aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-call-cdce.c
blob: 9a27adc94e3a62f11ff5bf3ca5b3a93bb8461551 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
/* Conditional Dead Call Elimination pass for the GNU compiler.
   Copyright (C) 2008
   Free Software Foundation, Inc.
   Contributed by Xinliang David Li <davidxl@google.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"

/* These RTL headers are needed for basic-block.h.  */
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "obstack.h"
#include "basic-block.h"

#include "tree.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "gimple.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "timevar.h"
#include "flags.h"


/* Conditional dead call elimination

   Some builtin functions can set errno on error conditions, but they
   are otherwise pure.  If the result of a call to such a function is
   not used, the compiler can still not eliminate the call without
   powerful interprocedural analysis to prove that the errno is not
   checked.  However, if the conditions under which the error occurs
   are known, the compiler can conditionally dead code eliminate the
   calls by shrink-wrapping the semi-dead calls into the error condition:

        built_in_call (args)
          ==>
        if (error_cond (args))
             built_in_call (args)

    An actual simple example is :
         log (x);   // Mostly dead call
     ==>
         if (x < 0)
             log (x);
     With this change, call to log (x) is effectively eliminated, as
     in majority of the cases, log won't be called with x out of
     range.  The branch is totally predictable, so the branch cost
     is low.

   Note that library functions are not supposed to clear errno to zero without
   error.  See IEEE Std 1003.1, section 2.3 Error Numbers, and section 7.5:3 of
   ISO/IEC 9899 (C99).

   The condition wrapping the builtin call is conservatively set to avoid too
   aggressive (wrong) shrink wrapping.  The optimization is called conditional
   dead call elimination because the call is eliminated under the condition
   that the input arguments would not lead to domain or range error (for
   instance when x <= 0 for a log (x) call), however the chances that the error
   condition is hit is very low (those builtin calls which are conditionally
   dead are usually part of the C++ abstraction penalty exposed after
   inlining).  */


/* A structure for representing input domain of
   a function argument in integer.  If the lower
   bound is -inf, has_lb is set to false.  If the
   upper bound is +inf, has_ub is false.
   is_lb_inclusive and is_ub_inclusive are flags
   to indicate if lb and ub value are inclusive
   respectively.  */

typedef struct input_domain
{
  int lb;
  int ub;
  bool has_lb;
  bool has_ub;
  bool is_lb_inclusive;
  bool is_ub_inclusive;
} inp_domain;

/* A helper function to construct and return an input
   domain object.  LB is the lower bound, HAS_LB is
   a boolean flag indicating if the lower bound exists,
   and LB_INCLUSIVE is a boolean flag indicating if the
   lower bound is inclusive or not.  UB, HAS_UB, and
   UB_INCLUSIVE have the same meaning, but for upper
   bound of the domain.  */

static inp_domain
get_domain (int lb, bool has_lb, bool lb_inclusive,
            int ub, bool has_ub, bool ub_inclusive)
{
  inp_domain domain;
  domain.lb = lb;
  domain.has_lb = has_lb;
  domain.is_lb_inclusive = lb_inclusive;
  domain.ub = ub;
  domain.has_ub = has_ub;
  domain.is_ub_inclusive = ub_inclusive;
  return domain;
}

/* A helper function to check the target format for the
   argument type. In this implementation, only IEEE formats
   are supported.  ARG is the call argument to be checked.
   Returns true if the format is supported.  To support other
   target formats,  function get_no_error_domain needs to be
   enhanced to have range bounds properly computed. Since
   the check is cheap (very small number of candidates
   to be checked), the result is not cached for each float type.  */

static bool
check_target_format (tree arg)
{
  tree type;
  enum machine_mode mode;
  const struct real_format *rfmt;

  type = TREE_TYPE (arg);
  mode = TYPE_MODE (type);
  rfmt = REAL_MODE_FORMAT (mode);
  if ((mode == SFmode
       && (rfmt == &ieee_single_format || rfmt == &mips_single_format
	   || rfmt == &motorola_single_format))
      || (mode == DFmode
	  && (rfmt == &ieee_double_format || rfmt == &mips_double_format
	      || rfmt == &motorola_double_format))
      /* For long double, we can not really check XFmode
         which is only defined on intel platforms.
         Candidate pre-selection using builtin function
         code guarantees that we are checking formats
         for long double modes: double, quad, and extended.  */
      || (mode != SFmode && mode != DFmode
          && (rfmt == &ieee_quad_format
	      || rfmt == &mips_quad_format
	      || rfmt == &ieee_extended_motorola_format
              || rfmt == &ieee_extended_intel_96_format
              || rfmt == &ieee_extended_intel_128_format
              || rfmt == &ieee_extended_intel_96_round_53_format)))
    return true;

  return false;
}


/* A helper function to help select calls to pow that are suitable for
   conditional DCE transformation.  It looks for pow calls that can be
   guided with simple conditions.  Such calls either have constant base
   values or base values converted from integers.  Returns true if
   the pow call POW_CALL is a candidate.  */

/* The maximum integer bit size for base argument of a pow call
   that is suitable for shrink-wrapping transformation.  */
#define MAX_BASE_INT_BIT_SIZE 32

static bool
check_pow (gimple pow_call)
{
  tree base, expn;
  enum tree_code bc, ec;

  if (gimple_call_num_args (pow_call) != 2)
    return false;

  base = gimple_call_arg (pow_call, 0);
  expn = gimple_call_arg (pow_call, 1);

  if (!check_target_format (expn))
    return false;

  bc = TREE_CODE (base);
  ec = TREE_CODE (expn);

  /* Folding candidates are not interesting.
     Can actually assert that it is already folded.  */
  if (ec == REAL_CST && bc == REAL_CST)
    return false;

  if (bc == REAL_CST)
    {
      /* Only handle a fixed range of constant.  */
      REAL_VALUE_TYPE mv;
      REAL_VALUE_TYPE bcv = TREE_REAL_CST (base);
      if (REAL_VALUES_EQUAL (bcv, dconst1))
        return false;
      if (REAL_VALUES_LESS (bcv, dconst1))
        return false;
      real_from_integer (&mv, TYPE_MODE (TREE_TYPE (base)), 256, 0, 1);
      if (REAL_VALUES_LESS (mv, bcv))
        return false;
      return true;
    }
  else if (bc == SSA_NAME)
    {
      tree base_val0, base_var, type;
      gimple base_def;
      int bit_sz;

      /* Only handles cases where base value is converted
         from integer values.  */
      base_def = SSA_NAME_DEF_STMT (base);
      if (gimple_code (base_def) != GIMPLE_ASSIGN)
        return false;

      if (gimple_assign_rhs_code (base_def) != FLOAT_EXPR)
        return false;
      base_val0 = gimple_assign_rhs1 (base_def);

      base_var = SSA_NAME_VAR (base_val0);
      if (!DECL_P  (base_var))
        return false;

      type = TREE_TYPE (base_var);
      if (TREE_CODE (type) != INTEGER_TYPE)
        return false;
      bit_sz = TYPE_PRECISION (type);
      /* If the type of the base is too wide,
         the resulting shrink wrapping condition
	 will be too conservative.  */
      if (bit_sz > MAX_BASE_INT_BIT_SIZE)
        return false;

      return true;
    }
  else
    return false;
}

/* A helper function to help select candidate function calls that are
   suitable for conditional DCE.  Candidate functions must have single
   valid input domain in this implementation except for pow (see check_pow).
   Returns true if the function call is a candidate.  */

static bool
check_builtin_call (gimple bcall)
{
  tree arg;

  arg = gimple_call_arg (bcall, 0);
  return check_target_format (arg);
}

/* A helper function to determine if a builtin function call is a
   candidate for conditional DCE.  Returns true if the builtin call
   is a candidate.  */

static bool
is_call_dce_candidate (gimple call)
{
  tree fn;
  enum built_in_function fnc;

  /* Only potentially dead calls are considered.  */
  if (gimple_call_lhs (call))
    return false;

  fn = gimple_call_fndecl (call);
  if (!fn
      || !DECL_BUILT_IN (fn)
      || (DECL_BUILT_IN_CLASS (fn) != BUILT_IN_NORMAL))
    return false;

  fnc = DECL_FUNCTION_CODE (fn);
  switch (fnc)
    {
    /* Trig functions.  */
    CASE_FLT_FN (BUILT_IN_ACOS):
    CASE_FLT_FN (BUILT_IN_ASIN):
    /* Hyperbolic functions.  */
    CASE_FLT_FN (BUILT_IN_ACOSH):
    CASE_FLT_FN (BUILT_IN_ATANH):
    CASE_FLT_FN (BUILT_IN_COSH):
    CASE_FLT_FN (BUILT_IN_SINH):
    /* Log functions.  */
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG10):
    CASE_FLT_FN (BUILT_IN_LOG1P):
    /* Exp functions.  */
    CASE_FLT_FN (BUILT_IN_EXP):
    CASE_FLT_FN (BUILT_IN_EXP2):
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_EXPM1):
    CASE_FLT_FN (BUILT_IN_POW10):
    /* Sqrt.  */
    CASE_FLT_FN (BUILT_IN_SQRT):
      return check_builtin_call (call);
    /* Special one: two argument pow.  */
    case BUILT_IN_POW:
      return check_pow (call);
    default:
      break;
    }

  return false;
}


/* A helper function to generate gimple statements for
   one bound comparison.  ARG is the call argument to
   be compared with the bound, LBUB is the bound value
   in integer, TCODE is the tree_code of the comparison,
   TEMP_NAME1/TEMP_NAME2 are names of the temporaries,
   CONDS is a vector holding the produced GIMPLE statements,
   and NCONDS points to the variable holding the number
   of logical comparisons.  CONDS is either empty or
   a list ended with a null tree.  */

static void
gen_one_condition (tree arg, int lbub,
                   enum tree_code tcode,
                   const char *temp_name1,
		   const char *temp_name2,
                   VEC (gimple, heap) *conds,
                   unsigned *nconds)
{
  tree lbub_real_cst, lbub_cst, float_type;
  tree temp, tempn, tempc, tempcn;
  gimple stmt1, stmt2, stmt3;

  float_type = TREE_TYPE (arg);
  lbub_cst = build_int_cst (integer_type_node, lbub);
  lbub_real_cst = build_real_from_int_cst (float_type, lbub_cst);

  temp = create_tmp_var (float_type, temp_name1);
  stmt1 = gimple_build_assign (temp, arg);
  tempn = make_ssa_name (temp, stmt1);
  gimple_assign_set_lhs (stmt1, tempn);

  tempc = create_tmp_var (boolean_type_node, temp_name2);
  stmt2 = gimple_build_assign (tempc,
                               fold_build2 (tcode,
					    boolean_type_node,
					    tempn, lbub_real_cst));
  tempcn = make_ssa_name (tempc, stmt2);
  gimple_assign_set_lhs (stmt2, tempcn);

  stmt3 = gimple_build_cond_from_tree (tempcn, NULL_TREE, NULL_TREE);
  VEC_quick_push (gimple, conds, stmt1);
  VEC_quick_push (gimple, conds, stmt2);
  VEC_quick_push (gimple, conds, stmt3);
  (*nconds)++;
}

/* A helper function to generate GIMPLE statements for
   out of input domain check.  ARG is the call argument
   to be runtime checked, DOMAIN holds the valid domain
   for the given function, CONDS points to the vector
   holding the result GIMPLE statements.  *NCONDS is
   the number of logical comparisons.  This function
   produces no more than two logical comparisons, one
   for lower bound check, one for upper bound check.  */

static void
gen_conditions_for_domain (tree arg, inp_domain domain,
                           VEC (gimple, heap) *conds,
                           unsigned *nconds)
{
  if (domain.has_lb)
    gen_one_condition (arg, domain.lb,
                       (domain.is_lb_inclusive
                        ? LT_EXPR : LE_EXPR),
                       "DCE_COND_LB", "DCE_COND_LB_TEST",
                       conds, nconds);

  if (domain.has_ub)
    {
      /* Now push a separator.  */
      if (domain.has_lb)
        VEC_quick_push (gimple, conds, NULL);

      gen_one_condition (arg, domain.ub,
                         (domain.is_ub_inclusive
                          ? GT_EXPR : GE_EXPR),
                         "DCE_COND_UB", "DCE_COND_UB_TEST",
                         conds, nconds);
    }
}


/* A helper function to generate condition
   code for the y argument in call pow (some_const, y).
   See candidate selection in check_pow.  Since the
   candidates' base values have a limited range,
   the guarded code generated for y are simple:
   if (y > max_y)
     pow (const, y);
   Note max_y can be computed separately for each
   const base, but in this implementation, we
   choose to compute it using the max base
   in the allowed range for the purpose of
   simplicity.  BASE is the constant base value,
   EXPN is the expression for the exponent argument,
   *CONDS is the vector to hold resulting statements,
   and *NCONDS is the number of logical conditions.  */

static void
gen_conditions_for_pow_cst_base (tree base, tree expn,
                                 VEC (gimple, heap) *conds,
                                 unsigned *nconds)
{
  inp_domain exp_domain;
  /* Validate the range of the base constant to make
     sure it is consistent with check_pow.  */
  REAL_VALUE_TYPE mv;
  REAL_VALUE_TYPE bcv = TREE_REAL_CST (base);
  gcc_assert (!REAL_VALUES_EQUAL (bcv, dconst1)
              && !REAL_VALUES_LESS (bcv, dconst1));
  real_from_integer (&mv, TYPE_MODE (TREE_TYPE (base)), 256, 0, 1);
  gcc_assert (!REAL_VALUES_LESS (mv, bcv));

  exp_domain = get_domain (0, false, false,
                           127, true, false);

  gen_conditions_for_domain (expn, exp_domain,
                             conds, nconds);
}

/* Generate error condition code for pow calls with
   non constant base values.  The candidates selected
   have their base argument value converted from
   integer (see check_pow) value (1, 2, 4 bytes), and
   the max exp value is computed based on the size
   of the integer type (i.e. max possible base value).
   The resulting input domain for exp argument is thus
   conservative (smaller than the max value allowed by
   the runtime value of the base).  BASE is the integer
   base value, EXPN is the expression for the exponent
   argument, *CONDS is the vector to hold resulting
   statements, and *NCONDS is the number of logical
   conditions.  */

static void
gen_conditions_for_pow_int_base (tree base, tree expn,
                                 VEC (gimple, heap) *conds,
                                 unsigned *nconds)
{
  gimple base_def;
  tree base_val0;
  tree base_var, int_type;
  tree temp, tempn;
  tree cst0;
  gimple stmt1, stmt2;
  int bit_sz, max_exp;
  inp_domain exp_domain;

  base_def = SSA_NAME_DEF_STMT (base);
  base_val0 = gimple_assign_rhs1 (base_def);
  base_var = SSA_NAME_VAR (base_val0);
  int_type = TREE_TYPE (base_var);
  bit_sz = TYPE_PRECISION (int_type);
  gcc_assert (bit_sz > 0
              && bit_sz <= MAX_BASE_INT_BIT_SIZE);

  /* Determine the max exp argument value according to
     the size of the base integer.  The max exp value
     is conservatively estimated assuming IEEE754 double
     precision format.  */
  if (bit_sz == 8)
    max_exp = 128;
  else if (bit_sz == 16)
    max_exp = 64;
  else
    {
      gcc_assert (bit_sz == MAX_BASE_INT_BIT_SIZE);
      max_exp = 32;
    }

  /* For pow ((double)x, y), generate the following conditions:
     cond 1:
     temp1 = x;
     if (temp1 <= 0)

     cond 2:
     temp2 = y;
     if (temp2 > max_exp_real_cst)  */

  /* Generate condition in reverse order -- first
     the condition for the exp argument.  */

  exp_domain = get_domain (0, false, false,
                           max_exp, true, true);

  gen_conditions_for_domain (expn, exp_domain,
                             conds, nconds);

  /* Now generate condition for the base argument.
     Note it does not use the helper function
     gen_conditions_for_domain because the base
     type is integer.  */

  /* Push a separator.  */
  VEC_quick_push (gimple, conds, NULL);

  temp = create_tmp_var (int_type, "DCE_COND1");
  cst0 = build_int_cst (int_type, 0);
  stmt1 = gimple_build_assign (temp, base_val0);
  tempn = make_ssa_name (temp, stmt1);
  gimple_assign_set_lhs (stmt1, tempn);
  stmt2 = gimple_build_cond (LE_EXPR, tempn, cst0, NULL_TREE, NULL_TREE);

  VEC_quick_push (gimple, conds, stmt1);
  VEC_quick_push (gimple, conds, stmt2);
  (*nconds)++;
}

/* Method to generate conditional statements for guarding conditionally
   dead calls to pow.  One or more statements can be generated for
   each logical condition.  Statement groups of different conditions
   are separated by a NULL tree and they are stored in the VEC
   conds.  The number of logical conditions are stored in *nconds.

   See C99 standard, 7.12.7.4:2, for description of pow (x, y).
   The precise condition for domain errors are complex.  In this
   implementation, a simplified (but conservative) valid domain
   for x and y are used: x is positive to avoid dom errors, while
   y is smaller than a upper bound (depending on x) to avoid range
   errors.  Runtime code is generated to check x (if not constant)
   and y against the valid domain.  If it is out, jump to the call,
   otherwise the call is bypassed.  POW_CALL is the call statement,
   *CONDS is a vector holding the resulting condition statements,
   and *NCONDS is the number of logical conditions.  */

static void
gen_conditions_for_pow (gimple pow_call, VEC (gimple, heap) *conds,
                        unsigned *nconds)
{
  tree base, expn;
  enum tree_code bc;

#ifdef ENABLE_CHECKING
  gcc_assert (check_pow (pow_call));
#endif

  *nconds = 0;

  base = gimple_call_arg (pow_call, 0);
  expn = gimple_call_arg (pow_call, 1);

  bc = TREE_CODE (base);

  if (bc == REAL_CST)
    gen_conditions_for_pow_cst_base (base, expn, conds, nconds);
  else if (bc == SSA_NAME)
    gen_conditions_for_pow_int_base (base, expn, conds, nconds);
  else
    gcc_unreachable ();
}

/* A helper routine to help computing the valid input domain
   for a builtin function.  See C99 7.12.7 for details.  In this
   implementation, we only handle single region domain.  The
   resulting region can be conservative (smaller) than the actual
   one and rounded to integers.  Some of the bounds are documented
   in the standard, while other limit constants are computed
   assuming IEEE floating point format (for SF and DF modes).
   Since IEEE only sets minimum requirements for long double format,
   different long double formats exist under different implementations
   (e.g, 64 bit double precision (DF), 80 bit double-extended
   precision (XF), and 128 bit quad precision (QF) ).  For simplicity,
   in this implementation, the computed bounds for long double assume
   64 bit format (DF), and are therefore conservative.  Another
   assumption is that single precision float type is always SF mode,
   and double type is DF mode.  This function is quite
   implementation specific, so it may not be suitable to be part of
   builtins.c.  This needs to be revisited later to see if it can
   be leveraged in x87 assembly expansion.  */

static inp_domain
get_no_error_domain (enum built_in_function fnc)
{
  switch (fnc)
    {
    /* Trig functions: return [-1, +1]  */
    CASE_FLT_FN (BUILT_IN_ACOS):
    CASE_FLT_FN (BUILT_IN_ASIN):
      return get_domain (-1, true, true,
                         1, true, true);
    /* Hyperbolic functions.  */
    CASE_FLT_FN (BUILT_IN_ACOSH):
      /* acosh: [1, +inf)  */
      return get_domain (1, true, true,
                         1, false, false);
    CASE_FLT_FN (BUILT_IN_ATANH):
      /* atanh: (-1, +1)  */
      return get_domain (-1, true, false,
                         1, true, false);
    case BUILT_IN_COSHF:
    case BUILT_IN_SINHF:
      /* coshf: (-89, +89)  */
      return get_domain (-89, true, false,
                         89, true, false);
    case BUILT_IN_COSH:
    case BUILT_IN_SINH:
    case BUILT_IN_COSHL:
    case BUILT_IN_SINHL:
      /* cosh: (-710, +710)  */
      return get_domain (-710, true, false,
                         710, true, false);
    /* Log functions: (0, +inf)  */
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG10):
      return get_domain (0, true, false,
                         0, false, false);
    CASE_FLT_FN (BUILT_IN_LOG1P):
      return get_domain (-1, true, false,
                         0, false, false);
    /* Exp functions.  */
    case BUILT_IN_EXPF:
    case BUILT_IN_EXPM1F:
      /* expf: (-inf, 88)  */
      return get_domain (-1, false, false,
                         88, true, false);
    case BUILT_IN_EXP:
    case BUILT_IN_EXPM1:
    case BUILT_IN_EXPL:
    case BUILT_IN_EXPM1L:
      /* exp: (-inf, 709)  */
      return get_domain (-1, false, false,
                         709, true, false);
    case BUILT_IN_EXP2F:
      /* exp2f: (-inf, 128)  */
      return get_domain (-1, false, false,
                         128, true, false);
    case BUILT_IN_EXP2:
    case BUILT_IN_EXP2L:
      /* exp2: (-inf, 1024)  */
      return get_domain (-1, false, false,
                         1024, true, false);
    case BUILT_IN_EXP10F:
    case BUILT_IN_POW10F:
      /* exp10f: (-inf, 38)  */
      return get_domain (-1, false, false,
                         38, true, false);
    case BUILT_IN_EXP10:
    case BUILT_IN_POW10:
    case BUILT_IN_EXP10L:
    case BUILT_IN_POW10L:
      /* exp10: (-inf, 308)  */
      return get_domain (-1, false, false,
                         308, true, false);
    /* sqrt: [0, +inf)  */
    CASE_FLT_FN (BUILT_IN_SQRT):
      return get_domain (0, true, true,
                         0, false, false);
    default:
      gcc_unreachable ();
    }

  gcc_unreachable ();
}

/* The function to generate shrink wrap conditions for a partially
   dead builtin call whose return value is not used anywhere,
   but has to be kept live due to potential error condition.
   BI_CALL is the builtin call, CONDS is the vector of statements
   for condition code, NCODES is the pointer to the number of
   logical conditions.  Statements belonging to different logical
   condition are separated by NULL tree in the vector.  */

static void
gen_shrink_wrap_conditions (gimple bi_call, VEC (gimple, heap) *conds,
                            unsigned int *nconds)
{
  gimple call;
  tree fn;
  enum built_in_function fnc;

  gcc_assert (nconds && conds);
  gcc_assert (VEC_length (gimple, conds) == 0);
  gcc_assert (is_gimple_call (bi_call));

  call = bi_call;
  fn = gimple_call_fndecl (call);
  gcc_assert (fn && DECL_BUILT_IN (fn));
  fnc = DECL_FUNCTION_CODE (fn);
  *nconds = 0;

  if (fnc == BUILT_IN_POW)
    gen_conditions_for_pow (call, conds, nconds);
  else
    {
      tree arg;
      inp_domain domain = get_no_error_domain (fnc);
      *nconds = 0;
      arg = gimple_call_arg (bi_call, 0);
      gen_conditions_for_domain (arg, domain, conds, nconds);
    }

  return;
}


/* Probability of the branch (to the call) is taken.  */
#define ERR_PROB 0.01

/* The function to shrink wrap a partially dead builtin call
   whose return value is not used anywhere, but has to be kept
   live due to potential error condition.  Returns true if the
   transformation actually happens.  */

static bool
shrink_wrap_one_built_in_call (gimple bi_call)
{
  gimple_stmt_iterator bi_call_bsi;
  basic_block bi_call_bb, join_tgt_bb, guard_bb, guard_bb0;
  edge join_tgt_in_edge_from_call, join_tgt_in_edge_fall_thru;
  edge bi_call_in_edge0, guard_bb_in_edge;
  VEC (gimple, heap) *conds;
  unsigned tn_cond_stmts, nconds;
  unsigned ci;
  gimple cond_expr = NULL;
  gimple cond_expr_start;
  tree bi_call_label_decl;
  gimple bi_call_label;

  conds = VEC_alloc (gimple, heap, 12);
  gen_shrink_wrap_conditions (bi_call, conds, &nconds);

  /* This can happen if the condition generator decides
     it is not beneficial to do the transformation.  Just
     return false and do not do any transformation for
     the call.  */
  if (nconds == 0)
    return false;

  bi_call_bb = gimple_bb (bi_call);

  /* Now find the join target bb -- split
     bi_call_bb if needed.  */
  bi_call_bsi = gsi_for_stmt (bi_call);

  join_tgt_in_edge_from_call = split_block (bi_call_bb, bi_call);
  bi_call_bsi = gsi_for_stmt (bi_call);

  join_tgt_bb = join_tgt_in_edge_from_call->dest;

  /* Now it is time to insert the first conditional expression
     into bi_call_bb and split this bb so that bi_call is
     shrink-wrapped.  */
  tn_cond_stmts = VEC_length (gimple, conds);
  cond_expr = NULL;
  cond_expr_start = VEC_index (gimple, conds, 0);
  for (ci = 0; ci < tn_cond_stmts; ci++)
    {
      gimple c = VEC_index (gimple, conds, ci);
      gcc_assert (c || ci != 0);
      if (!c)
        break;
      gsi_insert_before (&bi_call_bsi, c, GSI_SAME_STMT);
      cond_expr = c;
    }
  nconds--;
  ci++;
  gcc_assert (cond_expr && gimple_code (cond_expr) == GIMPLE_COND);

  /* Now the label.  */
  bi_call_label_decl = create_artificial_label (gimple_location (bi_call));
  bi_call_label = gimple_build_label (bi_call_label_decl);
  gsi_insert_before (&bi_call_bsi, bi_call_label, GSI_SAME_STMT);

  bi_call_in_edge0 = split_block (bi_call_bb, cond_expr);
  bi_call_in_edge0->flags &= ~EDGE_FALLTHRU;
  bi_call_in_edge0->flags |= EDGE_TRUE_VALUE;
  guard_bb0 = bi_call_bb;
  bi_call_bb = bi_call_in_edge0->dest;
  join_tgt_in_edge_fall_thru = make_edge (guard_bb0, join_tgt_bb,
                                          EDGE_FALSE_VALUE);

  bi_call_in_edge0->probability = REG_BR_PROB_BASE * ERR_PROB;
  join_tgt_in_edge_fall_thru->probability =
      REG_BR_PROB_BASE - bi_call_in_edge0->probability;

  /* Code generation for the rest of the conditions  */
  guard_bb = guard_bb0;
  while (nconds > 0)
    {
      unsigned ci0;
      edge bi_call_in_edge;
      gimple_stmt_iterator guard_bsi = gsi_for_stmt (cond_expr_start);
      ci0 = ci;
      cond_expr_start = VEC_index (gimple, conds, ci0);
      for (; ci < tn_cond_stmts; ci++)
        {
          gimple c = VEC_index (gimple, conds, ci);
          gcc_assert (c || ci != ci0);
          if (!c)
            break;
          gsi_insert_before (&guard_bsi, c, GSI_SAME_STMT);
          cond_expr = c;
        }
      nconds--;
      ci++;
      gcc_assert (cond_expr && gimple_code (cond_expr) == GIMPLE_COND);
      guard_bb_in_edge = split_block (guard_bb, cond_expr);
      guard_bb_in_edge->flags &= ~EDGE_FALLTHRU;
      guard_bb_in_edge->flags |= EDGE_FALSE_VALUE;

      bi_call_in_edge = make_edge (guard_bb, bi_call_bb, EDGE_TRUE_VALUE);

      bi_call_in_edge->probability = REG_BR_PROB_BASE * ERR_PROB;
      guard_bb_in_edge->probability =
          REG_BR_PROB_BASE - bi_call_in_edge->probability;
    }

  VEC_free (gimple, heap, conds);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      location_t loc;
      loc = gimple_location (bi_call);
      fprintf (dump_file,
               "%s:%d: note: function call is shrink-wrapped"
               " into error conditions.\n",
               LOCATION_FILE (loc), LOCATION_LINE (loc));
    }

  return true;
}

/* The top level function for conditional dead code shrink
   wrapping transformation.  */

static bool
shrink_wrap_conditional_dead_built_in_calls (VEC (gimple, heap) *calls)
{
  bool changed = false;
  unsigned i = 0;

  unsigned n = VEC_length (gimple, calls);
  if (n == 0)
    return false;

  for (; i < n ; i++)
    {
      gimple bi_call = VEC_index (gimple, calls, i);
      changed |= shrink_wrap_one_built_in_call (bi_call);
    }

  return changed;
}

/* Pass entry points.  */

static unsigned int
tree_call_cdce (void)
{
  basic_block bb;
  gimple_stmt_iterator i;
  bool something_changed = false;
  VEC (gimple, heap) *cond_dead_built_in_calls = NULL;
  FOR_EACH_BB (bb)
    {
      /* Collect dead call candidates.  */
      for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
        {
	  gimple stmt = gsi_stmt (i);
          if (is_gimple_call (stmt)
              && is_call_dce_candidate (stmt))
            {
              if (dump_file && (dump_flags & TDF_DETAILS))
                {
                  fprintf (dump_file, "Found conditional dead call: ");
                  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
                  fprintf (dump_file, "\n");
                }
	      if (cond_dead_built_in_calls == NULL)
		cond_dead_built_in_calls = VEC_alloc (gimple, heap, 64);
	      VEC_safe_push (gimple, heap, cond_dead_built_in_calls, stmt);
            }
	}
    }

  if (cond_dead_built_in_calls == NULL)
    return 0;

  something_changed
    = shrink_wrap_conditional_dead_built_in_calls (cond_dead_built_in_calls);

  VEC_free (gimple, heap, cond_dead_built_in_calls);

  if (something_changed)
    {
      free_dominance_info (CDI_DOMINATORS);
      free_dominance_info (CDI_POST_DOMINATORS);
      /* As we introduced new control-flow we need to insert PHI-nodes
         for the call-clobbers of the remaining call.  */
      mark_sym_for_renaming (gimple_vop (cfun));
      return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
              | TODO_remove_unused_locals);
    }
  else
    return 0;
}

static bool
gate_call_cdce (void)
{
  /* The limit constants used in the implementation
     assume IEEE floating point format.  Other formats
     can be supported in the future if needed.  */
  return flag_tree_builtin_call_dce != 0 && optimize_function_for_speed_p (cfun);
}

struct gimple_opt_pass pass_call_cdce =
{
 {
  GIMPLE_PASS,
  "cdce",                               /* name */
  gate_call_cdce,                       /* gate */
  tree_call_cdce,                       /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  TV_TREE_CALL_CDCE,                    /* tv_id */
  PROP_cfg | PROP_ssa,                  /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  TODO_dump_func | TODO_verify_ssa      /* todo_flags_finish */
 }
};