aboutsummaryrefslogtreecommitdiff
path: root/gcc/sibcall.c
blob: e00e8b790d6909dea7f34a6c62a39b719df077a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
/* Generic sibling call optimization support
   Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"

#include "rtl.h"
#include "regs.h"
#include "function.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"
#include "output.h"
#include "except.h"

static int identify_call_return_value	PARAMS ((rtx, rtx *, rtx *));
static rtx skip_copy_to_return_value	PARAMS ((rtx));
static rtx skip_use_of_return_value	PARAMS ((rtx, enum rtx_code));
static rtx skip_stack_adjustment	PARAMS ((rtx));
static rtx skip_pic_restore		PARAMS ((rtx));
static rtx skip_jump_insn		PARAMS ((rtx));
static int call_ends_block_p		PARAMS ((rtx, rtx));
static int uses_addressof		PARAMS ((rtx));
static int sequence_uses_addressof	PARAMS ((rtx));
static void purge_reg_equiv_notes	PARAMS ((void));
static void purge_mem_unchanging_flag	PARAMS ((rtx));

/* Examine a CALL_PLACEHOLDER pattern and determine where the call's
   return value is located.  P_HARD_RETURN receives the hard register
   that the function used; P_SOFT_RETURN receives the pseudo register
   that the sequence used.  Return non-zero if the values were located.  */

static int
identify_call_return_value (cp, p_hard_return, p_soft_return)
     rtx cp;
     rtx *p_hard_return, *p_soft_return;
{
  rtx insn, set, hard, soft;

  insn = XEXP (cp, 0);
  /* Search backward through the "normal" call sequence to the CALL insn.  */
  while (NEXT_INSN (insn))
    insn = NEXT_INSN (insn);
  while (GET_CODE (insn) != CALL_INSN)
    insn = PREV_INSN (insn);

  /* Assume the pattern is (set (dest) (call ...)), or that the first
     member of a parallel is.  This is the hard return register used
     by the function.  */
  if (GET_CODE (PATTERN (insn)) == SET
      && GET_CODE (SET_SRC (PATTERN (insn))) == CALL)
    hard = SET_DEST (PATTERN (insn));
  else if (GET_CODE (PATTERN (insn)) == PARALLEL
	   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
	   && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == CALL)
    hard = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
  else
    return 0;

  /* If we didn't get a single hard register (e.g. a parallel), give up.  */
  if (GET_CODE (hard) != REG)
    return 0;
    
  /* Stack adjustment done after call may appear here.  */
  insn = skip_stack_adjustment (insn);
  if (! insn)
    return 0;

  /* Restore of GP register may appear here.  */
  insn = skip_pic_restore (insn);
  if (! insn)
    return 0;

  /* If there's nothing after, there's no soft return value.  */
  insn = NEXT_INSN (insn);
  if (! insn)
    return 0;
  
  /* We're looking for a source of the hard return register.  */
  set = single_set (insn);
  if (! set || SET_SRC (set) != hard)
    return 0;

  soft = SET_DEST (set);
  insn = NEXT_INSN (insn);

  /* Allow this first destination to be copied to a second register,
     as might happen if the first register wasn't the particular pseudo
     we'd been expecting.  */
  if (insn
      && (set = single_set (insn)) != NULL_RTX
      && SET_SRC (set) == soft)
    {
      soft = SET_DEST (set);
      insn = NEXT_INSN (insn);
    }

  /* Don't fool with anything but pseudo registers.  */
  if (GET_CODE (soft) != REG || REGNO (soft) < FIRST_PSEUDO_REGISTER)
    return 0;

  /* This value must not be modified before the end of the sequence.  */
  if (reg_set_between_p (soft, insn, NULL_RTX))
    return 0;

  *p_hard_return = hard;
  *p_soft_return = soft;

  return 1;
}

/* If the first real insn after ORIG_INSN copies to this function's
   return value from RETVAL, then return the insn which performs the
   copy.  Otherwise return ORIG_INSN.  */

static rtx
skip_copy_to_return_value (orig_insn)
     rtx orig_insn;
{
  rtx insn, set = NULL_RTX;
  rtx hardret, softret;

  /* If there is no return value, we have nothing to do.  */
  if (! identify_call_return_value (PATTERN (orig_insn), &hardret, &softret))
    return orig_insn;

  insn = next_nonnote_insn (orig_insn);
  if (! insn)
    return orig_insn;

  set = single_set (insn);
  if (! set)
    return orig_insn;

  /* The destination must be the same as the called function's return
     value to ensure that any return value is put in the same place by the
     current function and the function we're calling. 

     Further, the source must be the same as the pseudo into which the
     called function's return value was copied.  Otherwise we're returning
     some other value.  */

#ifndef OUTGOING_REGNO
#define OUTGOING_REGNO(N) (N)
#endif

  if (SET_DEST (set) == current_function_return_rtx
      && REG_P (SET_DEST (set))
      && OUTGOING_REGNO (REGNO (SET_DEST (set))) == REGNO (hardret)
      && SET_SRC (set) == softret)
    return insn;

  /* It did not look like a copy of the return value, so return the
     same insn we were passed.  */
  return orig_insn;
}

/* If the first real insn after ORIG_INSN is a CODE of this function's return
   value, return insn.  Otherwise return ORIG_INSN.  */

static rtx
skip_use_of_return_value (orig_insn, code)
     rtx orig_insn;
     enum rtx_code code;
{
  rtx insn;

  insn = next_nonnote_insn (orig_insn);

  if (insn
      && GET_CODE (insn) == INSN
      && GET_CODE (PATTERN (insn)) == code
      && (XEXP (PATTERN (insn), 0) == current_function_return_rtx
	  || XEXP (PATTERN (insn), 0) == const0_rtx))
    return insn;

  return orig_insn;
}

/* If the first real insn after ORIG_INSN adjusts the stack pointer
   by a constant, return the insn with the stack pointer adjustment.
   Otherwise return ORIG_INSN.  */

static rtx
skip_stack_adjustment (orig_insn)
     rtx orig_insn;
{
  rtx insn, set = NULL_RTX;

  insn = next_nonnote_insn (orig_insn);

  if (insn)
    set = single_set (insn);

  if (insn
      && set
      && GET_CODE (SET_SRC (set)) == PLUS
      && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
      && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
      && SET_DEST (set) == stack_pointer_rtx)
    return insn;

  return orig_insn;
}

/* If the first real insn after ORIG_INSN sets the pic register,
   return it.  Otherwise return ORIG_INSN.  */

static rtx
skip_pic_restore (orig_insn)
     rtx orig_insn;
{
  rtx insn, set = NULL_RTX;

  insn = next_nonnote_insn (orig_insn);

  if (insn)
    set = single_set (insn);

  if (insn && set && SET_DEST (set) == pic_offset_table_rtx)
    return insn;

  return orig_insn;
}

/* If the first real insn after ORIG_INSN is a jump, return the JUMP_INSN.
   Otherwise return ORIG_INSN.  */

static rtx
skip_jump_insn (orig_insn)
     rtx orig_insn;
{
  rtx insn;

  insn = next_nonnote_insn (orig_insn);

  if (insn
      && GET_CODE (insn) == JUMP_INSN
      && any_uncondjump_p (insn))
    return insn;

  return orig_insn;
}

/* Using the above functions, see if INSN, skipping any of the above,
   goes all the way to END, the end of a basic block.  Return 1 if so.  */

static int
call_ends_block_p (insn, end)
     rtx insn;
     rtx end;
{
  /* END might be a note, so get the last nonnote insn of the block.  */
  end = next_nonnote_insn (PREV_INSN (end));

  /* If the call was the end of the block, then we're OK.  */
  if (insn == end)
    return 1;

  /* Skip over copying from the call's return value pseudo into
     this function's hard return register and if that's the end
     of the block, we're OK.  */
  insn = skip_copy_to_return_value (insn);
  if (insn == end)
    return 1;

  /* Skip any stack adjustment.  */
  insn = skip_stack_adjustment (insn);
  if (insn == end)
    return 1;

  /* Skip over a CLOBBER of the return value as a hard reg.  */
  insn = skip_use_of_return_value (insn, CLOBBER);
  if (insn == end)
    return 1;

  /* Skip over a USE of the return value (as a hard reg).  */
  insn = skip_use_of_return_value (insn, USE);
  if (insn == end)
    return 1;

  /* Skip over a JUMP_INSN at the end of the block.  If that doesn't end the
     block, the original CALL_INSN didn't.  */
  insn = skip_jump_insn (insn);
  return insn == end;
}

/* Scan the rtx X for ADDRESSOF expressions or
   current_function_internal_arg_pointer registers.
   Return nonzero if an ADDRESSOF or current_function_internal_arg_pointer
   is found outside of some MEM expression, else return zero.  */

static int
uses_addressof (x)
     rtx x;
{
  RTX_CODE code;
  int i, j;
  const char *fmt;

  if (x == NULL_RTX)
    return 0;

  code = GET_CODE (x);

  if (code == ADDRESSOF || x == current_function_internal_arg_pointer)
    return 1;

  if (code == MEM)
    return 0;

  /* Scan all subexpressions. */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
      if (*fmt == 'e')
	{
	  if (uses_addressof (XEXP (x, i)))
	    return 1;
	}
      else if (*fmt == 'E')
	{
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (uses_addressof (XVECEXP (x, i, j)))
	      return 1;
	}
    }
  return 0;
}

/* Scan the sequence of insns in SEQ to see if any have an ADDRESSOF
   rtl expression or current_function_internal_arg_pointer occurences
   not enclosed within a MEM.  If an ADDRESSOF expression or
   current_function_internal_arg_pointer is found, return nonzero, otherwise
   return zero.

   This function handles CALL_PLACEHOLDERs which contain multiple sequences
   of insns.  */

static int
sequence_uses_addressof (seq)
     rtx seq;
{
  rtx insn;

  for (insn = seq; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      {
	/* If this is a CALL_PLACEHOLDER, then recursively call ourselves
	   with each nonempty sequence attached to the CALL_PLACEHOLDER.  */
	if (GET_CODE (insn) == CALL_INSN
	    && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
	  {
	    if (XEXP (PATTERN (insn), 0) != NULL_RTX
		&& sequence_uses_addressof (XEXP (PATTERN (insn), 0)))
	      return 1;
	    if (XEXP (PATTERN (insn), 1) != NULL_RTX
		&& sequence_uses_addressof (XEXP (PATTERN (insn), 1)))
	      return 1;
	    if (XEXP (PATTERN (insn), 2) != NULL_RTX
		&& sequence_uses_addressof (XEXP (PATTERN (insn), 2)))
	      return 1;
	  }
	else if (uses_addressof (PATTERN (insn))
		 || (REG_NOTES (insn) && uses_addressof (REG_NOTES (insn))))
	  return 1;
      }
  return 0;
}

/* Remove all REG_EQUIV notes found in the insn chain.  */

static void
purge_reg_equiv_notes ()
{
  rtx insn;

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      while (1)
	{
	  rtx note = find_reg_note (insn, REG_EQUIV, 0);
	  if (note)
	    {
	      /* Remove the note and keep looking at the notes for
		 this insn.  */
	      remove_note (insn, note);
	      continue;
	    }
	  break;
	}
    }
}

/* Clear RTX_UNCHANGING_P flag of incoming argument MEMs.  */

static void
purge_mem_unchanging_flag (x)
     rtx x;
{
  RTX_CODE code;
  int i, j;
  const char *fmt;

  if (x == NULL_RTX)
    return;

  code = GET_CODE (x);

  if (code == MEM)
    {
      if (RTX_UNCHANGING_P (x)
	  && (XEXP (x, 0) == current_function_internal_arg_pointer
	      || (GET_CODE (XEXP (x, 0)) == PLUS
		  && XEXP (XEXP (x, 0), 0) ==
		     current_function_internal_arg_pointer
		  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
	RTX_UNCHANGING_P (x) = 0;
      return;
    }

  /* Scan all subexpressions. */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
      if (*fmt == 'e')
	purge_mem_unchanging_flag (XEXP (x, i));
      else if (*fmt == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  purge_mem_unchanging_flag (XVECEXP (x, i, j));
    }
}

/* Replace the CALL_PLACEHOLDER with one of its children.  INSN should be
   the CALL_PLACEHOLDER insn; USE tells which child to use.  */

void
replace_call_placeholder (insn, use)
     rtx insn;
     sibcall_use_t use;
{
  if (use == sibcall_use_tail_recursion)
    emit_insns_before (XEXP (PATTERN (insn), 2), insn);
  else if (use == sibcall_use_sibcall)
    emit_insns_before (XEXP (PATTERN (insn), 1), insn);
  else if (use == sibcall_use_normal)
    emit_insns_before (XEXP (PATTERN (insn), 0), insn);
  else
    abort();

  /* Turn off LABEL_PRESERVE_P for the tail recursion label if it
     exists.  We only had to set it long enough to keep the jump
     pass above from deleting it as unused.  */
  if (XEXP (PATTERN (insn), 3))
    LABEL_PRESERVE_P (XEXP (PATTERN (insn), 3)) = 0;
  
  /* "Delete" the placeholder insn. */
  PUT_CODE (insn, NOTE);
  NOTE_SOURCE_FILE (insn) = 0;
  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
}

/* Given a (possibly empty) set of potential sibling or tail recursion call
   sites, determine if optimization is possible.

   Potential sibling or tail recursion calls are marked with CALL_PLACEHOLDER
   insns.  The CALL_PLACEHOLDER insn holds chains of insns to implement a
   normal call, sibling call or tail recursive call.

   Replace the CALL_PLACEHOLDER with an appropriate insn chain.  */

void
optimize_sibling_and_tail_recursive_calls ()
{
  rtx insn, insns;
  basic_block alternate_exit = EXIT_BLOCK_PTR;
  int current_function_uses_addressof;
  int successful_sibling_call = 0;
  int replaced_call_placeholder = 0;
  edge e;

  insns = get_insns ();

  /* We do not perform these calls when flag_exceptions is true, so this
     is probably a NOP at the current time.  However, we may want to support
     sibling and tail recursion optimizations in the future, so let's plan
     ahead and find all the EH labels.  */
  find_exception_handler_labels ();

  /* Run a jump optimization pass to clean up the CFG.  We primarily want
     this to thread jumps so that it is obvious which blocks jump to the
     epilouge.  */
  jump_optimize_minimal (insns);

  /* We need cfg information to determine which blocks are succeeded
     only by the epilogue.  */
  find_basic_blocks (insns, max_reg_num (), 0);
  cleanup_cfg (insns);

  /* If there are no basic blocks, then there is nothing to do.  */
  if (n_basic_blocks == 0)
    return;

  /* Find the exit block.

     It is possible that we have blocks which can reach the exit block
     directly.  However, most of the time a block will jump (or fall into)
     N_BASIC_BLOCKS - 1, which in turn falls into the exit block.  */
  for (e = EXIT_BLOCK_PTR->pred;
       e && alternate_exit == EXIT_BLOCK_PTR;
       e = e->pred_next)
    {
      rtx insn;

      if (e->dest != EXIT_BLOCK_PTR || e->succ_next != NULL)
	continue;

      /* Walk forwards through the last normal block and see if it
	 does nothing except fall into the exit block.  */
      for (insn = BLOCK_HEAD (n_basic_blocks - 1);
	   insn;
	   insn = NEXT_INSN (insn))
	{
	  /* This should only happen once, at the start of this block.  */
	  if (GET_CODE (insn) == CODE_LABEL)
	    continue;

	  if (GET_CODE (insn) == NOTE)
	    continue;

	  if (GET_CODE (insn) == INSN
	      && GET_CODE (PATTERN (insn)) == USE)
	    continue;

	  break;
	}

      /* If INSN is zero, then the search walked all the way through the
	 block without hitting anything interesting.  This block is a
	 valid alternate exit block.  */
      if (insn == NULL)
	alternate_exit = e->src;
    }

  /* If the function uses ADDRESSOF, we can't (easily) determine
     at this point if the value will end up on the stack.  */
  current_function_uses_addressof = sequence_uses_addressof (insns);

  /* Walk the insn chain and find any CALL_PLACEHOLDER insns.  We need to
     select one of the insn sequences attached to each CALL_PLACEHOLDER.

     The different sequences represent different ways to implement the call,
     ie, tail recursion, sibling call or normal call.

     Since we do not create nested CALL_PLACEHOLDERs, the scan
     continues with the insn that was after a replaced CALL_PLACEHOLDER;
     we don't rescan the replacement insns.  */
  for (insn = insns; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) == CALL_INSN
	  && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
	{
	  int sibcall = (XEXP (PATTERN (insn), 1) != NULL_RTX);
	  int tailrecursion = (XEXP (PATTERN (insn), 2) != NULL_RTX);
	  basic_block call_block = BLOCK_FOR_INSN (insn);

	  /* alloca (until we have stack slot life analysis) inhibits
	     sibling call optimizations, but not tail recursion.
	     Similarly if we use varargs or stdarg since they implicitly
	     may take the address of an argument.  */
 	  if (current_function_calls_alloca
	      || current_function_varargs || current_function_stdarg)
	    sibcall = 0;

	  /* See if there are any reasons we can't perform either sibling or
	     tail call optimizations.  We must be careful with stack slots
	     which are live at potential optimization sites.  ?!? The first
	     test is overly conservative and should be replaced.  */
	  if (frame_offset
	      /* Can't take address of local var if used by recursive call.  */
	      || current_function_uses_addressof
	      /* Can't if more than one successor or single successor is not
		 exit block.  These two tests prevent tail call optimization
		 in the presense of active exception handlers.  */
	      || call_block->succ == NULL
	      || call_block->succ->succ_next != NULL
	      || (call_block->succ->dest != EXIT_BLOCK_PTR
		  && call_block->succ->dest != alternate_exit)
	      /* If this call doesn't end the block, there are operations at
		 the end of the block which we must execute after returning. */
	      || ! call_ends_block_p (insn, call_block->end))
	    sibcall = 0, tailrecursion = 0;

	  /* Select a set of insns to implement the call and emit them.
	     Tail recursion is the most efficient, so select it over
	     a tail/sibling call.  */
	  if (sibcall)
	    successful_sibling_call = 1;

	  replaced_call_placeholder = 1;
	  replace_call_placeholder (insn, 
				    tailrecursion != 0 
				      ? sibcall_use_tail_recursion
				      : sibcall != 0
					 ? sibcall_use_sibcall
					 : sibcall_use_normal);
	}
    }

  if (successful_sibling_call)
    {
      rtx insn;

      /* A sibling call sequence invalidates any REG_EQUIV notes made for
	 this function's incoming arguments. 

	 At the start of RTL generation we know the only REG_EQUIV notes
	 in the rtl chain are those for incoming arguments, so we can safely
	 flush any REG_EQUIV note. 

	 This is (slight) overkill.  We could keep track of the highest
	 argument we clobber and be more selective in removing notes, but it
	 does not seem to be worth the effort.  */
      purge_reg_equiv_notes ();

      /* A sibling call sequence also may invalidate RTX_UNCHANGING_P
	 flag of some incoming arguments MEM RTLs, because it can write into
	 those slots.  We clear all those bits now.
	 
	 This is (slight) overkill, we could keep track of which arguments
	 we actually write into.  */
      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
	{
	  if (GET_CODE (insn) == NOTE)
	    {
	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
		break;
	    }
	  else if (INSN_P (insn))
	    purge_mem_unchanging_flag (PATTERN (insn));
	}
    }

  /* There may have been NOTE_INSN_BLOCK_{BEGIN,END} notes in the 
     CALL_PLACEHOLDER alternatives that we didn't emit.  Rebuild the
     lexical block tree to correspond to the notes that still exist.  */
  if (replaced_call_placeholder)
    reorder_blocks ();

  /* This information will be invalid after inline expansion.  Kill it now.  */
  free_basic_block_vars (0);
}