1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
/* Template class for Dijkstra's algorithm on directed graphs.
Copyright (C) 2019-2024 Free Software Foundation, Inc.
Contributed by David Malcolm <dmalcolm@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_SHORTEST_PATHS_H
#define GCC_SHORTEST_PATHS_H
#include "timevar.h"
enum shortest_path_sense
{
/* Find the shortest path from the given origin node to each
node in the graph. */
SPS_FROM_GIVEN_ORIGIN,
/* Find the shortest path from each node in the graph to the
given target node. */
SPS_TO_GIVEN_TARGET
};
/* A record of the shortest path for each node relative to a special
"given node", either:
SPS_FROM_GIVEN_ORIGIN:
from the given origin node to each node in a graph, or
SPS_TO_GIVEN_TARGET:
from each node in a graph to the given target node.
The constructor runs Dijkstra's algorithm, and the results are
stored in this class. */
template <typename GraphTraits, typename Path_t>
class shortest_paths
{
public:
typedef typename GraphTraits::graph_t graph_t;
typedef typename GraphTraits::node_t node_t;
typedef typename GraphTraits::edge_t edge_t;
typedef Path_t path_t;
shortest_paths (const graph_t &graph, const node_t *given_node,
enum shortest_path_sense sense);
path_t get_shortest_path (const node_t *other_node) const;
int get_shortest_distance (const node_t *other_node) const;
private:
const graph_t &m_graph;
enum shortest_path_sense m_sense;
/* For each node (by index), the minimal distance between that node
and the given node (with direction depending on m_sense). */
auto_vec<int> m_dist;
/* For each node (by index):
SPS_FROM_GIVEN_ORIGIN:
the previous edge in the shortest path from the origin,
SPS_TO_GIVEN_TARGET:
the next edge in the shortest path to the target. */
auto_vec<const edge_t *> m_best_edge;
};
/* shortest_paths's constructor.
Use Dijkstra's algorithm relative to GIVEN_NODE to populate m_dist and
m_best_edge with enough information to be able to generate Path_t instances
to give the shortest path...
SPS_FROM_GIVEN_ORIGIN: to each node in a graph from the origin node, or
SPS_TO_GIVEN_TARGET: from each node in a graph to the target node. */
template <typename GraphTraits, typename Path_t>
inline
shortest_paths<GraphTraits, Path_t>::
shortest_paths (const graph_t &graph,
const node_t *given_node,
enum shortest_path_sense sense)
: m_graph (graph),
m_sense (sense),
m_dist (graph.m_nodes.length ()),
m_best_edge (graph.m_nodes.length ())
{
auto_timevar tv (TV_ANALYZER_SHORTEST_PATHS);
auto_vec<int> queue (graph.m_nodes.length ());
for (unsigned i = 0; i < graph.m_nodes.length (); i++)
{
m_dist.quick_push (INT_MAX);
m_best_edge.quick_push (NULL);
queue.quick_push (i);
}
m_dist[given_node->m_index] = 0;
while (queue.length () > 0)
{
/* Get minimal distance in queue.
FIXME: this is O(N^2); replace with a priority queue. */
int idx_with_min_dist = -1;
int idx_in_queue_with_min_dist = -1;
int min_dist = INT_MAX;
for (unsigned i = 0; i < queue.length (); i++)
{
int idx = queue[i];
if (m_dist[queue[i]] < min_dist)
{
min_dist = m_dist[idx];
idx_with_min_dist = idx;
idx_in_queue_with_min_dist = i;
}
}
if (idx_with_min_dist == -1)
break;
gcc_assert (idx_in_queue_with_min_dist != -1);
// FIXME: this is confusing: there are two indices here
queue.unordered_remove (idx_in_queue_with_min_dist);
node_t *n
= static_cast <node_t *> (m_graph.m_nodes[idx_with_min_dist]);
if (m_sense == SPS_FROM_GIVEN_ORIGIN)
{
int i;
edge_t *succ;
FOR_EACH_VEC_ELT (n->m_succs, i, succ)
{
// TODO: only for dest still in queue
node_t *dest = succ->m_dest;
int alt = m_dist[n->m_index] + 1;
if (alt < m_dist[dest->m_index])
{
m_dist[dest->m_index] = alt;
m_best_edge[dest->m_index] = succ;
}
}
}
else
{
int i;
edge_t *pred;
FOR_EACH_VEC_ELT (n->m_preds, i, pred)
{
// TODO: only for dest still in queue
node_t *src = pred->m_src;
int alt = m_dist[n->m_index] + 1;
if (alt < m_dist[src->m_index])
{
m_dist[src->m_index] = alt;
m_best_edge[src->m_index] = pred;
}
}
}
}
}
/* Generate an Path_t instance giving the shortest path between OTHER_NODE
and the given node.
SPS_FROM_GIVEN_ORIGIN: shortest path from given origin node to OTHER_NODE
SPS_TO_GIVEN_TARGET: shortest path from OTHER_NODE to given target node.
If no such path exists, return an empty path. */
template <typename GraphTraits, typename Path_t>
inline Path_t
shortest_paths<GraphTraits, Path_t>::
get_shortest_path (const node_t *other_node) const
{
Path_t result;
while (m_best_edge[other_node->m_index])
{
result.m_edges.safe_push (m_best_edge[other_node->m_index]);
if (m_sense == SPS_FROM_GIVEN_ORIGIN)
other_node = m_best_edge[other_node->m_index]->m_src;
else
other_node = m_best_edge[other_node->m_index]->m_dest;
}
if (m_sense == SPS_FROM_GIVEN_ORIGIN)
result.m_edges.reverse ();
return result;
}
/* Get the shortest distance...
SPS_FROM_GIVEN_ORIGIN: ...from given origin node to OTHER_NODE
SPS_TO_GIVEN_TARGET: ...from OTHER_NODE to given target node. */
template <typename GraphTraits, typename Path_t>
inline int
shortest_paths<GraphTraits, Path_t>::
get_shortest_distance (const node_t *other_node) const
{
return m_dist[other_node->m_index];
}
#endif /* GCC_SHORTEST_PATHS_H */
|