aboutsummaryrefslogtreecommitdiff
path: root/gcc/rtlanal.c
blob: 18173ebf297ec1d9381f655cd40261f6b32a8f47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
/* Analyze RTL for C-Compiler
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "toplev.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "recog.h"
#include "tm_p.h"
#include "flags.h"
#include "basic-block.h"
#include "real.h"

/* Forward declarations */
static int global_reg_mentioned_p_1 (rtx *, void *);
static void set_of_1 (rtx, rtx, void *);
static void insn_dependent_p_1 (rtx, rtx, void *);
static int rtx_referenced_p_1 (rtx *, void *);
static int computed_jump_p_1 (rtx);
static void parms_set (rtx, rtx, void *);
static bool hoist_test_store (rtx, rtx, regset);
static void hoist_update_store (rtx, rtx *, rtx, rtx);

/* Bit flags that specify the machine subtype we are compiling for.
   Bits are tested using macros TARGET_... defined in the tm.h file
   and set by `-m...' switches.  Must be defined in rtlanal.c.  */

int target_flags;

/* Return 1 if the value of X is unstable
   (would be different at a different point in the program).
   The frame pointer, arg pointer, etc. are considered stable
   (within one function) and so is anything marked `unchanging'.  */

int
rtx_unstable_p (rtx x)
{
  RTX_CODE code = GET_CODE (x);
  int i;
  const char *fmt;

  switch (code)
    {
    case MEM:
      return ! RTX_UNCHANGING_P (x) || rtx_unstable_p (XEXP (x, 0));

    case QUEUED:
      return 1;

    case ADDRESSOF:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
      return 0;

    case REG:
      /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
	  /* The arg pointer varies if it is not a fixed register.  */
	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
	  || RTX_UNCHANGING_P (x))
	return 0;
#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
      /* ??? When call-clobbered, the value is stable modulo the restore
	 that must happen after a call.  This currently screws up local-alloc
	 into believing that the restore is not needed.  */
      if (x == pic_offset_table_rtx)
	return 0;
#endif
      return 1;

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	return 1;

      /* FALLTHROUGH */

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	if (rtx_unstable_p (XEXP (x, i)))
	  return 1;
      }
    else if (fmt[i] == 'E')
      {
	int j;
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (rtx_unstable_p (XVECEXP (x, i, j)))
	    return 1;
      }

  return 0;
}

/* Return 1 if X has a value that can vary even between two
   executions of the program.  0 means X can be compared reliably
   against certain constants or near-constants.
   FOR_ALIAS is nonzero if we are called from alias analysis; if it is
   zero, we are slightly more conservative.
   The frame pointer and the arg pointer are considered constant.  */

int
rtx_varies_p (rtx x, int for_alias)
{
  RTX_CODE code = GET_CODE (x);
  int i;
  const char *fmt;

  switch (code)
    {
    case MEM:
      return ! RTX_UNCHANGING_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);

    case QUEUED:
      return 1;

    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
      return 0;

    case ADDRESSOF:
      /* This will resolve to some offset from the frame pointer.  */
      return 0;

    case REG:
      /* Note that we have to test for the actual rtx used for the frame
	 and arg pointers and not just the register number in case we have
	 eliminated the frame and/or arg pointer and are using it
	 for pseudos.  */
      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
	  /* The arg pointer varies if it is not a fixed register.  */
	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
	return 0;
      if (x == pic_offset_table_rtx
#ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
	  /* ??? When call-clobbered, the value is stable modulo the restore
	     that must happen after a call.  This currently screws up
	     local-alloc into believing that the restore is not needed, so we
	     must return 0 only if we are called from alias analysis.  */
	  && for_alias
#endif
	  )
	return 0;
      return 1;

    case LO_SUM:
      /* The operand 0 of a LO_SUM is considered constant
	 (in fact it is related specifically to operand 1)
	 during alias analysis.  */
      return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
	     || rtx_varies_p (XEXP (x, 1), for_alias);

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	return 1;

      /* FALLTHROUGH */

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	if (rtx_varies_p (XEXP (x, i), for_alias))
	  return 1;
      }
    else if (fmt[i] == 'E')
      {
	int j;
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
	    return 1;
      }

  return 0;
}

/* Return 0 if the use of X as an address in a MEM can cause a trap.  */

int
rtx_addr_can_trap_p (rtx x)
{
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case SYMBOL_REF:
      return SYMBOL_REF_WEAK (x);

    case LABEL_REF:
      return 0;

    case ADDRESSOF:
      /* This will resolve to some offset from the frame pointer.  */
      return 0;

    case REG:
      /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
	  || x == stack_pointer_rtx
	  /* The arg pointer varies if it is not a fixed register.  */
	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
	return 0;
      /* All of the virtual frame registers are stack references.  */
      if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
	return 0;
      return 1;

    case CONST:
      return rtx_addr_can_trap_p (XEXP (x, 0));

    case PLUS:
      /* An address is assumed not to trap if it is an address that can't
	 trap plus a constant integer or it is the pic register plus a
	 constant.  */
      return ! ((! rtx_addr_can_trap_p (XEXP (x, 0))
		 && GET_CODE (XEXP (x, 1)) == CONST_INT)
		|| (XEXP (x, 0) == pic_offset_table_rtx
		    && CONSTANT_P (XEXP (x, 1))));

    case LO_SUM:
    case PRE_MODIFY:
      return rtx_addr_can_trap_p (XEXP (x, 1));

    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
    case POST_MODIFY:
      return rtx_addr_can_trap_p (XEXP (x, 0));

    default:
      break;
    }

  /* If it isn't one of the case above, it can cause a trap.  */
  return 1;
}

/* Return true if X is an address that is known to not be zero.  */

bool
nonzero_address_p (rtx x)
{
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case SYMBOL_REF:
      return !SYMBOL_REF_WEAK (x);

    case LABEL_REF:
      return true;

    case ADDRESSOF:
      /* This will resolve to some offset from the frame pointer.  */
      return true;

    case REG:
      /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
	  || x == stack_pointer_rtx
	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
	return true;
      /* All of the virtual frame registers are stack references.  */
      if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
	return true;
      return false;

    case CONST:
      return nonzero_address_p (XEXP (x, 0));

    case PLUS:
      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
	{
	  /* Pointers aren't allowed to wrap.  If we've got a register
	     that is known to be a pointer, and a positive offset, then
	     the composite can't be zero.  */
	  if (INTVAL (XEXP (x, 1)) > 0
	      && REG_P (XEXP (x, 0))
	      && REG_POINTER (XEXP (x, 0)))
	    return true;

	  return nonzero_address_p (XEXP (x, 0));
	}
      /* Handle PIC references.  */
      else if (XEXP (x, 0) == pic_offset_table_rtx
	       && CONSTANT_P (XEXP (x, 1)))
	return true;
      return false;

    case PRE_MODIFY:
      /* Similar to the above; allow positive offsets.  Further, since
	 auto-inc is only allowed in memories, the register must be a
	 pointer.  */
      if (GET_CODE (XEXP (x, 1)) == CONST_INT
	  && INTVAL (XEXP (x, 1)) > 0)
	return true;
      return nonzero_address_p (XEXP (x, 0));

    case PRE_INC:
      /* Similarly.  Further, the offset is always positive.  */
      return true;

    case PRE_DEC:
    case POST_DEC:
    case POST_INC:
    case POST_MODIFY:
      return nonzero_address_p (XEXP (x, 0));

    case LO_SUM:
      return nonzero_address_p (XEXP (x, 1));

    default:
      break;
    }

  /* If it isn't one of the case above, might be zero.  */
  return false;
}

/* Return 1 if X refers to a memory location whose address
   cannot be compared reliably with constant addresses,
   or if X refers to a BLKmode memory object.
   FOR_ALIAS is nonzero if we are called from alias analysis; if it is
   zero, we are slightly more conservative.  */

int
rtx_addr_varies_p (rtx x, int for_alias)
{
  enum rtx_code code;
  int i;
  const char *fmt;

  if (x == 0)
    return 0;

  code = GET_CODE (x);
  if (code == MEM)
    return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	if (rtx_addr_varies_p (XEXP (x, i), for_alias))
	  return 1;
      }
    else if (fmt[i] == 'E')
      {
	int j;
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
	    return 1;
      }
  return 0;
}

/* Return the value of the integer term in X, if one is apparent;
   otherwise return 0.
   Only obvious integer terms are detected.
   This is used in cse.c with the `related_value' field.  */

HOST_WIDE_INT
get_integer_term (rtx x)
{
  if (GET_CODE (x) == CONST)
    x = XEXP (x, 0);

  if (GET_CODE (x) == MINUS
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
    return - INTVAL (XEXP (x, 1));
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
    return INTVAL (XEXP (x, 1));
  return 0;
}

/* If X is a constant, return the value sans apparent integer term;
   otherwise return 0.
   Only obvious integer terms are detected.  */

rtx
get_related_value (rtx x)
{
  if (GET_CODE (x) != CONST)
    return 0;
  x = XEXP (x, 0);
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
    return XEXP (x, 0);
  else if (GET_CODE (x) == MINUS
	   && GET_CODE (XEXP (x, 1)) == CONST_INT)
    return XEXP (x, 0);
  return 0;
}

/* Given a tablejump insn INSN, return the RTL expression for the offset
   into the jump table.  If the offset cannot be determined, then return
   NULL_RTX.

   If EARLIEST is nonzero, it is a pointer to a place where the earliest
   insn used in locating the offset was found.  */

rtx
get_jump_table_offset (rtx insn, rtx *earliest)
{
  rtx label;
  rtx table;
  rtx set;
  rtx old_insn;
  rtx x;
  rtx old_x;
  rtx y;
  rtx old_y;
  int i;

  if (!tablejump_p (insn, &label, &table) || !(set = single_set (insn)))
    return NULL_RTX;

  x = SET_SRC (set);

  /* Some targets (eg, ARM) emit a tablejump that also
     contains the out-of-range target.  */
  if (GET_CODE (x) == IF_THEN_ELSE
      && GET_CODE (XEXP (x, 2)) == LABEL_REF)
    x = XEXP (x, 1);

  /* Search backwards and locate the expression stored in X.  */
  for (old_x = NULL_RTX; GET_CODE (x) == REG && x != old_x;
       old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
    ;

  /* If X is an expression using a relative address then strip
     off the addition / subtraction of PC, PIC_OFFSET_TABLE_REGNUM,
     or the jump table label.  */
  if (GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC
      && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS))
    {
      for (i = 0; i < 2; i++)
	{
	  old_insn = insn;
	  y = XEXP (x, i);

	  if (y == pc_rtx || y == pic_offset_table_rtx)
	    break;

	  for (old_y = NULL_RTX; GET_CODE (y) == REG && y != old_y;
	       old_y = y, y = find_last_value (y, &old_insn, NULL_RTX, 0))
	    ;

	  if ((GET_CODE (y) == LABEL_REF && XEXP (y, 0) == label))
	    break;
	}

      if (i >= 2)
	return NULL_RTX;

      x = XEXP (x, 1 - i);

      for (old_x = NULL_RTX; GET_CODE (x) == REG && x != old_x;
	   old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
	;
    }

  /* Strip off any sign or zero extension.  */
  if (GET_CODE (x) == SIGN_EXTEND || GET_CODE (x) == ZERO_EXTEND)
    {
      x = XEXP (x, 0);

      for (old_x = NULL_RTX; GET_CODE (x) == REG && x != old_x;
	   old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
	;
    }

  /* If X isn't a MEM then this isn't a tablejump we understand.  */
  if (GET_CODE (x) != MEM)
    return NULL_RTX;

  /* Strip off the MEM.  */
  x = XEXP (x, 0);

  for (old_x = NULL_RTX; GET_CODE (x) == REG && x != old_x;
       old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
    ;

  /* If X isn't a PLUS than this isn't a tablejump we understand.  */
  if (GET_CODE (x) != PLUS)
    return NULL_RTX;

  /* At this point we should have an expression representing the jump table
     plus an offset.  Examine each operand in order to determine which one
     represents the jump table.  Knowing that tells us that the other operand
     must represent the offset.  */
  for (i = 0; i < 2; i++)
    {
      old_insn = insn;
      y = XEXP (x, i);

      for (old_y = NULL_RTX; GET_CODE (y) == REG && y != old_y;
	   old_y = y, y = find_last_value (y, &old_insn, NULL_RTX, 0))
	;

      if ((GET_CODE (y) == CONST || GET_CODE (y) == LABEL_REF)
	  && reg_mentioned_p (label, y))
	break;
    }

  if (i >= 2)
    return NULL_RTX;

  x = XEXP (x, 1 - i);

  /* Strip off the addition / subtraction of PIC_OFFSET_TABLE_REGNUM.  */
  if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
    for (i = 0; i < 2; i++)
      if (XEXP (x, i) == pic_offset_table_rtx)
	{
	  x = XEXP (x, 1 - i);
	  break;
	}

  if (earliest)
    *earliest = insn;

  /* Return the RTL expression representing the offset.  */
  return x;
}

/* A subroutine of global_reg_mentioned_p, returns 1 if *LOC mentions
   a global register.  */

static int
global_reg_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
{
  int regno;
  rtx x = *loc;

  if (! x)
    return 0;

  switch (GET_CODE (x))
    {
    case SUBREG:
      if (GET_CODE (SUBREG_REG (x)) == REG)
	{
	  if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
	      && global_regs[subreg_regno (x)])
	    return 1;
	  return 0;
	}
      break;

    case REG:
      regno = REGNO (x);
      if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
	return 1;
      return 0;

    case SCRATCH:
    case PC:
    case CC0:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST:
    case LABEL_REF:
      return 0;

    case CALL:
      /* A non-constant call might use a global register.  */
      return 1;

    default:
      break;
    }

  return 0;
}

/* Returns nonzero if X mentions a global register.  */

int
global_reg_mentioned_p (rtx x)
{
  if (INSN_P (x))
    {
      if (GET_CODE (x) == CALL_INSN)
	{
	  if (! CONST_OR_PURE_CALL_P (x))
	    return 1;
	  x = CALL_INSN_FUNCTION_USAGE (x);
	  if (x == 0)
	    return 0;
	}
      else
	x = PATTERN (x);
    }

  return for_each_rtx (&x, global_reg_mentioned_p_1, NULL);
}

/* Return the number of places FIND appears within X.  If COUNT_DEST is
   zero, we do not count occurrences inside the destination of a SET.  */

int
count_occurrences (rtx x, rtx find, int count_dest)
{
  int i, j;
  enum rtx_code code;
  const char *format_ptr;
  int count;

  if (x == find)
    return 1;

  code = GET_CODE (x);

  switch (code)
    {
    case REG:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case CODE_LABEL:
    case PC:
    case CC0:
      return 0;

    case MEM:
      if (GET_CODE (find) == MEM && rtx_equal_p (x, find))
	return 1;
      break;

    case SET:
      if (SET_DEST (x) == find && ! count_dest)
	return count_occurrences (SET_SRC (x), find, count_dest);
      break;

    default:
      break;
    }

  format_ptr = GET_RTX_FORMAT (code);
  count = 0;

  for (i = 0; i < GET_RTX_LENGTH (code); i++)
    {
      switch (*format_ptr++)
	{
	case 'e':
	  count += count_occurrences (XEXP (x, i), find, count_dest);
	  break;

	case 'E':
	  for (j = 0; j < XVECLEN (x, i); j++)
	    count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
	  break;
	}
    }
  return count;
}

/* Nonzero if register REG appears somewhere within IN.
   Also works if REG is not a register; in this case it checks
   for a subexpression of IN that is Lisp "equal" to REG.  */

int
reg_mentioned_p (rtx reg, rtx in)
{
  const char *fmt;
  int i;
  enum rtx_code code;

  if (in == 0)
    return 0;

  if (reg == in)
    return 1;

  if (GET_CODE (in) == LABEL_REF)
    return reg == XEXP (in, 0);

  code = GET_CODE (in);

  switch (code)
    {
      /* Compare registers by number.  */
    case REG:
      return GET_CODE (reg) == REG && REGNO (in) == REGNO (reg);

      /* These codes have no constituent expressions
	 and are unique.  */
    case SCRATCH:
    case CC0:
    case PC:
      return 0;

    case CONST_INT:
    case CONST_VECTOR:
    case CONST_DOUBLE:
      /* These are kept unique for a given value.  */
      return 0;

    default:
      break;
    }

  if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
    return 1;

  fmt = GET_RTX_FORMAT (code);

  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  int j;
	  for (j = XVECLEN (in, i) - 1; j >= 0; j--)
	    if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
	      return 1;
	}
      else if (fmt[i] == 'e'
	       && reg_mentioned_p (reg, XEXP (in, i)))
	return 1;
    }
  return 0;
}

/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
   no CODE_LABEL insn.  */

int
no_labels_between_p (rtx beg, rtx end)
{
  rtx p;
  if (beg == end)
    return 0;
  for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
    if (GET_CODE (p) == CODE_LABEL)
      return 0;
  return 1;
}

/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
   no JUMP_INSN insn.  */

int
no_jumps_between_p (rtx beg, rtx end)
{
  rtx p;
  for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
    if (GET_CODE (p) == JUMP_INSN)
      return 0;
  return 1;
}

/* Nonzero if register REG is used in an insn between
   FROM_INSN and TO_INSN (exclusive of those two).  */

int
reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
{
  rtx insn;

  if (from_insn == to_insn)
    return 0;

  for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn)
	&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
	   || (GET_CODE (insn) == CALL_INSN
	      && (find_reg_fusage (insn, USE, reg)
		  || find_reg_fusage (insn, CLOBBER, reg)))))
      return 1;
  return 0;
}

/* Nonzero if the old value of X, a register, is referenced in BODY.  If X
   is entirely replaced by a new value and the only use is as a SET_DEST,
   we do not consider it a reference.  */

int
reg_referenced_p (rtx x, rtx body)
{
  int i;

  switch (GET_CODE (body))
    {
    case SET:
      if (reg_overlap_mentioned_p (x, SET_SRC (body)))
	return 1;

      /* If the destination is anything other than CC0, PC, a REG or a SUBREG
	 of a REG that occupies all of the REG, the insn references X if
	 it is mentioned in the destination.  */
      if (GET_CODE (SET_DEST (body)) != CC0
	  && GET_CODE (SET_DEST (body)) != PC
	  && GET_CODE (SET_DEST (body)) != REG
	  && ! (GET_CODE (SET_DEST (body)) == SUBREG
		&& GET_CODE (SUBREG_REG (SET_DEST (body))) == REG
		&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
		      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
		    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
			 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
	  && reg_overlap_mentioned_p (x, SET_DEST (body)))
	return 1;
      return 0;

    case ASM_OPERANDS:
      for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
	if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
	  return 1;
      return 0;

    case CALL:
    case USE:
    case IF_THEN_ELSE:
      return reg_overlap_mentioned_p (x, body);

    case TRAP_IF:
      return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));

    case PREFETCH:
      return reg_overlap_mentioned_p (x, XEXP (body, 0));

    case UNSPEC:
    case UNSPEC_VOLATILE:
      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
	if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
	  return 1;
      return 0;

    case PARALLEL:
      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
	if (reg_referenced_p (x, XVECEXP (body, 0, i)))
	  return 1;
      return 0;

    case CLOBBER:
      if (GET_CODE (XEXP (body, 0)) == MEM)
	if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
	  return 1;
      return 0;

    case COND_EXEC:
      if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
	return 1;
      return reg_referenced_p (x, COND_EXEC_CODE (body));

    default:
      return 0;
    }
}

/* Nonzero if register REG is referenced in an insn between
   FROM_INSN and TO_INSN (exclusive of those two).  Sets of REG do
   not count.  */

int
reg_referenced_between_p (rtx reg, rtx from_insn, rtx to_insn)
{
  rtx insn;

  if (from_insn == to_insn)
    return 0;

  for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn)
	&& (reg_referenced_p (reg, PATTERN (insn))
	   || (GET_CODE (insn) == CALL_INSN
	      && find_reg_fusage (insn, USE, reg))))
      return 1;
  return 0;
}

/* Nonzero if register REG is set or clobbered in an insn between
   FROM_INSN and TO_INSN (exclusive of those two).  */

int
reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
{
  rtx insn;

  if (from_insn == to_insn)
    return 0;

  for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn) && reg_set_p (reg, insn))
      return 1;
  return 0;
}

/* Internals of reg_set_between_p.  */
int
reg_set_p (rtx reg, rtx insn)
{
  /* We can be passed an insn or part of one.  If we are passed an insn,
     check if a side-effect of the insn clobbers REG.  */
  if (INSN_P (insn)
      && (FIND_REG_INC_NOTE (insn, reg)
	  || (GET_CODE (insn) == CALL_INSN
	      /* We'd like to test call_used_regs here, but rtlanal.c can't
		 reference that variable due to its use in genattrtab.  So
		 we'll just be more conservative.

		 ??? Unless we could ensure that the CALL_INSN_FUNCTION_USAGE
		 information holds all clobbered registers.  */
	      && ((GET_CODE (reg) == REG
		   && REGNO (reg) < FIRST_PSEUDO_REGISTER)
		  || GET_CODE (reg) == MEM
		  || find_reg_fusage (insn, CLOBBER, reg)))))
    return 1;

  return set_of (reg, insn) != NULL_RTX;
}

/* Similar to reg_set_between_p, but check all registers in X.  Return 0
   only if none of them are modified between START and END.  Do not
   consider non-registers one way or the other.  */

int
regs_set_between_p (rtx x, rtx start, rtx end)
{
  enum rtx_code code = GET_CODE (x);
  const char *fmt;
  int i, j;

  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case PC:
    case CC0:
      return 0;

    case REG:
      return reg_set_between_p (x, start, end);

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e' && regs_set_between_p (XEXP (x, i), start, end))
	return 1;

      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if (regs_set_between_p (XVECEXP (x, i, j), start, end))
	    return 1;
    }

  return 0;
}

/* Similar to reg_set_between_p, but check all registers in X.  Return 0
   only if none of them are modified between START and END.  Return 1 if
   X contains a MEM; this routine does usememory aliasing.  */

int
modified_between_p (rtx x, rtx start, rtx end)
{
  enum rtx_code code = GET_CODE (x);
  const char *fmt;
  int i, j;
  rtx insn;

  if (start == end)
    return 0;

  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      return 0;

    case PC:
    case CC0:
      return 1;

    case MEM:
      if (RTX_UNCHANGING_P (x))
	return 0;
      if (modified_between_p (XEXP (x, 0), start, end))
	return 1;
      for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
	if (memory_modified_in_insn_p (x, insn))
	  return 1;
      return 0;
      break;

    case REG:
      return reg_set_between_p (x, start, end);

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
	return 1;

      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if (modified_between_p (XVECEXP (x, i, j), start, end))
	    return 1;
    }

  return 0;
}

/* Similar to reg_set_p, but check all registers in X.  Return 0 only if none
   of them are modified in INSN.  Return 1 if X contains a MEM; this routine
   does use memory aliasing.  */

int
modified_in_p (rtx x, rtx insn)
{
  enum rtx_code code = GET_CODE (x);
  const char *fmt;
  int i, j;

  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      return 0;

    case PC:
    case CC0:
      return 1;

    case MEM:
      if (RTX_UNCHANGING_P (x))
	return 0;
      if (modified_in_p (XEXP (x, 0), insn))
	return 1;
      if (memory_modified_in_insn_p (x, insn))
	return 1;
      return 0;
      break;

    case REG:
      return reg_set_p (x, insn);

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
	return 1;

      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if (modified_in_p (XVECEXP (x, i, j), insn))
	    return 1;
    }

  return 0;
}

/* Return true if anything in insn X is (anti,output,true) dependent on
   anything in insn Y.  */

int
insn_dependent_p (rtx x, rtx y)
{
  rtx tmp;

  if (! INSN_P (x) || ! INSN_P (y))
    abort ();

  tmp = PATTERN (y);
  note_stores (PATTERN (x), insn_dependent_p_1, &tmp);
  if (tmp == NULL_RTX)
    return 1;

  tmp = PATTERN (x);
  note_stores (PATTERN (y), insn_dependent_p_1, &tmp);
  if (tmp == NULL_RTX)
    return 1;

  return 0;
}

/* A helper routine for insn_dependent_p called through note_stores.  */

static void
insn_dependent_p_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
{
  rtx * pinsn = (rtx *) data;

  if (*pinsn && reg_mentioned_p (x, *pinsn))
    *pinsn = NULL_RTX;
}

/* Helper function for set_of.  */
struct set_of_data
  {
    rtx found;
    rtx pat;
  };

static void
set_of_1 (rtx x, rtx pat, void *data1)
{
   struct set_of_data *data = (struct set_of_data *) (data1);
   if (rtx_equal_p (x, data->pat)
       || (GET_CODE (x) != MEM && reg_overlap_mentioned_p (data->pat, x)))
     data->found = pat;
}

/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
   (either directly or via STRICT_LOW_PART and similar modifiers).  */
rtx
set_of (rtx pat, rtx insn)
{
  struct set_of_data data;
  data.found = NULL_RTX;
  data.pat = pat;
  note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
  return data.found;
}

/* Given an INSN, return a SET expression if this insn has only a single SET.
   It may also have CLOBBERs, USEs, or SET whose output
   will not be used, which we ignore.  */

rtx
single_set_2 (rtx insn, rtx pat)
{
  rtx set = NULL;
  int set_verified = 1;
  int i;

  if (GET_CODE (pat) == PARALLEL)
    {
      for (i = 0; i < XVECLEN (pat, 0); i++)
	{
	  rtx sub = XVECEXP (pat, 0, i);
	  switch (GET_CODE (sub))
	    {
	    case USE:
	    case CLOBBER:
	      break;

	    case SET:
	      /* We can consider insns having multiple sets, where all
		 but one are dead as single set insns.  In common case
		 only single set is present in the pattern so we want
		 to avoid checking for REG_UNUSED notes unless necessary.

		 When we reach set first time, we just expect this is
		 the single set we are looking for and only when more
		 sets are found in the insn, we check them.  */
	      if (!set_verified)
		{
		  if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
		      && !side_effects_p (set))
		    set = NULL;
		  else
		    set_verified = 1;
		}
	      if (!set)
		set = sub, set_verified = 0;
	      else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
		       || side_effects_p (sub))
		return NULL_RTX;
	      break;

	    default:
	      return NULL_RTX;
	    }
	}
    }
  return set;
}

/* Given an INSN, return nonzero if it has more than one SET, else return
   zero.  */

int
multiple_sets (rtx insn)
{
  int found;
  int i;

  /* INSN must be an insn.  */
  if (! INSN_P (insn))
    return 0;

  /* Only a PARALLEL can have multiple SETs.  */
  if (GET_CODE (PATTERN (insn)) == PARALLEL)
    {
      for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
	  {
	    /* If we have already found a SET, then return now.  */
	    if (found)
	      return 1;
	    else
	      found = 1;
	  }
    }

  /* Either zero or one SET.  */
  return 0;
}

/* Return nonzero if the destination of SET equals the source
   and there are no side effects.  */

int
set_noop_p (rtx set)
{
  rtx src = SET_SRC (set);
  rtx dst = SET_DEST (set);

  if (dst == pc_rtx && src == pc_rtx)
    return 1;

  if (GET_CODE (dst) == MEM && GET_CODE (src) == MEM)
    return rtx_equal_p (dst, src) && !side_effects_p (dst);

  if (GET_CODE (dst) == SIGN_EXTRACT
      || GET_CODE (dst) == ZERO_EXTRACT)
    return rtx_equal_p (XEXP (dst, 0), src)
	   && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
	   && !side_effects_p (src);

  if (GET_CODE (dst) == STRICT_LOW_PART)
    dst = XEXP (dst, 0);

  if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
    {
      if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
	return 0;
      src = SUBREG_REG (src);
      dst = SUBREG_REG (dst);
    }

  return (GET_CODE (src) == REG && GET_CODE (dst) == REG
	  && REGNO (src) == REGNO (dst));
}

/* Return nonzero if an insn consists only of SETs, each of which only sets a
   value to itself.  */

int
noop_move_p (rtx insn)
{
  rtx pat = PATTERN (insn);

  if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
    return 1;

  /* Insns carrying these notes are useful later on.  */
  if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
    return 0;

  /* For now treat an insn with a REG_RETVAL note as a
     a special insn which should not be considered a no-op.  */
  if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
    return 0;

  if (GET_CODE (pat) == SET && set_noop_p (pat))
    return 1;

  if (GET_CODE (pat) == PARALLEL)
    {
      int i;
      /* If nothing but SETs of registers to themselves,
	 this insn can also be deleted.  */
      for (i = 0; i < XVECLEN (pat, 0); i++)
	{
	  rtx tem = XVECEXP (pat, 0, i);

	  if (GET_CODE (tem) == USE
	      || GET_CODE (tem) == CLOBBER)
	    continue;

	  if (GET_CODE (tem) != SET || ! set_noop_p (tem))
	    return 0;
	}

      return 1;
    }
  return 0;
}


/* Return the last thing that X was assigned from before *PINSN.  If VALID_TO
   is not NULL_RTX then verify that the object is not modified up to VALID_TO.
   If the object was modified, if we hit a partial assignment to X, or hit a
   CODE_LABEL first, return X.  If we found an assignment, update *PINSN to
   point to it.  ALLOW_HWREG is set to 1 if hardware registers are allowed to
   be the src.  */

rtx
find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
{
  rtx p;

  for (p = PREV_INSN (*pinsn); p && GET_CODE (p) != CODE_LABEL;
       p = PREV_INSN (p))
    if (INSN_P (p))
      {
	rtx set = single_set (p);
	rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);

	if (set && rtx_equal_p (x, SET_DEST (set)))
	  {
	    rtx src = SET_SRC (set);

	    if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
	      src = XEXP (note, 0);

	    if ((valid_to == NULL_RTX
		 || ! modified_between_p (src, PREV_INSN (p), valid_to))
		/* Reject hard registers because we don't usually want
		   to use them; we'd rather use a pseudo.  */
		&& (! (GET_CODE (src) == REG
		      && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
	      {
		*pinsn = p;
		return src;
	      }
	  }

	/* If set in non-simple way, we don't have a value.  */
	if (reg_set_p (x, p))
	  break;
      }

  return x;
}

/* Return nonzero if register in range [REGNO, ENDREGNO)
   appears either explicitly or implicitly in X
   other than being stored into.

   References contained within the substructure at LOC do not count.
   LOC may be zero, meaning don't ignore anything.  */

int
refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
		   rtx *loc)
{
  int i;
  unsigned int x_regno;
  RTX_CODE code;
  const char *fmt;

 repeat:
  /* The contents of a REG_NONNEG note is always zero, so we must come here
     upon repeat in case the last REG_NOTE is a REG_NONNEG note.  */
  if (x == 0)
    return 0;

  code = GET_CODE (x);

  switch (code)
    {
    case REG:
      x_regno = REGNO (x);

      /* If we modifying the stack, frame, or argument pointer, it will
	 clobber a virtual register.  In fact, we could be more precise,
	 but it isn't worth it.  */
      if ((x_regno == STACK_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	   || x_regno == ARG_POINTER_REGNUM
#endif
	   || x_regno == FRAME_POINTER_REGNUM)
	  && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
	return 1;

      return (endregno > x_regno
	      && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
				    ? HARD_REGNO_NREGS (x_regno, GET_MODE (x))
			      : 1));

    case SUBREG:
      /* If this is a SUBREG of a hard reg, we can see exactly which
	 registers are being modified.  Otherwise, handle normally.  */
      if (GET_CODE (SUBREG_REG (x)) == REG
	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
	{
	  unsigned int inner_regno = subreg_regno (x);
	  unsigned int inner_endregno
	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
			     ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);

	  return endregno > inner_regno && regno < inner_endregno;
	}
      break;

    case CLOBBER:
    case SET:
      if (&SET_DEST (x) != loc
	  /* Note setting a SUBREG counts as referring to the REG it is in for
	     a pseudo but not for hard registers since we can
	     treat each word individually.  */
	  && ((GET_CODE (SET_DEST (x)) == SUBREG
	       && loc != &SUBREG_REG (SET_DEST (x))
	       && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
	       && refers_to_regno_p (regno, endregno,
				     SUBREG_REG (SET_DEST (x)), loc))
	      || (GET_CODE (SET_DEST (x)) != REG
		  && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
	return 1;

      if (code == CLOBBER || loc == &SET_SRC (x))
	return 0;
      x = SET_SRC (x);
      goto repeat;

    default:
      break;
    }

  /* X does not match, so try its subexpressions.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e' && loc != &XEXP (x, i))
	{
	  if (i == 0)
	    {
	      x = XEXP (x, 0);
	      goto repeat;
	    }
	  else
	    if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
	      return 1;
	}
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (loc != &XVECEXP (x, i, j)
		&& refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
	      return 1;
	}
    }
  return 0;
}

/* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
   we check if any register number in X conflicts with the relevant register
   numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
   contains a MEM (we don't bother checking for memory addresses that can't
   conflict because we expect this to be a rare case.  */

int
reg_overlap_mentioned_p (rtx x, rtx in)
{
  unsigned int regno, endregno;

  /* Overly conservative.  */
  if (GET_CODE (x) == STRICT_LOW_PART
      || GET_CODE (x) == ZERO_EXTRACT
      || GET_CODE (x) == SIGN_EXTRACT)
    x = XEXP (x, 0);

  /* If either argument is a constant, then modifying X can not affect IN.  */
  if (CONSTANT_P (x) || CONSTANT_P (in))
    return 0;

  switch (GET_CODE (x))
    {
    case SUBREG:
      regno = REGNO (SUBREG_REG (x));
      if (regno < FIRST_PSEUDO_REGISTER)
	regno = subreg_regno (x);
      goto do_reg;

    case REG:
      regno = REGNO (x);
    do_reg:
      endregno = regno + (regno < FIRST_PSEUDO_REGISTER
			  ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
      return refers_to_regno_p (regno, endregno, in, (rtx*) 0);

    case MEM:
      {
	const char *fmt;
	int i;

	if (GET_CODE (in) == MEM)
	  return 1;

	fmt = GET_RTX_FORMAT (GET_CODE (in));
	for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
	  if (fmt[i] == 'e' && reg_overlap_mentioned_p (x, XEXP (in, i)))
	    return 1;

	return 0;
      }

    case SCRATCH:
    case PC:
    case CC0:
      return reg_mentioned_p (x, in);

    case PARALLEL:
      {
	int i;

	/* If any register in here refers to it we return true.  */
	for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	  if (XEXP (XVECEXP (x, 0, i), 0) != 0
	      && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
	      return 1;
	return 0;
      }

    default:
      break;
    }

  abort ();
}

/* Return the last value to which REG was set prior to INSN.  If we can't
   find it easily, return 0.

   We only return a REG, SUBREG, or constant because it is too hard to
   check if a MEM remains unchanged.  */

rtx
reg_set_last (rtx x, rtx insn)
{
  rtx orig_insn = insn;

  /* Scan backwards until reg_set_last_1 changed one of the above flags.
     Stop when we reach a label or X is a hard reg and we reach a
     CALL_INSN (if reg_set_last_last_regno is a hard reg).

     If we find a set of X, ensure that its SET_SRC remains unchanged.  */

  /* We compare with <= here, because reg_set_last_last_regno
     is actually the number of the first reg *not* in X.  */
  for (;
       insn && GET_CODE (insn) != CODE_LABEL
       && ! (GET_CODE (insn) == CALL_INSN
	     && REGNO (x) <= FIRST_PSEUDO_REGISTER);
       insn = PREV_INSN (insn))
    if (INSN_P (insn))
      {
	rtx set = set_of (x, insn);
	/* OK, this function modify our register.  See if we understand it.  */
	if (set)
	  {
	    rtx last_value;
	    if (GET_CODE (set) != SET || SET_DEST (set) != x)
	      return 0;
	    last_value = SET_SRC (x);
	    if (CONSTANT_P (last_value)
		|| ((GET_CODE (last_value) == REG
		     || GET_CODE (last_value) == SUBREG)
		    && ! reg_set_between_p (last_value,
					    insn, orig_insn)))
	      return last_value;
	    else
	      return 0;
	  }
      }

  return 0;
}

/* Call FUN on each register or MEM that is stored into or clobbered by X.
   (X would be the pattern of an insn).
   FUN receives two arguments:
     the REG, MEM, CC0 or PC being stored in or clobbered,
     the SET or CLOBBER rtx that does the store.

  If the item being stored in or clobbered is a SUBREG of a hard register,
  the SUBREG will be passed.  */

void
note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
{
  int i;

  if (GET_CODE (x) == COND_EXEC)
    x = COND_EXEC_CODE (x);

  if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
    {
      rtx dest = SET_DEST (x);

      while ((GET_CODE (dest) == SUBREG
	      && (GET_CODE (SUBREG_REG (dest)) != REG
		  || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SIGN_EXTRACT
	     || GET_CODE (dest) == STRICT_LOW_PART)
	dest = XEXP (dest, 0);

      /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
	 each of whose first operand is a register.  */
      if (GET_CODE (dest) == PARALLEL)
	{
	  for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
	    if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
	      (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
	}
      else
	(*fun) (dest, x, data);
    }

  else if (GET_CODE (x) == PARALLEL)
    for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
      note_stores (XVECEXP (x, 0, i), fun, data);
}

/* Like notes_stores, but call FUN for each expression that is being
   referenced in PBODY, a pointer to the PATTERN of an insn.  We only call
   FUN for each expression, not any interior subexpressions.  FUN receives a
   pointer to the expression and the DATA passed to this function.

   Note that this is not quite the same test as that done in reg_referenced_p
   since that considers something as being referenced if it is being
   partially set, while we do not.  */

void
note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
{
  rtx body = *pbody;
  int i;

  switch (GET_CODE (body))
    {
    case COND_EXEC:
      (*fun) (&COND_EXEC_TEST (body), data);
      note_uses (&COND_EXEC_CODE (body), fun, data);
      return;

    case PARALLEL:
      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
	note_uses (&XVECEXP (body, 0, i), fun, data);
      return;

    case USE:
      (*fun) (&XEXP (body, 0), data);
      return;

    case ASM_OPERANDS:
      for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
	(*fun) (&ASM_OPERANDS_INPUT (body, i), data);
      return;

    case TRAP_IF:
      (*fun) (&TRAP_CONDITION (body), data);
      return;

    case PREFETCH:
      (*fun) (&XEXP (body, 0), data);
      return;

    case UNSPEC:
    case UNSPEC_VOLATILE:
      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
	(*fun) (&XVECEXP (body, 0, i), data);
      return;

    case CLOBBER:
      if (GET_CODE (XEXP (body, 0)) == MEM)
	(*fun) (&XEXP (XEXP (body, 0), 0), data);
      return;

    case SET:
      {
	rtx dest = SET_DEST (body);

	/* For sets we replace everything in source plus registers in memory
	   expression in store and operands of a ZERO_EXTRACT.  */
	(*fun) (&SET_SRC (body), data);

	if (GET_CODE (dest) == ZERO_EXTRACT)
	  {
	    (*fun) (&XEXP (dest, 1), data);
	    (*fun) (&XEXP (dest, 2), data);
	  }

	while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
	  dest = XEXP (dest, 0);

	if (GET_CODE (dest) == MEM)
	  (*fun) (&XEXP (dest, 0), data);
      }
      return;

    default:
      /* All the other possibilities never store.  */
      (*fun) (pbody, data);
      return;
    }
}

/* Return nonzero if X's old contents don't survive after INSN.
   This will be true if X is (cc0) or if X is a register and
   X dies in INSN or because INSN entirely sets X.

   "Entirely set" means set directly and not through a SUBREG,
   ZERO_EXTRACT or SIGN_EXTRACT, so no trace of the old contents remains.
   Likewise, REG_INC does not count.

   REG may be a hard or pseudo reg.  Renumbering is not taken into account,
   but for this use that makes no difference, since regs don't overlap
   during their lifetimes.  Therefore, this function may be used
   at any time after deaths have been computed (in flow.c).

   If REG is a hard reg that occupies multiple machine registers, this
   function will only return 1 if each of those registers will be replaced
   by INSN.  */

int
dead_or_set_p (rtx insn, rtx x)
{
  unsigned int regno, last_regno;
  unsigned int i;

  /* Can't use cc0_rtx below since this file is used by genattrtab.c.  */
  if (GET_CODE (x) == CC0)
    return 1;

  if (GET_CODE (x) != REG)
    abort ();

  regno = REGNO (x);
  last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
		: regno + HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1);

  for (i = regno; i <= last_regno; i++)
    if (! dead_or_set_regno_p (insn, i))
      return 0;

  return 1;
}

/* Utility function for dead_or_set_p to check an individual register.  Also
   called from flow.c.  */

int
dead_or_set_regno_p (rtx insn, unsigned int test_regno)
{
  unsigned int regno, endregno;
  rtx pattern;

  /* See if there is a death note for something that includes TEST_REGNO.  */
  if (find_regno_note (insn, REG_DEAD, test_regno))
    return 1;

  if (GET_CODE (insn) == CALL_INSN
      && find_regno_fusage (insn, CLOBBER, test_regno))
    return 1;

  pattern = PATTERN (insn);

  if (GET_CODE (pattern) == COND_EXEC)
    pattern = COND_EXEC_CODE (pattern);

  if (GET_CODE (pattern) == SET)
    {
      rtx dest = SET_DEST (pattern);

      /* A value is totally replaced if it is the destination or the
	 destination is a SUBREG of REGNO that does not change the number of
	 words in it.  */
      if (GET_CODE (dest) == SUBREG
	  && (((GET_MODE_SIZE (GET_MODE (dest))
		+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)
	      == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
		   + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
	dest = SUBREG_REG (dest);

      if (GET_CODE (dest) != REG)
	return 0;

      regno = REGNO (dest);
      endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
		  : regno + HARD_REGNO_NREGS (regno, GET_MODE (dest)));

      return (test_regno >= regno && test_regno < endregno);
    }
  else if (GET_CODE (pattern) == PARALLEL)
    {
      int i;

      for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
	{
	  rtx body = XVECEXP (pattern, 0, i);

	  if (GET_CODE (body) == COND_EXEC)
	    body = COND_EXEC_CODE (body);

	  if (GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
	    {
	      rtx dest = SET_DEST (body);

	      if (GET_CODE (dest) == SUBREG
		  && (((GET_MODE_SIZE (GET_MODE (dest))
			+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)
		      == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
			   + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
		dest = SUBREG_REG (dest);

	      if (GET_CODE (dest) != REG)
		continue;

	      regno = REGNO (dest);
	      endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
			  : regno + HARD_REGNO_NREGS (regno, GET_MODE (dest)));

	      if (test_regno >= regno && test_regno < endregno)
		return 1;
	    }
	}
    }

  return 0;
}

/* Return the reg-note of kind KIND in insn INSN, if there is one.
   If DATUM is nonzero, look for one whose datum is DATUM.  */

rtx
find_reg_note (rtx insn, enum reg_note kind, rtx datum)
{
  rtx link;

  /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
  if (! INSN_P (insn))
    return 0;

  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
    if (REG_NOTE_KIND (link) == kind
	&& (datum == 0 || datum == XEXP (link, 0)))
      return link;
  return 0;
}

/* Return the reg-note of kind KIND in insn INSN which applies to register
   number REGNO, if any.  Return 0 if there is no such reg-note.  Note that
   the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
   it might be the case that the note overlaps REGNO.  */

rtx
find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
{
  rtx link;

  /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
  if (! INSN_P (insn))
    return 0;

  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
    if (REG_NOTE_KIND (link) == kind
	/* Verify that it is a register, so that scratch and MEM won't cause a
	   problem here.  */
	&& GET_CODE (XEXP (link, 0)) == REG
	&& REGNO (XEXP (link, 0)) <= regno
	&& ((REGNO (XEXP (link, 0))
	     + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
		: HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
				    GET_MODE (XEXP (link, 0)))))
	    > regno))
      return link;
  return 0;
}

/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
   has such a note.  */

rtx
find_reg_equal_equiv_note (rtx insn)
{
  rtx link;

  if (!INSN_P (insn))
    return 0;
  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
    if (REG_NOTE_KIND (link) == REG_EQUAL
	|| REG_NOTE_KIND (link) == REG_EQUIV)
      {
	if (single_set (insn) == 0)
	  return 0;
	return link;
      }
  return NULL;
}

/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
   in the CALL_INSN_FUNCTION_USAGE information of INSN.  */

int
find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
{
  /* If it's not a CALL_INSN, it can't possibly have a
     CALL_INSN_FUNCTION_USAGE field, so don't bother checking.  */
  if (GET_CODE (insn) != CALL_INSN)
    return 0;

  if (! datum)
    abort ();

  if (GET_CODE (datum) != REG)
    {
      rtx link;

      for (link = CALL_INSN_FUNCTION_USAGE (insn);
	   link;
	   link = XEXP (link, 1))
	if (GET_CODE (XEXP (link, 0)) == code
	    && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
	  return 1;
    }
  else
    {
      unsigned int regno = REGNO (datum);

      /* CALL_INSN_FUNCTION_USAGE information cannot contain references
	 to pseudo registers, so don't bother checking.  */

      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  unsigned int end_regno
	    = regno + HARD_REGNO_NREGS (regno, GET_MODE (datum));
	  unsigned int i;

	  for (i = regno; i < end_regno; i++)
	    if (find_regno_fusage (insn, code, i))
	      return 1;
	}
    }

  return 0;
}

/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
   in the CALL_INSN_FUNCTION_USAGE information of INSN.  */

int
find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
{
  rtx link;

  /* CALL_INSN_FUNCTION_USAGE information cannot contain references
     to pseudo registers, so don't bother checking.  */

  if (regno >= FIRST_PSEUDO_REGISTER
      || GET_CODE (insn) != CALL_INSN )
    return 0;

  for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
    {
      unsigned int regnote;
      rtx op, reg;

      if (GET_CODE (op = XEXP (link, 0)) == code
	  && GET_CODE (reg = XEXP (op, 0)) == REG
	  && (regnote = REGNO (reg)) <= regno
	  && regnote + HARD_REGNO_NREGS (regnote, GET_MODE (reg)) > regno)
	return 1;
    }

  return 0;
}

/* Return true if INSN is a call to a pure function.  */

int
pure_call_p (rtx insn)
{
  rtx link;

  if (GET_CODE (insn) != CALL_INSN || ! CONST_OR_PURE_CALL_P (insn))
    return 0;

  /* Look for the note that differentiates const and pure functions.  */
  for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
    {
      rtx u, m;

      if (GET_CODE (u = XEXP (link, 0)) == USE
	  && GET_CODE (m = XEXP (u, 0)) == MEM && GET_MODE (m) == BLKmode
	  && GET_CODE (XEXP (m, 0)) == SCRATCH)
	return 1;
    }

  return 0;
}

/* Remove register note NOTE from the REG_NOTES of INSN.  */

void
remove_note (rtx insn, rtx note)
{
  rtx link;

  if (note == NULL_RTX)
    return;

  if (REG_NOTES (insn) == note)
    {
      REG_NOTES (insn) = XEXP (note, 1);
      return;
    }

  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
    if (XEXP (link, 1) == note)
      {
	XEXP (link, 1) = XEXP (note, 1);
	return;
      }

  abort ();
}

/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
   return 1 if it is found.  A simple equality test is used to determine if
   NODE matches.  */

int
in_expr_list_p (rtx listp, rtx node)
{
  rtx x;

  for (x = listp; x; x = XEXP (x, 1))
    if (node == XEXP (x, 0))
      return 1;

  return 0;
}

/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
   remove that entry from the list if it is found.

   A simple equality test is used to determine if NODE matches.  */

void
remove_node_from_expr_list (rtx node, rtx *listp)
{
  rtx temp = *listp;
  rtx prev = NULL_RTX;

  while (temp)
    {
      if (node == XEXP (temp, 0))
	{
	  /* Splice the node out of the list.  */
	  if (prev)
	    XEXP (prev, 1) = XEXP (temp, 1);
	  else
	    *listp = XEXP (temp, 1);

	  return;
	}

      prev = temp;
      temp = XEXP (temp, 1);
    }
}

/* Nonzero if X contains any volatile instructions.  These are instructions
   which may cause unpredictable machine state instructions, and thus no
   instructions should be moved or combined across them.  This includes
   only volatile asms and UNSPEC_VOLATILE instructions.  */

int
volatile_insn_p (rtx x)
{
  RTX_CODE code;

  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CC0:
    case PC:
    case REG:
    case SCRATCH:
    case CLOBBER:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case CALL:
    case MEM:
      return 0;

    case UNSPEC_VOLATILE:
 /* case TRAP_IF: This isn't clear yet.  */
      return 1;

    case ASM_INPUT:
    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	return 1;

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */

  {
    const char *fmt = GET_RTX_FORMAT (code);
    int i;

    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    if (volatile_insn_p (XEXP (x, i)))
	      return 1;
	  }
	else if (fmt[i] == 'E')
	  {
	    int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      if (volatile_insn_p (XVECEXP (x, i, j)))
		return 1;
	  }
      }
  }
  return 0;
}

/* Nonzero if X contains any volatile memory references
   UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions.  */

int
volatile_refs_p (rtx x)
{
  RTX_CODE code;

  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CC0:
    case PC:
    case REG:
    case SCRATCH:
    case CLOBBER:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 0;

    case UNSPEC_VOLATILE:
      return 1;

    case MEM:
    case ASM_INPUT:
    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	return 1;

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */

  {
    const char *fmt = GET_RTX_FORMAT (code);
    int i;

    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    if (volatile_refs_p (XEXP (x, i)))
	      return 1;
	  }
	else if (fmt[i] == 'E')
	  {
	    int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      if (volatile_refs_p (XVECEXP (x, i, j)))
		return 1;
	  }
      }
  }
  return 0;
}

/* Similar to above, except that it also rejects register pre- and post-
   incrementing.  */

int
side_effects_p (rtx x)
{
  RTX_CODE code;

  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CC0:
    case PC:
    case REG:
    case SCRATCH:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 0;

    case CLOBBER:
      /* Reject CLOBBER with a non-VOID mode.  These are made by combine.c
	 when some combination can't be done.  If we see one, don't think
	 that we can simplify the expression.  */
      return (GET_MODE (x) != VOIDmode);

    case PRE_INC:
    case PRE_DEC:
    case POST_INC:
    case POST_DEC:
    case PRE_MODIFY:
    case POST_MODIFY:
    case CALL:
    case UNSPEC_VOLATILE:
 /* case TRAP_IF: This isn't clear yet.  */
      return 1;

    case MEM:
    case ASM_INPUT:
    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	return 1;

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */

  {
    const char *fmt = GET_RTX_FORMAT (code);
    int i;

    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    if (side_effects_p (XEXP (x, i)))
	      return 1;
	  }
	else if (fmt[i] == 'E')
	  {
	    int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      if (side_effects_p (XVECEXP (x, i, j)))
		return 1;
	  }
      }
  }
  return 0;
}

/* Return nonzero if evaluating rtx X might cause a trap.  */

int
may_trap_p (rtx x)
{
  int i;
  enum rtx_code code;
  const char *fmt;

  if (x == 0)
    return 0;
  code = GET_CODE (x);
  switch (code)
    {
      /* Handle these cases quickly.  */
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST:
    case PC:
    case CC0:
    case REG:
    case SCRATCH:
      return 0;

    case ASM_INPUT:
    case UNSPEC_VOLATILE:
    case TRAP_IF:
      return 1;

    case ASM_OPERANDS:
      return MEM_VOLATILE_P (x);

      /* Memory ref can trap unless it's a static var or a stack slot.  */
    case MEM:
      if (MEM_NOTRAP_P (x))
	return 0;
      return rtx_addr_can_trap_p (XEXP (x, 0));

      /* Division by a non-constant might trap.  */
    case DIV:
    case MOD:
    case UDIV:
    case UMOD:
      if (HONOR_SNANS (GET_MODE (x)))
	return 1;
      if (! CONSTANT_P (XEXP (x, 1))
	  || (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
	      && flag_trapping_math))
	return 1;
      /* This was const0_rtx, but by not using that,
	 we can link this file into other programs.  */
      if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
	return 1;
      break;

    case EXPR_LIST:
      /* An EXPR_LIST is used to represent a function call.  This
	 certainly may trap.  */
      return 1;

    case GE:
    case GT:
    case LE:
    case LT:
    case COMPARE:
      /* Some floating point comparisons may trap.  */
      if (!flag_trapping_math)
	break;
      /* ??? There is no machine independent way to check for tests that trap
	 when COMPARE is used, though many targets do make this distinction.
	 For instance, sparc uses CCFPE for compares which generate exceptions
	 and CCFP for compares which do not generate exceptions.  */
      if (HONOR_NANS (GET_MODE (x)))
	return 1;
      /* But often the compare has some CC mode, so check operand
	 modes as well.  */
      if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
	  || HONOR_NANS (GET_MODE (XEXP (x, 1))))
	return 1;
      break;

    case EQ:
    case NE:
      if (HONOR_SNANS (GET_MODE (x)))
	return 1;
      /* Often comparison is CC mode, so check operand modes.  */
      if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
	  || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
	return 1;
      break;

    case FIX:
      /* Conversion of floating point might trap.  */
      if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
	return 1;
      break;

    case NEG:
    case ABS:
      /* These operations don't trap even with floating point.  */
      break;

    default:
      /* Any floating arithmetic may trap.  */
      if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
	  && flag_trapping_math)
	return 1;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  if (may_trap_p (XEXP (x, i)))
	    return 1;
	}
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (may_trap_p (XVECEXP (x, i, j)))
	      return 1;
	}
    }
  return 0;
}

/* Return nonzero if X contains a comparison that is not either EQ or NE,
   i.e., an inequality.  */

int
inequality_comparisons_p (rtx x)
{
  const char *fmt;
  int len, i;
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case REG:
    case SCRATCH:
    case PC:
    case CC0:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      return 0;

    case LT:
    case LTU:
    case GT:
    case GTU:
    case LE:
    case LEU:
    case GE:
    case GEU:
      return 1;

    default:
      break;
    }

  len = GET_RTX_LENGTH (code);
  fmt = GET_RTX_FORMAT (code);

  for (i = 0; i < len; i++)
    {
      if (fmt[i] == 'e')
	{
	  if (inequality_comparisons_p (XEXP (x, i)))
	    return 1;
	}
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (inequality_comparisons_p (XVECEXP (x, i, j)))
	      return 1;
	}
    }

  return 0;
}

/* Replace any occurrence of FROM in X with TO.  The function does
   not enter into CONST_DOUBLE for the replace.

   Note that copying is not done so X must not be shared unless all copies
   are to be modified.  */

rtx
replace_rtx (rtx x, rtx from, rtx to)
{
  int i, j;
  const char *fmt;

  /* The following prevents loops occurrence when we change MEM in
     CONST_DOUBLE onto the same CONST_DOUBLE.  */
  if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
    return x;

  if (x == from)
    return to;

  /* Allow this function to make replacements in EXPR_LISTs.  */
  if (x == 0)
    return 0;

  if (GET_CODE (x) == SUBREG)
    {
      rtx new = replace_rtx (SUBREG_REG (x), from, to);

      if (GET_CODE (new) == CONST_INT)
	{
	  x = simplify_subreg (GET_MODE (x), new,
			       GET_MODE (SUBREG_REG (x)),
			       SUBREG_BYTE (x));
	  if (! x)
	    abort ();
	}
      else
	SUBREG_REG (x) = new;

      return x;
    }
  else if (GET_CODE (x) == ZERO_EXTEND)
    {
      rtx new = replace_rtx (XEXP (x, 0), from, to);

      if (GET_CODE (new) == CONST_INT)
	{
	  x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
					new, GET_MODE (XEXP (x, 0)));
	  if (! x)
	    abort ();
	}
      else
	XEXP (x, 0) = new;

      return x;
    }

  fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
    }

  return x;
}

/* Throughout the rtx X, replace many registers according to REG_MAP.
   Return the replacement for X (which may be X with altered contents).
   REG_MAP[R] is the replacement for register R, or 0 for don't replace.
   NREGS is the length of REG_MAP; regs >= NREGS are not mapped.

   We only support REG_MAP entries of REG or SUBREG.  Also, hard registers
   should not be mapped to pseudos or vice versa since validate_change
   is not called.

   If REPLACE_DEST is 1, replacements are also done in destinations;
   otherwise, only sources are replaced.  */

rtx
replace_regs (rtx x, rtx *reg_map, unsigned int nregs, int replace_dest)
{
  enum rtx_code code;
  int i;
  const char *fmt;

  if (x == 0)
    return x;

  code = GET_CODE (x);
  switch (code)
    {
    case SCRATCH:
    case PC:
    case CC0:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      return x;

    case REG:
      /* Verify that the register has an entry before trying to access it.  */
      if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
	{
	  /* SUBREGs can't be shared.  Always return a copy to ensure that if
	     this replacement occurs more than once then each instance will
	     get distinct rtx.  */
	  if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
	    return copy_rtx (reg_map[REGNO (x)]);
	  return reg_map[REGNO (x)];
	}
      return x;

    case SUBREG:
      /* Prevent making nested SUBREGs.  */
      if (GET_CODE (SUBREG_REG (x)) == REG && REGNO (SUBREG_REG (x)) < nregs
	  && reg_map[REGNO (SUBREG_REG (x))] != 0
	  && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
	{
	  rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
	  return simplify_gen_subreg (GET_MODE (x), map_val,
				      GET_MODE (SUBREG_REG (x)),
				      SUBREG_BYTE (x));
	}
      break;

    case SET:
      if (replace_dest)
	SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);

      else if (GET_CODE (SET_DEST (x)) == MEM
	       || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
	/* Even if we are not to replace destinations, replace register if it
	   is CONTAINED in destination (destination is memory or
	   STRICT_LOW_PART).  */
	XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
					       reg_map, nregs, 0);
      else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
	/* Similarly, for ZERO_EXTRACT we replace all operands.  */
	break;

      SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
      return x;

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
					      nregs, replace_dest);
	}
    }
  return x;
}

/* Replace occurrences of the old label in *X with the new one.
   DATA is a REPLACE_LABEL_DATA containing the old and new labels.  */

int
replace_label (rtx *x, void *data)
{
  rtx l = *x;
  rtx tmp;
  rtx old_label = ((replace_label_data *) data)->r1;
  rtx new_label = ((replace_label_data *) data)->r2;
  bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;

  if (l == NULL_RTX)
    return 0;

  if (GET_CODE (l) == MEM
      && (tmp = XEXP (l, 0)) != NULL_RTX
      && GET_CODE (tmp) == SYMBOL_REF
      && CONSTANT_POOL_ADDRESS_P (tmp))
    {
      rtx c = get_pool_constant (tmp);
      if (rtx_referenced_p (old_label, c))
	{
	  rtx new_c, new_l;
	  replace_label_data *d = (replace_label_data *) data;

	  /* Create a copy of constant C; replace the label inside
	     but do not update LABEL_NUSES because uses in constant pool
	     are not counted.  */
	  new_c = copy_rtx (c);
	  d->update_label_nuses = false;
	  for_each_rtx (&new_c, replace_label, data);
	  d->update_label_nuses = update_label_nuses;

	  /* Add the new constant NEW_C to constant pool and replace
	     the old reference to constant by new reference.  */
	  new_l = force_const_mem (get_pool_mode (tmp), new_c);
	  *x = replace_rtx (l, l, new_l);
	}
      return 0;
    }

  /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
     field.  This is not handled by for_each_rtx because it doesn't
     handle unprinted ('0') fields.  */
  if (GET_CODE (l) == JUMP_INSN && JUMP_LABEL (l) == old_label)
    JUMP_LABEL (l) = new_label;

  if ((GET_CODE (l) == LABEL_REF
       || GET_CODE (l) == INSN_LIST)
      && XEXP (l, 0) == old_label)
    {
      XEXP (l, 0) = new_label;
      if (update_label_nuses)
	{
	  ++LABEL_NUSES (new_label);
	  --LABEL_NUSES (old_label);
	}
      return 0;
    }

  return 0;
}

/* When *BODY is equal to X or X is directly referenced by *BODY
   return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
   too, otherwise FOR_EACH_RTX continues traversing *BODY.  */

static int
rtx_referenced_p_1 (rtx *body, void *x)
{
  rtx y = (rtx) x;

  if (*body == NULL_RTX)
    return y == NULL_RTX;

  /* Return true if a label_ref *BODY refers to label Y.  */
  if (GET_CODE (*body) == LABEL_REF && GET_CODE (y) == CODE_LABEL)
    return XEXP (*body, 0) == y;

  /* If *BODY is a reference to pool constant traverse the constant.  */
  if (GET_CODE (*body) == SYMBOL_REF
      && CONSTANT_POOL_ADDRESS_P (*body))
    return rtx_referenced_p (y, get_pool_constant (*body));

  /* By default, compare the RTL expressions.  */
  return rtx_equal_p (*body, y);
}

/* Return true if X is referenced in BODY.  */

int
rtx_referenced_p (rtx x, rtx body)
{
  return for_each_rtx (&body, rtx_referenced_p_1, x);
}

/* If INSN is a tablejump return true and store the label (before jump table) to
   *LABELP and the jump table to *TABLEP.  LABELP and TABLEP may be NULL.  */

bool
tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
{
  rtx label, table;

  if (GET_CODE (insn) == JUMP_INSN
      && (label = JUMP_LABEL (insn)) != NULL_RTX
      && (table = next_active_insn (label)) != NULL_RTX
      && GET_CODE (table) == JUMP_INSN
      && (GET_CODE (PATTERN (table)) == ADDR_VEC
	  || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
    {
      if (labelp)
	*labelp = label;
      if (tablep)
	*tablep = table;
      return true;
    }
  return false;
}

/* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
   constant that is not in the constant pool and not in the condition
   of an IF_THEN_ELSE.  */

static int
computed_jump_p_1 (rtx x)
{
  enum rtx_code code = GET_CODE (x);
  int i, j;
  const char *fmt;

  switch (code)
    {
    case LABEL_REF:
    case PC:
      return 0;

    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case SYMBOL_REF:
    case REG:
      return 1;

    case MEM:
      return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
		&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));

    case IF_THEN_ELSE:
      return (computed_jump_p_1 (XEXP (x, 1))
	      || computed_jump_p_1 (XEXP (x, 2)));

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e'
	  && computed_jump_p_1 (XEXP (x, i)))
	return 1;

      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (computed_jump_p_1 (XVECEXP (x, i, j)))
	    return 1;
    }

  return 0;
}

/* Return nonzero if INSN is an indirect jump (aka computed jump).

   Tablejumps and casesi insns are not considered indirect jumps;
   we can recognize them by a (use (label_ref)).  */

int
computed_jump_p (rtx insn)
{
  int i;
  if (GET_CODE (insn) == JUMP_INSN)
    {
      rtx pat = PATTERN (insn);

      if (find_reg_note (insn, REG_LABEL, NULL_RTX))
	return 0;
      else if (GET_CODE (pat) == PARALLEL)
	{
	  int len = XVECLEN (pat, 0);
	  int has_use_labelref = 0;

	  for (i = len - 1; i >= 0; i--)
	    if (GET_CODE (XVECEXP (pat, 0, i)) == USE
		&& (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
		    == LABEL_REF))
	      has_use_labelref = 1;

	  if (! has_use_labelref)
	    for (i = len - 1; i >= 0; i--)
	      if (GET_CODE (XVECEXP (pat, 0, i)) == SET
		  && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
		  && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
		return 1;
	}
      else if (GET_CODE (pat) == SET
	       && SET_DEST (pat) == pc_rtx
	       && computed_jump_p_1 (SET_SRC (pat)))
	return 1;
    }
  return 0;
}

/* Traverse X via depth-first search, calling F for each
   sub-expression (including X itself).  F is also passed the DATA.
   If F returns -1, do not traverse sub-expressions, but continue
   traversing the rest of the tree.  If F ever returns any other
   nonzero value, stop the traversal, and return the value returned
   by F.  Otherwise, return 0.  This function does not traverse inside
   tree structure that contains RTX_EXPRs, or into sub-expressions
   whose format code is `0' since it is not known whether or not those
   codes are actually RTL.

   This routine is very general, and could (should?) be used to
   implement many of the other routines in this file.  */

int
for_each_rtx (rtx *x, rtx_function f, void *data)
{
  int result;
  int length;
  const char *format;
  int i;

  /* Call F on X.  */
  result = (*f) (x, data);
  if (result == -1)
    /* Do not traverse sub-expressions.  */
    return 0;
  else if (result != 0)
    /* Stop the traversal.  */
    return result;

  if (*x == NULL_RTX)
    /* There are no sub-expressions.  */
    return 0;

  length = GET_RTX_LENGTH (GET_CODE (*x));
  format = GET_RTX_FORMAT (GET_CODE (*x));

  for (i = 0; i < length; ++i)
    {
      switch (format[i])
	{
	case 'e':
	  result = for_each_rtx (&XEXP (*x, i), f, data);
	  if (result != 0)
	    return result;
	  break;

	case 'V':
	case 'E':
	  if (XVEC (*x, i) != 0)
	    {
	      int j;
	      for (j = 0; j < XVECLEN (*x, i); ++j)
		{
		  result = for_each_rtx (&XVECEXP (*x, i, j), f, data);
		  if (result != 0)
		    return result;
		}
	    }
	  break;

	default:
	  /* Nothing to do.  */
	  break;
	}

    }

  return 0;
}

/* Searches X for any reference to REGNO, returning the rtx of the
   reference found if any.  Otherwise, returns NULL_RTX.  */

rtx
regno_use_in (unsigned int regno, rtx x)
{
  const char *fmt;
  int i, j;
  rtx tem;

  if (GET_CODE (x) == REG && REGNO (x) == regno)
    return x;

  fmt = GET_RTX_FORMAT (GET_CODE (x));
  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  if ((tem = regno_use_in (regno, XEXP (x, i))))
	    return tem;
	}
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
	    return tem;
    }

  return NULL_RTX;
}

/* Return a value indicating whether OP, an operand of a commutative
   operation, is preferred as the first or second operand.  The higher
   the value, the stronger the preference for being the first operand.
   We use negative values to indicate a preference for the first operand
   and positive values for the second operand.  */

int
commutative_operand_precedence (rtx op)
{
  /* Constants always come the second operand.  Prefer "nice" constants.  */
  if (GET_CODE (op) == CONST_INT)
    return -5;
  if (GET_CODE (op) == CONST_DOUBLE)
    return -4;
  if (CONSTANT_P (op))
    return -3;

  /* SUBREGs of objects should come second.  */
  if (GET_CODE (op) == SUBREG
      && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op))) == 'o')
    return -2;

  /* If only one operand is a `neg', `not',
    `mult', `plus', or `minus' expression, it will be the first
    operand.  */
  if (GET_CODE (op) == NEG || GET_CODE (op) == NOT
      || GET_CODE (op) == MULT || GET_CODE (op) == PLUS
      || GET_CODE (op) == MINUS)
    return 2;

  /* Complex expressions should be the first, so decrease priority
     of objects.  */
  if (GET_RTX_CLASS (GET_CODE (op)) == 'o')
    return -1;
  return 0;
}

/* Return 1 iff it is necessary to swap operands of commutative operation
   in order to canonicalize expression.  */

int
swap_commutative_operands_p (rtx x, rtx y)
{
  return (commutative_operand_precedence (x)
	  < commutative_operand_precedence (y));
}

/* Return 1 if X is an autoincrement side effect and the register is
   not the stack pointer.  */
int
auto_inc_p (rtx x)
{
  switch (GET_CODE (x))
    {
    case PRE_INC:
    case POST_INC:
    case PRE_DEC:
    case POST_DEC:
    case PRE_MODIFY:
    case POST_MODIFY:
      /* There are no REG_INC notes for SP.  */
      if (XEXP (x, 0) != stack_pointer_rtx)
	return 1;
    default:
      break;
    }
  return 0;
}

/* Return 1 if the sequence of instructions beginning with FROM and up
   to and including TO is safe to move.  If NEW_TO is non-NULL, and
   the sequence is not already safe to move, but can be easily
   extended to a sequence which is safe, then NEW_TO will point to the
   end of the extended sequence.

   For now, this function only checks that the region contains whole
   exception regions, but it could be extended to check additional
   conditions as well.  */

int
insns_safe_to_move_p (rtx from, rtx to, rtx *new_to)
{
  int eh_region_count = 0;
  int past_to_p = 0;
  rtx r = from;

  /* By default, assume the end of the region will be what was
     suggested.  */
  if (new_to)
    *new_to = to;

  while (r)
    {
      if (GET_CODE (r) == NOTE)
	{
	  switch (NOTE_LINE_NUMBER (r))
	    {
	    case NOTE_INSN_EH_REGION_BEG:
	      ++eh_region_count;
	      break;

	    case NOTE_INSN_EH_REGION_END:
	      if (eh_region_count == 0)
		/* This sequence of instructions contains the end of
		   an exception region, but not he beginning.  Moving
		   it will cause chaos.  */
		return 0;

	      --eh_region_count;
	      break;

	    default:
	      break;
	    }
	}
      else if (past_to_p)
	/* If we've passed TO, and we see a non-note instruction, we
	   can't extend the sequence to a movable sequence.  */
	return 0;

      if (r == to)
	{
	  if (!new_to)
	    /* It's OK to move the sequence if there were matched sets of
	       exception region notes.  */
	    return eh_region_count == 0;

	  past_to_p = 1;
	}

      /* It's OK to move the sequence if there were matched sets of
	 exception region notes.  */
      if (past_to_p && eh_region_count == 0)
	{
	  *new_to = r;
	  return 1;
	}

      /* Go to the next instruction.  */
      r = NEXT_INSN (r);
    }

  return 0;
}

/* Return nonzero if IN contains a piece of rtl that has the address LOC.  */
int
loc_mentioned_in_p (rtx *loc, rtx in)
{
  enum rtx_code code = GET_CODE (in);
  const char *fmt = GET_RTX_FORMAT (code);
  int i, j;

  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (loc == &in->fld[i].rtx)
	return 1;
      if (fmt[i] == 'e')
	{
	  if (loc_mentioned_in_p (loc, XEXP (in, i)))
	    return 1;
	}
      else if (fmt[i] == 'E')
	for (j = XVECLEN (in, i) - 1; j >= 0; j--)
	  if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
	    return 1;
    }
  return 0;
}

/* Given a subreg X, return the bit offset where the subreg begins
   (counting from the least significant bit of the reg).  */

unsigned int
subreg_lsb (rtx x)
{
  enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
  enum machine_mode mode = GET_MODE (x);
  unsigned int bitpos;
  unsigned int byte;
  unsigned int word;

  /* A paradoxical subreg begins at bit position 0.  */
  if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (inner_mode))
    return 0;

  if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
    /* If the subreg crosses a word boundary ensure that
       it also begins and ends on a word boundary.  */
    if ((SUBREG_BYTE (x) % UNITS_PER_WORD
	 + GET_MODE_SIZE (mode)) > UNITS_PER_WORD
	&& (SUBREG_BYTE (x) % UNITS_PER_WORD
	    || GET_MODE_SIZE (mode) % UNITS_PER_WORD))
	abort ();

  if (WORDS_BIG_ENDIAN)
    word = (GET_MODE_SIZE (inner_mode)
	    - (SUBREG_BYTE (x) + GET_MODE_SIZE (mode))) / UNITS_PER_WORD;
  else
    word = SUBREG_BYTE (x) / UNITS_PER_WORD;
  bitpos = word * BITS_PER_WORD;

  if (BYTES_BIG_ENDIAN)
    byte = (GET_MODE_SIZE (inner_mode)
	    - (SUBREG_BYTE (x) + GET_MODE_SIZE (mode))) % UNITS_PER_WORD;
  else
    byte = SUBREG_BYTE (x) % UNITS_PER_WORD;
  bitpos += byte * BITS_PER_UNIT;

  return bitpos;
}

/* This function returns the regno offset of a subreg expression.
   xregno - A regno of an inner hard subreg_reg (or what will become one).
   xmode  - The mode of xregno.
   offset - The byte offset.
   ymode  - The mode of a top level SUBREG (or what may become one).
   RETURN - The regno offset which would be used.  */
unsigned int
subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
		     unsigned int offset, enum machine_mode ymode)
{
  int nregs_xmode, nregs_ymode;
  int mode_multiple, nregs_multiple;
  int y_offset;

  if (xregno >= FIRST_PSEUDO_REGISTER)
    abort ();

  nregs_xmode = HARD_REGNO_NREGS (xregno, xmode);
  nregs_ymode = HARD_REGNO_NREGS (xregno, ymode);

  /* If this is a big endian paradoxical subreg, which uses more actual
     hard registers than the original register, we must return a negative
     offset so that we find the proper highpart of the register.  */
  if (offset == 0
      && nregs_ymode > nregs_xmode
      && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
	  ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
    return nregs_xmode - nregs_ymode;

  if (offset == 0 || nregs_xmode == nregs_ymode)
    return 0;

  /* size of ymode must not be greater than the size of xmode.  */
  mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
  if (mode_multiple == 0)
    abort ();

  y_offset = offset / GET_MODE_SIZE (ymode);
  nregs_multiple =  nregs_xmode / nregs_ymode;
  return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
}

/* This function returns true when the offset is representable via
   subreg_offset in the given regno.
   xregno - A regno of an inner hard subreg_reg (or what will become one).
   xmode  - The mode of xregno.
   offset - The byte offset.
   ymode  - The mode of a top level SUBREG (or what may become one).
   RETURN - The regno offset which would be used.  */
bool
subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
			       unsigned int offset, enum machine_mode ymode)
{
  int nregs_xmode, nregs_ymode;
  int mode_multiple, nregs_multiple;
  int y_offset;

  if (xregno >= FIRST_PSEUDO_REGISTER)
    abort ();

  nregs_xmode = HARD_REGNO_NREGS (xregno, xmode);
  nregs_ymode = HARD_REGNO_NREGS (xregno, ymode);

  /* paradoxical subregs are always valid.  */
  if (offset == 0
      && nregs_ymode > nregs_xmode
      && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
	  ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
    return true;

  /* Lowpart subregs are always valid.  */
  if (offset == subreg_lowpart_offset (ymode, xmode))
    return true;

#ifdef ENABLE_CHECKING
  /* This should always pass, otherwise we don't know how to verify the
     constraint.  These conditions may be relaxed but subreg_offset would
     need to be redesigned.  */
  if (GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)
      || GET_MODE_SIZE (ymode) % nregs_ymode
      || nregs_xmode % nregs_ymode)
    abort ();
#endif

  /* The XMODE value can be seen as a vector of NREGS_XMODE
     values.  The subreg must represent a lowpart of given field.
     Compute what field it is.  */
  offset -= subreg_lowpart_offset (ymode,
				   mode_for_size (GET_MODE_BITSIZE (xmode)
						  / nregs_xmode,
						  MODE_INT, 0));

  /* size of ymode must not be greater than the size of xmode.  */
  mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
  if (mode_multiple == 0)
    abort ();

  y_offset = offset / GET_MODE_SIZE (ymode);
  nregs_multiple =  nregs_xmode / nregs_ymode;
#ifdef ENABLE_CHECKING
  if (offset % GET_MODE_SIZE (ymode)
      || mode_multiple % nregs_multiple)
    abort ();
#endif
  return (!(y_offset % (mode_multiple / nregs_multiple)));
}

/* Return the final regno that a subreg expression refers to.  */
unsigned int
subreg_regno (rtx x)
{
  unsigned int ret;
  rtx subreg = SUBREG_REG (x);
  int regno = REGNO (subreg);

  ret = regno + subreg_regno_offset (regno,
				     GET_MODE (subreg),
				     SUBREG_BYTE (x),
				     GET_MODE (x));
  return ret;

}
struct parms_set_data
{
  int nregs;
  HARD_REG_SET regs;
};

/* Helper function for noticing stores to parameter registers.  */
static void
parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
{
  struct parms_set_data *d = data;
  if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
      && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
    {
      CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
      d->nregs--;
    }
}

/* Look backward for first parameter to be loaded.
   Do not skip BOUNDARY.  */
rtx
find_first_parameter_load (rtx call_insn, rtx boundary)
{
  struct parms_set_data parm;
  rtx p, before;

  /* Since different machines initialize their parameter registers
     in different orders, assume nothing.  Collect the set of all
     parameter registers.  */
  CLEAR_HARD_REG_SET (parm.regs);
  parm.nregs = 0;
  for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
    if (GET_CODE (XEXP (p, 0)) == USE
	&& GET_CODE (XEXP (XEXP (p, 0), 0)) == REG)
      {
	if (REGNO (XEXP (XEXP (p, 0), 0)) >= FIRST_PSEUDO_REGISTER)
	  abort ();

	/* We only care about registers which can hold function
	   arguments.  */
	if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
	  continue;

	SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
	parm.nregs++;
      }
  before = call_insn;

  /* Search backward for the first set of a register in this set.  */
  while (parm.nregs && before != boundary)
    {
      before = PREV_INSN (before);

      /* It is possible that some loads got CSEed from one call to
         another.  Stop in that case.  */
      if (GET_CODE (before) == CALL_INSN)
	break;

      /* Our caller needs either ensure that we will find all sets
         (in case code has not been optimized yet), or take care
         for possible labels in a way by setting boundary to preceding
         CODE_LABEL.  */
      if (GET_CODE (before) == CODE_LABEL)
	{
	  if (before != boundary)
	    abort ();
	  break;
	}

      if (INSN_P (before))
	note_stores (PATTERN (before), parms_set, &parm);
    }
  return before;
}

/* Return true if we should avoid inserting code between INSN and preceding
   call instruction.  */

bool
keep_with_call_p (rtx insn)
{
  rtx set;

  if (INSN_P (insn) && (set = single_set (insn)) != NULL)
    {
      if (GET_CODE (SET_DEST (set)) == REG
	  && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
	  && fixed_regs[REGNO (SET_DEST (set))]
	  && general_operand (SET_SRC (set), VOIDmode))
	return true;
      if (GET_CODE (SET_SRC (set)) == REG
	  && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
	  && GET_CODE (SET_DEST (set)) == REG
	  && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
	return true;
      /* There may be a stack pop just after the call and before the store
	 of the return register.  Search for the actual store when deciding
	 if we can break or not.  */
      if (SET_DEST (set) == stack_pointer_rtx)
	{
	  rtx i2 = next_nonnote_insn (insn);
	  if (i2 && keep_with_call_p (i2))
	    return true;
	}
    }
  return false;
}

/* Return true when store to register X can be hoisted to the place
   with LIVE registers (can be NULL).  Value VAL contains destination
   whose value will be used.  */

static bool
hoist_test_store (rtx x, rtx val, regset live)
{
  if (GET_CODE (x) == SCRATCH)
    return true;

  if (rtx_equal_p (x, val))
    return true;

  /* Allow subreg of X in case it is not writing just part of multireg pseudo.
     Then we would need to update all users to care hoisting the store too.
     Caller may represent that by specifying whole subreg as val.  */

  if (GET_CODE (x) == SUBREG && rtx_equal_p (SUBREG_REG (x), val))
    {
      if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD
	  && GET_MODE_BITSIZE (GET_MODE (x)) <
	  GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
	return false;
      return true;
    }
  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  /* Anything except register store is not hoistable.  This includes the
     partial stores to registers.  */

  if (!REG_P (x))
    return false;

  /* Pseudo registers can be always replaced by another pseudo to avoid
     the side effect, for hard register we must ensure that they are dead.
     Eventually we may want to add code to try turn pseudos to hards, but it
     is unlikely useful.  */

  if (REGNO (x) < FIRST_PSEUDO_REGISTER)
    {
      int regno = REGNO (x);
      int n = HARD_REGNO_NREGS (regno, GET_MODE (x));

      if (!live)
	return false;
      if (REGNO_REG_SET_P (live, regno))
	return false;
      while (--n > 0)
	if (REGNO_REG_SET_P (live, regno + n))
	  return false;
    }
  return true;
}


/* Return true if INSN can be hoisted to place with LIVE hard registers
   (LIVE can be NULL when unknown).  VAL is expected to be stored by the insn
   and used by the hoisting pass.  */

bool
can_hoist_insn_p (rtx insn, rtx val, regset live)
{
  rtx pat = PATTERN (insn);
  int i;

  /* It probably does not worth the complexity to handle multiple
     set stores.  */
  if (!single_set (insn))
    return false;
  /* We can move CALL_INSN, but we need to check that all caller clobbered
     regs are dead.  */
  if (GET_CODE (insn) == CALL_INSN)
    return false;
  /* In future we will handle hoisting of libcall sequences, but
     give up for now.  */
  if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
    return false;
  switch (GET_CODE (pat))
    {
    case SET:
      if (!hoist_test_store (SET_DEST (pat), val, live))
	return false;
      break;
    case USE:
      /* USES do have sick semantics, so do not move them.  */
      return false;
      break;
    case CLOBBER:
      if (!hoist_test_store (XEXP (pat, 0), val, live))
	return false;
      break;
    case PARALLEL:
      for (i = 0; i < XVECLEN (pat, 0); i++)
	{
	  rtx x = XVECEXP (pat, 0, i);
	  switch (GET_CODE (x))
	    {
	    case SET:
	      if (!hoist_test_store (SET_DEST (x), val, live))
		return false;
	      break;
	    case USE:
	      /* We need to fix callers to really ensure availability
	         of all values insn uses, but for now it is safe to prohibit
		 hoisting of any insn having such a hidden uses.  */
	      return false;
	      break;
	    case CLOBBER:
	      if (!hoist_test_store (SET_DEST (x), val, live))
		return false;
	      break;
	    default:
	      break;
	    }
	}
      break;
    default:
      abort ();
    }
  return true;
}

/* Update store after hoisting - replace all stores to pseudo registers
   by new ones to avoid clobbering of values except for store to VAL that will
   be updated to NEW.  */

static void
hoist_update_store (rtx insn, rtx *xp, rtx val, rtx new)
{
  rtx x = *xp;

  if (GET_CODE (x) == SCRATCH)
    return;

  if (GET_CODE (x) == SUBREG && SUBREG_REG (x) == val)
    validate_change (insn, xp,
		     simplify_gen_subreg (GET_MODE (x), new, GET_MODE (new),
					  SUBREG_BYTE (x)), 1);
  if (rtx_equal_p (x, val))
    {
      validate_change (insn, xp, new, 1);
      return;
    }
  if (GET_CODE (x) == SUBREG)
    {
      xp = &SUBREG_REG (x);
      x = *xp;
    }

  if (!REG_P (x))
    abort ();

  /* We've verified that hard registers are dead, so we may keep the side
     effect.  Otherwise replace it by new pseudo.  */
  if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
    validate_change (insn, xp, gen_reg_rtx (GET_MODE (x)), 1);
  REG_NOTES (insn)
    = alloc_EXPR_LIST (REG_UNUSED, *xp, REG_NOTES (insn));
}

/* Create a copy of INSN after AFTER replacing store of VAL to NEW
   and each other side effect to pseudo register by new pseudo register.  */

rtx
hoist_insn_after (rtx insn, rtx after, rtx val, rtx new)
{
  rtx pat;
  int i;
  rtx note;

  insn = emit_copy_of_insn_after (insn, after);
  pat = PATTERN (insn);

  /* Remove REG_UNUSED notes as we will re-emit them.  */
  while ((note = find_reg_note (insn, REG_UNUSED, NULL_RTX)))
    remove_note (insn, note);

  /* To get this working callers must ensure to move everything referenced
     by REG_EQUAL/REG_EQUIV notes too.  Lets remove them, it is probably
     easier.  */
  while ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX)))
    remove_note (insn, note);
  while ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)))
    remove_note (insn, note);

  /* Remove REG_DEAD notes as they might not be valid anymore in case
     we create redundancy.  */
  while ((note = find_reg_note (insn, REG_DEAD, NULL_RTX)))
    remove_note (insn, note);
  switch (GET_CODE (pat))
    {
    case SET:
      hoist_update_store (insn, &SET_DEST (pat), val, new);
      break;
    case USE:
      break;
    case CLOBBER:
      hoist_update_store (insn, &XEXP (pat, 0), val, new);
      break;
    case PARALLEL:
      for (i = 0; i < XVECLEN (pat, 0); i++)
	{
	  rtx x = XVECEXP (pat, 0, i);
	  switch (GET_CODE (x))
	    {
	    case SET:
	      hoist_update_store (insn, &SET_DEST (x), val, new);
	      break;
	    case USE:
	      break;
	    case CLOBBER:
	      hoist_update_store (insn, &SET_DEST (x), val, new);
	      break;
	    default:
	      break;
	    }
	}
      break;
    default:
      abort ();
    }
  if (!apply_change_group ())
    abort ();

  return insn;
}

rtx
hoist_insn_to_edge (rtx insn, edge e, rtx val, rtx new)
{
  rtx new_insn;

  /* We cannot insert instructions on an abnormal critical edge.
     It will be easier to find the culprit if we die now.  */
  if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
    abort ();

  /* Do not use emit_insn_on_edge as we want to preserve notes and similar
     stuff.  We also emit CALL_INSNS and firends.  */
  if (e->insns == NULL_RTX)
    {
      start_sequence ();
      emit_note (NOTE_INSN_DELETED);
    }
  else
    push_to_sequence (e->insns);

  new_insn = hoist_insn_after (insn, get_last_insn (), val, new);

  e->insns = get_insns ();
  end_sequence ();
  return new_insn;
}