1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
// Copyright (C) 2020-2023 Free Software Foundation, Inc.
// This file is part of GCC.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
#include "optional.h"
#include "rust-ast-full.h"
#include "rust-late-name-resolver-2.0.h"
#include "rust-default-resolver.h"
#include "rust-path.h"
#include "rust-tyty.h"
#include "rust-hir-type-check.h"
namespace Rust {
namespace Resolver2_0 {
Late::Late (NameResolutionContext &ctx) : DefaultResolver (ctx) {}
void
Late::setup_builtin_types ()
{
auto next_id = [this] () { return ctx.mappings.get_next_hir_id (); };
static const std::pair<std::string, TyTy::BaseType *> builtins[] = {
{"u8", new TyTy::UintType (next_id (), TyTy::UintType::U8)},
{"u16", new TyTy::UintType (next_id (), TyTy::UintType::U16)},
{"u32", new TyTy::UintType (next_id (), TyTy::UintType::U32)},
{"u64", new TyTy::UintType (next_id (), TyTy::UintType::U64)},
{"u128", new TyTy::UintType (next_id (), TyTy::UintType::U128)},
{"i8", new TyTy::IntType (next_id (), TyTy::IntType::I8)},
{"i16", new TyTy::IntType (next_id (), TyTy::IntType::I16)},
{"i32", new TyTy::IntType (next_id (), TyTy::IntType::I32)},
{"i64", new TyTy::IntType (next_id (), TyTy::IntType::I64)},
{"i128", new TyTy::IntType (next_id (), TyTy::IntType::I128)},
{"f32", new TyTy::FloatType (next_id (), TyTy::FloatType::F32)},
{"f64", new TyTy::FloatType (next_id (), TyTy::FloatType::F64)},
{"usize", new TyTy::USizeType (next_id ())},
{"isize", new TyTy::ISizeType (next_id ())},
// missing char, str, never, ()
// does name resolution play a part for this? or is it all at typechecking?
// yeah it seems to be name resolution as well, which makes sense
};
for (const auto &builtin : builtins)
{
// we should be able to use `insert_at_root` or `insert` here, since we're
// at the root :) hopefully!
auto ok
= ctx.types.insert (builtin.first, builtin.second->get_ref ()
/* FIXME: Invalid! This returns an *HirId* */);
rust_assert (ok);
}
}
void
Late::go (AST::Crate &crate)
{
setup_builtin_types ();
for (auto &item : crate.items)
item->accept_vis (*this);
}
void
Late::new_label (Identifier name, NodeId id)
{
// labels can always shadow, so `insert` should never fail. if it does, we're
// in big trouble!
auto ok = ctx.labels.insert (name, id);
rust_assert (ok);
}
void
Late::visit (AST::LetStmt &let)
{
// so we don't need that method
DefaultResolver::visit (let);
// how do we deal with the fact that `let a = blipbloup` should look for a
// label and cannot go through function ribs, but `let a = blipbloup()` can?
// how do we insert ribs here, and only pop them when we exit the current
// function?
// keep a list of ribs to pop when a scope exits? so only for blocks?
// how do we pop ribs that need to be popped not in order?
// I think it's not important if we have shadowing, correct?
// if we have shadowing, it should work! we'll see
// ctx.insert(Identifier name, NodeId id, Namespace ns)
// ctx.scoped (Rib::Kind::Normal /* FIXME: Is that valid? */,
// Namespace::Labels,
// let.get_node_id (), [] () {});
}
void
Late::visit (AST::IdentifierPattern &identifier)
{
// do we insert in labels or in values
// but values does not allow shadowing... since functions cannot shadow
// do we insert functions in labels as well?
new_label (identifier.get_ident (), identifier.get_node_id ());
}
void
Late::visit (AST::IdentifierExpr &expr)
{
// TODO: same thing as visit(PathInExpression) here?
tl::optional<NodeId> resolved = tl::nullopt;
auto label = ctx.labels.get (expr.get_ident ());
auto value = ctx.values.get (expr.get_ident ());
if (label)
resolved = label;
else if (value)
resolved = value;
// TODO: else emit error?
ctx.map_usage (expr.get_node_id (), *resolved);
// in the old resolver, resolutions are kept in the resolver, not the mappings
// :/ how do we deal with that?
// ctx.mappings.insert_resolved_name(expr, resolved);
// For empty types, do we perform a lookup in ctx.types or should the
// toplevel instead insert a name in ctx.values? (like it currently does)
}
void
Late::visit (AST::PathInExpression &expr)
{
// TODO: How do we have a nice error with `can't capture dynamic environment
// in a function item` error here?
// do we emit it in `get<Namespace::Labels>`?
auto label = ctx.labels.resolve_path (expr.get_segments ());
auto value = ctx.values.resolve_path (expr.get_segments ());
}
void
Late::visit (AST::TypePath &type)
{
// should we add type path resolution in `ForeverStack` directly? Since it's
// quite more complicated.
// maybe we can overload `resolve_path<Namespace::Types>` to only do
// typepath-like path resolution? that sounds good
auto resolved = ctx.types.get (type.get_segments ().back ()->as_string ());
ctx.map_usage (type.get_node_id (), *resolved);
}
} // namespace Resolver2_0
} // namespace Rust
|