;
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
*p_rhs = expand_vector_parallel (bsi, do_binop, type,
TREE_OPERAND (rhs, 0),
TREE_OPERAND (rhs, 1), code);
modify_stmt (bsi_stmt (*bsi));
return;
case BIT_NOT_EXPR:
*p_rhs = expand_vector_parallel (bsi, do_unop, type,
TREE_OPERAND (rhs, 0),
NULL_TREE, code);
modify_stmt (bsi_stmt (*bsi));
return;
default:
break;
}
if (TREE_CODE_CLASS (code) == '1')
*p_rhs = expand_vector_piecewise (bsi, do_unop, type, compute_type,
TREE_OPERAND (rhs, 0),
NULL_TREE, code);
else
*p_rhs = expand_vector_piecewise (bsi, do_binop, type, compute_type,
TREE_OPERAND (rhs, 0),
TREE_OPERAND (rhs, 1), code);
modify_stmt (bsi_stmt (*bsi));
}
static void
expand_vector_operations (void)
{
block_stmt_iterator bsi;
basic_block bb;
FOR_EACH_BB (bb)
{
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
expand_vector_operations_1 (&bsi);
}
}
static void
tree_lower_operations (void)
{
int old_last_basic_block = last_basic_block;
block_stmt_iterator bsi;
basic_block bb;
FOR_EACH_BB (bb)
{
if (bb->index >= old_last_basic_block)
continue;
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
expand_complex_operations_1 (&bsi);
expand_vector_operations_1 (&bsi);
}
}
}
struct tree_opt_pass pass_lower_vector_ssa =
{
"vector", /* name */
NULL, /* gate */
expand_vector_operations, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
0, /* tv_id */
PROP_cfg, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func | TODO_rename_vars /* todo_flags_finish */
| TODO_ggc_collect | TODO_verify_ssa
| TODO_verify_stmts | TODO_verify_flow
};
struct tree_opt_pass pass_pre_expand =
{
"oplower", /* name */
0, /* gate */
tree_lower_operations, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
0, /* tv_id */
PROP_cfg, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func | TODO_ggc_collect
| TODO_verify_stmts /* todo_flags_finish */
};
|