1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
|
/* Analyze RTL for GNU compiler.
Copyright (C) 1987-2023 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "rtlanal.h"
#include "tree.h"
#include "predict.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
#include "recog.h"
#include "addresses.h"
#include "rtl-iter.h"
#include "hard-reg-set.h"
#include "function-abi.h"
/* Forward declarations */
static void set_of_1 (rtx, const_rtx, void *);
static bool covers_regno_p (const_rtx, unsigned int);
static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
static bool computed_jump_p_1 (const_rtx);
static void parms_set (rtx, const_rtx, void *);
static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
const_rtx, machine_mode,
unsigned HOST_WIDE_INT);
static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
const_rtx, machine_mode,
unsigned HOST_WIDE_INT);
static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
const_rtx, machine_mode,
unsigned int);
static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
const_rtx, machine_mode,
unsigned int);
rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
/* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
SIGN_EXTEND then while narrowing we also have to enforce the
representation and sign-extend the value to mode DESTINATION_REP.
If the value is already sign-extended to DESTINATION_REP mode we
can just switch to DESTINATION mode on it. For each pair of
integral modes SOURCE and DESTINATION, when truncating from SOURCE
to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
contains the number of high-order bits in SOURCE that have to be
copies of the sign-bit so that we can do this mode-switch to
DESTINATION. */
static unsigned int
num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
/* Store X into index I of ARRAY. ARRAY is known to have at least I
elements. Return the new base of ARRAY. */
template <typename T>
typename T::value_type *
generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
value_type *base,
size_t i, value_type x)
{
if (base == array.stack)
{
if (i < LOCAL_ELEMS)
{
base[i] = x;
return base;
}
gcc_checking_assert (i == LOCAL_ELEMS);
/* A previous iteration might also have moved from the stack to the
heap, in which case the heap array will already be big enough. */
if (vec_safe_length (array.heap) <= i)
vec_safe_grow (array.heap, i + 1, true);
base = array.heap->address ();
memcpy (base, array.stack, sizeof (array.stack));
base[LOCAL_ELEMS] = x;
return base;
}
unsigned int length = array.heap->length ();
if (length > i)
{
gcc_checking_assert (base == array.heap->address ());
base[i] = x;
return base;
}
else
{
gcc_checking_assert (i == length);
vec_safe_push (array.heap, x);
return array.heap->address ();
}
}
/* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
number of elements added to the worklist. */
template <typename T>
size_t
generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
value_type *base,
size_t end, rtx_type x)
{
enum rtx_code code = GET_CODE (x);
const char *format = GET_RTX_FORMAT (code);
size_t orig_end = end;
if (UNLIKELY (INSN_P (x)))
{
/* Put the pattern at the top of the queue, since that's what
we're likely to want most. It also allows for the SEQUENCE
code below. */
for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
if (format[i] == 'e')
{
value_type subx = T::get_value (x->u.fld[i].rt_rtx);
if (LIKELY (end < LOCAL_ELEMS))
base[end++] = subx;
else
base = add_single_to_queue (array, base, end++, subx);
}
}
else
for (int i = 0; format[i]; ++i)
if (format[i] == 'e')
{
value_type subx = T::get_value (x->u.fld[i].rt_rtx);
if (LIKELY (end < LOCAL_ELEMS))
base[end++] = subx;
else
base = add_single_to_queue (array, base, end++, subx);
}
else if (format[i] == 'E')
{
unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
rtx *vec = x->u.fld[i].rt_rtvec->elem;
if (LIKELY (end + length <= LOCAL_ELEMS))
for (unsigned int j = 0; j < length; j++)
base[end++] = T::get_value (vec[j]);
else
for (unsigned int j = 0; j < length; j++)
base = add_single_to_queue (array, base, end++,
T::get_value (vec[j]));
if (code == SEQUENCE && end == length)
/* If the subrtxes of the sequence fill the entire array then
we know that no other parts of a containing insn are queued.
The caller is therefore iterating over the sequence as a
PATTERN (...), so we also want the patterns of the
subinstructions. */
for (unsigned int j = 0; j < length; j++)
{
typename T::rtx_type x = T::get_rtx (base[j]);
if (INSN_P (x))
base[j] = T::get_value (PATTERN (x));
}
}
return end - orig_end;
}
template <typename T>
void
generic_subrtx_iterator <T>::free_array (array_type &array)
{
vec_free (array.heap);
}
template <typename T>
const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
template class generic_subrtx_iterator <const_rtx_accessor>;
template class generic_subrtx_iterator <rtx_var_accessor>;
template class generic_subrtx_iterator <rtx_ptr_accessor>;
/* Return true if the value of X is unstable
(would be different at a different point in the program).
The frame pointer, arg pointer, etc. are considered stable
(within one function) and so is anything marked `unchanging'. */
bool
rtx_unstable_p (const_rtx x)
{
const RTX_CODE code = GET_CODE (x);
int i;
const char *fmt;
switch (code)
{
case MEM:
return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
case CONST:
CASE_CONST_ANY:
case SYMBOL_REF:
case LABEL_REF:
return false;
case REG:
/* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
/* The arg pointer varies if it is not a fixed register. */
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
return false;
/* ??? When call-clobbered, the value is stable modulo the restore
that must happen after a call. This currently screws up local-alloc
into believing that the restore is not needed. */
if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
return false;
return true;
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return true;
/* Fall through. */
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (rtx_unstable_p (XEXP (x, i)))
return true;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_unstable_p (XVECEXP (x, i, j)))
return true;
}
return false;
}
/* Return true if X has a value that can vary even between two
executions of the program. false means X can be compared reliably
against certain constants or near-constants.
FOR_ALIAS is nonzero if we are called from alias analysis; if it is
zero, we are slightly more conservative.
The frame pointer and the arg pointer are considered constant. */
bool
rtx_varies_p (const_rtx x, bool for_alias)
{
RTX_CODE code;
int i;
const char *fmt;
if (!x)
return false;
code = GET_CODE (x);
switch (code)
{
case MEM:
return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
case CONST:
CASE_CONST_ANY:
case SYMBOL_REF:
case LABEL_REF:
return false;
case REG:
/* Note that we have to test for the actual rtx used for the frame
and arg pointers and not just the register number in case we have
eliminated the frame and/or arg pointer and are using it
for pseudos. */
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
/* The arg pointer varies if it is not a fixed register. */
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
return false;
if (x == pic_offset_table_rtx
/* ??? When call-clobbered, the value is stable modulo the restore
that must happen after a call. This currently screws up
local-alloc into believing that the restore is not needed, so we
must return 0 only if we are called from alias analysis. */
&& (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
return false;
return true;
case LO_SUM:
/* The operand 0 of a LO_SUM is considered constant
(in fact it is related specifically to operand 1)
during alias analysis. */
return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
|| rtx_varies_p (XEXP (x, 1), for_alias);
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return true;
/* Fall through. */
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (rtx_varies_p (XEXP (x, i), for_alias))
return true;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
return true;
}
return false;
}
/* Compute an approximation for the offset between the register
FROM and TO for the current function, as it was at the start
of the routine. */
static poly_int64
get_initial_register_offset (int from, int to)
{
static const struct elim_table_t
{
const int from;
const int to;
} table[] = ELIMINABLE_REGS;
poly_int64 offset1, offset2;
unsigned int i, j;
if (to == from)
return 0;
/* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
is completed, but we need to give at least an estimate for the stack
pointer based on the frame size. */
if (!epilogue_completed)
{
offset1 = crtl->outgoing_args_size + get_frame_size ();
#if !STACK_GROWS_DOWNWARD
offset1 = - offset1;
#endif
if (to == STACK_POINTER_REGNUM)
return offset1;
else if (from == STACK_POINTER_REGNUM)
return - offset1;
else
return 0;
}
for (i = 0; i < ARRAY_SIZE (table); i++)
if (table[i].from == from)
{
if (table[i].to == to)
{
INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
offset1);
return offset1;
}
for (j = 0; j < ARRAY_SIZE (table); j++)
{
if (table[j].to == to
&& table[j].from == table[i].to)
{
INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
offset1);
INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
offset2);
return offset1 + offset2;
}
if (table[j].from == to
&& table[j].to == table[i].to)
{
INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
offset1);
INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
offset2);
return offset1 - offset2;
}
}
}
else if (table[i].to == from)
{
if (table[i].from == to)
{
INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
offset1);
return - offset1;
}
for (j = 0; j < ARRAY_SIZE (table); j++)
{
if (table[j].to == to
&& table[j].from == table[i].from)
{
INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
offset1);
INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
offset2);
return - offset1 + offset2;
}
if (table[j].from == to
&& table[j].to == table[i].from)
{
INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
offset1);
INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
offset2);
return - offset1 - offset2;
}
}
}
/* If the requested register combination was not found,
try a different more simple combination. */
if (from == ARG_POINTER_REGNUM)
return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
else if (to == ARG_POINTER_REGNUM)
return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
else if (from == HARD_FRAME_POINTER_REGNUM)
return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
else if (to == HARD_FRAME_POINTER_REGNUM)
return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
else
return 0;
}
/* Return true if the use of X+OFFSET as an address in a MEM with SIZE
bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
UNALIGNED_MEMS controls whether true is returned for unaligned memory
references on strict alignment machines. */
static bool
rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
machine_mode mode, bool unaligned_mems)
{
enum rtx_code code = GET_CODE (x);
gcc_checking_assert (mode == BLKmode
|| mode == VOIDmode
|| known_size_p (size));
poly_int64 const_x1;
/* The offset must be a multiple of the mode size if we are considering
unaligned memory references on strict alignment machines. */
if (STRICT_ALIGNMENT
&& unaligned_mems
&& mode != BLKmode
&& mode != VOIDmode)
{
poly_int64 actual_offset = offset;
#ifdef SPARC_STACK_BOUNDARY_HACK
/* ??? The SPARC port may claim a STACK_BOUNDARY higher than
the real alignment of %sp. However, when it does this, the
alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
if (SPARC_STACK_BOUNDARY_HACK
&& (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
actual_offset -= STACK_POINTER_OFFSET;
#endif
if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
return true;
}
switch (code)
{
case SYMBOL_REF:
if (SYMBOL_REF_WEAK (x))
return true;
if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
{
tree decl;
poly_int64 decl_size;
if (maybe_lt (offset, 0))
return true;
if (!known_size_p (size))
return maybe_ne (offset, 0);
/* If the size of the access or of the symbol is unknown,
assume the worst. */
decl = SYMBOL_REF_DECL (x);
/* Else check that the access is in bounds. TODO: restructure
expr_size/tree_expr_size/int_expr_size and just use the latter. */
if (!decl)
decl_size = -1;
else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
{
if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
decl_size = -1;
}
else if (TREE_CODE (decl) == STRING_CST)
decl_size = TREE_STRING_LENGTH (decl);
else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
decl_size = int_size_in_bytes (TREE_TYPE (decl));
else
decl_size = -1;
return (!known_size_p (decl_size) || known_eq (decl_size, 0)
? maybe_ne (offset, 0)
: !known_subrange_p (offset, size, 0, decl_size));
}
return false;
case LABEL_REF:
return false;
case REG:
/* Stack references are assumed not to trap, but we need to deal with
nonsensical offsets. */
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
|| x == stack_pointer_rtx
/* The arg pointer varies if it is not a fixed register. */
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
{
#ifdef RED_ZONE_SIZE
poly_int64 red_zone_size = RED_ZONE_SIZE;
#else
poly_int64 red_zone_size = 0;
#endif
poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
poly_int64 low_bound, high_bound;
if (!known_size_p (size))
return true;
if (x == frame_pointer_rtx)
{
if (FRAME_GROWS_DOWNWARD)
{
high_bound = targetm.starting_frame_offset ();
low_bound = high_bound - get_frame_size ();
}
else
{
low_bound = targetm.starting_frame_offset ();
high_bound = low_bound + get_frame_size ();
}
}
else if (x == hard_frame_pointer_rtx)
{
poly_int64 sp_offset
= get_initial_register_offset (STACK_POINTER_REGNUM,
HARD_FRAME_POINTER_REGNUM);
poly_int64 ap_offset
= get_initial_register_offset (ARG_POINTER_REGNUM,
HARD_FRAME_POINTER_REGNUM);
#if STACK_GROWS_DOWNWARD
low_bound = sp_offset - red_zone_size - stack_boundary;
high_bound = ap_offset
+ FIRST_PARM_OFFSET (current_function_decl)
#if !ARGS_GROW_DOWNWARD
+ crtl->args.size
#endif
+ stack_boundary;
#else
high_bound = sp_offset + red_zone_size + stack_boundary;
low_bound = ap_offset
+ FIRST_PARM_OFFSET (current_function_decl)
#if ARGS_GROW_DOWNWARD
- crtl->args.size
#endif
- stack_boundary;
#endif
}
else if (x == stack_pointer_rtx)
{
poly_int64 ap_offset
= get_initial_register_offset (ARG_POINTER_REGNUM,
STACK_POINTER_REGNUM);
#if STACK_GROWS_DOWNWARD
low_bound = - red_zone_size - stack_boundary;
high_bound = ap_offset
+ FIRST_PARM_OFFSET (current_function_decl)
#if !ARGS_GROW_DOWNWARD
+ crtl->args.size
#endif
+ stack_boundary;
#else
high_bound = red_zone_size + stack_boundary;
low_bound = ap_offset
+ FIRST_PARM_OFFSET (current_function_decl)
#if ARGS_GROW_DOWNWARD
- crtl->args.size
#endif
- stack_boundary;
#endif
}
else
{
/* We assume that accesses are safe to at least the
next stack boundary.
Examples are varargs and __builtin_return_address. */
#if ARGS_GROW_DOWNWARD
high_bound = FIRST_PARM_OFFSET (current_function_decl)
+ stack_boundary;
low_bound = FIRST_PARM_OFFSET (current_function_decl)
- crtl->args.size - stack_boundary;
#else
low_bound = FIRST_PARM_OFFSET (current_function_decl)
- stack_boundary;
high_bound = FIRST_PARM_OFFSET (current_function_decl)
+ crtl->args.size + stack_boundary;
#endif
}
if (known_ge (offset, low_bound)
&& known_le (offset, high_bound - size))
return false;
return true;
}
/* All of the virtual frame registers are stack references. */
if (VIRTUAL_REGISTER_P (x))
return false;
return true;
case CONST:
return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
mode, unaligned_mems);
case PLUS:
/* An address is assumed not to trap if:
- it is the pic register plus a const unspec without offset. */
if (XEXP (x, 0) == pic_offset_table_rtx
&& GET_CODE (XEXP (x, 1)) == CONST
&& GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
&& known_eq (offset, 0))
return false;
/* - or it is an address that can't trap plus a constant integer. */
if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
&& !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
size, mode, unaligned_mems))
return false;
return true;
case LO_SUM:
case PRE_MODIFY:
return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
mode, unaligned_mems);
case PRE_DEC:
case PRE_INC:
case POST_DEC:
case POST_INC:
case POST_MODIFY:
return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
mode, unaligned_mems);
default:
break;
}
/* If it isn't one of the case above, it can cause a trap. */
return true;
}
/* Return true if the use of X as an address in a MEM can cause a trap. */
bool
rtx_addr_can_trap_p (const_rtx x)
{
return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
}
/* Return true if X contains a MEM subrtx. */
bool
contains_mem_rtx_p (rtx x)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, ALL)
if (MEM_P (*iter))
return true;
return false;
}
/* Return true if X is an address that is known to not be zero. */
bool
nonzero_address_p (const_rtx x)
{
const enum rtx_code code = GET_CODE (x);
switch (code)
{
case SYMBOL_REF:
return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
case LABEL_REF:
return true;
case REG:
/* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
|| x == stack_pointer_rtx
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
return true;
/* All of the virtual frame registers are stack references. */
if (VIRTUAL_REGISTER_P (x))
return true;
return false;
case CONST:
return nonzero_address_p (XEXP (x, 0));
case PLUS:
/* Handle PIC references. */
if (XEXP (x, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x, 1)))
return true;
return false;
case PRE_MODIFY:
/* Similar to the above; allow positive offsets. Further, since
auto-inc is only allowed in memories, the register must be a
pointer. */
if (CONST_INT_P (XEXP (x, 1))
&& INTVAL (XEXP (x, 1)) > 0)
return true;
return nonzero_address_p (XEXP (x, 0));
case PRE_INC:
/* Similarly. Further, the offset is always positive. */
return true;
case PRE_DEC:
case POST_DEC:
case POST_INC:
case POST_MODIFY:
return nonzero_address_p (XEXP (x, 0));
case LO_SUM:
return nonzero_address_p (XEXP (x, 1));
default:
break;
}
/* If it isn't one of the case above, might be zero. */
return false;
}
/* Return true if X refers to a memory location whose address
cannot be compared reliably with constant addresses,
or if X refers to a BLKmode memory object.
FOR_ALIAS is nonzero if we are called from alias analysis; if it is
zero, we are slightly more conservative. */
bool
rtx_addr_varies_p (const_rtx x, bool for_alias)
{
enum rtx_code code;
int i;
const char *fmt;
if (x == 0)
return false;
code = GET_CODE (x);
if (code == MEM)
return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (rtx_addr_varies_p (XEXP (x, i), for_alias))
return true;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
return true;
}
return false;
}
/* Return the CALL in X if there is one. */
rtx
get_call_rtx_from (const rtx_insn *insn)
{
rtx x = PATTERN (insn);
if (GET_CODE (x) == PARALLEL)
x = XVECEXP (x, 0, 0);
if (GET_CODE (x) == SET)
x = SET_SRC (x);
if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
return x;
return NULL_RTX;
}
/* Get the declaration of the function called by INSN. */
tree
get_call_fndecl (const rtx_insn *insn)
{
rtx note, datum;
note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
if (note == NULL_RTX)
return NULL_TREE;
datum = XEXP (note, 0);
if (datum != NULL_RTX)
return SYMBOL_REF_DECL (datum);
return NULL_TREE;
}
/* Return the value of the integer term in X, if one is apparent;
otherwise return 0.
Only obvious integer terms are detected.
This is used in cse.cc with the `related_value' field. */
HOST_WIDE_INT
get_integer_term (const_rtx x)
{
if (GET_CODE (x) == CONST)
x = XEXP (x, 0);
if (GET_CODE (x) == MINUS
&& CONST_INT_P (XEXP (x, 1)))
return - INTVAL (XEXP (x, 1));
if (GET_CODE (x) == PLUS
&& CONST_INT_P (XEXP (x, 1)))
return INTVAL (XEXP (x, 1));
return 0;
}
/* If X is a constant, return the value sans apparent integer term;
otherwise return 0.
Only obvious integer terms are detected. */
rtx
get_related_value (const_rtx x)
{
if (GET_CODE (x) != CONST)
return 0;
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS
&& CONST_INT_P (XEXP (x, 1)))
return XEXP (x, 0);
else if (GET_CODE (x) == MINUS
&& CONST_INT_P (XEXP (x, 1)))
return XEXP (x, 0);
return 0;
}
/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
to somewhere in the same object or object_block as SYMBOL. */
bool
offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
{
tree decl;
if (GET_CODE (symbol) != SYMBOL_REF)
return false;
if (offset == 0)
return true;
if (offset > 0)
{
if (CONSTANT_POOL_ADDRESS_P (symbol)
&& offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
return true;
decl = SYMBOL_REF_DECL (symbol);
if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
return true;
}
if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
&& SYMBOL_REF_BLOCK (symbol)
&& SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
&& ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
< (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
return true;
return false;
}
/* Split X into a base and a constant offset, storing them in *BASE_OUT
and *OFFSET_OUT respectively. */
void
split_const (rtx x, rtx *base_out, rtx *offset_out)
{
if (GET_CODE (x) == CONST)
{
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
{
*base_out = XEXP (x, 0);
*offset_out = XEXP (x, 1);
return;
}
}
*base_out = x;
*offset_out = const0_rtx;
}
/* Express integer value X as some value Y plus a polynomial offset,
where Y is either const0_rtx, X or something within X (as opposed
to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
rtx
strip_offset (rtx x, poly_int64_pod *offset_out)
{
rtx base = const0_rtx;
rtx test = x;
if (GET_CODE (test) == CONST)
test = XEXP (test, 0);
if (GET_CODE (test) == PLUS)
{
base = XEXP (test, 0);
test = XEXP (test, 1);
}
if (poly_int_rtx_p (test, offset_out))
return base;
*offset_out = 0;
return x;
}
/* Return the argument size in REG_ARGS_SIZE note X. */
poly_int64
get_args_size (const_rtx x)
{
gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
return rtx_to_poly_int64 (XEXP (x, 0));
}
/* Return the number of places FIND appears within X. If COUNT_DEST is
zero, we do not count occurrences inside the destination of a SET. */
int
count_occurrences (const_rtx x, const_rtx find, int count_dest)
{
int i, j;
enum rtx_code code;
const char *format_ptr;
int count;
if (x == find)
return 1;
code = GET_CODE (x);
switch (code)
{
case REG:
CASE_CONST_ANY:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
return 0;
case EXPR_LIST:
count = count_occurrences (XEXP (x, 0), find, count_dest);
if (XEXP (x, 1))
count += count_occurrences (XEXP (x, 1), find, count_dest);
return count;
case MEM:
if (MEM_P (find) && rtx_equal_p (x, find))
return 1;
break;
case SET:
if (SET_DEST (x) == find && ! count_dest)
return count_occurrences (SET_SRC (x), find, count_dest);
break;
default:
break;
}
format_ptr = GET_RTX_FORMAT (code);
count = 0;
for (i = 0; i < GET_RTX_LENGTH (code); i++)
{
switch (*format_ptr++)
{
case 'e':
count += count_occurrences (XEXP (x, i), find, count_dest);
break;
case 'E':
for (j = 0; j < XVECLEN (x, i); j++)
count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
break;
}
}
return count;
}
/* Return TRUE if OP is a register or subreg of a register that
holds an unsigned quantity. Otherwise, return FALSE. */
bool
unsigned_reg_p (rtx op)
{
if (REG_P (op)
&& REG_EXPR (op)
&& TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
return true;
if (GET_CODE (op) == SUBREG
&& SUBREG_PROMOTED_SIGN (op))
return true;
return false;
}
/* Return true if register REG appears somewhere within IN.
Also works if REG is not a register; in this case it checks
for a subexpression of IN that is Lisp "equal" to REG. */
bool
reg_mentioned_p (const_rtx reg, const_rtx in)
{
const char *fmt;
int i;
enum rtx_code code;
if (in == 0)
return false;
if (reg == in)
return true;
if (GET_CODE (in) == LABEL_REF)
return reg == label_ref_label (in);
code = GET_CODE (in);
switch (code)
{
/* Compare registers by number. */
case REG:
return REG_P (reg) && REGNO (in) == REGNO (reg);
/* These codes have no constituent expressions
and are unique. */
case SCRATCH:
case PC:
return false;
CASE_CONST_ANY:
/* These are kept unique for a given value. */
return false;
default:
break;
}
if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
return true;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (in, i) - 1; j >= 0; j--)
if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
return true;
}
else if (fmt[i] == 'e'
&& reg_mentioned_p (reg, XEXP (in, i)))
return true;
}
return false;
}
/* Return true if in between BEG and END, exclusive of BEG and END, there is
no CODE_LABEL insn. */
bool
no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
{
rtx_insn *p;
if (beg == end)
return false;
for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
if (LABEL_P (p))
return false;
return true;
}
/* Return true if register REG is used in an insn between
FROM_INSN and TO_INSN (exclusive of those two). */
bool
reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
const rtx_insn *to_insn)
{
rtx_insn *insn;
if (from_insn == to_insn)
return false;
for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
if (NONDEBUG_INSN_P (insn)
&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
|| (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
return true;
return false;
}
/* Return true if the old value of X, a register, is referenced in BODY. If X
is entirely replaced by a new value and the only use is as a SET_DEST,
we do not consider it a reference. */
bool
reg_referenced_p (const_rtx x, const_rtx body)
{
int i;
switch (GET_CODE (body))
{
case SET:
if (reg_overlap_mentioned_p (x, SET_SRC (body)))
return true;
/* If the destination is anything other than PC, a REG or a SUBREG
of a REG that occupies all of the REG, the insn references X if
it is mentioned in the destination. */
if (GET_CODE (SET_DEST (body)) != PC
&& !REG_P (SET_DEST (body))
&& ! (GET_CODE (SET_DEST (body)) == SUBREG
&& REG_P (SUBREG_REG (SET_DEST (body)))
&& !read_modify_subreg_p (SET_DEST (body)))
&& reg_overlap_mentioned_p (x, SET_DEST (body)))
return true;
return false;
case ASM_OPERANDS:
for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
return true;
return false;
case CALL:
case USE:
case IF_THEN_ELSE:
return reg_overlap_mentioned_p (x, body);
case TRAP_IF:
return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
case PREFETCH:
return reg_overlap_mentioned_p (x, XEXP (body, 0));
case UNSPEC:
case UNSPEC_VOLATILE:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
return true;
return false;
case PARALLEL:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
if (reg_referenced_p (x, XVECEXP (body, 0, i)))
return true;
return false;
case CLOBBER:
if (MEM_P (XEXP (body, 0)))
if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
return true;
return false;
case COND_EXEC:
if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
return true;
return reg_referenced_p (x, COND_EXEC_CODE (body));
default:
return false;
}
}
/* Return true if register REG is set or clobbered in an insn between
FROM_INSN and TO_INSN (exclusive of those two). */
bool
reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
const rtx_insn *to_insn)
{
const rtx_insn *insn;
if (from_insn == to_insn)
return false;
for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
if (INSN_P (insn) && reg_set_p (reg, insn))
return true;
return false;
}
/* Return true if REG is set or clobbered inside INSN. */
bool
reg_set_p (const_rtx reg, const_rtx insn)
{
/* After delay slot handling, call and branch insns might be in a
sequence. Check all the elements there. */
if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
{
for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
return true;
return false;
}
/* We can be passed an insn or part of one. If we are passed an insn,
check if a side-effect of the insn clobbers REG. */
if (INSN_P (insn)
&& (FIND_REG_INC_NOTE (insn, reg)
|| (CALL_P (insn)
&& ((REG_P (reg)
&& REGNO (reg) < FIRST_PSEUDO_REGISTER
&& (insn_callee_abi (as_a<const rtx_insn *> (insn))
.clobbers_reg_p (GET_MODE (reg), REGNO (reg))))
|| MEM_P (reg)
|| find_reg_fusage (insn, CLOBBER, reg)))))
return true;
/* There are no REG_INC notes for SP autoinc. */
if (reg == stack_pointer_rtx && INSN_P (insn))
{
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
{
rtx mem = *iter;
if (mem
&& MEM_P (mem)
&& GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
{
if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
return true;
iter.skip_subrtxes ();
}
}
}
return set_of (reg, insn) != NULL_RTX;
}
/* Similar to reg_set_between_p, but check all registers in X. Return false
only if none of them are modified between START and END. Return true if
X contains a MEM; this routine does use memory aliasing. */
bool
modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
{
const enum rtx_code code = GET_CODE (x);
const char *fmt;
int i, j;
rtx_insn *insn;
if (start == end)
return false;
switch (code)
{
CASE_CONST_ANY:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return false;
case PC:
return true;
case MEM:
if (modified_between_p (XEXP (x, 0), start, end))
return true;
if (MEM_READONLY_P (x))
return false;
for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
if (memory_modified_in_insn_p (x, insn))
return true;
return false;
case REG:
return reg_set_between_p (x, start, end);
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
return true;
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (modified_between_p (XVECEXP (x, i, j), start, end))
return true;
}
return false;
}
/* Similar to reg_set_p, but check all registers in X. Return false only if
none of them are modified in INSN. Return true if X contains a MEM; this
routine does use memory aliasing. */
bool
modified_in_p (const_rtx x, const_rtx insn)
{
const enum rtx_code code = GET_CODE (x);
const char *fmt;
int i, j;
switch (code)
{
CASE_CONST_ANY:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return false;
case PC:
return true;
case MEM:
if (modified_in_p (XEXP (x, 0), insn))
return true;
if (MEM_READONLY_P (x))
return false;
if (memory_modified_in_insn_p (x, insn))
return true;
return false;
case REG:
return reg_set_p (x, insn);
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
return true;
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (modified_in_p (XVECEXP (x, i, j), insn))
return true;
}
return false;
}
/* Return true if X is a SUBREG and if storing a value to X would
preserve some of its SUBREG_REG. For example, on a normal 32-bit
target, using a SUBREG to store to one half of a DImode REG would
preserve the other half. */
bool
read_modify_subreg_p (const_rtx x)
{
if (GET_CODE (x) != SUBREG)
return false;
poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
/* The inner and outer modes of a subreg must be ordered, so that we
can tell whether they're paradoxical or partial. */
gcc_checking_assert (ordered_p (isize, osize));
return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
}
/* Helper function for set_of. */
struct set_of_data
{
const_rtx found;
const_rtx pat;
};
static void
set_of_1 (rtx x, const_rtx pat, void *data1)
{
struct set_of_data *const data = (struct set_of_data *) (data1);
if (rtx_equal_p (x, data->pat)
|| (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
data->found = pat;
}
/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
(either directly or via STRICT_LOW_PART and similar modifiers). */
const_rtx
set_of (const_rtx pat, const_rtx insn)
{
struct set_of_data data;
data.found = NULL_RTX;
data.pat = pat;
note_pattern_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
return data.found;
}
/* Check whether instruction pattern PAT contains a SET with the following
properties:
- the SET is executed unconditionally; and
- either:
- the destination of the SET is a REG that contains REGNO; or
- both:
- the destination of the SET is a SUBREG of such a REG; and
- writing to the subreg clobbers all of the SUBREG_REG
(in other words, read_modify_subreg_p is false).
If PAT does have a SET like that, return the set, otherwise return null.
This is intended to be an alternative to single_set for passes that
can handle patterns with multiple_sets. */
rtx
simple_regno_set (rtx pat, unsigned int regno)
{
if (GET_CODE (pat) == PARALLEL)
{
int last = XVECLEN (pat, 0) - 1;
for (int i = 0; i < last; ++i)
if (rtx set = simple_regno_set (XVECEXP (pat, 0, i), regno))
return set;
pat = XVECEXP (pat, 0, last);
}
if (GET_CODE (pat) == SET
&& covers_regno_no_parallel_p (SET_DEST (pat), regno))
return pat;
return nullptr;
}
/* Add all hard register in X to *PSET. */
void
find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, NONCONST)
{
const_rtx x = *iter;
if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
}
}
/* This function, called through note_stores, collects sets and
clobbers of hard registers in a HARD_REG_SET, which is pointed to
by DATA. */
void
record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
HARD_REG_SET *pset = (HARD_REG_SET *)data;
if (REG_P (x) && HARD_REGISTER_P (x))
add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
}
/* Examine INSN, and compute the set of hard registers written by it.
Store it in *PSET. Should only be called after reload.
IMPLICIT is true if we should include registers that are fully-clobbered
by calls. This should be used with caution, since it doesn't include
partially-clobbered registers. */
void
find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
{
rtx link;
CLEAR_HARD_REG_SET (*pset);
note_stores (insn, record_hard_reg_sets, pset);
if (CALL_P (insn) && implicit)
*pset |= insn_callee_abi (insn).full_reg_clobbers ();
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_INC)
record_hard_reg_sets (XEXP (link, 0), NULL, pset);
}
/* Like record_hard_reg_sets, but called through note_uses. */
void
record_hard_reg_uses (rtx *px, void *data)
{
find_all_hard_regs (*px, (HARD_REG_SET *) data);
}
/* Given an INSN, return a SET expression if this insn has only a single SET.
It may also have CLOBBERs, USEs, or SET whose output
will not be used, which we ignore. */
rtx
single_set_2 (const rtx_insn *insn, const_rtx pat)
{
rtx set = NULL;
int set_verified = 1;
int i;
if (GET_CODE (pat) == PARALLEL)
{
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx sub = XVECEXP (pat, 0, i);
switch (GET_CODE (sub))
{
case USE:
case CLOBBER:
break;
case SET:
/* We can consider insns having multiple sets, where all
but one are dead as single set insns. In common case
only single set is present in the pattern so we want
to avoid checking for REG_UNUSED notes unless necessary.
When we reach set first time, we just expect this is
the single set we are looking for and only when more
sets are found in the insn, we check them. */
if (!set_verified)
{
if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
&& !side_effects_p (set))
set = NULL;
else
set_verified = 1;
}
if (!set)
set = sub, set_verified = 0;
else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
|| side_effects_p (sub))
return NULL_RTX;
break;
default:
return NULL_RTX;
}
}
}
return set;
}
/* Given an INSN, return true if it has more than one SET, else return
false. */
bool
multiple_sets (const_rtx insn)
{
bool found;
int i;
/* INSN must be an insn. */
if (! INSN_P (insn))
return false;
/* Only a PARALLEL can have multiple SETs. */
if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
for (i = 0, found = false; i < XVECLEN (PATTERN (insn), 0); i++)
if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
{
/* If we have already found a SET, then return now. */
if (found)
return true;
else
found = true;
}
}
/* Either zero or one SET. */
return false;
}
/* Return true if the destination of SET equals the source
and there are no side effects. */
bool
set_noop_p (const_rtx set)
{
rtx src = SET_SRC (set);
rtx dst = SET_DEST (set);
if (dst == pc_rtx && src == pc_rtx)
return true;
if (MEM_P (dst) && MEM_P (src))
return rtx_equal_p (dst, src) && !side_effects_p (dst);
if (GET_CODE (dst) == ZERO_EXTRACT)
return rtx_equal_p (XEXP (dst, 0), src)
&& !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
&& !side_effects_p (src);
if (GET_CODE (dst) == STRICT_LOW_PART)
dst = XEXP (dst, 0);
if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
{
if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
return false;
src = SUBREG_REG (src);
dst = SUBREG_REG (dst);
if (GET_MODE (src) != GET_MODE (dst))
/* It is hard to tell whether subregs refer to the same bits, so act
conservatively and return false. */
return false;
}
/* It is a NOOP if destination overlaps with selected src vector
elements. */
if (GET_CODE (src) == VEC_SELECT
&& REG_P (XEXP (src, 0)) && REG_P (dst)
&& HARD_REGISTER_P (XEXP (src, 0))
&& HARD_REGISTER_P (dst))
{
int i;
rtx par = XEXP (src, 1);
rtx src0 = XEXP (src, 0);
poly_int64 c0;
if (!poly_int_rtx_p (XVECEXP (par, 0, 0), &c0))
return false;
poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
for (i = 1; i < XVECLEN (par, 0); i++)
{
poly_int64 c0i;
if (!poly_int_rtx_p (XVECEXP (par, 0, i), &c0i)
|| maybe_ne (c0i, c0 + i))
return false;
}
return
REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
&& simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
offset, GET_MODE (dst)) == (int) REGNO (dst);
}
return (REG_P (src) && REG_P (dst)
&& REGNO (src) == REGNO (dst));
}
/* Return true if an insn consists only of SETs, each of which only sets a
value to itself. */
bool
noop_move_p (const rtx_insn *insn)
{
rtx pat = PATTERN (insn);
if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
return true;
/* Check the code to be executed for COND_EXEC. */
if (GET_CODE (pat) == COND_EXEC)
pat = COND_EXEC_CODE (pat);
if (GET_CODE (pat) == SET && set_noop_p (pat))
return true;
if (GET_CODE (pat) == PARALLEL)
{
int i;
/* If nothing but SETs of registers to themselves,
this insn can also be deleted. */
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx tem = XVECEXP (pat, 0, i);
if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
continue;
if (GET_CODE (tem) != SET || ! set_noop_p (tem))
return false;
}
return true;
}
return false;
}
/* Return true if register in range [REGNO, ENDREGNO)
appears either explicitly or implicitly in X
other than being stored into.
References contained within the substructure at LOC do not count.
LOC may be zero, meaning don't ignore anything. */
bool
refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
rtx *loc)
{
int i;
unsigned int x_regno;
RTX_CODE code;
const char *fmt;
repeat:
/* The contents of a REG_NONNEG note is always zero, so we must come here
upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
if (x == 0)
return false;
code = GET_CODE (x);
switch (code)
{
case REG:
x_regno = REGNO (x);
/* If we modifying the stack, frame, or argument pointer, it will
clobber a virtual register. In fact, we could be more precise,
but it isn't worth it. */
if ((x_regno == STACK_POINTER_REGNUM
|| (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& x_regno == ARG_POINTER_REGNUM)
|| x_regno == FRAME_POINTER_REGNUM)
&& VIRTUAL_REGISTER_NUM_P (regno))
return true;
return endregno > x_regno && regno < END_REGNO (x);
case SUBREG:
/* If this is a SUBREG of a hard reg, we can see exactly which
registers are being modified. Otherwise, handle normally. */
if (REG_P (SUBREG_REG (x))
&& REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
{
unsigned int inner_regno = subreg_regno (x);
unsigned int inner_endregno
= inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
? subreg_nregs (x) : 1);
return endregno > inner_regno && regno < inner_endregno;
}
break;
case CLOBBER:
case SET:
if (&SET_DEST (x) != loc
/* Note setting a SUBREG counts as referring to the REG it is in for
a pseudo but not for hard registers since we can
treat each word individually. */
&& ((GET_CODE (SET_DEST (x)) == SUBREG
&& loc != &SUBREG_REG (SET_DEST (x))
&& REG_P (SUBREG_REG (SET_DEST (x)))
&& REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
&& refers_to_regno_p (regno, endregno,
SUBREG_REG (SET_DEST (x)), loc))
|| (!REG_P (SET_DEST (x))
&& refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
return true;
if (code == CLOBBER || loc == &SET_SRC (x))
return false;
x = SET_SRC (x);
goto repeat;
default:
break;
}
/* X does not match, so try its subexpressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e' && loc != &XEXP (x, i))
{
if (i == 0)
{
x = XEXP (x, 0);
goto repeat;
}
else
if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
return true;
}
else if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (loc != &XVECEXP (x, i, j)
&& refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
return true;
}
}
return false;
}
/* Rreturn true if modifying X will affect IN. If X is a register or a SUBREG,
we check if any register number in X conflicts with the relevant register
numbers. If X is a constant, return false. If X is a MEM, return true iff
IN contains a MEM (we don't bother checking for memory addresses that can't
conflict because we expect this to be a rare case. */
bool
reg_overlap_mentioned_p (const_rtx x, const_rtx in)
{
unsigned int regno, endregno;
/* If either argument is a constant, then modifying X cannot
affect IN. Here we look at IN, we can profitably combine
CONSTANT_P (x) with the switch statement below. */
if (CONSTANT_P (in))
return false;
recurse:
switch (GET_CODE (x))
{
case CLOBBER:
case STRICT_LOW_PART:
case ZERO_EXTRACT:
case SIGN_EXTRACT:
/* Overly conservative. */
x = XEXP (x, 0);
goto recurse;
case SUBREG:
regno = REGNO (SUBREG_REG (x));
if (regno < FIRST_PSEUDO_REGISTER)
regno = subreg_regno (x);
endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? subreg_nregs (x) : 1);
goto do_reg;
case REG:
regno = REGNO (x);
endregno = END_REGNO (x);
do_reg:
return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
case MEM:
{
const char *fmt;
int i;
if (MEM_P (in))
return true;
fmt = GET_RTX_FORMAT (GET_CODE (in));
for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (reg_overlap_mentioned_p (x, XEXP (in, i)))
return true;
}
else if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (in, i) - 1; j >= 0; --j)
if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
return true;
}
return false;
}
case SCRATCH:
case PC:
return reg_mentioned_p (x, in);
case PARALLEL:
{
int i;
/* If any register in here refers to it we return true. */
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
if (XEXP (XVECEXP (x, 0, i), 0) != 0
&& reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
return true;
return false;
}
default:
gcc_assert (CONSTANT_P (x));
return false;
}
}
/* Call FUN on each register or MEM that is stored into or clobbered by X.
(X would be the pattern of an insn). DATA is an arbitrary pointer,
ignored by note_stores, but passed to FUN.
FUN receives three arguments:
1. the REG, MEM or PC being stored in or clobbered,
2. the SET or CLOBBER rtx that does the store,
3. the pointer DATA provided to note_stores.
If the item being stored in or clobbered is a SUBREG of a hard register,
the SUBREG will be passed. */
void
note_pattern_stores (const_rtx x,
void (*fun) (rtx, const_rtx, void *), void *data)
{
int i;
if (GET_CODE (x) == COND_EXEC)
x = COND_EXEC_CODE (x);
if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
{
rtx dest = SET_DEST (x);
while ((GET_CODE (dest) == SUBREG
&& (!REG_P (SUBREG_REG (dest))
|| REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
/* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
each of whose first operand is a register. */
if (GET_CODE (dest) == PARALLEL)
{
for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
(*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
}
else
(*fun) (dest, x, data);
}
else if (GET_CODE (x) == PARALLEL)
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
note_pattern_stores (XVECEXP (x, 0, i), fun, data);
}
/* Same, but for an instruction. If the instruction is a call, include
any CLOBBERs in its CALL_INSN_FUNCTION_USAGE. */
void
note_stores (const rtx_insn *insn,
void (*fun) (rtx, const_rtx, void *), void *data)
{
if (CALL_P (insn))
for (rtx link = CALL_INSN_FUNCTION_USAGE (insn);
link; link = XEXP (link, 1))
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
note_pattern_stores (XEXP (link, 0), fun, data);
note_pattern_stores (PATTERN (insn), fun, data);
}
/* Like notes_stores, but call FUN for each expression that is being
referenced in PBODY, a pointer to the PATTERN of an insn. We only call
FUN for each expression, not any interior subexpressions. FUN receives a
pointer to the expression and the DATA passed to this function.
Note that this is not quite the same test as that done in reg_referenced_p
since that considers something as being referenced if it is being
partially set, while we do not. */
void
note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
{
rtx body = *pbody;
int i;
switch (GET_CODE (body))
{
case COND_EXEC:
(*fun) (&COND_EXEC_TEST (body), data);
note_uses (&COND_EXEC_CODE (body), fun, data);
return;
case PARALLEL:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
note_uses (&XVECEXP (body, 0, i), fun, data);
return;
case SEQUENCE:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
return;
case USE:
(*fun) (&XEXP (body, 0), data);
return;
case ASM_OPERANDS:
for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
(*fun) (&ASM_OPERANDS_INPUT (body, i), data);
return;
case TRAP_IF:
(*fun) (&TRAP_CONDITION (body), data);
return;
case PREFETCH:
(*fun) (&XEXP (body, 0), data);
return;
case UNSPEC:
case UNSPEC_VOLATILE:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
(*fun) (&XVECEXP (body, 0, i), data);
return;
case CLOBBER:
if (MEM_P (XEXP (body, 0)))
(*fun) (&XEXP (XEXP (body, 0), 0), data);
return;
case SET:
{
rtx dest = SET_DEST (body);
/* For sets we replace everything in source plus registers in memory
expression in store and operands of a ZERO_EXTRACT. */
(*fun) (&SET_SRC (body), data);
if (GET_CODE (dest) == ZERO_EXTRACT)
{
(*fun) (&XEXP (dest, 1), data);
(*fun) (&XEXP (dest, 2), data);
}
while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
if (MEM_P (dest))
(*fun) (&XEXP (dest, 0), data);
}
return;
default:
/* All the other possibilities never store. */
(*fun) (pbody, data);
return;
}
}
/* Try to add a description of REG X to this object, stopping once
the REF_END limit has been reached. FLAGS is a bitmask of
rtx_obj_reference flags that describe the context. */
void
rtx_properties::try_to_add_reg (const_rtx x, unsigned int flags)
{
if (REG_NREGS (x) != 1)
flags |= rtx_obj_flags::IS_MULTIREG;
machine_mode mode = GET_MODE (x);
unsigned int start_regno = REGNO (x);
unsigned int end_regno = END_REGNO (x);
for (unsigned int regno = start_regno; regno < end_regno; ++regno)
if (ref_iter != ref_end)
*ref_iter++ = rtx_obj_reference (regno, flags, mode,
regno - start_regno);
}
/* Add a description of destination X to this object. FLAGS is a bitmask
of rtx_obj_reference flags that describe the context.
This routine accepts all rtxes that can legitimately appear in a
SET_DEST. */
void
rtx_properties::try_to_add_dest (const_rtx x, unsigned int flags)
{
/* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
each of whose first operand is a register. */
if (UNLIKELY (GET_CODE (x) == PARALLEL))
{
for (int i = XVECLEN (x, 0) - 1; i >= 0; --i)
if (rtx dest = XEXP (XVECEXP (x, 0, i), 0))
try_to_add_dest (dest, flags);
return;
}
unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS;
flags |= rtx_obj_flags::IS_WRITE;
for (;;)
if (GET_CODE (x) == ZERO_EXTRACT)
{
try_to_add_src (XEXP (x, 1), base_flags);
try_to_add_src (XEXP (x, 2), base_flags);
flags |= rtx_obj_flags::IS_READ;
x = XEXP (x, 0);
}
else if (GET_CODE (x) == STRICT_LOW_PART)
{
flags |= rtx_obj_flags::IS_READ;
x = XEXP (x, 0);
}
else if (GET_CODE (x) == SUBREG)
{
flags |= rtx_obj_flags::IN_SUBREG;
if (read_modify_subreg_p (x))
flags |= rtx_obj_flags::IS_READ;
x = SUBREG_REG (x);
}
else
break;
if (MEM_P (x))
{
if (ref_iter != ref_end)
*ref_iter++ = rtx_obj_reference (MEM_REGNO, flags, GET_MODE (x));
unsigned int addr_flags = base_flags | rtx_obj_flags::IN_MEM_STORE;
if (flags & rtx_obj_flags::IS_READ)
addr_flags |= rtx_obj_flags::IN_MEM_LOAD;
try_to_add_src (XEXP (x, 0), addr_flags);
return;
}
if (LIKELY (REG_P (x)))
{
/* We want to keep sp alive everywhere - by making all
writes to sp also use sp. */
if (REGNO (x) == STACK_POINTER_REGNUM)
flags |= rtx_obj_flags::IS_READ;
try_to_add_reg (x, flags);
return;
}
}
/* Try to add a description of source X to this object, stopping once
the REF_END limit has been reached. FLAGS is a bitmask of
rtx_obj_reference flags that describe the context.
This routine accepts all rtxes that can legitimately appear in a SET_SRC. */
void
rtx_properties::try_to_add_src (const_rtx x, unsigned int flags)
{
unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS;
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, NONCONST)
{
const_rtx x = *iter;
rtx_code code = GET_CODE (x);
if (code == REG)
try_to_add_reg (x, flags | rtx_obj_flags::IS_READ);
else if (code == MEM)
{
if (MEM_VOLATILE_P (x))
has_volatile_refs = true;
if (!MEM_READONLY_P (x) && ref_iter != ref_end)
{
auto mem_flags = flags | rtx_obj_flags::IS_READ;
*ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags,
GET_MODE (x));
}
try_to_add_src (XEXP (x, 0),
base_flags | rtx_obj_flags::IN_MEM_LOAD);
iter.skip_subrtxes ();
}
else if (code == SUBREG)
{
try_to_add_src (SUBREG_REG (x), flags | rtx_obj_flags::IN_SUBREG);
iter.skip_subrtxes ();
}
else if (code == UNSPEC_VOLATILE)
has_volatile_refs = true;
else if (code == ASM_INPUT || code == ASM_OPERANDS)
{
has_asm = true;
if (MEM_VOLATILE_P (x))
has_volatile_refs = true;
}
else if (code == PRE_INC
|| code == PRE_DEC
|| code == POST_INC
|| code == POST_DEC
|| code == PRE_MODIFY
|| code == POST_MODIFY)
{
has_pre_post_modify = true;
unsigned int addr_flags = (base_flags
| rtx_obj_flags::IS_PRE_POST_MODIFY
| rtx_obj_flags::IS_READ);
try_to_add_dest (XEXP (x, 0), addr_flags);
if (code == PRE_MODIFY || code == POST_MODIFY)
iter.substitute (XEXP (XEXP (x, 1), 1));
else
iter.skip_subrtxes ();
}
else if (code == CALL)
has_call = true;
}
}
/* Try to add a description of instruction pattern PAT to this object,
stopping once the REF_END limit has been reached. */
void
rtx_properties::try_to_add_pattern (const_rtx pat)
{
switch (GET_CODE (pat))
{
case COND_EXEC:
try_to_add_src (COND_EXEC_TEST (pat));
try_to_add_pattern (COND_EXEC_CODE (pat));
break;
case PARALLEL:
{
int last = XVECLEN (pat, 0) - 1;
for (int i = 0; i < last; ++i)
try_to_add_pattern (XVECEXP (pat, 0, i));
try_to_add_pattern (XVECEXP (pat, 0, last));
break;
}
case ASM_OPERANDS:
for (int i = 0, len = ASM_OPERANDS_INPUT_LENGTH (pat); i < len; ++i)
try_to_add_src (ASM_OPERANDS_INPUT (pat, i));
break;
case CLOBBER:
try_to_add_dest (XEXP (pat, 0), rtx_obj_flags::IS_CLOBBER);
break;
case SET:
try_to_add_dest (SET_DEST (pat));
try_to_add_src (SET_SRC (pat));
break;
default:
/* All the other possibilities never store and can use a normal
rtx walk. This includes:
- USE
- TRAP_IF
- PREFETCH
- UNSPEC
- UNSPEC_VOLATILE. */
try_to_add_src (pat);
break;
}
}
/* Try to add a description of INSN to this object, stopping once
the REF_END limit has been reached. INCLUDE_NOTES is true if the
description should include REG_EQUAL and REG_EQUIV notes; all such
references will then be marked with rtx_obj_flags::IN_NOTE.
For calls, this description includes all accesses in
CALL_INSN_FUNCTION_USAGE. It also include all implicit accesses
to global registers by the target function. However, it does not
include clobbers performed by the target function; callers that want
this information should instead use the function_abi interface. */
void
rtx_properties::try_to_add_insn (const rtx_insn *insn, bool include_notes)
{
if (CALL_P (insn))
{
/* Non-const functions can read from global registers. Impure
functions can also set them.
Adding the global registers first removes a situation in which
a fixed-form clobber of register R could come before a real set
of register R. */
if (!hard_reg_set_empty_p (global_reg_set)
&& !RTL_CONST_CALL_P (insn))
{
unsigned int flags = rtx_obj_flags::IS_READ;
if (!RTL_PURE_CALL_P (insn))
flags |= rtx_obj_flags::IS_WRITE;
for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
/* As a special case, the stack pointer is invariant across calls
even if it has been marked global; see the corresponding
handling in df_get_call_refs. */
if (regno != STACK_POINTER_REGNUM
&& global_regs[regno]
&& ref_iter != ref_end)
*ref_iter++ = rtx_obj_reference (regno, flags,
reg_raw_mode[regno], 0);
}
/* Untyped calls implicitly set all function value registers.
Again, we add them first in case the main pattern contains
a fixed-form clobber. */
if (find_reg_note (insn, REG_UNTYPED_CALL, NULL_RTX))
for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
if (targetm.calls.function_value_regno_p (regno)
&& ref_iter != ref_end)
*ref_iter++ = rtx_obj_reference (regno, rtx_obj_flags::IS_WRITE,
reg_raw_mode[regno], 0);
if (ref_iter != ref_end && !RTL_CONST_CALL_P (insn))
{
auto mem_flags = rtx_obj_flags::IS_READ;
if (!RTL_PURE_CALL_P (insn))
mem_flags |= rtx_obj_flags::IS_WRITE;
*ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, BLKmode);
}
try_to_add_pattern (PATTERN (insn));
for (rtx link = CALL_INSN_FUNCTION_USAGE (insn); link;
link = XEXP (link, 1))
{
rtx x = XEXP (link, 0);
if (GET_CODE (x) == CLOBBER)
try_to_add_dest (XEXP (x, 0), rtx_obj_flags::IS_CLOBBER);
else if (GET_CODE (x) == USE)
try_to_add_src (XEXP (x, 0));
}
}
else
try_to_add_pattern (PATTERN (insn));
if (include_notes)
for (rtx note = REG_NOTES (insn); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_EQUAL
|| REG_NOTE_KIND (note) == REG_EQUIV)
try_to_add_note (XEXP (note, 0));
}
/* Grow the storage by a bit while keeping the contents of the first
START elements. */
void
vec_rtx_properties_base::grow (ptrdiff_t start)
{
/* The same heuristic that vec uses. */
ptrdiff_t new_elems = (ref_end - ref_begin) * 3 / 2;
if (ref_begin == m_storage)
{
ref_begin = XNEWVEC (rtx_obj_reference, new_elems);
if (start)
memcpy (ref_begin, m_storage, start * sizeof (rtx_obj_reference));
}
else
ref_begin = reinterpret_cast<rtx_obj_reference *>
(xrealloc (ref_begin, new_elems * sizeof (rtx_obj_reference)));
ref_iter = ref_begin + start;
ref_end = ref_begin + new_elems;
}
/* Return true if X's old contents don't survive after INSN.
This will be true if X is a register and X dies in INSN or because
INSN entirely sets X.
"Entirely set" means set directly and not through a SUBREG, or
ZERO_EXTRACT, so no trace of the old contents remains.
Likewise, REG_INC does not count.
REG may be a hard or pseudo reg. Renumbering is not taken into account,
but for this use that makes no difference, since regs don't overlap
during their lifetimes. Therefore, this function may be used
at any time after deaths have been computed.
If REG is a hard reg that occupies multiple machine registers, this
function will only return true if each of those registers will be replaced
by INSN. */
bool
dead_or_set_p (const rtx_insn *insn, const_rtx x)
{
unsigned int regno, end_regno;
unsigned int i;
gcc_assert (REG_P (x));
regno = REGNO (x);
end_regno = END_REGNO (x);
for (i = regno; i < end_regno; i++)
if (! dead_or_set_regno_p (insn, i))
return false;
return true;
}
/* Return TRUE iff DEST is a register or subreg of a register, is a
complete rather than read-modify-write destination, and contains
register TEST_REGNO. */
static bool
covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
{
unsigned int regno, endregno;
if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
dest = SUBREG_REG (dest);
if (!REG_P (dest))
return false;
regno = REGNO (dest);
endregno = END_REGNO (dest);
return (test_regno >= regno && test_regno < endregno);
}
/* Like covers_regno_no_parallel_p, but also handles PARALLELs where
any member matches the covers_regno_no_parallel_p criteria. */
static bool
covers_regno_p (const_rtx dest, unsigned int test_regno)
{
if (GET_CODE (dest) == PARALLEL)
{
/* Some targets place small structures in registers for return
values of functions, and those registers are wrapped in
PARALLELs that we may see as the destination of a SET. */
int i;
for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
{
rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
if (inner != NULL_RTX
&& covers_regno_no_parallel_p (inner, test_regno))
return true;
}
return false;
}
else
return covers_regno_no_parallel_p (dest, test_regno);
}
/* Utility function for dead_or_set_p to check an individual register. */
bool
dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
{
const_rtx pattern;
/* See if there is a death note for something that includes TEST_REGNO. */
if (find_regno_note (insn, REG_DEAD, test_regno))
return true;
if (CALL_P (insn)
&& find_regno_fusage (insn, CLOBBER, test_regno))
return true;
pattern = PATTERN (insn);
/* If a COND_EXEC is not executed, the value survives. */
if (GET_CODE (pattern) == COND_EXEC)
return false;
if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
return covers_regno_p (SET_DEST (pattern), test_regno);
else if (GET_CODE (pattern) == PARALLEL)
{
int i;
for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
{
rtx body = XVECEXP (pattern, 0, i);
if (GET_CODE (body) == COND_EXEC)
body = COND_EXEC_CODE (body);
if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
&& covers_regno_p (SET_DEST (body), test_regno))
return true;
}
}
return false;
}
/* Return the reg-note of kind KIND in insn INSN, if there is one.
If DATUM is nonzero, look for one whose datum is DATUM. */
rtx
find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
{
rtx link;
gcc_checking_assert (insn);
/* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
if (! INSN_P (insn))
return 0;
if (datum == 0)
{
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == kind)
return link;
return 0;
}
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
return link;
return 0;
}
/* Return the reg-note of kind KIND in insn INSN which applies to register
number REGNO, if any. Return 0 if there is no such reg-note. Note that
the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
it might be the case that the note overlaps REGNO. */
rtx
find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
{
rtx link;
/* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
if (! INSN_P (insn))
return 0;
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == kind
/* Verify that it is a register, so that scratch and MEM won't cause a
problem here. */
&& REG_P (XEXP (link, 0))
&& REGNO (XEXP (link, 0)) <= regno
&& END_REGNO (XEXP (link, 0)) > regno)
return link;
return 0;
}
/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
has such a note. */
rtx
find_reg_equal_equiv_note (const_rtx insn)
{
rtx link;
if (!INSN_P (insn))
return 0;
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_EQUAL
|| REG_NOTE_KIND (link) == REG_EQUIV)
{
/* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
insns that have multiple sets. Checking single_set to
make sure of this is not the proper check, as explained
in the comment in set_unique_reg_note.
This should be changed into an assert. */
if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
return 0;
return link;
}
return NULL;
}
/* Check whether INSN is a single_set whose source is known to be
equivalent to a constant. Return that constant if so, otherwise
return null. */
rtx
find_constant_src (const rtx_insn *insn)
{
rtx note, set, x;
set = single_set (insn);
if (set)
{
x = avoid_constant_pool_reference (SET_SRC (set));
if (CONSTANT_P (x))
return x;
}
note = find_reg_equal_equiv_note (insn);
if (note && CONSTANT_P (XEXP (note, 0)))
return XEXP (note, 0);
return NULL_RTX;
}
/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
in the CALL_INSN_FUNCTION_USAGE information of INSN. */
bool
find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
{
/* If it's not a CALL_INSN, it can't possibly have a
CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
if (!CALL_P (insn))
return false;
gcc_assert (datum);
if (!REG_P (datum))
{
rtx link;
for (link = CALL_INSN_FUNCTION_USAGE (insn);
link;
link = XEXP (link, 1))
if (GET_CODE (XEXP (link, 0)) == code
&& rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
return true;
}
else
{
unsigned int regno = REGNO (datum);
/* CALL_INSN_FUNCTION_USAGE information cannot contain references
to pseudo registers, so don't bother checking. */
if (regno < FIRST_PSEUDO_REGISTER)
{
unsigned int end_regno = END_REGNO (datum);
unsigned int i;
for (i = regno; i < end_regno; i++)
if (find_regno_fusage (insn, code, i))
return true;
}
}
return false;
}
/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
in the CALL_INSN_FUNCTION_USAGE information of INSN. */
bool
find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
{
rtx link;
/* CALL_INSN_FUNCTION_USAGE information cannot contain references
to pseudo registers, so don't bother checking. */
if (regno >= FIRST_PSEUDO_REGISTER
|| !CALL_P (insn) )
return false;
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
{
rtx op, reg;
if (GET_CODE (op = XEXP (link, 0)) == code
&& REG_P (reg = XEXP (op, 0))
&& REGNO (reg) <= regno
&& END_REGNO (reg) > regno)
return true;
}
return false;
}
/* Return true if KIND is an integer REG_NOTE. */
static bool
int_reg_note_p (enum reg_note kind)
{
return kind == REG_BR_PROB;
}
/* Allocate a register note with kind KIND and datum DATUM. LIST is
stored as the pointer to the next register note. */
rtx
alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
{
rtx note;
gcc_checking_assert (!int_reg_note_p (kind));
switch (kind)
{
case REG_LABEL_TARGET:
case REG_LABEL_OPERAND:
case REG_TM:
/* These types of register notes use an INSN_LIST rather than an
EXPR_LIST, so that copying is done right and dumps look
better. */
note = alloc_INSN_LIST (datum, list);
PUT_REG_NOTE_KIND (note, kind);
break;
default:
note = alloc_EXPR_LIST (kind, datum, list);
break;
}
return note;
}
/* Add register note with kind KIND and datum DATUM to INSN. */
void
add_reg_note (rtx insn, enum reg_note kind, rtx datum)
{
REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
}
/* Add an integer register note with kind KIND and datum DATUM to INSN. */
void
add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
{
gcc_checking_assert (int_reg_note_p (kind));
REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
datum, REG_NOTES (insn));
}
/* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
void
add_args_size_note (rtx_insn *insn, poly_int64 value)
{
gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
}
/* Add a register note like NOTE to INSN. */
void
add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
{
if (GET_CODE (note) == INT_LIST)
add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
else
add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
}
/* Duplicate NOTE and return the copy. */
rtx
duplicate_reg_note (rtx note)
{
reg_note kind = REG_NOTE_KIND (note);
if (GET_CODE (note) == INT_LIST)
return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
else if (GET_CODE (note) == EXPR_LIST)
return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
else
return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
}
/* Remove register note NOTE from the REG_NOTES of INSN. */
void
remove_note (rtx_insn *insn, const_rtx note)
{
rtx link;
if (note == NULL_RTX)
return;
if (REG_NOTES (insn) == note)
REG_NOTES (insn) = XEXP (note, 1);
else
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (XEXP (link, 1) == note)
{
XEXP (link, 1) = XEXP (note, 1);
break;
}
switch (REG_NOTE_KIND (note))
{
case REG_EQUAL:
case REG_EQUIV:
df_notes_rescan (insn);
break;
default:
break;
}
}
/* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
If NO_RESCAN is false and any notes were removed, call
df_notes_rescan. Return true if any note has been removed. */
bool
remove_reg_equal_equiv_notes (rtx_insn *insn, bool no_rescan)
{
rtx *loc;
bool ret = false;
loc = ®_NOTES (insn);
while (*loc)
{
enum reg_note kind = REG_NOTE_KIND (*loc);
if (kind == REG_EQUAL || kind == REG_EQUIV)
{
*loc = XEXP (*loc, 1);
ret = true;
}
else
loc = &XEXP (*loc, 1);
}
if (ret && !no_rescan)
df_notes_rescan (insn);
return ret;
}
/* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
void
remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
{
df_ref eq_use;
if (!df)
return;
/* This loop is a little tricky. We cannot just go down the chain because
it is being modified by some actions in the loop. So we just iterate
over the head. We plan to drain the list anyway. */
while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
{
rtx_insn *insn = DF_REF_INSN (eq_use);
rtx note = find_reg_equal_equiv_note (insn);
/* This assert is generally triggered when someone deletes a REG_EQUAL
or REG_EQUIV note by hacking the list manually rather than calling
remove_note. */
gcc_assert (note);
remove_note (insn, note);
}
}
/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
return 1 if it is found. A simple equality test is used to determine if
NODE matches. */
bool
in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
{
const_rtx x;
for (x = listp; x; x = XEXP (x, 1))
if (node == XEXP (x, 0))
return true;
return false;
}
/* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
remove that entry from the list if it is found.
A simple equality test is used to determine if NODE matches. */
void
remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
{
rtx_insn_list *temp = *listp;
rtx_insn_list *prev = NULL;
while (temp)
{
if (node == temp->insn ())
{
/* Splice the node out of the list. */
if (prev)
XEXP (prev, 1) = temp->next ();
else
*listp = temp->next ();
gcc_checking_assert (!in_insn_list_p (temp->next (), node));
return;
}
prev = temp;
temp = temp->next ();
}
}
/* Return true if X contains any volatile instructions. These are instructions
which may cause unpredictable machine state instructions, and thus no
instructions or register uses should be moved or combined across them.
This includes only volatile asms and UNSPEC_VOLATILE instructions. */
bool
volatile_insn_p (const_rtx x)
{
const RTX_CODE code = GET_CODE (x);
switch (code)
{
case LABEL_REF:
case SYMBOL_REF:
case CONST:
CASE_CONST_ANY:
case PC:
case REG:
case SCRATCH:
case CLOBBER:
case ADDR_VEC:
case ADDR_DIFF_VEC:
case CALL:
case MEM:
return false;
case UNSPEC_VOLATILE:
return true;
case ASM_INPUT:
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return true;
default:
break;
}
/* Recursively scan the operands of this expression. */
{
const char *const fmt = GET_RTX_FORMAT (code);
int i;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (volatile_insn_p (XEXP (x, i)))
return true;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (volatile_insn_p (XVECEXP (x, i, j)))
return true;
}
}
}
return false;
}
/* Return true if X contains any volatile memory references
UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
bool
volatile_refs_p (const_rtx x)
{
const RTX_CODE code = GET_CODE (x);
switch (code)
{
case LABEL_REF:
case SYMBOL_REF:
case CONST:
CASE_CONST_ANY:
case PC:
case REG:
case SCRATCH:
case CLOBBER:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return false;
case UNSPEC_VOLATILE:
return true;
case MEM:
case ASM_INPUT:
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return true;
default:
break;
}
/* Recursively scan the operands of this expression. */
{
const char *const fmt = GET_RTX_FORMAT (code);
int i;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (volatile_refs_p (XEXP (x, i)))
return true;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (volatile_refs_p (XVECEXP (x, i, j)))
return true;
}
}
}
return false;
}
/* Similar to above, except that it also rejects register pre- and post-
incrementing. */
bool
side_effects_p (const_rtx x)
{
const RTX_CODE code = GET_CODE (x);
switch (code)
{
case LABEL_REF:
case SYMBOL_REF:
case CONST:
CASE_CONST_ANY:
case PC:
case REG:
case SCRATCH:
case ADDR_VEC:
case ADDR_DIFF_VEC:
case VAR_LOCATION:
return false;
case CLOBBER:
/* Reject CLOBBER with a non-VOID mode. These are made by combine.cc
when some combination can't be done. If we see one, don't think
that we can simplify the expression. */
return (GET_MODE (x) != VOIDmode);
case PRE_INC:
case PRE_DEC:
case POST_INC:
case POST_DEC:
case PRE_MODIFY:
case POST_MODIFY:
case CALL:
case UNSPEC_VOLATILE:
return true;
case MEM:
case ASM_INPUT:
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return true;
default:
break;
}
/* Recursively scan the operands of this expression. */
{
const char *fmt = GET_RTX_FORMAT (code);
int i;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (side_effects_p (XEXP (x, i)))
return true;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (side_effects_p (XVECEXP (x, i, j)))
return true;
}
}
}
return false;
}
/* Return true if evaluating rtx X might cause a trap.
FLAGS controls how to consider MEMs. A true means the context
of the access may have changed from the original, such that the
address may have become invalid. */
bool
may_trap_p_1 (const_rtx x, unsigned flags)
{
int i;
enum rtx_code code;
const char *fmt;
/* We make no distinction currently, but this function is part of
the internal target-hooks ABI so we keep the parameter as
"unsigned flags". */
bool code_changed = flags != 0;
if (x == 0)
return false;
code = GET_CODE (x);
switch (code)
{
/* Handle these cases quickly. */
CASE_CONST_ANY:
case SYMBOL_REF:
case LABEL_REF:
case CONST:
case PC:
case REG:
case SCRATCH:
return false;
case UNSPEC:
return targetm.unspec_may_trap_p (x, flags);
case UNSPEC_VOLATILE:
case ASM_INPUT:
case TRAP_IF:
return true;
case ASM_OPERANDS:
return MEM_VOLATILE_P (x);
/* Memory ref can trap unless it's a static var or a stack slot. */
case MEM:
/* Recognize specific pattern of stack checking probes. */
if (flag_stack_check
&& MEM_VOLATILE_P (x)
&& XEXP (x, 0) == stack_pointer_rtx)
return true;
if (/* MEM_NOTRAP_P only relates to the actual position of the memory
reference; moving it out of context such as when moving code
when optimizing, might cause its address to become invalid. */
code_changed
|| !MEM_NOTRAP_P (x))
{
poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
GET_MODE (x), code_changed);
}
return false;
/* Division by a non-constant might trap. */
case DIV:
case MOD:
case UDIV:
case UMOD:
if (HONOR_SNANS (x))
return true;
if (FLOAT_MODE_P (GET_MODE (x)))
return flag_trapping_math;
if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
return true;
if (GET_CODE (XEXP (x, 1)) == CONST_VECTOR)
{
/* For CONST_VECTOR, return 1 if any element is or might be zero. */
unsigned int n_elts;
rtx op = XEXP (x, 1);
if (!GET_MODE_NUNITS (GET_MODE (op)).is_constant (&n_elts))
{
if (!CONST_VECTOR_DUPLICATE_P (op))
return true;
for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0); i++)
if (CONST_VECTOR_ENCODED_ELT (op, i) == const0_rtx)
return true;
}
else
for (unsigned i = 0; i < n_elts; i++)
if (CONST_VECTOR_ELT (op, i) == const0_rtx)
return true;
}
break;
case EXPR_LIST:
/* An EXPR_LIST is used to represent a function call. This
certainly may trap. */
return true;
case GE:
case GT:
case LE:
case LT:
case LTGT:
case COMPARE:
/* Treat min/max similar as comparisons. */
case SMIN:
case SMAX:
/* Some floating point comparisons may trap. */
if (!flag_trapping_math)
break;
/* ??? There is no machine independent way to check for tests that trap
when COMPARE is used, though many targets do make this distinction.
For instance, sparc uses CCFPE for compares which generate exceptions
and CCFP for compares which do not generate exceptions. */
if (HONOR_NANS (x))
return true;
/* But often the compare has some CC mode, so check operand
modes as well. */
if (HONOR_NANS (XEXP (x, 0))
|| HONOR_NANS (XEXP (x, 1)))
return true;
break;
case EQ:
case NE:
if (HONOR_SNANS (x))
return true;
/* Often comparison is CC mode, so check operand modes. */
if (HONOR_SNANS (XEXP (x, 0))
|| HONOR_SNANS (XEXP (x, 1)))
return true;
break;
case FIX:
case UNSIGNED_FIX:
/* Conversion of floating point might trap. */
if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
return true;
break;
case NEG:
case ABS:
case SUBREG:
case VEC_MERGE:
case VEC_SELECT:
case VEC_CONCAT:
case VEC_DUPLICATE:
/* These operations don't trap even with floating point. */
break;
default:
/* Any floating arithmetic may trap. */
if (FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
return true;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (may_trap_p_1 (XEXP (x, i), flags))
return true;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (may_trap_p_1 (XVECEXP (x, i, j), flags))
return true;
}
}
return false;
}
/* Return true if evaluating rtx X might cause a trap. */
bool
may_trap_p (const_rtx x)
{
return may_trap_p_1 (x, 0);
}
/* Same as above, but additionally return true if evaluating rtx X might
cause a fault. We define a fault for the purpose of this function as a
erroneous execution condition that cannot be encountered during the normal
execution of a valid program; the typical example is an unaligned memory
access on a strict alignment machine. The compiler guarantees that it
doesn't generate code that will fault from a valid program, but this
guarantee doesn't mean anything for individual instructions. Consider
the following example:
struct S { int d; union { char *cp; int *ip; }; };
int foo(struct S *s)
{
if (s->d == 1)
return *s->ip;
else
return *s->cp;
}
on a strict alignment machine. In a valid program, foo will never be
invoked on a structure for which d is equal to 1 and the underlying
unique field of the union not aligned on a 4-byte boundary, but the
expression *s->ip might cause a fault if considered individually.
At the RTL level, potentially problematic expressions will almost always
verify may_trap_p; for example, the above dereference can be emitted as
(mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
However, suppose that foo is inlined in a caller that causes s->cp to
point to a local character variable and guarantees that s->d is not set
to 1; foo may have been effectively translated into pseudo-RTL as:
if ((reg:SI) == 1)
(set (reg:SI) (mem:SI (%fp - 7)))
else
(set (reg:QI) (mem:QI (%fp - 7)))
Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
memory reference to a stack slot, but it will certainly cause a fault
on a strict alignment machine. */
bool
may_trap_or_fault_p (const_rtx x)
{
return may_trap_p_1 (x, 1);
}
/* Replace any occurrence of FROM in X with TO. The function does
not enter into CONST_DOUBLE for the replace.
Note that copying is not done so X must not be shared unless all copies
are to be modified.
ALL_REGS is true if we want to replace all REGs equal to FROM, not just
those pointer-equal ones. */
rtx
replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
{
int i, j;
const char *fmt;
if (x == from)
return to;
/* Allow this function to make replacements in EXPR_LISTs. */
if (x == 0)
return 0;
if (all_regs
&& REG_P (x)
&& REG_P (from)
&& REGNO (x) == REGNO (from))
{
gcc_assert (GET_MODE (x) == GET_MODE (from));
return to;
}
else if (GET_CODE (x) == SUBREG)
{
rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
if (CONST_SCALAR_INT_P (new_rtx))
{
x = simplify_subreg (GET_MODE (x), new_rtx,
GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x));
gcc_assert (x);
}
else
SUBREG_REG (x) = new_rtx;
return x;
}
else if (GET_CODE (x) == ZERO_EXTEND)
{
rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
if (CONST_SCALAR_INT_P (new_rtx))
{
x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
new_rtx, GET_MODE (XEXP (x, 0)));
gcc_assert (x);
}
else
XEXP (x, 0) = new_rtx;
return x;
}
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
from, to, all_regs);
}
return x;
}
/* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
void
replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
{
/* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
rtx x = *loc;
if (JUMP_TABLE_DATA_P (x))
{
x = PATTERN (x);
rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
int len = GET_NUM_ELEM (vec);
for (int i = 0; i < len; ++i)
{
rtx ref = RTVEC_ELT (vec, i);
if (XEXP (ref, 0) == old_label)
{
XEXP (ref, 0) = new_label;
if (update_label_nuses)
{
++LABEL_NUSES (new_label);
--LABEL_NUSES (old_label);
}
}
}
return;
}
/* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
field. This is not handled by the iterator because it doesn't
handle unprinted ('0') fields. */
if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
JUMP_LABEL (x) = new_label;
subrtx_ptr_iterator::array_type array;
FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
{
rtx *loc = *iter;
if (rtx x = *loc)
{
if (GET_CODE (x) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (x))
{
rtx c = get_pool_constant (x);
if (rtx_referenced_p (old_label, c))
{
/* Create a copy of constant C; replace the label inside
but do not update LABEL_NUSES because uses in constant pool
are not counted. */
rtx new_c = copy_rtx (c);
replace_label (&new_c, old_label, new_label, false);
/* Add the new constant NEW_C to constant pool and replace
the old reference to constant by new reference. */
rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
*loc = replace_rtx (x, x, XEXP (new_mem, 0));
}
}
if ((GET_CODE (x) == LABEL_REF
|| GET_CODE (x) == INSN_LIST)
&& XEXP (x, 0) == old_label)
{
XEXP (x, 0) = new_label;
if (update_label_nuses)
{
++LABEL_NUSES (new_label);
--LABEL_NUSES (old_label);
}
}
}
}
}
void
replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
rtx_insn *new_label, bool update_label_nuses)
{
rtx insn_as_rtx = insn;
replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
gcc_checking_assert (insn_as_rtx == insn);
}
/* Return true if X is referenced in BODY. */
bool
rtx_referenced_p (const_rtx x, const_rtx body)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, body, ALL)
if (const_rtx y = *iter)
{
/* Check if a label_ref Y refers to label X. */
if (GET_CODE (y) == LABEL_REF
&& LABEL_P (x)
&& label_ref_label (y) == x)
return true;
if (rtx_equal_p (x, y))
return true;
/* If Y is a reference to pool constant traverse the constant. */
if (GET_CODE (y) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (y))
iter.substitute (get_pool_constant (y));
}
return false;
}
/* If INSN is a tablejump return true and store the label (before jump table) to
*LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
bool
tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
rtx_jump_table_data **tablep)
{
if (!JUMP_P (insn))
return false;
rtx target = JUMP_LABEL (insn);
if (target == NULL_RTX || ANY_RETURN_P (target))
return false;
rtx_insn *label = as_a<rtx_insn *> (target);
rtx_insn *table = next_insn (label);
if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
return false;
if (labelp)
*labelp = label;
if (tablep)
*tablep = as_a <rtx_jump_table_data *> (table);
return true;
}
/* For INSN known to satisfy tablejump_p, determine if it actually is a
CASESI. Return the insn pattern if so, NULL_RTX otherwise. */
rtx
tablejump_casesi_pattern (const rtx_insn *insn)
{
rtx tmp;
if ((tmp = single_set (insn)) != NULL
&& SET_DEST (tmp) == pc_rtx
&& GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
&& GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
return tmp;
return NULL_RTX;
}
/* A subroutine of computed_jump_p, return true if X contains a REG or MEM or
constant that is not in the constant pool and not in the condition
of an IF_THEN_ELSE. */
static bool
computed_jump_p_1 (const_rtx x)
{
const enum rtx_code code = GET_CODE (x);
int i, j;
const char *fmt;
switch (code)
{
case LABEL_REF:
case PC:
return false;
case CONST:
CASE_CONST_ANY:
case SYMBOL_REF:
case REG:
return true;
case MEM:
return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
case IF_THEN_ELSE:
return (computed_jump_p_1 (XEXP (x, 1))
|| computed_jump_p_1 (XEXP (x, 2)));
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e'
&& computed_jump_p_1 (XEXP (x, i)))
return true;
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
if (computed_jump_p_1 (XVECEXP (x, i, j)))
return true;
}
return false;
}
/* Return true if INSN is an indirect jump (aka computed jump).
Tablejumps and casesi insns are not considered indirect jumps;
we can recognize them by a (use (label_ref)). */
bool
computed_jump_p (const rtx_insn *insn)
{
int i;
if (JUMP_P (insn))
{
rtx pat = PATTERN (insn);
/* If we have a JUMP_LABEL set, we're not a computed jump. */
if (JUMP_LABEL (insn) != NULL)
return false;
if (GET_CODE (pat) == PARALLEL)
{
int len = XVECLEN (pat, 0);
bool has_use_labelref = false;
for (i = len - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (pat, 0, i)) == USE
&& (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
== LABEL_REF))
{
has_use_labelref = true;
break;
}
if (! has_use_labelref)
for (i = len - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (pat, 0, i)) == SET
&& SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
&& computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
return true;
}
else if (GET_CODE (pat) == SET
&& SET_DEST (pat) == pc_rtx
&& computed_jump_p_1 (SET_SRC (pat)))
return true;
}
return false;
}
/* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
the equivalent add insn and pass the result to FN, using DATA as the
final argument. */
static int
for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
{
rtx x = XEXP (mem, 0);
switch (GET_CODE (x))
{
case PRE_INC:
case POST_INC:
{
poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
rtx r1 = XEXP (x, 0);
rtx c = gen_int_mode (size, GET_MODE (r1));
return fn (mem, x, r1, r1, c, data);
}
case PRE_DEC:
case POST_DEC:
{
poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
rtx r1 = XEXP (x, 0);
rtx c = gen_int_mode (-size, GET_MODE (r1));
return fn (mem, x, r1, r1, c, data);
}
case PRE_MODIFY:
case POST_MODIFY:
{
rtx r1 = XEXP (x, 0);
rtx add = XEXP (x, 1);
return fn (mem, x, r1, add, NULL, data);
}
default:
gcc_unreachable ();
}
}
/* Traverse *LOC looking for MEMs that have autoinc addresses.
For each such autoinc operation found, call FN, passing it
the innermost enclosing MEM, the operation itself, the RTX modified
by the operation, two RTXs (the second may be NULL) that, once
added, represent the value to be held by the modified RTX
afterwards, and DATA. FN is to return 0 to continue the
traversal or any other value to have it returned to the caller of
for_each_inc_dec. */
int
for_each_inc_dec (rtx x,
for_each_inc_dec_fn fn,
void *data)
{
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
{
rtx mem = *iter;
if (mem
&& MEM_P (mem)
&& GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
{
int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
if (res != 0)
return res;
iter.skip_subrtxes ();
}
}
return 0;
}
/* Searches X for any reference to REGNO, returning the rtx of the
reference found if any. Otherwise, returns NULL_RTX. */
rtx
regno_use_in (unsigned int regno, rtx x)
{
const char *fmt;
int i, j;
rtx tem;
if (REG_P (x) && REGNO (x) == regno)
return x;
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if ((tem = regno_use_in (regno, XEXP (x, i))))
return tem;
}
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
return tem;
}
return NULL_RTX;
}
/* Return a value indicating whether OP, an operand of a commutative
operation, is preferred as the first or second operand. The more
positive the value, the stronger the preference for being the first
operand. */
int
commutative_operand_precedence (rtx op)
{
enum rtx_code code = GET_CODE (op);
/* Constants always become the second operand. Prefer "nice" constants. */
if (code == CONST_INT)
return -10;
if (code == CONST_WIDE_INT)
return -9;
if (code == CONST_POLY_INT)
return -8;
if (code == CONST_DOUBLE)
return -8;
if (code == CONST_FIXED)
return -8;
op = avoid_constant_pool_reference (op);
code = GET_CODE (op);
switch (GET_RTX_CLASS (code))
{
case RTX_CONST_OBJ:
if (code == CONST_INT)
return -7;
if (code == CONST_WIDE_INT)
return -6;
if (code == CONST_POLY_INT)
return -5;
if (code == CONST_DOUBLE)
return -5;
if (code == CONST_FIXED)
return -5;
return -4;
case RTX_EXTRA:
/* SUBREGs of objects should come second. */
if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
return -3;
return 0;
case RTX_OBJ:
/* Complex expressions should be the first, so decrease priority
of objects. Prefer pointer objects over non pointer objects. */
if ((REG_P (op) && REG_POINTER (op))
|| (MEM_P (op) && MEM_POINTER (op)))
return -1;
return -2;
case RTX_COMM_ARITH:
/* Prefer operands that are themselves commutative to be first.
This helps to make things linear. In particular,
(and (and (reg) (reg)) (not (reg))) is canonical. */
return 4;
case RTX_BIN_ARITH:
/* If only one operand is a binary expression, it will be the first
operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
is canonical, although it will usually be further simplified. */
return 2;
case RTX_UNARY:
/* Then prefer NEG and NOT. */
if (code == NEG || code == NOT)
return 1;
/* FALLTHRU */
default:
return 0;
}
}
/* Return true iff it is necessary to swap operands of commutative operation
in order to canonicalize expression. */
bool
swap_commutative_operands_p (rtx x, rtx y)
{
return (commutative_operand_precedence (x)
< commutative_operand_precedence (y));
}
/* Return true if X is an autoincrement side effect and the register is
not the stack pointer. */
bool
auto_inc_p (const_rtx x)
{
switch (GET_CODE (x))
{
case PRE_INC:
case POST_INC:
case PRE_DEC:
case POST_DEC:
case PRE_MODIFY:
case POST_MODIFY:
/* There are no REG_INC notes for SP. */
if (XEXP (x, 0) != stack_pointer_rtx)
return true;
default:
break;
}
return false;
}
/* Return true if IN contains a piece of rtl that has the address LOC. */
bool
loc_mentioned_in_p (rtx *loc, const_rtx in)
{
enum rtx_code code;
const char *fmt;
int i, j;
if (!in)
return false;
code = GET_CODE (in);
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
return true;
}
else if (fmt[i] == 'E')
for (j = XVECLEN (in, i) - 1; j >= 0; j--)
if (loc == &XVECEXP (in, i, j)
|| loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
return true;
}
return false;
}
/* Reinterpret a subreg as a bit extraction from an integer and return
the position of the least significant bit of the extracted value.
In other words, if the extraction were performed as a shift right
and mask, return the number of bits to shift right.
The outer value of the subreg has OUTER_BYTES bytes and starts at
byte offset SUBREG_BYTE within an inner value of INNER_BYTES bytes. */
poly_uint64
subreg_size_lsb (poly_uint64 outer_bytes,
poly_uint64 inner_bytes,
poly_uint64 subreg_byte)
{
poly_uint64 subreg_end, trailing_bytes, byte_pos;
/* A paradoxical subreg begins at bit position 0. */
gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
if (maybe_gt (outer_bytes, inner_bytes))
{
gcc_checking_assert (known_eq (subreg_byte, 0U));
return 0;
}
subreg_end = subreg_byte + outer_bytes;
trailing_bytes = inner_bytes - subreg_end;
if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
byte_pos = trailing_bytes;
else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
byte_pos = subreg_byte;
else
{
/* When bytes and words have opposite endianness, we must be able
to split offsets into words and bytes at compile time. */
poly_uint64 leading_word_part
= force_align_down (subreg_byte, UNITS_PER_WORD);
poly_uint64 trailing_word_part
= force_align_down (trailing_bytes, UNITS_PER_WORD);
/* If the subreg crosses a word boundary ensure that
it also begins and ends on a word boundary. */
gcc_assert (known_le (subreg_end - leading_word_part,
(unsigned int) UNITS_PER_WORD)
|| (known_eq (leading_word_part, subreg_byte)
&& known_eq (trailing_word_part, trailing_bytes)));
if (WORDS_BIG_ENDIAN)
byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
else
byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
}
return byte_pos * BITS_PER_UNIT;
}
/* Given a subreg X, return the bit offset where the subreg begins
(counting from the least significant bit of the reg). */
poly_uint64
subreg_lsb (const_rtx x)
{
return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x));
}
/* Return the subreg byte offset for a subreg whose outer value has
OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
there are LSB_SHIFT *bits* between the lsb of the outer value and the
lsb of the inner value. This is the inverse of the calculation
performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
poly_uint64
subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
poly_uint64 lsb_shift)
{
/* A paradoxical subreg begins at bit position 0. */
gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
if (maybe_gt (outer_bytes, inner_bytes))
{
gcc_checking_assert (known_eq (lsb_shift, 0U));
return 0;
}
poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
return upper_bytes;
else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
return lower_bytes;
else
{
/* When bytes and words have opposite endianness, we must be able
to split offsets into words and bytes at compile time. */
poly_uint64 lower_word_part = force_align_down (lower_bytes,
UNITS_PER_WORD);
poly_uint64 upper_word_part = force_align_down (upper_bytes,
UNITS_PER_WORD);
if (WORDS_BIG_ENDIAN)
return upper_word_part + (lower_bytes - lower_word_part);
else
return lower_word_part + (upper_bytes - upper_word_part);
}
}
/* Fill in information about a subreg of a hard register.
xregno - A regno of an inner hard subreg_reg (or what will become one).
xmode - The mode of xregno.
offset - The byte offset.
ymode - The mode of a top level SUBREG (or what may become one).
info - Pointer to structure to fill in.
Rather than considering one particular inner register (and thus one
particular "outer" register) in isolation, this function really uses
XREGNO as a model for a sequence of isomorphic hard registers. Thus the
function does not check whether adding INFO->offset to XREGNO gives
a valid hard register; even if INFO->offset + XREGNO is out of range,
there might be another register of the same type that is in range.
Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
the new register, since that can depend on things like whether the final
register number is even or odd. Callers that want to check whether
this particular subreg can be replaced by a simple (reg ...) should
use simplify_subreg_regno. */
void
subreg_get_info (unsigned int xregno, machine_mode xmode,
poly_uint64 offset, machine_mode ymode,
struct subreg_info *info)
{
unsigned int nregs_xmode, nregs_ymode;
gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
poly_uint64 xsize = GET_MODE_SIZE (xmode);
poly_uint64 ysize = GET_MODE_SIZE (ymode);
bool rknown = false;
/* If the register representation of a non-scalar mode has holes in it,
we expect the scalar units to be concatenated together, with the holes
distributed evenly among the scalar units. Each scalar unit must occupy
at least one register. */
if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
{
/* As a consequence, we must be dealing with a constant number of
scalars, and thus a constant offset and number of units. */
HOST_WIDE_INT coffset = offset.to_constant ();
HOST_WIDE_INT cysize = ysize.to_constant ();
nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
scalar_mode xmode_unit = GET_MODE_INNER (xmode);
gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
gcc_assert (nregs_xmode
== (nunits
* HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
gcc_assert (hard_regno_nregs (xregno, xmode)
== hard_regno_nregs (xregno, xmode_unit) * nunits);
/* You can only ask for a SUBREG of a value with holes in the middle
if you don't cross the holes. (Such a SUBREG should be done by
picking a different register class, or doing it in memory if
necessary.) An example of a value with holes is XCmode on 32-bit
x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3 for each part, but in memory it's two 128-bit parts.
Padding is assumed to be at the end (not necessarily the 'high part')
of each unit. */
if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
&& (coffset / GET_MODE_SIZE (xmode_unit)
!= ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
{
info->representable_p = false;
rknown = true;
}
}
else
nregs_xmode = hard_regno_nregs (xregno, xmode);
nregs_ymode = hard_regno_nregs (xregno, ymode);
/* Subreg sizes must be ordered, so that we can tell whether they are
partial, paradoxical or complete. */
gcc_checking_assert (ordered_p (xsize, ysize));
/* Paradoxical subregs are otherwise valid. */
if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
{
info->representable_p = true;
/* If this is a big endian paradoxical subreg, which uses more
actual hard registers than the original register, we must
return a negative offset so that we find the proper highpart
of the register.
We assume that the ordering of registers within a multi-register
value has a consistent endianness: if bytes and register words
have different endianness, the hard registers that make up a
multi-register value must be at least word-sized. */
if (REG_WORDS_BIG_ENDIAN)
info->offset = (int) nregs_xmode - (int) nregs_ymode;
else
info->offset = 0;
info->nregs = nregs_ymode;
return;
}
/* If registers store different numbers of bits in the different
modes, we cannot generally form this subreg. */
poly_uint64 regsize_xmode, regsize_ymode;
if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
&& !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
&& multiple_p (xsize, nregs_xmode, ®size_xmode)
&& multiple_p (ysize, nregs_ymode, ®size_ymode))
{
if (!rknown
&& ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
|| (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
{
info->representable_p = false;
if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
|| !can_div_trunc_p (offset, regsize_xmode, &info->offset))
/* Checked by validate_subreg. We must know at compile time
which inner registers are being accessed. */
gcc_unreachable ();
return;
}
/* It's not valid to extract a subreg of mode YMODE at OFFSET that
would go outside of XMODE. */
if (!rknown && maybe_gt (ysize + offset, xsize))
{
info->representable_p = false;
info->nregs = nregs_ymode;
if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
/* Checked by validate_subreg. We must know at compile time
which inner registers are being accessed. */
gcc_unreachable ();
return;
}
/* Quick exit for the simple and common case of extracting whole
subregisters from a multiregister value. */
/* ??? It would be better to integrate this into the code below,
if we can generalize the concept enough and figure out how
odd-sized modes can coexist with the other weird cases we support. */
HOST_WIDE_INT count;
if (!rknown
&& WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
&& known_eq (regsize_xmode, regsize_ymode)
&& constant_multiple_p (offset, regsize_ymode, &count))
{
info->representable_p = true;
info->nregs = nregs_ymode;
info->offset = count;
gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
return;
}
}
/* Lowpart subregs are otherwise valid. */
if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
{
info->representable_p = true;
rknown = true;
if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
{
info->offset = 0;
info->nregs = nregs_ymode;
return;
}
}
/* Set NUM_BLOCKS to the number of independently-representable YMODE
values there are in (reg:XMODE XREGNO). We can view the register
as consisting of this number of independent "blocks", where each
block occupies NREGS_YMODE registers and contains exactly one
representable YMODE value. */
gcc_assert ((nregs_xmode % nregs_ymode) == 0);
unsigned int num_blocks = nregs_xmode / nregs_ymode;
/* Calculate the number of bytes in each block. This must always
be exact, otherwise we don't know how to verify the constraint.
These conditions may be relaxed but subreg_regno_offset would
need to be redesigned. */
poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
/* Get the number of the first block that contains the subreg and the byte
offset of the subreg from the start of that block. */
unsigned int block_number;
poly_uint64 subblock_offset;
if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
&subblock_offset))
/* Checked by validate_subreg. We must know at compile time which
inner registers are being accessed. */
gcc_unreachable ();
if (!rknown)
{
/* Only the lowpart of each block is representable. */
info->representable_p
= known_eq (subblock_offset,
subreg_size_lowpart_offset (ysize, bytes_per_block));
rknown = true;
}
/* We assume that the ordering of registers within a multi-register
value has a consistent endianness: if bytes and register words
have different endianness, the hard registers that make up a
multi-register value must be at least word-sized. */
if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
/* The block number we calculated above followed memory endianness.
Convert it to register endianness by counting back from the end.
(Note that, because of the assumption above, each block must be
at least word-sized.) */
info->offset = (num_blocks - block_number - 1) * nregs_ymode;
else
info->offset = block_number * nregs_ymode;
info->nregs = nregs_ymode;
}
/* This function returns the regno offset of a subreg expression.
xregno - A regno of an inner hard subreg_reg (or what will become one).
xmode - The mode of xregno.
offset - The byte offset.
ymode - The mode of a top level SUBREG (or what may become one).
RETURN - The regno offset which would be used. */
unsigned int
subreg_regno_offset (unsigned int xregno, machine_mode xmode,
poly_uint64 offset, machine_mode ymode)
{
struct subreg_info info;
subreg_get_info (xregno, xmode, offset, ymode, &info);
return info.offset;
}
/* This function returns true when the offset is representable via
subreg_offset in the given regno.
xregno - A regno of an inner hard subreg_reg (or what will become one).
xmode - The mode of xregno.
offset - The byte offset.
ymode - The mode of a top level SUBREG (or what may become one).
RETURN - Whether the offset is representable. */
bool
subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
poly_uint64 offset, machine_mode ymode)
{
struct subreg_info info;
subreg_get_info (xregno, xmode, offset, ymode, &info);
return info.representable_p;
}
/* Return the number of a YMODE register to which
(subreg:YMODE (reg:XMODE XREGNO) OFFSET)
can be simplified. Return -1 if the subreg can't be simplified.
XREGNO is a hard register number. */
int
simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
poly_uint64 offset, machine_mode ymode)
{
struct subreg_info info;
unsigned int yregno;
/* Give the backend a chance to disallow the mode change. */
if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
&& GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
&& !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode))
return -1;
/* We shouldn't simplify stack-related registers. */
if ((!reload_completed || frame_pointer_needed)
&& xregno == FRAME_POINTER_REGNUM)
return -1;
if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& xregno == ARG_POINTER_REGNUM)
return -1;
if (xregno == STACK_POINTER_REGNUM
/* We should convert hard stack register in LRA if it is
possible. */
&& ! lra_in_progress)
return -1;
/* Try to get the register offset. */
subreg_get_info (xregno, xmode, offset, ymode, &info);
if (!info.representable_p)
return -1;
/* Make sure that the offsetted register value is in range. */
yregno = xregno + info.offset;
if (!HARD_REGISTER_NUM_P (yregno))
return -1;
/* See whether (reg:YMODE YREGNO) is valid.
??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
This is a kludge to work around how complex FP arguments are passed
on IA-64 and should be fixed. See PR target/49226. */
if (!targetm.hard_regno_mode_ok (yregno, ymode)
&& targetm.hard_regno_mode_ok (xregno, xmode))
return -1;
return (int) yregno;
}
/* A wrapper around simplify_subreg_regno that uses subreg_lowpart_offset
(xmode, ymode) as the offset. */
int
lowpart_subreg_regno (unsigned int regno, machine_mode xmode,
machine_mode ymode)
{
poly_uint64 offset = subreg_lowpart_offset (xmode, ymode);
return simplify_subreg_regno (regno, xmode, offset, ymode);
}
/* Return the final regno that a subreg expression refers to. */
unsigned int
subreg_regno (const_rtx x)
{
unsigned int ret;
rtx subreg = SUBREG_REG (x);
int regno = REGNO (subreg);
ret = regno + subreg_regno_offset (regno,
GET_MODE (subreg),
SUBREG_BYTE (x),
GET_MODE (x));
return ret;
}
/* Return the number of registers that a subreg expression refers
to. */
unsigned int
subreg_nregs (const_rtx x)
{
return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
}
/* Return the number of registers that a subreg REG with REGNO
expression refers to. This is a copy of the rtlanal.cc:subreg_nregs
changed so that the regno can be passed in. */
unsigned int
subreg_nregs_with_regno (unsigned int regno, const_rtx x)
{
struct subreg_info info;
rtx subreg = SUBREG_REG (x);
subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
&info);
return info.nregs;
}
struct parms_set_data
{
int nregs;
HARD_REG_SET regs;
};
/* Helper function for noticing stores to parameter registers. */
static void
parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
struct parms_set_data *const d = (struct parms_set_data *) data;
if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
&& TEST_HARD_REG_BIT (d->regs, REGNO (x)))
{
CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
d->nregs--;
}
}
/* Look backward for first parameter to be loaded.
Note that loads of all parameters will not necessarily be
found if CSE has eliminated some of them (e.g., an argument
to the outer function is passed down as a parameter).
Do not skip BOUNDARY. */
rtx_insn *
find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
{
struct parms_set_data parm;
rtx p;
rtx_insn *before, *first_set;
/* Since different machines initialize their parameter registers
in different orders, assume nothing. Collect the set of all
parameter registers. */
CLEAR_HARD_REG_SET (parm.regs);
parm.nregs = 0;
for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
if (GET_CODE (XEXP (p, 0)) == USE
&& REG_P (XEXP (XEXP (p, 0), 0))
&& !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
{
gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
/* We only care about registers which can hold function
arguments. */
if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
continue;
SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
parm.nregs++;
}
before = call_insn;
first_set = call_insn;
/* Search backward for the first set of a register in this set. */
while (parm.nregs && before != boundary)
{
before = PREV_INSN (before);
/* It is possible that some loads got CSEed from one call to
another. Stop in that case. */
if (CALL_P (before))
break;
/* Our caller needs either ensure that we will find all sets
(in case code has not been optimized yet), or take care
for possible labels in a way by setting boundary to preceding
CODE_LABEL. */
if (LABEL_P (before))
{
gcc_assert (before == boundary);
break;
}
if (INSN_P (before))
{
int nregs_old = parm.nregs;
note_stores (before, parms_set, &parm);
/* If we found something that did not set a parameter reg,
we're done. Do not keep going, as that might result
in hoisting an insn before the setting of a pseudo
that is used by the hoisted insn. */
if (nregs_old != parm.nregs)
first_set = before;
else
break;
}
}
return first_set;
}
/* Return true if we should avoid inserting code between INSN and preceding
call instruction. */
bool
keep_with_call_p (const rtx_insn *insn)
{
rtx set;
if (INSN_P (insn) && (set = single_set (insn)) != NULL)
{
if (REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
&& fixed_regs[REGNO (SET_DEST (set))]
&& general_operand (SET_SRC (set), VOIDmode))
return true;
if (REG_P (SET_SRC (set))
&& targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
&& REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
return true;
/* There may be a stack pop just after the call and before the store
of the return register. Search for the actual store when deciding
if we can break or not. */
if (SET_DEST (set) == stack_pointer_rtx)
{
/* This CONST_CAST is okay because next_nonnote_insn just
returns its argument and we assign it to a const_rtx
variable. */
const rtx_insn *i2
= next_nonnote_insn (const_cast<rtx_insn *> (insn));
if (i2 && keep_with_call_p (i2))
return true;
}
}
return false;
}
/* Return true if LABEL is a target of JUMP_INSN. This applies only
to non-complex jumps. That is, direct unconditional, conditional,
and tablejumps, but not computed jumps or returns. It also does
not apply to the fallthru case of a conditional jump. */
bool
label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
{
rtx tmp = JUMP_LABEL (jump_insn);
rtx_jump_table_data *table;
if (label == tmp)
return true;
if (tablejump_p (jump_insn, NULL, &table))
{
rtvec vec = table->get_labels ();
int i, veclen = GET_NUM_ELEM (vec);
for (i = 0; i < veclen; ++i)
if (XEXP (RTVEC_ELT (vec, i), 0) == label)
return true;
}
if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
return true;
return false;
}
/* Return an estimate of the cost of computing rtx X.
One use is in cse, to decide which expression to keep in the hash table.
Another is in rtl generation, to pick the cheapest way to multiply.
Other uses like the latter are expected in the future.
X appears as operand OPNO in an expression with code OUTER_CODE.
SPEED specifies whether costs optimized for speed or size should
be returned. */
int
rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
int opno, bool speed)
{
int i, j;
enum rtx_code code;
const char *fmt;
int total;
int factor;
unsigned mode_size;
if (x == 0)
return 0;
if (GET_CODE (x) == SET)
/* A SET doesn't have a mode, so let's look at the SET_DEST to get
the mode for the factor. */
mode = GET_MODE (SET_DEST (x));
else if (GET_MODE (x) != VOIDmode)
mode = GET_MODE (x);
mode_size = estimated_poly_value (GET_MODE_SIZE (mode));
/* A size N times larger than UNITS_PER_WORD likely needs N times as
many insns, taking N times as long. */
factor = mode_size > UNITS_PER_WORD ? mode_size / UNITS_PER_WORD : 1;
/* Compute the default costs of certain things.
Note that targetm.rtx_costs can override the defaults. */
code = GET_CODE (x);
switch (code)
{
case MULT:
case FMA:
case SS_MULT:
case US_MULT:
case SMUL_HIGHPART:
case UMUL_HIGHPART:
/* Multiplication has time-complexity O(N*N), where N is the
number of units (translated from digits) when using
schoolbook long multiplication. */
total = factor * factor * COSTS_N_INSNS (5);
break;
case DIV:
case UDIV:
case MOD:
case UMOD:
case SS_DIV:
case US_DIV:
/* Similarly, complexity for schoolbook long division. */
total = factor * factor * COSTS_N_INSNS (7);
break;
case USE:
/* Used in combine.cc as a marker. */
total = 0;
break;
default:
total = factor * COSTS_N_INSNS (1);
}
switch (code)
{
case REG:
return 0;
case SUBREG:
total = 0;
/* If we can't tie these modes, make this expensive. The larger
the mode, the more expensive it is. */
if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
return COSTS_N_INSNS (2 + factor);
break;
case TRUNCATE:
if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
{
total = 0;
break;
}
/* FALLTHRU */
default:
if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
return total;
break;
}
/* Sum the costs of the sub-rtx's, plus cost of this operation,
which is already in total. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
total += rtx_cost (XEXP (x, i), mode, code, i, speed);
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
return total;
}
/* Fill in the structure C with information about both speed and size rtx
costs for X, which is operand OPNO in an expression with code OUTER. */
void
get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
struct full_rtx_costs *c)
{
c->speed = rtx_cost (x, mode, outer, opno, true);
c->size = rtx_cost (x, mode, outer, opno, false);
}
/* Return cost of address expression X.
Expect that X is properly formed address reference.
SPEED parameter specify whether costs optimized for speed or size should
be returned. */
int
address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
{
/* We may be asked for cost of various unusual addresses, such as operands
of push instruction. It is not worthwhile to complicate writing
of the target hook by such cases. */
if (!memory_address_addr_space_p (mode, x, as))
return 1000;
return targetm.address_cost (x, mode, as, speed);
}
/* If the target doesn't override, compute the cost as with arithmetic. */
int
default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
{
return rtx_cost (x, Pmode, MEM, 0, speed);
}
unsigned HOST_WIDE_INT
nonzero_bits (const_rtx x, machine_mode mode)
{
if (mode == VOIDmode)
mode = GET_MODE (x);
scalar_int_mode int_mode;
if (!is_a <scalar_int_mode> (mode, &int_mode))
return GET_MODE_MASK (mode);
return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
}
unsigned int
num_sign_bit_copies (const_rtx x, machine_mode mode)
{
if (mode == VOIDmode)
mode = GET_MODE (x);
scalar_int_mode int_mode;
if (!is_a <scalar_int_mode> (mode, &int_mode))
return 1;
return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
}
/* Return true if nonzero_bits1 might recurse into both operands
of X. */
static inline bool
nonzero_bits_binary_arith_p (const_rtx x)
{
if (!ARITHMETIC_P (x))
return false;
switch (GET_CODE (x))
{
case AND:
case XOR:
case IOR:
case UMIN:
case UMAX:
case SMIN:
case SMAX:
case PLUS:
case MINUS:
case MULT:
case DIV:
case UDIV:
case MOD:
case UMOD:
return true;
default:
return false;
}
}
/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
It avoids exponential behavior in nonzero_bits1 when X has
identical subexpressions on the first or the second level. */
static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
machine_mode known_mode,
unsigned HOST_WIDE_INT known_ret)
{
if (x == known_x && mode == known_mode)
return known_ret;
/* Try to find identical subexpressions. If found call
nonzero_bits1 on X with the subexpressions as KNOWN_X and the
precomputed value for the subexpression as KNOWN_RET. */
if (nonzero_bits_binary_arith_p (x))
{
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
/* Check the first level. */
if (x0 == x1)
return nonzero_bits1 (x, mode, x0, mode,
cached_nonzero_bits (x0, mode, known_x,
known_mode, known_ret));
/* Check the second level. */
if (nonzero_bits_binary_arith_p (x0)
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
return nonzero_bits1 (x, mode, x1, mode,
cached_nonzero_bits (x1, mode, known_x,
known_mode, known_ret));
if (nonzero_bits_binary_arith_p (x1)
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
return nonzero_bits1 (x, mode, x0, mode,
cached_nonzero_bits (x0, mode, known_x,
known_mode, known_ret));
}
return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
}
/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
We don't let nonzero_bits recur into num_sign_bit_copies, because that
is less useful. We can't allow both, because that results in exponential
run time recursion. There is a nullstone testcase that triggered
this. This macro avoids accidental uses of num_sign_bit_copies. */
#define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
/* Given an expression, X, compute which bits in X can be nonzero.
We don't care about bits outside of those defined in MODE.
For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
an arithmetic operation, we can do better. */
static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
machine_mode known_mode,
unsigned HOST_WIDE_INT known_ret)
{
unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
unsigned HOST_WIDE_INT inner_nz;
enum rtx_code code = GET_CODE (x);
machine_mode inner_mode;
unsigned int inner_width;
scalar_int_mode xmode;
unsigned int mode_width = GET_MODE_PRECISION (mode);
if (CONST_INT_P (x))
{
if (SHORT_IMMEDIATES_SIGN_EXTEND
&& INTVAL (x) > 0
&& mode_width < BITS_PER_WORD
&& (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
return UINTVAL (x);
}
if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
return nonzero;
unsigned int xmode_width = GET_MODE_PRECISION (xmode);
/* If X is wider than MODE, use its mode instead. */
if (xmode_width > mode_width)
{
mode = xmode;
nonzero = GET_MODE_MASK (mode);
mode_width = xmode_width;
}
if (mode_width > HOST_BITS_PER_WIDE_INT)
/* Our only callers in this case look for single bit values. So
just return the mode mask. Those tests will then be false. */
return nonzero;
/* If MODE is wider than X, but both are a single word for both the host
and target machines, we can compute this from which bits of the object
might be nonzero in its own mode, taking into account the fact that, on
CISC machines, accessing an object in a wider mode generally causes the
high-order bits to become undefined, so they are not known to be zero.
We extend this reasoning to RISC machines for operations that might not
operate on the full registers. */
if (mode_width > xmode_width
&& xmode_width <= BITS_PER_WORD
&& xmode_width <= HOST_BITS_PER_WIDE_INT
&& !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
{
nonzero &= cached_nonzero_bits (x, xmode,
known_x, known_mode, known_ret);
nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
return nonzero;
}
/* Please keep nonzero_bits_binary_arith_p above in sync with
the code in the switch below. */
switch (code)
{
case REG:
#if defined(POINTERS_EXTEND_UNSIGNED)
/* If pointers extend unsigned and this is a pointer in Pmode, say that
all the bits above ptr_mode are known to be zero. */
/* As we do not know which address space the pointer is referring to,
we can do this only if the target does not support different pointer
or address modes depending on the address space. */
if (target_default_pointer_address_modes_p ()
&& POINTERS_EXTEND_UNSIGNED
&& xmode == Pmode
&& REG_POINTER (x)
&& !targetm.have_ptr_extend ())
nonzero &= GET_MODE_MASK (ptr_mode);
#endif
/* Include declared information about alignment of pointers. */
/* ??? We don't properly preserve REG_POINTER changes across
pointer-to-integer casts, so we can't trust it except for
things that we know must be pointers. See execute/960116-1.c. */
if ((x == stack_pointer_rtx
|| x == frame_pointer_rtx
|| x == arg_pointer_rtx)
&& REGNO_POINTER_ALIGN (REGNO (x)))
{
unsigned HOST_WIDE_INT alignment
= REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
#ifdef PUSH_ROUNDING
/* If PUSH_ROUNDING is defined, it is possible for the
stack to be momentarily aligned only to that amount,
so we pick the least alignment. */
if (x == stack_pointer_rtx && targetm.calls.push_argument (0))
{
poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
alignment = MIN (known_alignment (rounded_1), alignment);
}
#endif
nonzero &= ~(alignment - 1);
}
{
unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
&nonzero_for_hook);
if (new_rtx)
nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
known_mode, known_ret);
return nonzero_for_hook;
}
case MEM:
/* In many, if not most, RISC machines, reading a byte from memory
zeros the rest of the register. Noticing that fact saves a lot
of extra zero-extends. */
if (load_extend_op (xmode) == ZERO_EXTEND)
nonzero &= GET_MODE_MASK (xmode);
break;
case EQ: case NE:
case UNEQ: case LTGT:
case GT: case GTU: case UNGT:
case LT: case LTU: case UNLT:
case GE: case GEU: case UNGE:
case LE: case LEU: case UNLE:
case UNORDERED: case ORDERED:
/* If this produces an integer result, we know which bits are set.
Code here used to clear bits outside the mode of X, but that is
now done above. */
/* Mind that MODE is the mode the caller wants to look at this
operation in, and not the actual operation mode. We can wind
up with (subreg:DI (gt:V4HI x y)), and we don't have anything
that describes the results of a vector compare. */
if (GET_MODE_CLASS (xmode) == MODE_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT)
nonzero = STORE_FLAG_VALUE;
break;
case NEG:
#if 0
/* Disabled to avoid exponential mutual recursion between nonzero_bits
and num_sign_bit_copies. */
if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
nonzero = 1;
#endif
if (xmode_width < mode_width)
nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
break;
case ABS:
#if 0
/* Disabled to avoid exponential mutual recursion between nonzero_bits
and num_sign_bit_copies. */
if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
nonzero = 1;
#endif
break;
case TRUNCATE:
nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret)
& GET_MODE_MASK (mode));
break;
case ZERO_EXTEND:
nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
break;
case SIGN_EXTEND:
/* If the sign bit is known clear, this is the same as ZERO_EXTEND.
Otherwise, show all the bits in the outer mode but not the inner
may be nonzero. */
inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
{
inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
inner_nz |= (GET_MODE_MASK (mode)
& ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
}
nonzero &= inner_nz;
break;
case AND:
nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret)
& cached_nonzero_bits (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
break;
case XOR: case IOR:
case UMIN: case UMAX: case SMIN: case SMAX:
{
unsigned HOST_WIDE_INT nonzero0
= cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
/* Don't call nonzero_bits for the second time if it cannot change
anything. */
if ((nonzero & nonzero0) != nonzero)
nonzero &= nonzero0
| cached_nonzero_bits (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
}
break;
case PLUS: case MINUS:
case MULT:
case DIV: case UDIV:
case MOD: case UMOD:
/* We can apply the rules of arithmetic to compute the number of
high- and low-order zero bits of these operations. We start by
computing the width (position of the highest-order nonzero bit)
and the number of low-order zero bits for each value. */
{
unsigned HOST_WIDE_INT nz0
= cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
unsigned HOST_WIDE_INT nz1
= cached_nonzero_bits (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
int sign_index = xmode_width - 1;
int width0 = floor_log2 (nz0) + 1;
int width1 = floor_log2 (nz1) + 1;
int low0 = ctz_or_zero (nz0);
int low1 = ctz_or_zero (nz1);
unsigned HOST_WIDE_INT op0_maybe_minusp
= nz0 & (HOST_WIDE_INT_1U << sign_index);
unsigned HOST_WIDE_INT op1_maybe_minusp
= nz1 & (HOST_WIDE_INT_1U << sign_index);
unsigned int result_width = mode_width;
int result_low = 0;
switch (code)
{
case PLUS:
result_width = MAX (width0, width1) + 1;
result_low = MIN (low0, low1);
break;
case MINUS:
result_low = MIN (low0, low1);
break;
case MULT:
result_width = width0 + width1;
result_low = low0 + low1;
break;
case DIV:
if (width1 == 0)
break;
if (!op0_maybe_minusp && !op1_maybe_minusp)
result_width = width0;
break;
case UDIV:
if (width1 == 0)
break;
result_width = width0;
break;
case MOD:
if (width1 == 0)
break;
if (!op0_maybe_minusp && !op1_maybe_minusp)
result_width = MIN (width0, width1);
result_low = MIN (low0, low1);
break;
case UMOD:
if (width1 == 0)
break;
result_width = MIN (width0, width1);
result_low = MIN (low0, low1);
break;
default:
gcc_unreachable ();
}
/* Note that mode_width <= HOST_BITS_PER_WIDE_INT, see above. */
if (result_width < mode_width)
nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
if (result_low > 0)
{
if (result_low < HOST_BITS_PER_WIDE_INT)
nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
else
nonzero = 0;
}
}
break;
case ZERO_EXTRACT:
if (CONST_INT_P (XEXP (x, 1))
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
break;
case SUBREG:
/* If this is a SUBREG formed for a promoted variable that has
been zero-extended, we know that at least the high-order bits
are zero, though others might be too. */
if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
nonzero = GET_MODE_MASK (xmode)
& cached_nonzero_bits (SUBREG_REG (x), xmode,
known_x, known_mode, known_ret);
/* If the inner mode is a single word for both the host and target
machines, we can compute this from which bits of the inner
object might be nonzero. */
inner_mode = GET_MODE (SUBREG_REG (x));
if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
&& inner_width <= BITS_PER_WORD
&& inner_width <= HOST_BITS_PER_WIDE_INT)
{
nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
known_x, known_mode, known_ret);
/* On a typical CISC machine, accessing an object in a wider mode
causes the high-order bits to become undefined. So they are
not known to be zero.
On a typical RISC machine, we only have to worry about the way
loads are extended. Otherwise, if we get a reload for the inner
part, it may be loaded from the stack, and then we may lose all
the zero bits that existed before the store to the stack. */
rtx_code extend_op;
if ((!WORD_REGISTER_OPERATIONS
|| ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
? val_signbit_known_set_p (inner_mode, nonzero)
: extend_op != ZERO_EXTEND)
|| !MEM_P (SUBREG_REG (x)))
&& xmode_width > inner_width)
nonzero
|= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
}
break;
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
case ROTATE:
case ROTATERT:
/* The nonzero bits are in two classes: any bits within MODE
that aren't in xmode are always significant. The rest of the
nonzero bits are those that are significant in the operand of
the shift when shifted the appropriate number of bits. This
shows that high-order bits are cleared by the right shift and
low-order bits by left shifts. */
if (CONST_INT_P (XEXP (x, 1))
&& INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
&& INTVAL (XEXP (x, 1)) < xmode_width)
{
int count = INTVAL (XEXP (x, 1));
unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
unsigned HOST_WIDE_INT op_nonzero
= cached_nonzero_bits (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
unsigned HOST_WIDE_INT outer = 0;
if (mode_width > xmode_width)
outer = (op_nonzero & nonzero & ~mode_mask);
switch (code)
{
case ASHIFT:
inner <<= count;
break;
case LSHIFTRT:
inner >>= count;
break;
case ASHIFTRT:
inner >>= count;
/* If the sign bit may have been nonzero before the shift, we
need to mark all the places it could have been copied to
by the shift as possibly nonzero. */
if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
inner |= (((HOST_WIDE_INT_1U << count) - 1)
<< (xmode_width - count));
break;
case ROTATE:
inner = (inner << (count % xmode_width)
| (inner >> (xmode_width - (count % xmode_width))))
& mode_mask;
break;
case ROTATERT:
inner = (inner >> (count % xmode_width)
| (inner << (xmode_width - (count % xmode_width))))
& mode_mask;
break;
default:
gcc_unreachable ();
}
nonzero &= (outer | inner);
}
break;
case FFS:
case POPCOUNT:
/* This is at most the number of bits in the mode. */
nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
break;
case CLZ:
/* If CLZ has a known value at zero, then the nonzero bits are
that value, plus the number of bits in the mode minus one. */
if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
nonzero
|= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
else
nonzero = -1;
break;
case CTZ:
/* If CTZ has a known value at zero, then the nonzero bits are
that value, plus the number of bits in the mode minus one. */
if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
nonzero
|= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
else
nonzero = -1;
break;
case CLRSB:
/* This is at most the number of bits in the mode minus 1. */
nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
break;
case PARITY:
nonzero = 1;
break;
case IF_THEN_ELSE:
{
unsigned HOST_WIDE_INT nonzero_true
= cached_nonzero_bits (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
/* Don't call nonzero_bits for the second time if it cannot change
anything. */
if ((nonzero & nonzero_true) != nonzero)
nonzero &= nonzero_true
| cached_nonzero_bits (XEXP (x, 2), mode,
known_x, known_mode, known_ret);
}
break;
default:
break;
}
return nonzero;
}
/* See the macro definition above. */
#undef cached_num_sign_bit_copies
/* Return true if num_sign_bit_copies1 might recurse into both operands
of X. */
static inline bool
num_sign_bit_copies_binary_arith_p (const_rtx x)
{
if (!ARITHMETIC_P (x))
return false;
switch (GET_CODE (x))
{
case IOR:
case AND:
case XOR:
case SMIN:
case SMAX:
case UMIN:
case UMAX:
case PLUS:
case MINUS:
case MULT:
return true;
default:
return false;
}
}
/* The function cached_num_sign_bit_copies is a wrapper around
num_sign_bit_copies1. It avoids exponential behavior in
num_sign_bit_copies1 when X has identical subexpressions on the
first or the second level. */
static unsigned int
cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
const_rtx known_x, machine_mode known_mode,
unsigned int known_ret)
{
if (x == known_x && mode == known_mode)
return known_ret;
/* Try to find identical subexpressions. If found call
num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
the precomputed value for the subexpression as KNOWN_RET. */
if (num_sign_bit_copies_binary_arith_p (x))
{
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
/* Check the first level. */
if (x0 == x1)
return
num_sign_bit_copies1 (x, mode, x0, mode,
cached_num_sign_bit_copies (x0, mode, known_x,
known_mode,
known_ret));
/* Check the second level. */
if (num_sign_bit_copies_binary_arith_p (x0)
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
return
num_sign_bit_copies1 (x, mode, x1, mode,
cached_num_sign_bit_copies (x1, mode, known_x,
known_mode,
known_ret));
if (num_sign_bit_copies_binary_arith_p (x1)
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
return
num_sign_bit_copies1 (x, mode, x0, mode,
cached_num_sign_bit_copies (x0, mode, known_x,
known_mode,
known_ret));
}
return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
}
/* Return the number of bits at the high-order end of X that are known to
be equal to the sign bit. X will be used in mode MODE. The returned
value will always be between 1 and the number of bits in MODE. */
static unsigned int
num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
machine_mode known_mode,
unsigned int known_ret)
{
enum rtx_code code = GET_CODE (x);
unsigned int bitwidth = GET_MODE_PRECISION (mode);
int num0, num1, result;
unsigned HOST_WIDE_INT nonzero;
if (CONST_INT_P (x))
{
/* If the constant is negative, take its 1's complement and remask.
Then see how many zero bits we have. */
nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
if (bitwidth <= HOST_BITS_PER_WIDE_INT
&& (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
nonzero = (~nonzero) & GET_MODE_MASK (mode);
return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
}
scalar_int_mode xmode, inner_mode;
if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
return 1;
unsigned int xmode_width = GET_MODE_PRECISION (xmode);
/* For a smaller mode, just ignore the high bits. */
if (bitwidth < xmode_width)
{
num0 = cached_num_sign_bit_copies (x, xmode,
known_x, known_mode, known_ret);
return MAX (1, num0 - (int) (xmode_width - bitwidth));
}
if (bitwidth > xmode_width)
{
/* If this machine does not do all register operations on the entire
register and MODE is wider than the mode of X, we can say nothing
at all about the high-order bits. We extend this reasoning to RISC
machines for operations that might not operate on full registers. */
if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
return 1;
/* Likewise on machines that do, if the mode of the object is smaller
than a word and loads of that size don't sign extend, we can say
nothing about the high order bits. */
if (xmode_width < BITS_PER_WORD
&& load_extend_op (xmode) != SIGN_EXTEND)
return 1;
}
/* Please keep num_sign_bit_copies_binary_arith_p above in sync with
the code in the switch below. */
switch (code)
{
case REG:
#if defined(POINTERS_EXTEND_UNSIGNED)
/* If pointers extend signed and this is a pointer in Pmode, say that
all the bits above ptr_mode are known to be sign bit copies. */
/* As we do not know which address space the pointer is referring to,
we can do this only if the target does not support different pointer
or address modes depending on the address space. */
if (target_default_pointer_address_modes_p ()
&& ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
&& mode == Pmode && REG_POINTER (x)
&& !targetm.have_ptr_extend ())
return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
#endif
{
unsigned int copies_for_hook = 1, copies = 1;
rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
&copies_for_hook);
if (new_rtx)
copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
known_mode, known_ret);
if (copies > 1 || copies_for_hook > 1)
return MAX (copies, copies_for_hook);
/* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
}
break;
case MEM:
/* Some RISC machines sign-extend all loads of smaller than a word. */
if (load_extend_op (xmode) == SIGN_EXTEND)
return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
break;
case SUBREG:
/* If this is a SUBREG for a promoted object that is sign-extended
and we are looking at it in a wider mode, we know that at least the
high-order bits are known to be sign bit copies. */
if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
{
num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
known_x, known_mode, known_ret);
return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
}
if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
{
/* For a smaller object, just ignore the high bits. */
if (bitwidth <= GET_MODE_PRECISION (inner_mode))
{
num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
known_x, known_mode,
known_ret);
return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
- bitwidth));
}
/* For paradoxical SUBREGs on machines where all register operations
affect the entire register, just look inside. Note that we are
passing MODE to the recursive call, so the number of sign bit
copies will remain relative to that mode, not the inner mode.
This works only if loads sign extend. Otherwise, if we get a
reload for the inner part, it may be loaded from the stack, and
then we lose all sign bit copies that existed before the store
to the stack. */
if (WORD_REGISTER_OPERATIONS
&& load_extend_op (inner_mode) == SIGN_EXTEND
&& paradoxical_subreg_p (x)
&& MEM_P (SUBREG_REG (x)))
return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
known_x, known_mode, known_ret);
}
break;
case SIGN_EXTRACT:
if (CONST_INT_P (XEXP (x, 1)))
return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
break;
case SIGN_EXTEND:
if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
return (bitwidth - GET_MODE_PRECISION (inner_mode)
+ cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
known_x, known_mode, known_ret));
break;
case TRUNCATE:
/* For a smaller object, just ignore the high bits. */
inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
known_x, known_mode, known_ret);
return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
- bitwidth)));
case NOT:
return cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
case ROTATE: case ROTATERT:
/* If we are rotating left by a number of bits less than the number
of sign bit copies, we can just subtract that amount from the
number. */
if (CONST_INT_P (XEXP (x, 1))
&& INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < (int) bitwidth)
{
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
: (int) bitwidth - INTVAL (XEXP (x, 1))));
}
break;
case NEG:
/* In general, this subtracts one sign bit copy. But if the value
is known to be positive, the number of sign bit copies is the
same as that of the input. Finally, if the input has just one bit
that might be nonzero, all the bits are copies of the sign bit. */
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
if (bitwidth > HOST_BITS_PER_WIDE_INT)
return num0 > 1 ? num0 - 1 : 1;
nonzero = nonzero_bits (XEXP (x, 0), mode);
if (nonzero == 1)
return bitwidth;
if (num0 > 1
&& ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
num0--;
return num0;
case IOR: case AND: case XOR:
case SMIN: case SMAX: case UMIN: case UMAX:
/* Logical operations will preserve the number of sign-bit copies.
MIN and MAX operations always return one of the operands. */
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
/* If num1 is clearing some of the top bits then regardless of
the other term, we are guaranteed to have at least that many
high-order zero bits. */
if (code == AND
&& num1 > 1
&& bitwidth <= HOST_BITS_PER_WIDE_INT
&& CONST_INT_P (XEXP (x, 1))
&& (UINTVAL (XEXP (x, 1))
& (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
return num1;
/* Similarly for IOR when setting high-order bits. */
if (code == IOR
&& num1 > 1
&& bitwidth <= HOST_BITS_PER_WIDE_INT
&& CONST_INT_P (XEXP (x, 1))
&& (UINTVAL (XEXP (x, 1))
& (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
return num1;
return MIN (num0, num1);
case PLUS: case MINUS:
/* For addition and subtraction, we can have a 1-bit carry. However,
if we are subtracting 1 from a positive number, there will not
be such a carry. Furthermore, if the positive number is known to
be 0 or 1, we know the result is either -1 or 0. */
if (code == PLUS && XEXP (x, 1) == constm1_rtx
&& bitwidth <= HOST_BITS_PER_WIDE_INT)
{
nonzero = nonzero_bits (XEXP (x, 0), mode);
if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
return (nonzero == 1 || nonzero == 0 ? bitwidth
: bitwidth - floor_log2 (nonzero) - 1);
}
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
result = MAX (1, MIN (num0, num1) - 1);
return result;
case MULT:
/* The number of bits of the product is the sum of the number of
bits of both terms. However, unless one of the terms if known
to be positive, we must allow for an additional bit since negating
a negative number can remove one sign bit copy. */
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
if (result > 0
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|| (((nonzero_bits (XEXP (x, 0), mode)
& (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
&& ((nonzero_bits (XEXP (x, 1), mode)
& (HOST_WIDE_INT_1U << (bitwidth - 1)))
!= 0))))
result--;
return MAX (1, result);
case UDIV:
/* The result must be <= the first operand. If the first operand
has the high bit set, we know nothing about the number of sign
bit copies. */
if (bitwidth > HOST_BITS_PER_WIDE_INT)
return 1;
else if ((nonzero_bits (XEXP (x, 0), mode)
& (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
return 1;
else
return cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
case UMOD:
/* The result must be <= the second operand. If the second operand
has (or just might have) the high bit set, we know nothing about
the number of sign bit copies. */
if (bitwidth > HOST_BITS_PER_WIDE_INT)
return 1;
else if ((nonzero_bits (XEXP (x, 1), mode)
& (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
return 1;
else
return cached_num_sign_bit_copies (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
case DIV:
/* Similar to unsigned division, except that we have to worry about
the case where the divisor is negative, in which case we have
to add 1. */
result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
if (result > 1
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|| (nonzero_bits (XEXP (x, 1), mode)
& (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
result--;
return result;
case MOD:
result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
if (result > 1
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|| (nonzero_bits (XEXP (x, 1), mode)
& (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
result--;
return result;
case ASHIFTRT:
/* Shifts by a constant add to the number of bits equal to the
sign bit. */
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
if (CONST_INT_P (XEXP (x, 1))
&& INTVAL (XEXP (x, 1)) > 0
&& INTVAL (XEXP (x, 1)) < xmode_width)
num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
return num0;
case ASHIFT:
/* Left shifts destroy copies. */
if (!CONST_INT_P (XEXP (x, 1))
|| INTVAL (XEXP (x, 1)) < 0
|| INTVAL (XEXP (x, 1)) >= (int) bitwidth
|| INTVAL (XEXP (x, 1)) >= xmode_width)
return 1;
num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
known_x, known_mode, known_ret);
return MAX (1, num0 - INTVAL (XEXP (x, 1)));
case IF_THEN_ELSE:
num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
known_x, known_mode, known_ret);
num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
known_x, known_mode, known_ret);
return MIN (num0, num1);
case EQ: case NE: case GE: case GT: case LE: case LT:
case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
case GEU: case GTU: case LEU: case LTU:
case UNORDERED: case ORDERED:
/* If the constant is negative, take its 1's complement and remask.
Then see how many zero bits we have. */
nonzero = STORE_FLAG_VALUE;
if (bitwidth <= HOST_BITS_PER_WIDE_INT
&& (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
nonzero = (~nonzero) & GET_MODE_MASK (mode);
return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
default:
break;
}
/* If we haven't been able to figure it out by one of the above rules,
see if some of the high-order bits are known to be zero. If so,
count those bits and return one less than that amount. If we can't
safely compute the mask for this mode, always return BITWIDTH. */
bitwidth = GET_MODE_PRECISION (mode);
if (bitwidth > HOST_BITS_PER_WIDE_INT)
return 1;
nonzero = nonzero_bits (x, mode);
return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
? 1 : bitwidth - floor_log2 (nonzero) - 1;
}
/* Calculate the rtx_cost of a single instruction pattern. A return value of
zero indicates an instruction pattern without a known cost. */
int
pattern_cost (rtx pat, bool speed)
{
int i, cost;
rtx set;
/* Extract the single set rtx from the instruction pattern. We
can't use single_set since we only have the pattern. We also
consider PARALLELs of a normal set and a single comparison. In
that case we use the cost of the non-comparison SET operation,
which is most-likely to be the real cost of this operation. */
if (GET_CODE (pat) == SET)
set = pat;
else if (GET_CODE (pat) == PARALLEL)
{
set = NULL_RTX;
rtx comparison = NULL_RTX;
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx x = XVECEXP (pat, 0, i);
if (GET_CODE (x) == SET)
{
if (GET_CODE (SET_SRC (x)) == COMPARE)
{
if (comparison)
return 0;
comparison = x;
}
else
{
if (set)
return 0;
set = x;
}
}
}
if (!set && comparison)
set = comparison;
if (!set)
return 0;
}
else
return 0;
cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
return cost > 0 ? cost : COSTS_N_INSNS (1);
}
/* Calculate the cost of a single instruction. A return value of zero
indicates an instruction pattern without a known cost. */
int
insn_cost (rtx_insn *insn, bool speed)
{
if (targetm.insn_cost)
return targetm.insn_cost (insn, speed);
return pattern_cost (PATTERN (insn), speed);
}
/* Returns estimate on cost of computing SEQ. */
unsigned
seq_cost (const rtx_insn *seq, bool speed)
{
unsigned cost = 0;
rtx set;
for (; seq; seq = NEXT_INSN (seq))
{
set = single_set (seq);
if (set)
cost += set_rtx_cost (set, speed);
else if (NONDEBUG_INSN_P (seq))
{
int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
if (this_cost > 0)
cost += this_cost;
else
cost++;
}
}
return cost;
}
/* Given an insn INSN and condition COND, return the condition in a
canonical form to simplify testing by callers. Specifically:
(1) The code will always be a comparison operation (EQ, NE, GT, etc.).
(2) Both operands will be machine operands.
(3) If an operand is a constant, it will be the second operand.
(4) (LE x const) will be replaced with (LT x <const+1>) and similarly
for GE, GEU, and LEU.
If the condition cannot be understood, or is an inequality floating-point
comparison which needs to be reversed, 0 will be returned.
If REVERSE is nonzero, then reverse the condition prior to canonizing it.
If EARLIEST is nonzero, it is a pointer to a place where the earliest
insn used in locating the condition was found. If a replacement test
of the condition is desired, it should be placed in front of that
insn and we will be sure that the inputs are still valid.
If WANT_REG is nonzero, we wish the condition to be relative to that
register, if possible. Therefore, do not canonicalize the condition
further. If ALLOW_CC_MODE is nonzero, allow the condition returned
to be a compare to a CC mode register.
If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
and at INSN. */
rtx
canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
rtx_insn **earliest,
rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
{
enum rtx_code code;
rtx_insn *prev = insn;
const_rtx set;
rtx tem;
rtx op0, op1;
int reverse_code = 0;
machine_mode mode;
basic_block bb = BLOCK_FOR_INSN (insn);
code = GET_CODE (cond);
mode = GET_MODE (cond);
op0 = XEXP (cond, 0);
op1 = XEXP (cond, 1);
if (reverse)
code = reversed_comparison_code (cond, insn);
if (code == UNKNOWN)
return 0;
if (earliest)
*earliest = insn;
/* If we are comparing a register with zero, see if the register is set
in the previous insn to a COMPARE or a comparison operation. Perform
the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
in cse.cc */
while ((GET_RTX_CLASS (code) == RTX_COMPARE
|| GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
&& op1 == CONST0_RTX (GET_MODE (op0))
&& op0 != want_reg)
{
/* Set nonzero when we find something of interest. */
rtx x = 0;
/* If this is a COMPARE, pick up the two things being compared. */
if (GET_CODE (op0) == COMPARE)
{
op1 = XEXP (op0, 1);
op0 = XEXP (op0, 0);
continue;
}
else if (!REG_P (op0))
break;
/* Go back to the previous insn. Stop if it is not an INSN. We also
stop if it isn't a single set or if it has a REG_INC note because
we don't want to bother dealing with it. */
prev = prev_nonnote_nondebug_insn (prev);
if (prev == 0
|| !NONJUMP_INSN_P (prev)
|| FIND_REG_INC_NOTE (prev, NULL_RTX)
/* In cfglayout mode, there do not have to be labels at the
beginning of a block, or jumps at the end, so the previous
conditions would not stop us when we reach bb boundary. */
|| BLOCK_FOR_INSN (prev) != bb)
break;
set = set_of (op0, prev);
if (set
&& (GET_CODE (set) != SET
|| !rtx_equal_p (SET_DEST (set), op0)))
break;
/* If this is setting OP0, get what it sets it to if it looks
relevant. */
if (set)
{
machine_mode inner_mode = GET_MODE (SET_DEST (set));
#ifdef FLOAT_STORE_FLAG_VALUE
REAL_VALUE_TYPE fsfv;
#endif
/* ??? We may not combine comparisons done in a CCmode with
comparisons not done in a CCmode. This is to aid targets
like Alpha that have an IEEE compliant EQ instruction, and
a non-IEEE compliant BEQ instruction. The use of CCmode is
actually artificial, simply to prevent the combination, but
should not affect other platforms.
However, we must allow VOIDmode comparisons to match either
CCmode or non-CCmode comparison, because some ports have
modeless comparisons inside branch patterns.
??? This mode check should perhaps look more like the mode check
in simplify_comparison in combine. */
if (((GET_MODE_CLASS (mode) == MODE_CC)
!= (GET_MODE_CLASS (inner_mode) == MODE_CC))
&& mode != VOIDmode
&& inner_mode != VOIDmode)
break;
if (GET_CODE (SET_SRC (set)) == COMPARE
|| (((code == NE
|| (code == LT
&& val_signbit_known_set_p (inner_mode,
STORE_FLAG_VALUE))
#ifdef FLOAT_STORE_FLAG_VALUE
|| (code == LT
&& SCALAR_FLOAT_MODE_P (inner_mode)
&& (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
REAL_VALUE_NEGATIVE (fsfv)))
#endif
))
&& COMPARISON_P (SET_SRC (set))))
x = SET_SRC (set);
else if (((code == EQ
|| (code == GE
&& val_signbit_known_set_p (inner_mode,
STORE_FLAG_VALUE))
#ifdef FLOAT_STORE_FLAG_VALUE
|| (code == GE
&& SCALAR_FLOAT_MODE_P (inner_mode)
&& (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
REAL_VALUE_NEGATIVE (fsfv)))
#endif
))
&& COMPARISON_P (SET_SRC (set)))
{
reverse_code = 1;
x = SET_SRC (set);
}
else if ((code == EQ || code == NE)
&& GET_CODE (SET_SRC (set)) == XOR)
/* Handle sequences like:
(set op0 (xor X Y))
...(eq|ne op0 (const_int 0))...
in which case:
(eq op0 (const_int 0)) reduces to (eq X Y)
(ne op0 (const_int 0)) reduces to (ne X Y)
This is the form used by MIPS16, for example. */
x = SET_SRC (set);
else
break;
}
else if (reg_set_p (op0, prev))
/* If this sets OP0, but not directly, we have to give up. */
break;
if (x)
{
/* If the caller is expecting the condition to be valid at INSN,
make sure X doesn't change before INSN. */
if (valid_at_insn_p)
if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
break;
if (COMPARISON_P (x))
code = GET_CODE (x);
if (reverse_code)
{
code = reversed_comparison_code (x, prev);
if (code == UNKNOWN)
return 0;
reverse_code = 0;
}
op0 = XEXP (x, 0), op1 = XEXP (x, 1);
if (earliest)
*earliest = prev;
}
}
/* If constant is first, put it last. */
if (CONSTANT_P (op0))
code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
/* If OP0 is the result of a comparison, we weren't able to find what
was really being compared, so fail. */
if (!allow_cc_mode
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
return 0;
/* Canonicalize any ordered comparison with integers involving equality
if we can do computations in the relevant mode and we do not
overflow. */
scalar_int_mode op0_mode;
if (CONST_INT_P (op1)
&& is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
&& GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
{
HOST_WIDE_INT const_val = INTVAL (op1);
unsigned HOST_WIDE_INT uconst_val = const_val;
unsigned HOST_WIDE_INT max_val
= (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
switch (code)
{
case LE:
if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
break;
/* When cross-compiling, const_val might be sign-extended from
BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
case GE:
if ((const_val & max_val)
!= (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
break;
case LEU:
if (uconst_val < max_val)
code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
break;
case GEU:
if (uconst_val != 0)
code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
break;
default:
break;
}
}
/* We promised to return a comparison. */
rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
if (COMPARISON_P (ret))
return ret;
return 0;
}
/* Given a jump insn JUMP, return the condition that will cause it to branch
to its JUMP_LABEL. If the condition cannot be understood, or is an
inequality floating-point comparison which needs to be reversed, 0 will
be returned.
If EARLIEST is nonzero, it is a pointer to a place where the earliest
insn used in locating the condition was found. If a replacement test
of the condition is desired, it should be placed in front of that
insn and we will be sure that the inputs are still valid. If EARLIEST
is null, the returned condition will be valid at INSN.
If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
compare CC mode register.
VALID_AT_INSN_P is the same as for canonicalize_condition. */
rtx
get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
int valid_at_insn_p)
{
rtx cond;
int reverse;
rtx set;
/* If this is not a standard conditional jump, we can't parse it. */
if (!JUMP_P (jump)
|| ! any_condjump_p (jump))
return 0;
set = pc_set (jump);
cond = XEXP (SET_SRC (set), 0);
/* If this branches to JUMP_LABEL when the condition is false, reverse
the condition. */
reverse
= GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
&& label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
allow_cc_mode, valid_at_insn_p);
}
/* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
TARGET_MODE_REP_EXTENDED.
Note that we assume that the property of
TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
narrower than mode B. I.e., if A is a mode narrower than B then in
order to be able to operate on it in mode B, mode A needs to
satisfy the requirements set by the representation of mode B. */
static void
init_num_sign_bit_copies_in_rep (void)
{
opt_scalar_int_mode in_mode_iter;
scalar_int_mode mode;
FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
{
scalar_int_mode in_mode = in_mode_iter.require ();
scalar_int_mode i;
/* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
extends to the next widest mode. */
gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
|| GET_MODE_WIDER_MODE (mode).require () == in_mode);
/* We are in in_mode. Count how many bits outside of mode
have to be copies of the sign-bit. */
FOR_EACH_MODE (i, mode, in_mode)
{
/* This must always exist (for the last iteration it will be
IN_MODE). */
scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
/* We can only check sign-bit copies starting from the
top-bit. In order to be able to check the bits we
have already seen we pretend that subsequent bits
have to be sign-bit copies too. */
|| num_sign_bit_copies_in_rep [in_mode][mode])
num_sign_bit_copies_in_rep [in_mode][mode]
+= GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
}
}
}
/* Suppose that truncation from the machine mode of X to MODE is not a
no-op. See if there is anything special about X so that we can
assume it already contains a truncated value of MODE. */
bool
truncated_to_mode (machine_mode mode, const_rtx x)
{
/* This register has already been used in MODE without explicit
truncation. */
if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
return true;
/* See if we already satisfy the requirements of MODE. If yes we
can just switch to MODE. */
if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
&& (num_sign_bit_copies (x, GET_MODE (x))
>= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
return true;
return false;
}
/* Return true if RTX code CODE has a single sequence of zero or more
"e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
entry in that case. */
static bool
setup_reg_subrtx_bounds (unsigned int code)
{
const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
unsigned int i = 0;
for (; format[i] != 'e'; ++i)
{
if (!format[i])
/* No subrtxes. Leave start and count as 0. */
return true;
if (format[i] == 'E' || format[i] == 'V')
return false;
}
/* Record the sequence of 'e's. */
rtx_all_subrtx_bounds[code].start = i;
do
++i;
while (format[i] == 'e');
rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
/* rtl-iter.h relies on this. */
gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
for (; format[i]; ++i)
if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
return false;
return true;
}
/* Initialize rtx_all_subrtx_bounds. */
void
init_rtlanal (void)
{
int i;
for (i = 0; i < NUM_RTX_CODE; i++)
{
if (!setup_reg_subrtx_bounds (i))
rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
}
init_num_sign_bit_copies_in_rep ();
}
/* Check whether this is a constant pool constant. */
bool
constant_pool_constant_p (rtx x)
{
x = avoid_constant_pool_reference (x);
return CONST_DOUBLE_P (x);
}
/* If M is a bitmask that selects a field of low-order bits within an item but
not the entire word, return the length of the field. Return -1 otherwise.
M is used in machine mode MODE. */
int
low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
{
if (mode != VOIDmode)
{
if (!HWI_COMPUTABLE_MODE_P (mode))
return -1;
m &= GET_MODE_MASK (mode);
}
return exact_log2 (m + 1);
}
/* Return the mode of MEM's address. */
scalar_int_mode
get_address_mode (rtx mem)
{
machine_mode mode;
gcc_assert (MEM_P (mem));
mode = GET_MODE (XEXP (mem, 0));
if (mode != VOIDmode)
return as_a <scalar_int_mode> (mode);
return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
}
/* Split up a CONST_DOUBLE or integer constant rtx
into two rtx's for single words,
storing in *FIRST the word that comes first in memory in the target
and in *SECOND the other.
TODO: This function needs to be rewritten to work on any size
integer. */
void
split_double (rtx value, rtx *first, rtx *second)
{
if (CONST_INT_P (value))
{
if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
{
/* In this case the CONST_INT holds both target words.
Extract the bits from it into two word-sized pieces.
Sign extend each half to HOST_WIDE_INT. */
unsigned HOST_WIDE_INT low, high;
unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
unsigned bits_per_word = BITS_PER_WORD;
/* Set sign_bit to the most significant bit of a word. */
sign_bit = 1;
sign_bit <<= bits_per_word - 1;
/* Set mask so that all bits of the word are set. We could
have used 1 << BITS_PER_WORD instead of basing the
calculation on sign_bit. However, on machines where
HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
compiler warning, even though the code would never be
executed. */
mask = sign_bit << 1;
mask--;
/* Set sign_extend as any remaining bits. */
sign_extend = ~mask;
/* Pick the lower word and sign-extend it. */
low = INTVAL (value);
low &= mask;
if (low & sign_bit)
low |= sign_extend;
/* Pick the higher word, shifted to the least significant
bits, and sign-extend it. */
high = INTVAL (value);
high >>= bits_per_word - 1;
high >>= 1;
high &= mask;
if (high & sign_bit)
high |= sign_extend;
/* Store the words in the target machine order. */
if (WORDS_BIG_ENDIAN)
{
*first = GEN_INT (high);
*second = GEN_INT (low);
}
else
{
*first = GEN_INT (low);
*second = GEN_INT (high);
}
}
else
{
/* The rule for using CONST_INT for a wider mode
is that we regard the value as signed.
So sign-extend it. */
rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
if (WORDS_BIG_ENDIAN)
{
*first = high;
*second = value;
}
else
{
*first = value;
*second = high;
}
}
}
else if (GET_CODE (value) == CONST_WIDE_INT)
{
/* All of this is scary code and needs to be converted to
properly work with any size integer. */
gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
if (WORDS_BIG_ENDIAN)
{
*first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
*second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
}
else
{
*first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
*second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
}
}
else if (!CONST_DOUBLE_P (value))
{
if (WORDS_BIG_ENDIAN)
{
*first = const0_rtx;
*second = value;
}
else
{
*first = value;
*second = const0_rtx;
}
}
else if (GET_MODE (value) == VOIDmode
/* This is the old way we did CONST_DOUBLE integers. */
|| GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
{
/* In an integer, the words are defined as most and least significant.
So order them by the target's convention. */
if (WORDS_BIG_ENDIAN)
{
*first = GEN_INT (CONST_DOUBLE_HIGH (value));
*second = GEN_INT (CONST_DOUBLE_LOW (value));
}
else
{
*first = GEN_INT (CONST_DOUBLE_LOW (value));
*second = GEN_INT (CONST_DOUBLE_HIGH (value));
}
}
else
{
long l[2];
/* Note, this converts the REAL_VALUE_TYPE to the target's
format, splits up the floating point double and outputs
exactly 32 bits of it into each of l[0] and l[1] --
not necessarily BITS_PER_WORD bits. */
REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
/* If 32 bits is an entire word for the target, but not for the host,
then sign-extend on the host so that the number will look the same
way on the host that it would on the target. See for instance
simplify_unary_operation. The #if is needed to avoid compiler
warnings. */
#if HOST_BITS_PER_LONG > 32
if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
{
if (l[0] & ((long) 1 << 31))
l[0] |= ((unsigned long) (-1) << 32);
if (l[1] & ((long) 1 << 31))
l[1] |= ((unsigned long) (-1) << 32);
}
#endif
*first = GEN_INT (l[0]);
*second = GEN_INT (l[1]);
}
}
/* Return true if X is a sign_extract or zero_extract from the least
significant bit. */
static bool
lsb_bitfield_op_p (rtx x)
{
if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
{
machine_mode mode = GET_MODE (XEXP (x, 0));
HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
}
return false;
}
/* Strip outer address "mutations" from LOC and return a pointer to the
inner value. If OUTER_CODE is nonnull, store the code of the innermost
stripped expression there.
"Mutations" either convert between modes or apply some kind of
extension, truncation or alignment. */
rtx *
strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
{
for (;;)
{
enum rtx_code code = GET_CODE (*loc);
if (GET_RTX_CLASS (code) == RTX_UNARY)
/* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
used to convert between pointer sizes. */
loc = &XEXP (*loc, 0);
else if (lsb_bitfield_op_p (*loc))
/* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
acts as a combined truncation and extension. */
loc = &XEXP (*loc, 0);
else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
/* (and ... (const_int -X)) is used to align to X bytes. */
loc = &XEXP (*loc, 0);
else if (code == SUBREG
&& !OBJECT_P (SUBREG_REG (*loc))
&& subreg_lowpart_p (*loc))
/* (subreg (operator ...) ...) inside and is used for mode
conversion too. */
loc = &SUBREG_REG (*loc);
else
return loc;
if (outer_code)
*outer_code = code;
}
}
/* Return true if CODE applies some kind of scale. The scaled value is
is the first operand and the scale is the second. */
static bool
binary_scale_code_p (enum rtx_code code)
{
return (code == MULT
|| code == ASHIFT
/* Needed by ARM targets. */
|| code == ASHIFTRT
|| code == LSHIFTRT
|| code == ROTATE
|| code == ROTATERT);
}
/* If *INNER can be interpreted as a base, return a pointer to the inner term
(see address_info). Return null otherwise. */
static rtx *
get_base_term (rtx *inner)
{
if (GET_CODE (*inner) == LO_SUM)
inner = strip_address_mutations (&XEXP (*inner, 0));
if (REG_P (*inner)
|| MEM_P (*inner)
|| GET_CODE (*inner) == SUBREG
|| GET_CODE (*inner) == SCRATCH)
return inner;
return 0;
}
/* If *INNER can be interpreted as an index, return a pointer to the inner term
(see address_info). Return null otherwise. */
static rtx *
get_index_term (rtx *inner)
{
/* At present, only constant scales are allowed. */
if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
inner = strip_address_mutations (&XEXP (*inner, 0));
if (REG_P (*inner)
|| MEM_P (*inner)
|| GET_CODE (*inner) == SUBREG
|| GET_CODE (*inner) == SCRATCH)
return inner;
return 0;
}
/* Set the segment part of address INFO to LOC, given that INNER is the
unmutated value. */
static void
set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
{
gcc_assert (!info->segment);
info->segment = loc;
info->segment_term = inner;
}
/* Set the base part of address INFO to LOC, given that INNER is the
unmutated value. */
static void
set_address_base (struct address_info *info, rtx *loc, rtx *inner)
{
gcc_assert (!info->base);
info->base = loc;
info->base_term = inner;
}
/* Set the index part of address INFO to LOC, given that INNER is the
unmutated value. */
static void
set_address_index (struct address_info *info, rtx *loc, rtx *inner)
{
gcc_assert (!info->index);
info->index = loc;
info->index_term = inner;
}
/* Set the displacement part of address INFO to LOC, given that INNER
is the constant term. */
static void
set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
{
gcc_assert (!info->disp);
info->disp = loc;
info->disp_term = inner;
}
/* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
rest of INFO accordingly. */
static void
decompose_incdec_address (struct address_info *info)
{
info->autoinc_p = true;
rtx *base = &XEXP (*info->inner, 0);
set_address_base (info, base, base);
gcc_checking_assert (info->base == info->base_term);
/* These addresses are only valid when the size of the addressed
value is known. */
gcc_checking_assert (info->mode != VOIDmode);
}
/* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
of INFO accordingly. */
static void
decompose_automod_address (struct address_info *info)
{
info->autoinc_p = true;
rtx *base = &XEXP (*info->inner, 0);
set_address_base (info, base, base);
gcc_checking_assert (info->base == info->base_term);
rtx plus = XEXP (*info->inner, 1);
gcc_assert (GET_CODE (plus) == PLUS);
info->base_term2 = &XEXP (plus, 0);
gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
rtx *step = &XEXP (plus, 1);
rtx *inner_step = strip_address_mutations (step);
if (CONSTANT_P (*inner_step))
set_address_disp (info, step, inner_step);
else
set_address_index (info, step, inner_step);
}
/* Treat *LOC as a tree of PLUS operands and store pointers to the summed
values in [PTR, END). Return a pointer to the end of the used array. */
static rtx **
extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
{
rtx x = *loc;
if (GET_CODE (x) == PLUS)
{
ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
}
else
{
gcc_assert (ptr != end);
*ptr++ = loc;
}
return ptr;
}
/* Evaluate the likelihood of X being a base or index value, returning
positive if it is likely to be a base, negative if it is likely to be
an index, and 0 if we can't tell. Make the magnitude of the return
value reflect the amount of confidence we have in the answer.
MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
static int
baseness (rtx x, machine_mode mode, addr_space_t as,
enum rtx_code outer_code, enum rtx_code index_code)
{
/* Believe *_POINTER unless the address shape requires otherwise. */
if (REG_P (x) && REG_POINTER (x))
return 2;
if (MEM_P (x) && MEM_POINTER (x))
return 2;
if (REG_P (x) && HARD_REGISTER_P (x))
{
/* X is a hard register. If it only fits one of the base
or index classes, choose that interpretation. */
int regno = REGNO (x);
bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
bool index_p = REGNO_OK_FOR_INDEX_P (regno);
if (base_p != index_p)
return base_p ? 1 : -1;
}
return 0;
}
/* INFO->INNER describes a normal, non-automodified address.
Fill in the rest of INFO accordingly. */
static void
decompose_normal_address (struct address_info *info)
{
/* Treat the address as the sum of up to four values. */
rtx *ops[4];
size_t n_ops = extract_plus_operands (info->inner, ops,
ops + ARRAY_SIZE (ops)) - ops;
/* If there is more than one component, any base component is in a PLUS. */
if (n_ops > 1)
info->base_outer_code = PLUS;
/* Try to classify each sum operand now. Leave those that could be
either a base or an index in OPS. */
rtx *inner_ops[4];
size_t out = 0;
for (size_t in = 0; in < n_ops; ++in)
{
rtx *loc = ops[in];
rtx *inner = strip_address_mutations (loc);
if (CONSTANT_P (*inner))
set_address_disp (info, loc, inner);
else if (GET_CODE (*inner) == UNSPEC)
set_address_segment (info, loc, inner);
else
{
/* The only other possibilities are a base or an index. */
rtx *base_term = get_base_term (inner);
rtx *index_term = get_index_term (inner);
gcc_assert (base_term || index_term);
if (!base_term)
set_address_index (info, loc, index_term);
else if (!index_term)
set_address_base (info, loc, base_term);
else
{
gcc_assert (base_term == index_term);
ops[out] = loc;
inner_ops[out] = base_term;
++out;
}
}
}
/* Classify the remaining OPS members as bases and indexes. */
if (out == 1)
{
/* If we haven't seen a base or an index yet, assume that this is
the base. If we were confident that another term was the base
or index, treat the remaining operand as the other kind. */
if (!info->base)
set_address_base (info, ops[0], inner_ops[0]);
else
set_address_index (info, ops[0], inner_ops[0]);
}
else if (out == 2)
{
/* In the event of a tie, assume the base comes first. */
if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
GET_CODE (*ops[1]))
>= baseness (*inner_ops[1], info->mode, info->as, PLUS,
GET_CODE (*ops[0])))
{
set_address_base (info, ops[0], inner_ops[0]);
set_address_index (info, ops[1], inner_ops[1]);
}
else
{
set_address_base (info, ops[1], inner_ops[1]);
set_address_index (info, ops[0], inner_ops[0]);
}
}
else
gcc_assert (out == 0);
}
/* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
or VOIDmode if not known. AS is the address space associated with LOC.
OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
void
decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
addr_space_t as, enum rtx_code outer_code)
{
memset (info, 0, sizeof (*info));
info->mode = mode;
info->as = as;
info->addr_outer_code = outer_code;
info->outer = loc;
info->inner = strip_address_mutations (loc, &outer_code);
info->base_outer_code = outer_code;
switch (GET_CODE (*info->inner))
{
case PRE_DEC:
case PRE_INC:
case POST_DEC:
case POST_INC:
decompose_incdec_address (info);
break;
case PRE_MODIFY:
case POST_MODIFY:
decompose_automod_address (info);
break;
default:
decompose_normal_address (info);
break;
}
}
/* Describe address operand LOC in INFO. */
void
decompose_lea_address (struct address_info *info, rtx *loc)
{
decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
}
/* Describe the address of MEM X in INFO. */
void
decompose_mem_address (struct address_info *info, rtx x)
{
gcc_assert (MEM_P (x));
decompose_address (info, &XEXP (x, 0), GET_MODE (x),
MEM_ADDR_SPACE (x), MEM);
}
/* Update INFO after a change to the address it describes. */
void
update_address (struct address_info *info)
{
decompose_address (info, info->outer, info->mode, info->as,
info->addr_outer_code);
}
/* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
more complicated than that. */
HOST_WIDE_INT
get_index_scale (const struct address_info *info)
{
rtx index = *info->index;
if (GET_CODE (index) == MULT
&& CONST_INT_P (XEXP (index, 1))
&& info->index_term == &XEXP (index, 0))
return INTVAL (XEXP (index, 1));
if (GET_CODE (index) == ASHIFT
&& CONST_INT_P (XEXP (index, 1))
&& info->index_term == &XEXP (index, 0))
return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
if (info->index == info->index_term)
return 1;
return 0;
}
/* Return the "index code" of INFO, in the form required by
ok_for_base_p_1. */
enum rtx_code
get_index_code (const struct address_info *info)
{
if (info->index)
return GET_CODE (*info->index);
if (info->disp)
return GET_CODE (*info->disp);
return SCRATCH;
}
/* Return true if RTL X contains a SYMBOL_REF. */
bool
contains_symbol_ref_p (const_rtx x)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, ALL)
if (SYMBOL_REF_P (*iter))
return true;
return false;
}
/* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
bool
contains_symbolic_reference_p (const_rtx x)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, ALL)
if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
return true;
return false;
}
/* Return true if RTL X contains a constant pool address. */
bool
contains_constant_pool_address_p (const_rtx x)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, ALL)
if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter))
return true;
return false;
}
/* Return true if X contains a thread-local symbol. */
bool
tls_referenced_p (const_rtx x)
{
if (!targetm.have_tls)
return false;
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, ALL)
if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
return true;
return false;
}
/* Process recursively X of INSN and add REG_INC notes if necessary. */
void
add_auto_inc_notes (rtx_insn *insn, rtx x)
{
enum rtx_code code = GET_CODE (x);
const char *fmt;
int i, j;
if (code == MEM && auto_inc_p (XEXP (x, 0)))
{
add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
return;
}
/* Scan all X sub-expressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
add_auto_inc_notes (insn, XEXP (x, i));
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
add_auto_inc_notes (insn, XVECEXP (x, i, j));
}
}
/* Return true if X is register asm. */
bool
register_asm_p (const_rtx x)
{
return (REG_P (x)
&& REG_EXPR (x) != NULL_TREE
&& HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (x))
&& DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (x))
&& DECL_REGISTER (REG_EXPR (x)));
}
/* Return true if, for all OP of mode OP_MODE:
(vec_select:RESULT_MODE OP SEL)
is equivalent to the highpart RESULT_MODE of OP. */
bool
vec_series_highpart_p (machine_mode result_mode, machine_mode op_mode, rtx sel)
{
int nunits;
if (GET_MODE_NUNITS (op_mode).is_constant (&nunits)
&& targetm.can_change_mode_class (op_mode, result_mode, ALL_REGS))
{
int offset = BYTES_BIG_ENDIAN ? 0 : nunits - XVECLEN (sel, 0);
return rtvec_series_p (XVEC (sel, 0), offset);
}
return false;
}
/* Return true if, for all OP of mode OP_MODE:
(vec_select:RESULT_MODE OP SEL)
is equivalent to the lowpart RESULT_MODE of OP. */
bool
vec_series_lowpart_p (machine_mode result_mode, machine_mode op_mode, rtx sel)
{
int nunits;
if (GET_MODE_NUNITS (op_mode).is_constant (&nunits)
&& targetm.can_change_mode_class (op_mode, result_mode, ALL_REGS))
{
int offset = BYTES_BIG_ENDIAN ? nunits - XVECLEN (sel, 0) : 0;
return rtvec_series_p (XVEC (sel, 0), offset);
}
return false;
}
/* Return true if X contains a paradoxical subreg. */
bool
contains_paradoxical_subreg_p (rtx x)
{
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
{
x = *iter;
if (SUBREG_P (x) && paradoxical_subreg_p (x))
return true;
}
return false;
}
|