aboutsummaryrefslogtreecommitdiff
path: root/gcc/rtl.h
blob: b0b1aacd2e8ff4155a7ed49e53a0f061eaba3361 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
/* Register Transfer Language (RTL) definitions for GCC
   Copyright (C) 1987-2020 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef GCC_RTL_H
#define GCC_RTL_H

/* This file is occasionally included by generator files which expect
   machmode.h and other files to exist and would not normally have been
   included by coretypes.h.  */
#ifdef GENERATOR_FILE
#include "real.h"
#include "fixed-value.h"
#include "statistics.h"
#include "vec.h"
#include "hash-table.h"
#include "hash-set.h"
#include "input.h"
#include "is-a.h"
#endif  /* GENERATOR_FILE */

#include "hard-reg-set.h"

class predefined_function_abi;

/* Value used by some passes to "recognize" noop moves as valid
 instructions.  */
#define NOOP_MOVE_INSN_CODE	INT_MAX

/* Register Transfer Language EXPRESSIONS CODES */

#define RTX_CODE	enum rtx_code
enum rtx_code  {

#define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS)   ENUM ,
#include "rtl.def"		/* rtl expressions are documented here */
#undef DEF_RTL_EXPR

  LAST_AND_UNUSED_RTX_CODE};	/* A convenient way to get a value for
				   NUM_RTX_CODE.
				   Assumes default enum value assignment.  */

/* The cast here, saves many elsewhere.  */
#define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)

/* Similar, but since generator files get more entries... */
#ifdef GENERATOR_FILE
# define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
#endif

/* Register Transfer Language EXPRESSIONS CODE CLASSES */

enum rtx_class  {
  /* We check bit 0-1 of some rtx class codes in the predicates below.  */

  /* Bit 0 = comparison if 0, arithmetic is 1
     Bit 1 = 1 if commutative.  */
  RTX_COMPARE,		/* 0 */
  RTX_COMM_COMPARE,
  RTX_BIN_ARITH,
  RTX_COMM_ARITH,

  /* Must follow the four preceding values.  */
  RTX_UNARY,		/* 4 */

  RTX_EXTRA,
  RTX_MATCH,
  RTX_INSN,

  /* Bit 0 = 1 if constant.  */
  RTX_OBJ,		/* 8 */
  RTX_CONST_OBJ,

  RTX_TERNARY,
  RTX_BITFIELD_OPS,
  RTX_AUTOINC
};

#define RTX_OBJ_MASK (~1)
#define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
#define RTX_COMPARE_MASK (~1)
#define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
#define RTX_ARITHMETIC_MASK (~1)
#define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
#define RTX_BINARY_MASK (~3)
#define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
#define RTX_COMMUTATIVE_MASK (~2)
#define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
#define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)

extern const unsigned char rtx_length[NUM_RTX_CODE];
#define GET_RTX_LENGTH(CODE)		(rtx_length[(int) (CODE)])

extern const char * const rtx_name[NUM_RTX_CODE];
#define GET_RTX_NAME(CODE)		(rtx_name[(int) (CODE)])

extern const char * const rtx_format[NUM_RTX_CODE];
#define GET_RTX_FORMAT(CODE)		(rtx_format[(int) (CODE)])

extern const enum rtx_class rtx_class[NUM_RTX_CODE];
#define GET_RTX_CLASS(CODE)		(rtx_class[(int) (CODE)])

/* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
   and NEXT_INSN fields).  */
#define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)

extern const unsigned char rtx_code_size[NUM_RTX_CODE];
extern const unsigned char rtx_next[NUM_RTX_CODE];

/* The flags and bitfields of an ADDR_DIFF_VEC.  BASE is the base label
   relative to which the offsets are calculated, as explained in rtl.def.  */
struct addr_diff_vec_flags
{
  /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
  unsigned min_align: 8;
  /* Flags: */
  unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC.  */
  unsigned min_after_vec: 1;  /* minimum address target label is
				 after the ADDR_DIFF_VEC.  */
  unsigned max_after_vec: 1;  /* maximum address target label is
				 after the ADDR_DIFF_VEC.  */
  unsigned min_after_base: 1; /* minimum address target label is
				 after BASE.  */
  unsigned max_after_base: 1; /* maximum address target label is
				 after BASE.  */
  /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
  unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned.  */
  unsigned : 2;
  unsigned scale : 8;
};

/* Structure used to describe the attributes of a MEM.  These are hashed
   so MEMs that the same attributes share a data structure.  This means
   they cannot be modified in place.  */
class GTY(()) mem_attrs
{
public:
  mem_attrs ();

  /* The expression that the MEM accesses, or null if not known.
     This expression might be larger than the memory reference itself.
     (In other words, the MEM might access only part of the object.)  */
  tree expr;

  /* The offset of the memory reference from the start of EXPR.
     Only valid if OFFSET_KNOWN_P.  */
  poly_int64 offset;

  /* The size of the memory reference in bytes.  Only valid if
     SIZE_KNOWN_P.  */
  poly_int64 size;

  /* The alias set of the memory reference.  */
  alias_set_type alias;

  /* The alignment of the reference in bits.  Always a multiple of
     BITS_PER_UNIT.  Note that EXPR may have a stricter alignment
     than the memory reference itself.  */
  unsigned int align;

  /* The address space that the memory reference uses.  */
  unsigned char addrspace;

  /* True if OFFSET is known.  */
  bool offset_known_p;

  /* True if SIZE is known.  */
  bool size_known_p;
};

/* Structure used to describe the attributes of a REG in similar way as
   mem_attrs does for MEM above.  Note that the OFFSET field is calculated
   in the same way as for mem_attrs, rather than in the same way as a
   SUBREG_BYTE.  For example, if a big-endian target stores a byte
   object in the low part of a 4-byte register, the OFFSET field
   will be -3 rather than 0.  */

class GTY((for_user)) reg_attrs {
public:
  tree decl;			/* decl corresponding to REG.  */
  poly_int64 offset;		/* Offset from start of DECL.  */
};

/* Common union for an element of an rtx.  */

union rtunion
{
  int rt_int;
  unsigned int rt_uint;
  poly_uint16_pod rt_subreg;
  const char *rt_str;
  rtx rt_rtx;
  rtvec rt_rtvec;
  machine_mode rt_type;
  addr_diff_vec_flags rt_addr_diff_vec_flags;
  struct cselib_val *rt_cselib;
  tree rt_tree;
  basic_block rt_bb;
  mem_attrs *rt_mem;
  class constant_descriptor_rtx *rt_constant;
  struct dw_cfi_node *rt_cfi;
};

/* Describes the properties of a REG.  */
struct GTY(()) reg_info {
  /* The value of REGNO.  */
  unsigned int regno;

  /* The value of REG_NREGS.  */
  unsigned int nregs : 8;
  unsigned int unused : 24;

  /* The value of REG_ATTRS.  */
  reg_attrs *attrs;
};

/* This structure remembers the position of a SYMBOL_REF within an
   object_block structure.  A SYMBOL_REF only provides this information
   if SYMBOL_REF_HAS_BLOCK_INFO_P is true.  */
struct GTY(()) block_symbol {
  /* The usual SYMBOL_REF fields.  */
  rtunion GTY ((skip)) fld[2];

  /* The block that contains this object.  */
  struct object_block *block;

  /* The offset of this object from the start of its block.  It is negative
     if the symbol has not yet been assigned an offset.  */
  HOST_WIDE_INT offset;
};

/* Describes a group of objects that are to be placed together in such
   a way that their relative positions are known.  */
struct GTY((for_user)) object_block {
  /* The section in which these objects should be placed.  */
  section *sect;

  /* The alignment of the first object, measured in bits.  */
  unsigned int alignment;

  /* The total size of the objects, measured in bytes.  */
  HOST_WIDE_INT size;

  /* The SYMBOL_REFs for each object.  The vector is sorted in
     order of increasing offset and the following conditions will
     hold for each element X:

	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
	 !SYMBOL_REF_ANCHOR_P (X)
	 SYMBOL_REF_BLOCK (X) == [address of this structure]
	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
  vec<rtx, va_gc> *objects;

  /* All the anchor SYMBOL_REFs used to address these objects, sorted
     in order of increasing offset, and then increasing TLS model.
     The following conditions will hold for each element X in this vector:

	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
	 SYMBOL_REF_ANCHOR_P (X)
	 SYMBOL_REF_BLOCK (X) == [address of this structure]
	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
  vec<rtx, va_gc> *anchors;
};

struct GTY((variable_size)) hwivec_def {
  HOST_WIDE_INT elem[1];
};

/* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT.  */
#define CWI_GET_NUM_ELEM(RTX)					\
  ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
#define CWI_PUT_NUM_ELEM(RTX, NUM)					\
  (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))

struct GTY((variable_size)) const_poly_int_def {
  trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
};

/* RTL expression ("rtx").  */

/* The GTY "desc" and "tag" options below are a kludge: we need a desc
   field for gengtype to recognize that inheritance is occurring,
   so that all subclasses are redirected to the traversal hook for the
   base class.
   However, all of the fields are in the base class, and special-casing
   is at work.  Hence we use desc and tag of 0, generating a switch
   statement of the form:
     switch (0)
       {
       case 0: // all the work happens here
      }
   in order to work with the existing special-casing in gengtype.  */

struct GTY((desc("0"), tag("0"),
	    chain_next ("RTX_NEXT (&%h)"),
	    chain_prev ("RTX_PREV (&%h)"))) rtx_def {
  /* The kind of expression this is.  */
  ENUM_BITFIELD(rtx_code) code: 16;

  /* The kind of value the expression has.  */
  ENUM_BITFIELD(machine_mode) mode : 8;

  /* 1 in a MEM if we should keep the alias set for this mem unchanged
     when we access a component.
     1 in a JUMP_INSN if it is a crossing jump.
     1 in a CALL_INSN if it is a sibling call.
     1 in a SET that is for a return.
     In a CODE_LABEL, part of the two-bit alternate entry field.
     1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
     1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
     1 in a SUBREG generated by LRA for reload insns.
     1 in a REG if this is a static chain register.
     Dumped as "/j" in RTL dumps.  */
  unsigned int jump : 1;
  /* In a CODE_LABEL, part of the two-bit alternate entry field.
     1 in a MEM if it cannot trap.
     1 in a CALL_INSN logically equivalent to
       ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
     1 in a VALUE is SP_DERIVED_VALUE_P in cselib.c.
     Dumped as "/c" in RTL dumps.  */
  unsigned int call : 1;
  /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
     1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
     1 in a SYMBOL_REF if it addresses something in the per-function
     constants pool.
     1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
     1 in a NOTE, or EXPR_LIST for a const call.
     1 in a JUMP_INSN of an annulling branch.
     1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
     1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
     1 in a clobber temporarily created for LRA.
     Dumped as "/u" in RTL dumps.  */
  unsigned int unchanging : 1;
  /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
     1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
     if it has been deleted.
     1 in a REG expression if corresponds to a variable declared by the user,
     0 for an internally generated temporary.
     1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
     1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
     non-local label.
     In a SYMBOL_REF, this flag is used for machine-specific purposes.
     In a PREFETCH, this flag indicates that it should be considered a
     scheduling barrier.
     1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
     Dumped as "/v" in RTL dumps.  */
  unsigned int volatil : 1;
  /* 1 in a REG if the register is used only in exit code a loop.
     1 in a SUBREG expression if was generated from a variable with a
     promoted mode.
     1 in a CODE_LABEL if the label is used for nonlocal gotos
     and must not be deleted even if its count is zero.
     1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
     together with the preceding insn.  Valid only within sched.
     1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
     from the target of a branch.  Valid from reorg until end of compilation;
     cleared before used.

     The name of the field is historical.  It used to be used in MEMs
     to record whether the MEM accessed part of a structure.
     Dumped as "/s" in RTL dumps.  */
  unsigned int in_struct : 1;
  /* At the end of RTL generation, 1 if this rtx is used.  This is used for
     copying shared structure.  See `unshare_all_rtl'.
     In a REG, this is not needed for that purpose, and used instead
     in `leaf_renumber_regs_insn'.
     1 in a SYMBOL_REF, means that emit_library_call
     has used it as the function.
     1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
     1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c.  */
  unsigned int used : 1;
  /* 1 in an INSN or a SET if this rtx is related to the call frame,
     either changing how we compute the frame address or saving and
     restoring registers in the prologue and epilogue.
     1 in a REG or MEM if it is a pointer.
     1 in a SYMBOL_REF if it addresses something in the per-function
     constant string pool.
     1 in a VALUE is VALUE_CHANGED in var-tracking.c.
     Dumped as "/f" in RTL dumps.  */
  unsigned frame_related : 1;
  /* 1 in a REG or PARALLEL that is the current function's return value.
     1 in a SYMBOL_REF for a weak symbol.
     1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
     1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
     1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
     Dumped as "/i" in RTL dumps.  */
  unsigned return_val : 1;

  union {
    /* The final union field is aligned to 64 bits on LP64 hosts,
       giving a 32-bit gap after the fields above.  We optimize the
       layout for that case and use the gap for extra code-specific
       information.  */

    /* The ORIGINAL_REGNO of a REG.  */
    unsigned int original_regno;

    /* The INSN_UID of an RTX_INSN-class code.  */
    int insn_uid;

    /* The SYMBOL_REF_FLAGS of a SYMBOL_REF.  */
    unsigned int symbol_ref_flags;

    /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION.  */
    enum var_init_status var_location_status;

    /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
       HOST_WIDE_INTs in the hwivec_def.  */
    unsigned int num_elem;

    /* Information about a CONST_VECTOR.  */
    struct
    {
      /* The value of CONST_VECTOR_NPATTERNS.  */
      unsigned int npatterns : 16;

      /* The value of CONST_VECTOR_NELTS_PER_PATTERN.  */
      unsigned int nelts_per_pattern : 8;

      /* For future expansion.  */
      unsigned int unused : 8;
    } const_vector;
  } GTY ((skip)) u2;

  /* The first element of the operands of this rtx.
     The number of operands and their types are controlled
     by the `code' field, according to rtl.def.  */
  union u {
    rtunion fld[1];
    HOST_WIDE_INT hwint[1];
    struct reg_info reg;
    struct block_symbol block_sym;
    struct real_value rv;
    struct fixed_value fv;
    struct hwivec_def hwiv;
    struct const_poly_int_def cpi;
  } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
};

/* A node for constructing singly-linked lists of rtx.  */

struct GTY(()) rtx_expr_list : public rtx_def
{
private:
  /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST).  */

public:
  /* Get next in list.  */
  rtx_expr_list *next () const;

  /* Get at the underlying rtx.  */
  rtx element () const;
};

template <>
template <>
inline bool
is_a_helper <rtx_expr_list *>::test (rtx rt)
{
  return rt->code == EXPR_LIST;
}

struct GTY(()) rtx_insn_list : public rtx_def
{
private:
  /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).

     This is an instance of:

       DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)

     i.e. a node for constructing singly-linked lists of rtx_insn *, where
     the list is "external" to the insn (as opposed to the doubly-linked
     list embedded within rtx_insn itself).  */

public:
  /* Get next in list.  */
  rtx_insn_list *next () const;

  /* Get at the underlying instruction.  */
  rtx_insn *insn () const;

};

template <>
template <>
inline bool
is_a_helper <rtx_insn_list *>::test (rtx rt)
{
  return rt->code == INSN_LIST;
}

/* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
   typically (but not always) of rtx_insn *, used in the late passes.  */

struct GTY(()) rtx_sequence : public rtx_def
{
private:
  /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE).  */

public:
  /* Get number of elements in sequence.  */
  int len () const;

  /* Get i-th element of the sequence.  */
  rtx element (int index) const;

  /* Get i-th element of the sequence, with a checked cast to
     rtx_insn *.  */
  rtx_insn *insn (int index) const;
};

template <>
template <>
inline bool
is_a_helper <rtx_sequence *>::test (rtx rt)
{
  return rt->code == SEQUENCE;
}

template <>
template <>
inline bool
is_a_helper <const rtx_sequence *>::test (const_rtx rt)
{
  return rt->code == SEQUENCE;
}

struct GTY(()) rtx_insn : public rtx_def
{
public:
  /* No extra fields, but adds the invariant:

     (INSN_P (X)
      || NOTE_P (X)
      || JUMP_TABLE_DATA_P (X)
      || BARRIER_P (X)
      || LABEL_P (X))

     i.e. that we must be able to use the following:
      INSN_UID ()
      NEXT_INSN ()
      PREV_INSN ()
    i.e. we have an rtx that has an INSN_UID field and can be part of
    a linked list of insns.
  */

  /* Returns true if this insn has been deleted.  */

  bool deleted () const { return volatil; }

  /* Mark this insn as deleted.  */

  void set_deleted () { volatil = true; }

  /* Mark this insn as not deleted.  */

  void set_undeleted () { volatil = false; }
};

/* Subclasses of rtx_insn.  */

struct GTY(()) rtx_debug_insn : public rtx_insn
{
  /* No extra fields, but adds the invariant:
       DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
     i.e. an annotation for tracking variable assignments.

     This is an instance of:
       DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
     from rtl.def.  */
};

struct GTY(()) rtx_nonjump_insn : public rtx_insn
{
  /* No extra fields, but adds the invariant:
       NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
     i.e an instruction that cannot jump.

     This is an instance of:
       DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
     from rtl.def.  */
};

struct GTY(()) rtx_jump_insn : public rtx_insn
{
public:
  /* No extra fields, but adds the invariant:
       JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
     i.e. an instruction that can possibly jump.

     This is an instance of:
       DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
     from rtl.def.  */

  /* Returns jump target of this instruction.  The returned value is not
     necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
     expression.  Also, when the code label is marked "deleted", it is
     replaced by a NOTE.  In some cases the value is NULL_RTX.  */

  inline rtx jump_label () const;

  /* Returns jump target cast to rtx_code_label *.  */

  inline rtx_code_label *jump_target () const;

  /* Set jump target.  */

  inline void set_jump_target (rtx_code_label *);
};

struct GTY(()) rtx_call_insn : public rtx_insn
{
  /* No extra fields, but adds the invariant:
       CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
     i.e. an instruction that can possibly call a subroutine
     but which will not change which instruction comes next
     in the current function.

     This is an instance of:
       DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
     from rtl.def.  */
};

struct GTY(()) rtx_jump_table_data : public rtx_insn
{
  /* No extra fields, but adds the invariant:
       JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
     i.e. a data for a jump table, considered an instruction for
     historical reasons.

     This is an instance of:
       DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
     from rtl.def.  */

  /* This can be either:

       (a) a table of absolute jumps, in which case PATTERN (this) is an
           ADDR_VEC with arg 0 a vector of labels, or

       (b) a table of relative jumps (e.g. for -fPIC), in which case
           PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
	   arg 1 the vector of labels.

     This method gets the underlying vec.  */

  inline rtvec get_labels () const;
  inline scalar_int_mode get_data_mode () const;
};

struct GTY(()) rtx_barrier : public rtx_insn
{
  /* No extra fields, but adds the invariant:
       BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
     i.e. a marker that indicates that control will not flow through.

     This is an instance of:
       DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
     from rtl.def.  */
};

struct GTY(()) rtx_code_label : public rtx_insn
{
  /* No extra fields, but adds the invariant:
       LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
     i.e. a label in the assembler.

     This is an instance of:
       DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
     from rtl.def.  */
};

struct GTY(()) rtx_note : public rtx_insn
{
  /* No extra fields, but adds the invariant:
       NOTE_P(X) aka (GET_CODE (X) == NOTE)
     i.e. a note about the corresponding source code.

     This is an instance of:
       DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
     from rtl.def.  */
};

/* The size in bytes of an rtx header (code, mode and flags).  */
#define RTX_HDR_SIZE offsetof (struct rtx_def, u)

/* The size in bytes of an rtx with code CODE.  */
#define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]

#define NULL_RTX (rtx) 0

/* The "next" and "previous" RTX, relative to this one.  */

#define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL			\
		     : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))

/* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
 */
#define RTX_PREV(X) ((INSN_P (X)       			\
                      || NOTE_P (X)       		\
                      || JUMP_TABLE_DATA_P (X)		\
                      || BARRIER_P (X)        		\
                      || LABEL_P (X))    		\
		     && PREV_INSN (as_a <rtx_insn *> (X)) != NULL	\
                     && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
                     ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)

/* Define macros to access the `code' field of the rtx.  */

#define GET_CODE(RTX)	    ((enum rtx_code) (RTX)->code)
#define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))

#define GET_MODE(RTX)		((machine_mode) (RTX)->mode)
#define PUT_MODE_RAW(RTX, MODE)	((RTX)->mode = (MODE))

/* RTL vector.  These appear inside RTX's when there is a need
   for a variable number of things.  The principle use is inside
   PARALLEL expressions.  */

struct GTY(()) rtvec_def {
  int num_elem;		/* number of elements */
  rtx GTY ((length ("%h.num_elem"))) elem[1];
};

#define NULL_RTVEC (rtvec) 0

#define GET_NUM_ELEM(RTVEC)		((RTVEC)->num_elem)
#define PUT_NUM_ELEM(RTVEC, NUM)	((RTVEC)->num_elem = (NUM))

/* Predicate yielding nonzero iff X is an rtx for a register.  */
#define REG_P(X) (GET_CODE (X) == REG)

/* Predicate yielding nonzero iff X is an rtx for a memory location.  */
#define MEM_P(X) (GET_CODE (X) == MEM)

#if TARGET_SUPPORTS_WIDE_INT

/* Match CONST_*s that can represent compile-time constant integers.  */
#define CASE_CONST_SCALAR_INT \
   case CONST_INT: \
   case CONST_WIDE_INT

/* Match CONST_*s for which pointer equality corresponds to value
   equality.  */
#define CASE_CONST_UNIQUE \
   case CONST_INT: \
   case CONST_WIDE_INT: \
   case CONST_POLY_INT: \
   case CONST_DOUBLE: \
   case CONST_FIXED

/* Match all CONST_* rtxes.  */
#define CASE_CONST_ANY \
   case CONST_INT: \
   case CONST_WIDE_INT: \
   case CONST_POLY_INT: \
   case CONST_DOUBLE: \
   case CONST_FIXED: \
   case CONST_VECTOR

#else

/* Match CONST_*s that can represent compile-time constant integers.  */
#define CASE_CONST_SCALAR_INT \
   case CONST_INT: \
   case CONST_DOUBLE

/* Match CONST_*s for which pointer equality corresponds to value
   equality.  */
#define CASE_CONST_UNIQUE \
   case CONST_INT: \
   case CONST_DOUBLE: \
   case CONST_FIXED

/* Match all CONST_* rtxes.  */
#define CASE_CONST_ANY \
   case CONST_INT: \
   case CONST_DOUBLE: \
   case CONST_FIXED: \
   case CONST_VECTOR
#endif

/* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
#define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)

/* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
#define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)

/* Predicate yielding nonzero iff X is an rtx for a polynomial constant
   integer.  */
#define CONST_POLY_INT_P(X) \
  (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)

/* Predicate yielding nonzero iff X is an rtx for a constant fixed-point.  */
#define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)

/* Predicate yielding true iff X is an rtx for a double-int
   or floating point constant.  */
#define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)

/* Predicate yielding true iff X is an rtx for a double-int.  */
#define CONST_DOUBLE_AS_INT_P(X) \
  (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)

/* Predicate yielding true iff X is an rtx for a integer const.  */
#if TARGET_SUPPORTS_WIDE_INT
#define CONST_SCALAR_INT_P(X) \
  (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
#else
#define CONST_SCALAR_INT_P(X) \
  (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
#endif

/* Predicate yielding true iff X is an rtx for a double-int.  */
#define CONST_DOUBLE_AS_FLOAT_P(X) \
  (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)

/* Predicate yielding nonzero iff X is a label insn.  */
#define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)

/* Predicate yielding nonzero iff X is a jump insn.  */
#define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)

/* Predicate yielding nonzero iff X is a call insn.  */
#define CALL_P(X) (GET_CODE (X) == CALL_INSN)

/* Predicate yielding nonzero iff X is an insn that cannot jump.  */
#define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)

/* Predicate yielding nonzero iff X is a debug note/insn.  */
#define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)

/* Predicate yielding nonzero iff X is an insn that is not a debug insn.  */
#define NONDEBUG_INSN_P(X) (NONJUMP_INSN_P (X) || JUMP_P (X) || CALL_P (X))

/* Nonzero if DEBUG_MARKER_INSN_P may possibly hold.  */
#define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
/* Nonzero if DEBUG_BIND_INSN_P may possibly hold.  */
#define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
/* Nonzero if DEBUG_INSN_P may possibly hold.  */
#define MAY_HAVE_DEBUG_INSNS					\
  (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)

/* Predicate yielding nonzero iff X is a real insn.  */
#define INSN_P(X) (NONDEBUG_INSN_P (X) || DEBUG_INSN_P (X))

/* Predicate yielding nonzero iff X is a note insn.  */
#define NOTE_P(X) (GET_CODE (X) == NOTE)

/* Predicate yielding nonzero iff X is a barrier insn.  */
#define BARRIER_P(X) (GET_CODE (X) == BARRIER)

/* Predicate yielding nonzero iff X is a data for a jump table.  */
#define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)

/* Predicate yielding nonzero iff RTX is a subreg.  */
#define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)

/* Predicate yielding true iff RTX is a symbol ref.  */
#define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)

template <>
template <>
inline bool
is_a_helper <rtx_insn *>::test (rtx rt)
{
  return (INSN_P (rt)
	  || NOTE_P (rt)
	  || JUMP_TABLE_DATA_P (rt)
	  || BARRIER_P (rt)
	  || LABEL_P (rt));
}

template <>
template <>
inline bool
is_a_helper <const rtx_insn *>::test (const_rtx rt)
{
  return (INSN_P (rt)
	  || NOTE_P (rt)
	  || JUMP_TABLE_DATA_P (rt)
	  || BARRIER_P (rt)
	  || LABEL_P (rt));
}

template <>
template <>
inline bool
is_a_helper <rtx_debug_insn *>::test (rtx rt)
{
  return DEBUG_INSN_P (rt);
}

template <>
template <>
inline bool
is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
{
  return NONJUMP_INSN_P (rt);
}

template <>
template <>
inline bool
is_a_helper <rtx_jump_insn *>::test (rtx rt)
{
  return JUMP_P (rt);
}

template <>
template <>
inline bool
is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
{
  return JUMP_P (insn);
}

template <>
template <>
inline bool
is_a_helper <rtx_call_insn *>::test (rtx rt)
{
  return CALL_P (rt);
}

template <>
template <>
inline bool
is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
{
  return CALL_P (insn);
}

template <>
template <>
inline bool
is_a_helper <rtx_jump_table_data *>::test (rtx rt)
{
  return JUMP_TABLE_DATA_P (rt);
}

template <>
template <>
inline bool
is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
{
  return JUMP_TABLE_DATA_P (insn);
}

template <>
template <>
inline bool
is_a_helper <rtx_barrier *>::test (rtx rt)
{
  return BARRIER_P (rt);
}

template <>
template <>
inline bool
is_a_helper <rtx_code_label *>::test (rtx rt)
{
  return LABEL_P (rt);
}

template <>
template <>
inline bool
is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
{
  return LABEL_P (insn);
}

template <>
template <>
inline bool
is_a_helper <rtx_note *>::test (rtx rt)
{
  return NOTE_P (rt);
}

template <>
template <>
inline bool
is_a_helper <rtx_note *>::test (rtx_insn *insn)
{
  return NOTE_P (insn);
}

/* Predicate yielding nonzero iff X is a return or simple_return.  */
#define ANY_RETURN_P(X) \
  (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)

/* 1 if X is a unary operator.  */

#define UNARY_P(X)   \
  (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)

/* 1 if X is a binary operator.  */

#define BINARY_P(X)   \
  ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)

/* 1 if X is an arithmetic operator.  */

#define ARITHMETIC_P(X)   \
  ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK)			\
    == RTX_ARITHMETIC_RESULT)

/* 1 if X is an arithmetic operator.  */

#define COMMUTATIVE_ARITH_P(X)   \
  (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)

/* 1 if X is a commutative arithmetic operator or a comparison operator.
   These two are sometimes selected together because it is possible to
   swap the two operands.  */

#define SWAPPABLE_OPERANDS_P(X)   \
  ((1 << GET_RTX_CLASS (GET_CODE (X)))					\
    & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE)			\
       | (1 << RTX_COMPARE)))

/* 1 if X is a non-commutative operator.  */

#define NON_COMMUTATIVE_P(X)   \
  ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
    == RTX_NON_COMMUTATIVE_RESULT)

/* 1 if X is a commutative operator on integers.  */

#define COMMUTATIVE_P(X)   \
  ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
    == RTX_COMMUTATIVE_RESULT)

/* 1 if X is a relational operator.  */

#define COMPARISON_P(X)   \
  ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)

/* 1 if X is a constant value that is an integer.  */

#define CONSTANT_P(X)   \
  (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)

/* 1 if X is a LABEL_REF.  */
#define LABEL_REF_P(X)  \
  (GET_CODE (X) == LABEL_REF)

/* 1 if X can be used to represent an object.  */
#define OBJECT_P(X)							\
  ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)

/* General accessor macros for accessing the fields of an rtx.  */

#if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
/* The bit with a star outside the statement expr and an & inside is
   so that N can be evaluated only once.  */
#define RTL_CHECK1(RTX, N, C1) __extension__				\
(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
     const enum rtx_code _code = GET_CODE (_rtx);			\
     if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
       rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
				__FUNCTION__);				\
     if (GET_RTX_FORMAT (_code)[_n] != C1)				\
       rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__,	\
			       __FUNCTION__);				\
     &_rtx->u.fld[_n]; }))

#define RTL_CHECK2(RTX, N, C1, C2) __extension__			\
(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
     const enum rtx_code _code = GET_CODE (_rtx);			\
     if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
       rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
				__FUNCTION__);				\
     if (GET_RTX_FORMAT (_code)[_n] != C1				\
	 && GET_RTX_FORMAT (_code)[_n] != C2)				\
       rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__,	\
			       __FUNCTION__);				\
     &_rtx->u.fld[_n]; }))

#define RTL_CHECKC1(RTX, N, C) __extension__				\
(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
     if (GET_CODE (_rtx) != (C))					\
       rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
			       __FUNCTION__);				\
     &_rtx->u.fld[_n]; }))

#define RTL_CHECKC2(RTX, N, C1, C2) __extension__			\
(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
     const enum rtx_code _code = GET_CODE (_rtx);			\
     if (_code != (C1) && _code != (C2))				\
       rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__,	\
			       __FUNCTION__); \
     &_rtx->u.fld[_n]; }))

#define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__			\
(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
     const enum rtx_code _code = GET_CODE (_rtx);			\
     if (_code != (C1) && _code != (C2) && _code != (C3))		\
       rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__,	\
			       __LINE__, __FUNCTION__);			\
     &_rtx->u.fld[_n]; }))

#define RTVEC_ELT(RTVEC, I) __extension__				\
(*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I);	\
     if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec))				\
       rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__,	\
				  __FUNCTION__);			\
     &_rtvec->elem[_i]; }))

#define XWINT(RTX, N) __extension__					\
(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
     const enum rtx_code _code = GET_CODE (_rtx);			\
     if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
       rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
				__FUNCTION__);				\
     if (GET_RTX_FORMAT (_code)[_n] != 'w')				\
       rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__,	\
			       __FUNCTION__);				\
     &_rtx->u.hwint[_n]; }))

#define CWI_ELT(RTX, I) __extension__					\
(*({ __typeof (RTX) const _cwi = (RTX);					\
     int _max = CWI_GET_NUM_ELEM (_cwi);				\
     const int _i = (I);						\
     if (_i < 0 || _i >= _max)						\
       cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__,		\
				__FUNCTION__);				\
     &_cwi->u.hwiv.elem[_i]; }))

#define XCWINT(RTX, N, C) __extension__					\
(*({ __typeof (RTX) const _rtx = (RTX);					\
     if (GET_CODE (_rtx) != (C))					\
       rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
			       __FUNCTION__);				\
     &_rtx->u.hwint[N]; }))

#define XCMWINT(RTX, N, C, M) __extension__				\
(*({ __typeof (RTX) const _rtx = (RTX);					\
     if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M))		\
       rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__,	\
				   __LINE__, __FUNCTION__);		\
     &_rtx->u.hwint[N]; }))

#define XCNMPRV(RTX, C, M) __extension__				\
({ __typeof (RTX) const _rtx = (RTX);					\
   if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
     rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
				 __LINE__, __FUNCTION__);		\
   &_rtx->u.rv; })

#define XCNMPFV(RTX, C, M) __extension__				\
({ __typeof (RTX) const _rtx = (RTX);					\
   if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
     rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
				 __LINE__, __FUNCTION__);		\
   &_rtx->u.fv; })

#define REG_CHECK(RTX) __extension__					\
({ __typeof (RTX) const _rtx = (RTX);					\
   if (GET_CODE (_rtx) != REG)						\
     rtl_check_failed_code1 (_rtx, REG,  __FILE__, __LINE__,		\
			     __FUNCTION__);				\
   &_rtx->u.reg; })

#define BLOCK_SYMBOL_CHECK(RTX) __extension__				\
({ __typeof (RTX) const _symbol = (RTX);				\
   const unsigned int flags = SYMBOL_REF_FLAGS (_symbol);		\
   if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0)			\
     rtl_check_failed_block_symbol (__FILE__, __LINE__,			\
				    __FUNCTION__);			\
   &_symbol->u.block_sym; })

#define HWIVEC_CHECK(RTX,C) __extension__				\
({ __typeof (RTX) const _symbol = (RTX);				\
   RTL_CHECKC1 (_symbol, 0, C);						\
   &_symbol->u.hwiv; })

extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
				     const char *)
    ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
				    const char *)
    ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
				    int, const char *)
    ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
				    int, const char *)
    ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
				    const char *, int, const char *)
    ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code,
				    enum rtx_code, const char *, int,
				    const char *)
    ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
					bool, const char *, int, const char *)
    ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
extern void rtl_check_failed_block_symbol (const char *, int, const char *)
    ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
				     const char *)
    ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
				       const char *)
    ATTRIBUTE_NORETURN ATTRIBUTE_COLD;

#else   /* not ENABLE_RTL_CHECKING */

#define RTL_CHECK1(RTX, N, C1)      ((RTX)->u.fld[N])
#define RTL_CHECK2(RTX, N, C1, C2)  ((RTX)->u.fld[N])
#define RTL_CHECKC1(RTX, N, C)	    ((RTX)->u.fld[N])
#define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
#define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N])
#define RTVEC_ELT(RTVEC, I)	    ((RTVEC)->elem[I])
#define XWINT(RTX, N)		    ((RTX)->u.hwint[N])
#define CWI_ELT(RTX, I)		    ((RTX)->u.hwiv.elem[I])
#define XCWINT(RTX, N, C)	    ((RTX)->u.hwint[N])
#define XCMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
#define XCNMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
#define XCNMPRV(RTX, C, M)	    (&(RTX)->u.rv)
#define XCNMPFV(RTX, C, M)	    (&(RTX)->u.fv)
#define REG_CHECK(RTX)		    (&(RTX)->u.reg)
#define BLOCK_SYMBOL_CHECK(RTX)	    (&(RTX)->u.block_sym)
#define HWIVEC_CHECK(RTX,C)	    (&(RTX)->u.hwiv)

#endif

/* General accessor macros for accessing the flags of an rtx.  */

/* Access an individual rtx flag, with no checking of any kind.  */
#define RTX_FLAG(RTX, FLAG)	((RTX)->FLAG)

#if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
#define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__			\
({ __typeof (RTX) const _rtx = (RTX);					\
   if (GET_CODE (_rtx) != C1)						\
     rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
			     __FUNCTION__);				\
   _rtx; })

#define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__		\
({ __typeof (RTX) const _rtx = (RTX);					\
   if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2)			\
     rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
			      __FUNCTION__);				\
   _rtx; })

#define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__		\
({ __typeof (RTX) const _rtx = (RTX);					\
   if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
       && GET_CODE (_rtx) != C3)					\
     rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
			     __FUNCTION__);				\
   _rtx; })

#define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__	\
({ __typeof (RTX) const _rtx = (RTX);					\
   if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
       && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4)		\
     rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
			      __FUNCTION__);				\
   _rtx; })

#define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__	\
({ __typeof (RTX) const _rtx = (RTX);					\
   if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
       && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
       && GET_CODE (_rtx) != C5)					\
     rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
			     __FUNCTION__);				\
   _rtx; })

#define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		\
  __extension__								\
({ __typeof (RTX) const _rtx = (RTX);					\
   if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
       && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
       && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6)		\
     rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
			     __FUNCTION__);				\
   _rtx; })

#define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		\
  __extension__								\
({ __typeof (RTX) const _rtx = (RTX);					\
   if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
       && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
       && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6		\
       && GET_CODE (_rtx) != C7)					\
     rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
			     __FUNCTION__);				\
   _rtx; })

#define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				\
  __extension__								\
({ __typeof (RTX) const _rtx = (RTX);					\
   if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx)))				\
     rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__,		\
			    __FUNCTION__);				\
   _rtx; })

extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
				   int, const char *)
    ATTRIBUTE_NORETURN ATTRIBUTE_COLD
    ;

#else	/* not ENABLE_RTL_FLAG_CHECKING */

#define RTL_FLAG_CHECK1(NAME, RTX, C1)					(RTX)
#define RTL_FLAG_CHECK2(NAME, RTX, C1, C2)				(RTX)
#define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3)				(RTX)
#define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4)			(RTX)
#define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5)			(RTX)
#define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		(RTX)
#define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		(RTX)
#define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				(RTX)
#endif

#define XINT(RTX, N)	(RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
#define XUINT(RTX, N)   (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
#define XSTR(RTX, N)	(RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
#define XEXP(RTX, N)	(RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
#define XVEC(RTX, N)	(RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
#define XMODE(RTX, N)	(RTL_CHECK1 (RTX, N, 'M').rt_type)
#define XTREE(RTX, N)   (RTL_CHECK1 (RTX, N, 't').rt_tree)
#define XBBDEF(RTX, N)	(RTL_CHECK1 (RTX, N, 'B').rt_bb)
#define XTMPL(RTX, N)	(RTL_CHECK1 (RTX, N, 'T').rt_str)
#define XCFI(RTX, N)	(RTL_CHECK1 (RTX, N, 'C').rt_cfi)

#define XVECEXP(RTX, N, M)	RTVEC_ELT (XVEC (RTX, N), M)
#define XVECLEN(RTX, N)		GET_NUM_ELEM (XVEC (RTX, N))

/* These are like XINT, etc. except that they expect a '0' field instead
   of the normal type code.  */

#define X0INT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_int)
#define X0UINT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_uint)
#define X0STR(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_str)
#define X0EXP(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtx)
#define X0VEC(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
#define X0MODE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_type)
#define X0TREE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_tree)
#define X0BBDEF(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_bb)
#define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
#define X0CSELIB(RTX, N)   (RTL_CHECK1 (RTX, N, '0').rt_cselib)
#define X0MEMATTR(RTX, N)  (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
#define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)

/* Access a '0' field with any type.  */
#define X0ANY(RTX, N)	   RTL_CHECK1 (RTX, N, '0')

#define XCINT(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_int)
#define XCUINT(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_uint)
#define XCSUBREG(RTX, N, C)   (RTL_CHECKC1 (RTX, N, C).rt_subreg)
#define XCSTR(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_str)
#define XCEXP(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtx)
#define XCVEC(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
#define XCMODE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_type)
#define XCTREE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_tree)
#define XCBBDEF(RTX, N, C)    (RTL_CHECKC1 (RTX, N, C).rt_bb)
#define XCCFI(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_cfi)
#define XCCSELIB(RTX, N, C)   (RTL_CHECKC1 (RTX, N, C).rt_cselib)

#define XCVECEXP(RTX, N, M, C)	RTVEC_ELT (XCVEC (RTX, N, C), M)
#define XCVECLEN(RTX, N, C)	GET_NUM_ELEM (XCVEC (RTX, N, C))

#define XC2EXP(RTX, N, C1, C2)      (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
#define XC3EXP(RTX, N, C1, C2, C3)  (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx)


/* Methods of rtx_expr_list.  */

inline rtx_expr_list *rtx_expr_list::next () const
{
  rtx tmp = XEXP (this, 1);
  return safe_as_a <rtx_expr_list *> (tmp);
}

inline rtx rtx_expr_list::element () const
{
  return XEXP (this, 0);
}

/* Methods of rtx_insn_list.  */

inline rtx_insn_list *rtx_insn_list::next () const
{
  rtx tmp = XEXP (this, 1);
  return safe_as_a <rtx_insn_list *> (tmp);
}

inline rtx_insn *rtx_insn_list::insn () const
{
  rtx tmp = XEXP (this, 0);
  return safe_as_a <rtx_insn *> (tmp);
}

/* Methods of rtx_sequence.  */

inline int rtx_sequence::len () const
{
  return XVECLEN (this, 0);
}

inline rtx rtx_sequence::element (int index) const
{
  return XVECEXP (this, 0, index);
}

inline rtx_insn *rtx_sequence::insn (int index) const
{
  return as_a <rtx_insn *> (XVECEXP (this, 0, index));
}

/* ACCESS MACROS for particular fields of insns.  */

/* Holds a unique number for each insn.
   These are not necessarily sequentially increasing.  */
inline int INSN_UID (const_rtx insn)
{
  return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
				    (insn))->u2.insn_uid;
}
inline int& INSN_UID (rtx insn)
{
  return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
				    (insn))->u2.insn_uid;
}

/* Chain insns together in sequence.  */

/* For now these are split in two: an rvalue form:
     PREV_INSN/NEXT_INSN
   and an lvalue form:
     SET_NEXT_INSN/SET_PREV_INSN.  */

inline rtx_insn *PREV_INSN (const rtx_insn *insn)
{
  rtx prev = XEXP (insn, 0);
  return safe_as_a <rtx_insn *> (prev);
}

inline rtx& SET_PREV_INSN (rtx_insn *insn)
{
  return XEXP (insn, 0);
}

inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
{
  rtx next = XEXP (insn, 1);
  return safe_as_a <rtx_insn *> (next);
}

inline rtx& SET_NEXT_INSN (rtx_insn *insn)
{
  return XEXP (insn, 1);
}

inline basic_block BLOCK_FOR_INSN (const_rtx insn)
{
  return XBBDEF (insn, 2);
}

inline basic_block& BLOCK_FOR_INSN (rtx insn)
{
  return XBBDEF (insn, 2);
}

inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
{
  BLOCK_FOR_INSN (insn) = bb;
}

/* The body of an insn.  */
inline rtx PATTERN (const_rtx insn)
{
  return XEXP (insn, 3);
}

inline rtx& PATTERN (rtx insn)
{
  return XEXP (insn, 3);
}

inline unsigned int INSN_LOCATION (const rtx_insn *insn)
{
  return XUINT (insn, 4);
}

inline unsigned int& INSN_LOCATION (rtx_insn *insn)
{
  return XUINT (insn, 4);
}

inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
{
  return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
}

/* LOCATION of an RTX if relevant.  */
#define RTL_LOCATION(X) (INSN_P (X) ? \
			 INSN_LOCATION (as_a <rtx_insn *> (X)) \
			 : UNKNOWN_LOCATION)

/* Code number of instruction, from when it was recognized.
   -1 means this instruction has not been recognized yet.  */
#define INSN_CODE(INSN) XINT (INSN, 5)

inline rtvec rtx_jump_table_data::get_labels () const
{
  rtx pat = PATTERN (this);
  if (GET_CODE (pat) == ADDR_VEC)
    return XVEC (pat, 0);
  else
    return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
}

/* Return the mode of the data in the table, which is always a scalar
   integer.  */

inline scalar_int_mode
rtx_jump_table_data::get_data_mode () const
{
  return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
}

/* If LABEL is followed by a jump table, return the table, otherwise
   return null.  */

inline rtx_jump_table_data *
jump_table_for_label (const rtx_code_label *label)
{
  return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
}

#define RTX_FRAME_RELATED_P(RTX)					\
  (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN,	\
		    CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)

/* 1 if JUMP RTX is a crossing jump.  */
#define CROSSING_JUMP_P(RTX) \
  (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)

/* 1 if RTX is a call to a const function.  Built from ECF_CONST and
   TREE_READONLY.  */
#define RTL_CONST_CALL_P(RTX)					\
  (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)

/* 1 if RTX is a call to a pure function.  Built from ECF_PURE and
   DECL_PURE_P.  */
#define RTL_PURE_CALL_P(RTX)					\
  (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)

/* 1 if RTX is a call to a const or pure function.  */
#define RTL_CONST_OR_PURE_CALL_P(RTX) \
  (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))

/* 1 if RTX is a call to a looping const or pure function.  Built from
   ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.  */
#define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX)				\
  (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)

/* 1 if RTX is a call_insn for a sibling call.  */
#define SIBLING_CALL_P(RTX)						\
  (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)

/* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch.  */
#define INSN_ANNULLED_BRANCH_P(RTX)					\
  (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)

/* 1 if RTX is an insn in a delay slot and is from the target of the branch.
   If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
   executed if the branch is taken.  For annulled branches with this bit
   clear, the insn should be executed only if the branch is not taken.  */
#define INSN_FROM_TARGET_P(RTX)						\
  (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
		    CALL_INSN)->in_struct)

/* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
   See the comments for ADDR_DIFF_VEC in rtl.def.  */
#define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)

/* In a VALUE, the value cselib has assigned to RTX.
   This is a "struct cselib_val", see cselib.h.  */
#define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)

/* Holds a list of notes on what this insn does to various REGs.
   It is a chain of EXPR_LIST rtx's, where the second operand is the
   chain pointer and the first operand is the REG being described.
   The mode field of the EXPR_LIST contains not a real machine mode
   but a value from enum reg_note.  */
#define REG_NOTES(INSN)	XEXP(INSN, 6)

/* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
   question.  */
#define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)

enum reg_note
{
#define DEF_REG_NOTE(NAME) NAME,
#include "reg-notes.def"
#undef DEF_REG_NOTE
  REG_NOTE_MAX
};

/* Define macros to extract and insert the reg-note kind in an EXPR_LIST.  */
#define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
#define PUT_REG_NOTE_KIND(LINK, KIND) \
  PUT_MODE_RAW (LINK, (machine_mode) (KIND))

/* Names for REG_NOTE's in EXPR_LIST insn's.  */

extern const char * const reg_note_name[];
#define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])

/* This field is only present on CALL_INSNs.  It holds a chain of EXPR_LIST of
   USE, CLOBBER and SET expressions.
     USE expressions list the registers filled with arguments that
   are passed to the function.
     CLOBBER expressions document the registers explicitly clobbered
   by this CALL_INSN.
     SET expressions say that the return value of the call (the SET_DEST)
   is equivalent to a value available before the call (the SET_SRC).
   This kind of SET is used when the return value is predictable in
   advance.  It is purely an optimisation hint; unlike USEs and CLOBBERs,
   it does not affect register liveness.

     Pseudo registers cannot be mentioned in this list.  */
#define CALL_INSN_FUNCTION_USAGE(INSN)	XEXP(INSN, 7)

/* The label-number of a code-label.  The assembler label
   is made from `L' and the label-number printed in decimal.
   Label numbers are unique in a compilation.  */
#define CODE_LABEL_NUMBER(INSN)	XINT (INSN, 5)

/* In a NOTE that is a line number, this is a string for the file name that the
   line is in.  We use the same field to record block numbers temporarily in
   NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes.  (We avoid lots of casts
   between ints and pointers if we use a different macro for the block number.)
   */

/* Opaque data.  */
#define NOTE_DATA(INSN)	        RTL_CHECKC1 (INSN, 3, NOTE)
#define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
#define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
#define NOTE_BLOCK(INSN)	XCTREE (INSN, 3, NOTE)
#define NOTE_EH_HANDLER(INSN)	XCINT (INSN, 3, NOTE)
#define NOTE_BASIC_BLOCK(INSN)	XCBBDEF (INSN, 3, NOTE)
#define NOTE_VAR_LOCATION(INSN)	XCEXP (INSN, 3, NOTE)
#define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
#define NOTE_CFI(INSN)		XCCFI (INSN, 3, NOTE)
#define NOTE_LABEL_NUMBER(INSN)	XCINT (INSN, 3, NOTE)

/* In a NOTE that is a line number, this is the line number.
   Other kinds of NOTEs are identified by negative numbers here.  */
#define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)

/* Nonzero if INSN is a note marking the beginning of a basic block.  */
#define NOTE_INSN_BASIC_BLOCK_P(INSN) \
  (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)

/* Nonzero if INSN is a debug nonbind marker note,
   for which NOTE_MARKER_LOCATION can be used.  */
#define NOTE_MARKER_P(INSN)				\
  (NOTE_P (INSN) &&					\
   (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT		\
    || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))

/* Variable declaration and the location of a variable.  */
#define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
#define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))

/* Initialization status of the variable in the location.  Status
   can be unknown, uninitialized or initialized.  See enumeration
   type below.  */
#define PAT_VAR_LOCATION_STATUS(PAT) \
  (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
   ->u2.var_location_status)

/* Accessors for a NOTE_INSN_VAR_LOCATION.  */
#define NOTE_VAR_LOCATION_DECL(NOTE) \
  PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
#define NOTE_VAR_LOCATION_LOC(NOTE) \
  PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
#define NOTE_VAR_LOCATION_STATUS(NOTE) \
  PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))

/* Evaluate to TRUE if INSN is a debug insn that denotes a variable
   location/value tracking annotation.  */
#define DEBUG_BIND_INSN_P(INSN)			\
  (DEBUG_INSN_P (INSN)				\
   && (GET_CODE (PATTERN (INSN))		\
       == VAR_LOCATION))
/* Evaluate to TRUE if INSN is a debug insn that denotes a program
   source location marker.  */
#define DEBUG_MARKER_INSN_P(INSN)		\
  (DEBUG_INSN_P (INSN)				\
   && (GET_CODE (PATTERN (INSN))		\
       != VAR_LOCATION))
/* Evaluate to the marker kind.  */
#define INSN_DEBUG_MARKER_KIND(INSN)		  \
  (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER	  \
   ? (GET_MODE (PATTERN (INSN)) == VOIDmode	  \
      ? NOTE_INSN_BEGIN_STMT			  \
      : GET_MODE (PATTERN (INSN)) == BLKmode	  \
      ? NOTE_INSN_INLINE_ENTRY			  \
      : (enum insn_note)-1) 			  \
   : (enum insn_note)-1)
/* Create patterns for debug markers.  These and the above abstract
   the representation, so that it's easier to get rid of the abuse of
   the mode to hold the marker kind.  Other marker types are
   envisioned, so a single bit flag won't do; maybe separate RTL codes
   wouldn't be a problem.  */
#define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
  gen_rtx_DEBUG_MARKER (VOIDmode)
#define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
  gen_rtx_DEBUG_MARKER (BLKmode)

/* The VAR_LOCATION rtx in a DEBUG_INSN.  */
#define INSN_VAR_LOCATION(INSN) \
  (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
/* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN.  */
#define INSN_VAR_LOCATION_PTR(INSN) \
  (&PATTERN (INSN))

/* Accessors for a tree-expanded var location debug insn.  */
#define INSN_VAR_LOCATION_DECL(INSN) \
  PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
#define INSN_VAR_LOCATION_LOC(INSN) \
  PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
#define INSN_VAR_LOCATION_STATUS(INSN) \
  PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))

/* Expand to the RTL that denotes an unknown variable location in a
   DEBUG_INSN.  */
#define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))

/* Determine whether X is such an unknown location.  */
#define VAR_LOC_UNKNOWN_P(X) \
  (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)

/* 1 if RTX is emitted after a call, but it should take effect before
   the call returns.  */
#define NOTE_DURING_CALL_P(RTX)				\
  (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)

/* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX.  */
#define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)

/* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of.  */
#define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)

/* PARM_DECL DEBUG_PARAMETER_REF references.  */
#define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)

/* Codes that appear in the NOTE_KIND field for kinds of notes
   that are not line numbers.  These codes are all negative.

   Notice that we do not try to use zero here for any of
   the special note codes because sometimes the source line
   actually can be zero!  This happens (for example) when we
   are generating code for the per-translation-unit constructor
   and destructor routines for some C++ translation unit.  */

enum insn_note
{
#define DEF_INSN_NOTE(NAME) NAME,
#include "insn-notes.def"
#undef DEF_INSN_NOTE

  NOTE_INSN_MAX
};

/* Names for NOTE insn's other than line numbers.  */

extern const char * const note_insn_name[NOTE_INSN_MAX];
#define GET_NOTE_INSN_NAME(NOTE_CODE) \
  (note_insn_name[(NOTE_CODE)])

/* The name of a label, in case it corresponds to an explicit label
   in the input source code.  */
#define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)

/* In jump.c, each label contains a count of the number
   of LABEL_REFs that point at it, so unused labels can be deleted.  */
#define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)

/* Labels carry a two-bit field composed of the ->jump and ->call
   bits.  This field indicates whether the label is an alternate
   entry point, and if so, what kind.  */
enum label_kind
{
  LABEL_NORMAL = 0,	/* ordinary label */
  LABEL_STATIC_ENTRY,	/* alternate entry point, not exported */
  LABEL_GLOBAL_ENTRY,	/* alternate entry point, exported */
  LABEL_WEAK_ENTRY	/* alternate entry point, exported as weak symbol */
};

#if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)

/* Retrieve the kind of LABEL.  */
#define LABEL_KIND(LABEL) __extension__					\
({ __typeof (LABEL) const _label = (LABEL);				\
   if (! LABEL_P (_label))						\
     rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__,	\
			    __FUNCTION__);				\
   (enum label_kind) ((_label->jump << 1) | _label->call); })

/* Set the kind of LABEL.  */
#define SET_LABEL_KIND(LABEL, KIND) do {				\
   __typeof (LABEL) const _label = (LABEL);				\
   const unsigned int _kind = (KIND);					\
   if (! LABEL_P (_label))						\
     rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
			    __FUNCTION__);				\
   _label->jump = ((_kind >> 1) & 1);					\
   _label->call = (_kind & 1);						\
} while (0)

#else

/* Retrieve the kind of LABEL.  */
#define LABEL_KIND(LABEL) \
   ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))

/* Set the kind of LABEL.  */
#define SET_LABEL_KIND(LABEL, KIND) do {				\
   rtx const _label = (LABEL);						\
   const unsigned int _kind = (KIND);					\
   _label->jump = ((_kind >> 1) & 1);					\
   _label->call = (_kind & 1);						\
} while (0)

#endif /* rtl flag checking */

#define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)

/* In jump.c, each JUMP_INSN can point to a label that it can jump to,
   so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
   be decremented and possibly the label can be deleted.  */
#define JUMP_LABEL(INSN)   XCEXP (INSN, 7, JUMP_INSN)

inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
{
  return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
}

/* Methods of rtx_jump_insn.  */

inline rtx rtx_jump_insn::jump_label () const
{
  return JUMP_LABEL (this);
}

inline rtx_code_label *rtx_jump_insn::jump_target () const
{
  return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
}

inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
{
  JUMP_LABEL (this) = target;
}

/* Once basic blocks are found, each CODE_LABEL starts a chain that
   goes through all the LABEL_REFs that jump to that label.  The chain
   eventually winds up at the CODE_LABEL: it is circular.  */
#define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)

/* Get the label that a LABEL_REF references.  */
static inline rtx_insn *
label_ref_label (const_rtx ref)
{
  return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
}

/* Set the label that LABEL_REF ref refers to.  */

static inline void
set_label_ref_label (rtx ref, rtx_insn *label)
{
  XCEXP (ref, 0, LABEL_REF) = label;
}

/* For a REG rtx, REGNO extracts the register number.  REGNO can only
   be used on RHS.  Use SET_REGNO to change the value.  */
#define REGNO(RTX) (rhs_regno(RTX))
#define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))

/* Return the number of consecutive registers in a REG.  This is always
   1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
   hard registers.  */
#define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)

/* ORIGINAL_REGNO holds the number the register originally had; for a
   pseudo register turned into a hard reg this will hold the old pseudo
   register number.  */
#define ORIGINAL_REGNO(RTX) \
  (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)

/* Force the REGNO macro to only be used on the lhs.  */
static inline unsigned int
rhs_regno (const_rtx x)
{
  return REG_CHECK (x)->regno;
}

/* Return the final register in REG X plus one.  */
static inline unsigned int
END_REGNO (const_rtx x)
{
  return REGNO (x) + REG_NREGS (x);
}

/* Change the REGNO and REG_NREGS of REG X to the specified values,
   bypassing the df machinery.  */
static inline void
set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
{
  reg_info *reg = REG_CHECK (x);
  reg->regno = regno;
  reg->nregs = nregs;
}

/* 1 if RTX is a reg or parallel that is the current function's return
   value.  */
#define REG_FUNCTION_VALUE_P(RTX)					\
  (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)

/* 1 if RTX is a reg that corresponds to a variable declared by the user.  */
#define REG_USERVAR_P(RTX)						\
  (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)

/* 1 if RTX is a reg that holds a pointer value.  */
#define REG_POINTER(RTX)						\
  (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)

/* 1 if RTX is a mem that holds a pointer value.  */
#define MEM_POINTER(RTX)						\
  (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)

/* 1 if the given register REG corresponds to a hard register.  */
#define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))

/* 1 if the given register number REG_NO corresponds to a hard register.  */
#define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)

/* For a CONST_INT rtx, INTVAL extracts the integer.  */
#define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
#define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))

/* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
   elements actually needed to represent the constant.
   CONST_WIDE_INT_ELT gets one of the elements.  0 is the least
   significant HOST_WIDE_INT.  */
#define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
#define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
#define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)

/* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
   individual coefficients, in the form of a trailing_wide_ints structure.  */
#define CONST_POLY_INT_COEFFS(RTX) \
  (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
		   CONST_POLY_INT)->u.cpi.coeffs)

/* For a CONST_DOUBLE:
#if TARGET_SUPPORTS_WIDE_INT == 0
   For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
     low-order word and ..._HIGH the high-order.
#endif
   For a float, there is a REAL_VALUE_TYPE structure, and
     CONST_DOUBLE_REAL_VALUE(r) is a pointer to it.  */
#define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
#define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
#define CONST_DOUBLE_REAL_VALUE(r) \
  ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))

#define CONST_FIXED_VALUE(r) \
  ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
#define CONST_FIXED_VALUE_HIGH(r) \
  ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
#define CONST_FIXED_VALUE_LOW(r) \
  ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))

/* For a CONST_VECTOR, return element #n.  */
#define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)

/* See rtl.texi for a description of these macros.  */
#define CONST_VECTOR_NPATTERNS(RTX) \
 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
  ->u2.const_vector.npatterns)

#define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
  ->u2.const_vector.nelts_per_pattern)

#define CONST_VECTOR_DUPLICATE_P(RTX) \
  (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)

#define CONST_VECTOR_STEPPED_P(RTX) \
  (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)

#define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)

/* Return the number of elements encoded directly in a CONST_VECTOR.  */

inline unsigned int
const_vector_encoded_nelts (const_rtx x)
{
  return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x);
}

/* For a CONST_VECTOR, return the number of elements in a vector.  */
#define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))

/* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
   SUBREG_BYTE extracts the byte-number.  */

#define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
#define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)

/* in rtlanal.c */
/* Return the right cost to give to an operation
   to make the cost of the corresponding register-to-register instruction
   N times that of a fast register-to-register instruction.  */
#define COSTS_N_INSNS(N) ((N) * 4)

/* Maximum cost of an rtl expression.  This value has the special meaning
   not to use an rtx with this cost under any circumstances.  */
#define MAX_COST INT_MAX

/* Return true if CODE always has VOIDmode.  */

static inline bool
always_void_p (enum rtx_code code)
{
  return code == SET;
}

/* A structure to hold all available cost information about an rtl
   expression.  */
struct full_rtx_costs
{
  int speed;
  int size;
};

/* Initialize a full_rtx_costs structure C to the maximum cost.  */
static inline void
init_costs_to_max (struct full_rtx_costs *c)
{
  c->speed = MAX_COST;
  c->size = MAX_COST;
}

/* Initialize a full_rtx_costs structure C to zero cost.  */
static inline void
init_costs_to_zero (struct full_rtx_costs *c)
{
  c->speed = 0;
  c->size = 0;
}

/* Compare two full_rtx_costs structures A and B, returning true
   if A < B when optimizing for speed.  */
static inline bool
costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
	    bool speed)
{
  if (speed)
    return (a->speed < b->speed
	    || (a->speed == b->speed && a->size < b->size));
  else
    return (a->size < b->size
	    || (a->size == b->size && a->speed < b->speed));
}

/* Increase both members of the full_rtx_costs structure C by the
   cost of N insns.  */
static inline void
costs_add_n_insns (struct full_rtx_costs *c, int n)
{
  c->speed += COSTS_N_INSNS (n);
  c->size += COSTS_N_INSNS (n);
}

/* Describes the shape of a subreg:

   inner_mode == the mode of the SUBREG_REG
   offset     == the SUBREG_BYTE
   outer_mode == the mode of the SUBREG itself.  */
class subreg_shape {
public:
  subreg_shape (machine_mode, poly_uint16, machine_mode);
  bool operator == (const subreg_shape &) const;
  bool operator != (const subreg_shape &) const;
  unsigned HOST_WIDE_INT unique_id () const;

  machine_mode inner_mode;
  poly_uint16 offset;
  machine_mode outer_mode;
};

inline
subreg_shape::subreg_shape (machine_mode inner_mode_in,
			    poly_uint16 offset_in,
			    machine_mode outer_mode_in)
  : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
{}

inline bool
subreg_shape::operator == (const subreg_shape &other) const
{
  return (inner_mode == other.inner_mode
	  && known_eq (offset, other.offset)
	  && outer_mode == other.outer_mode);
}

inline bool
subreg_shape::operator != (const subreg_shape &other) const
{
  return !operator == (other);
}

/* Return an integer that uniquely identifies this shape.  Structures
   like rtx_def assume that a mode can fit in an 8-bit bitfield and no
   current mode is anywhere near being 65536 bytes in size, so the
   id comfortably fits in an int.  */

inline unsigned HOST_WIDE_INT
subreg_shape::unique_id () const
{
  { STATIC_ASSERT (MAX_MACHINE_MODE <= 256); }
  { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); }
  { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
  int res = (int) inner_mode + ((int) outer_mode << 8);
  for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
    res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
  return res;
}

/* Return the shape of a SUBREG rtx.  */

static inline subreg_shape
shape_of_subreg (const_rtx x)
{
  return subreg_shape (GET_MODE (SUBREG_REG (x)),
		       SUBREG_BYTE (x), GET_MODE (x));
}

/* Information about an address.  This structure is supposed to be able
   to represent all supported target addresses.  Please extend it if it
   is not yet general enough.  */
struct address_info {
  /* The mode of the value being addressed, or VOIDmode if this is
     a load-address operation with no known address mode.  */
  machine_mode mode;

  /* The address space.  */
  addr_space_t as;

  /* True if this is an RTX_AUTOINC address.  */
  bool autoinc_p;

  /* A pointer to the top-level address.  */
  rtx *outer;

  /* A pointer to the inner address, after all address mutations
     have been stripped from the top-level address.  It can be one
     of the following:

     - A {PRE,POST}_{INC,DEC} of *BASE.  SEGMENT, INDEX and DISP are null.

     - A {PRE,POST}_MODIFY of *BASE.  In this case either INDEX or DISP
       points to the step value, depending on whether the step is variable
       or constant respectively.  SEGMENT is null.

     - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
       with null fields evaluating to 0.  */
  rtx *inner;

  /* Components that make up *INNER.  Each one may be null or nonnull.
     When nonnull, their meanings are as follows:

     - *SEGMENT is the "segment" of memory to which the address refers.
       This value is entirely target-specific and is only called a "segment"
       because that's its most typical use.  It contains exactly one UNSPEC,
       pointed to by SEGMENT_TERM.  The contents of *SEGMENT do not need
       reloading.

     - *BASE is a variable expression representing a base address.
       It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.

     - *INDEX is a variable expression representing an index value.
       It may be a scaled expression, such as a MULT.  It has exactly
       one REG, SUBREG or MEM, pointed to by INDEX_TERM.

     - *DISP is a constant, possibly mutated.  DISP_TERM points to the
       unmutated RTX_CONST_OBJ.  */
  rtx *segment;
  rtx *base;
  rtx *index;
  rtx *disp;

  rtx *segment_term;
  rtx *base_term;
  rtx *index_term;
  rtx *disp_term;

  /* In a {PRE,POST}_MODIFY address, this points to a second copy
     of BASE_TERM, otherwise it is null.  */
  rtx *base_term2;

  /* ADDRESS if this structure describes an address operand, MEM if
     it describes a MEM address.  */
  enum rtx_code addr_outer_code;

  /* If BASE is nonnull, this is the code of the rtx that contains it.  */
  enum rtx_code base_outer_code;
};

/* This is used to bundle an rtx and a mode together so that the pair
   can be used with the wi:: routines.  If we ever put modes into rtx
   integer constants, this should go away and then just pass an rtx in.  */
typedef std::pair <rtx, machine_mode> rtx_mode_t;

namespace wi
{
  template <>
  struct int_traits <rtx_mode_t>
  {
    static const enum precision_type precision_type = VAR_PRECISION;
    static const bool host_dependent_precision = false;
    /* This ought to be true, except for the special case that BImode
       is canonicalized to STORE_FLAG_VALUE, which might be 1.  */
    static const bool is_sign_extended = false;
    static unsigned int get_precision (const rtx_mode_t &);
    static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
				      const rtx_mode_t &);
  };
}

inline unsigned int
wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
{
  return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
}

inline wi::storage_ref
wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
					unsigned int precision,
					const rtx_mode_t &x)
{
  gcc_checking_assert (precision == get_precision (x));
  switch (GET_CODE (x.first))
    {
    case CONST_INT:
      if (precision < HOST_BITS_PER_WIDE_INT)
	/* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
	   targets is 1 rather than -1.  */
	gcc_checking_assert (INTVAL (x.first)
			     == sext_hwi (INTVAL (x.first), precision)
			     || (x.second == BImode && INTVAL (x.first) == 1));

      return wi::storage_ref (&INTVAL (x.first), 1, precision);

    case CONST_WIDE_INT:
      return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
			      CONST_WIDE_INT_NUNITS (x.first), precision);

#if TARGET_SUPPORTS_WIDE_INT == 0
    case CONST_DOUBLE:
      return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
#endif

    default:
      gcc_unreachable ();
    }
}

namespace wi
{
  hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
  wide_int min_value (machine_mode, signop);
  wide_int max_value (machine_mode, signop);
}

inline wi::hwi_with_prec
wi::shwi (HOST_WIDE_INT val, machine_mode mode)
{
  return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
}

/* Produce the smallest number that is represented in MODE.  The precision
   is taken from MODE and the sign from SGN.  */
inline wide_int
wi::min_value (machine_mode mode, signop sgn)
{
  return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
}

/* Produce the largest number that is represented in MODE.  The precision
   is taken from MODE and the sign from SGN.  */
inline wide_int
wi::max_value (machine_mode mode, signop sgn)
{
  return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
}

namespace wi
{
  typedef poly_int<NUM_POLY_INT_COEFFS,
		   generic_wide_int <wide_int_ref_storage <false, false> > >
    rtx_to_poly_wide_ref;
  rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
}

/* Return the value of a CONST_POLY_INT in its native precision.  */

inline wi::rtx_to_poly_wide_ref
const_poly_int_value (const_rtx x)
{
  poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
  for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
    res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
  return res;
}

/* Return true if X is a scalar integer or a CONST_POLY_INT.  The value
   can then be extracted using wi::to_poly_wide.  */

inline bool
poly_int_rtx_p (const_rtx x)
{
  return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
}

/* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
   MODE is the mode of X.  */

inline wi::rtx_to_poly_wide_ref
wi::to_poly_wide (const_rtx x, machine_mode mode)
{
  if (CONST_POLY_INT_P (x))
    return const_poly_int_value (x);
  return rtx_mode_t (const_cast<rtx> (x), mode);
}

/* Return the value of X as a poly_int64.  */

inline poly_int64
rtx_to_poly_int64 (const_rtx x)
{
  if (CONST_POLY_INT_P (x))
    {
      poly_int64 res;
      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
	res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
      return res;
    }
  return INTVAL (x);
}

/* Return true if arbitrary value X is an integer constant that can
   be represented as a poly_int64.  Store the value in *RES if so,
   otherwise leave it unmodified.  */

inline bool
poly_int_rtx_p (const_rtx x, poly_int64_pod *res)
{
  if (CONST_INT_P (x))
    {
      *res = INTVAL (x);
      return true;
    }
  if (CONST_POLY_INT_P (x))
    {
      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
	if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
	  return false;
      for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
	res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
      return true;
    }
  return false;
}

extern void init_rtlanal (void);
extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
extern int address_cost (rtx, machine_mode, addr_space_t, bool);
extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
			       struct full_rtx_costs *);
extern bool native_encode_rtx (machine_mode, rtx, vec<target_unit> &,
			       unsigned int, unsigned int);
extern rtx native_decode_rtx (machine_mode, vec<target_unit>,
			      unsigned int);
extern rtx native_decode_vector_rtx (machine_mode, vec<target_unit>,
				     unsigned int, unsigned int, unsigned int);
extern poly_uint64 subreg_lsb (const_rtx);
extern poly_uint64 subreg_size_lsb (poly_uint64, poly_uint64, poly_uint64);
extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64,
						poly_uint64);
extern bool read_modify_subreg_p (const_rtx);

/* Given a subreg's OUTER_MODE, INNER_MODE, and SUBREG_BYTE, return the
   bit offset at which the subreg begins (counting from the least significant
   bit of the operand).  */

inline poly_uint64
subreg_lsb_1 (machine_mode outer_mode, machine_mode inner_mode,
	      poly_uint64 subreg_byte)
{
  return subreg_size_lsb (GET_MODE_SIZE (outer_mode),
			  GET_MODE_SIZE (inner_mode), subreg_byte);
}

/* Return the subreg byte offset for a subreg whose outer mode is
   OUTER_MODE, whose inner mode is INNER_MODE, and where there are
   LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
   the inner value.  This is the inverse of subreg_lsb_1 (which converts
   byte offsets to bit shifts).  */

inline poly_uint64
subreg_offset_from_lsb (machine_mode outer_mode,
			machine_mode inner_mode,
			poly_uint64 lsb_shift)
{
  return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
				      GET_MODE_SIZE (inner_mode), lsb_shift);
}

extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
					 poly_uint64, machine_mode);
extern bool subreg_offset_representable_p (unsigned int, machine_mode,
					   poly_uint64, machine_mode);
extern unsigned int subreg_regno (const_rtx);
extern int simplify_subreg_regno (unsigned int, machine_mode,
				  poly_uint64, machine_mode);
extern unsigned int subreg_nregs (const_rtx);
extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
extern bool constant_pool_constant_p (rtx);
extern bool truncated_to_mode (machine_mode, const_rtx);
extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
extern void split_double (rtx, rtx *, rtx *);
extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
extern void decompose_address (struct address_info *, rtx *,
			       machine_mode, addr_space_t, enum rtx_code);
extern void decompose_lea_address (struct address_info *, rtx *);
extern void decompose_mem_address (struct address_info *, rtx);
extern void update_address (struct address_info *);
extern HOST_WIDE_INT get_index_scale (const struct address_info *);
extern enum rtx_code get_index_code (const struct address_info *);

/* 1 if RTX is a subreg containing a reg that is already known to be
   sign- or zero-extended from the mode of the subreg to the mode of
   the reg.  SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
   extension.

   When used as a LHS, is means that this extension must be done
   when assigning to SUBREG_REG.  */

#define SUBREG_PROMOTED_VAR_P(RTX)					\
  (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)

/* Valid for subregs which are SUBREG_PROMOTED_VAR_P().  In that case
   this gives the necessary extensions:
   0  - signed (SPR_SIGNED)
   1  - normal unsigned (SPR_UNSIGNED)
   2  - value is both sign and unsign extended for mode
	(SPR_SIGNED_AND_UNSIGNED).
   -1 - pointer unsigned, which most often can be handled like unsigned
        extension, except for generating instructions where we need to
	emit special code (ptr_extend insns) on some architectures
	(SPR_POINTER). */

const int SRP_POINTER = -1;
const int SRP_SIGNED = 0;
const int SRP_UNSIGNED = 1;
const int SRP_SIGNED_AND_UNSIGNED = 2;

/* Sets promoted mode for SUBREG_PROMOTED_VAR_P().  */
#define SUBREG_PROMOTED_SET(RTX, VAL)		                        \
do {								        \
  rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET",		\
                                    (RTX), SUBREG);			\
  switch (VAL)								\
  {									\
    case SRP_POINTER:							\
      _rtx->volatil = 0;						\
      _rtx->unchanging = 0;						\
      break;								\
    case SRP_SIGNED:							\
      _rtx->volatil = 0;						\
      _rtx->unchanging = 1;						\
      break;								\
    case SRP_UNSIGNED:							\
      _rtx->volatil = 1;						\
      _rtx->unchanging = 0;						\
      break;								\
    case SRP_SIGNED_AND_UNSIGNED:					\
      _rtx->volatil = 1;						\
      _rtx->unchanging = 1;						\
      break;								\
  }									\
} while (0)

/* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
   including SRP_SIGNED_AND_UNSIGNED if promoted for
   both signed and unsigned.  */
#define SUBREG_PROMOTED_GET(RTX)	\
  (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
   + (RTX)->unchanging - 1)

/* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P().  */
#define SUBREG_PROMOTED_SIGN(RTX)	\
  ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
   : (RTX)->unchanging - 1)

/* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
   for SIGNED type.  */
#define SUBREG_PROMOTED_SIGNED_P(RTX)	\
  (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)

/* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
   for UNSIGNED type.  */
#define SUBREG_PROMOTED_UNSIGNED_P(RTX)	\
  (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)

/* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN.  */
#define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN)	\
((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER	\
 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX)		\
 : SUBREG_PROMOTED_UNSIGNED_P (RTX))

/* True if the REG is the static chain register for some CALL_INSN.  */
#define STATIC_CHAIN_REG_P(RTX)	\
  (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)

/* True if the subreg was generated by LRA for reload insns.  Such
   subregs are valid only during LRA.  */
#define LRA_SUBREG_P(RTX)	\
  (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)

/* Access various components of an ASM_OPERANDS rtx.  */

#define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
#define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
#define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
#define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
#define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
#define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
#define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
#define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
  XCVECEXP (RTX, 4, N, ASM_OPERANDS)
#define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
  XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
#define ASM_OPERANDS_INPUT_MODE(RTX, N)  \
  GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
#define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
#define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
#define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
#define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
#define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)

/* 1 if RTX is a mem that is statically allocated in read-only memory.  */
#define MEM_READONLY_P(RTX) \
  (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)

/* 1 if RTX is a mem and we should keep the alias set for this mem
   unchanged when we access a component.  Set to 1, or example, when we
   are already in a non-addressable component of an aggregate.  */
#define MEM_KEEP_ALIAS_SET_P(RTX)					\
  (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)

/* 1 if RTX is a mem or asm_operand for a volatile reference.  */
#define MEM_VOLATILE_P(RTX)						\
  (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS,		\
		    ASM_INPUT)->volatil)

/* 1 if RTX is a mem that cannot trap.  */
#define MEM_NOTRAP_P(RTX) \
  (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)

/* The memory attribute block.  We provide access macros for each value
   in the block and provide defaults if none specified.  */
#define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)

/* The register attribute block.  We provide access macros for each value
   in the block and provide defaults if none specified.  */
#define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)

#ifndef GENERATOR_FILE
/* For a MEM rtx, the alias set.  If 0, this MEM is not in any alias
   set, and may alias anything.  Otherwise, the MEM can only alias
   MEMs in a conflicting alias set.  This value is set in a
   language-dependent manner in the front-end, and should not be
   altered in the back-end.  These set numbers are tested with
   alias_sets_conflict_p.  */
#define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)

/* For a MEM rtx, the decl it is known to refer to, if it is known to
   refer to part of a DECL.  It may also be a COMPONENT_REF.  */
#define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)

/* For a MEM rtx, true if its MEM_OFFSET is known.  */
#define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)

/* For a MEM rtx, the offset from the start of MEM_EXPR.  */
#define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)

/* For a MEM rtx, the address space.  */
#define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)

/* For a MEM rtx, true if its MEM_SIZE is known.  */
#define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)

/* For a MEM rtx, the size in bytes of the MEM.  */
#define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)

/* For a MEM rtx, the alignment in bits.  We can use the alignment of the
   mode as a default when STRICT_ALIGNMENT, but not if not.  */
#define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
#else
#define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
#endif

/* For a REG rtx, the decl it is known to refer to, if it is known to
   refer to part of a DECL.  */
#define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)

/* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
   HOST_WIDE_INT.  */
#define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)

/* Copy the attributes that apply to memory locations from RHS to LHS.  */
#define MEM_COPY_ATTRIBUTES(LHS, RHS)				\
  (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS),			\
   MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS),			\
   MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS),			\
   MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS),	\
   MEM_POINTER (LHS) = MEM_POINTER (RHS),			\
   MEM_ATTRS (LHS) = MEM_ATTRS (RHS))

/* 1 if RTX is a label_ref for a nonlocal label.  */
/* Likewise in an expr_list for a REG_LABEL_OPERAND or
   REG_LABEL_TARGET note.  */
#define LABEL_REF_NONLOCAL_P(RTX)					\
  (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)

/* 1 if RTX is a code_label that should always be considered to be needed.  */
#define LABEL_PRESERVE_P(RTX)						\
  (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)

/* During sched, 1 if RTX is an insn that must be scheduled together
   with the preceding insn.  */
#define SCHED_GROUP_P(RTX)						\
  (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN,		\
		    JUMP_INSN, CALL_INSN)->in_struct)

/* For a SET rtx, SET_DEST is the place that is set
   and SET_SRC is the value it is set to.  */
#define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
#define SET_SRC(RTX) XCEXP (RTX, 1, SET)
#define SET_IS_RETURN_P(RTX)						\
  (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)

/* For a TRAP_IF rtx, TRAP_CONDITION is an expression.  */
#define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
#define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)

/* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
   conditionally executing the code on, COND_EXEC_CODE is the code
   to execute if the condition is true.  */
#define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
#define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)

/* 1 if RTX is a symbol_ref that addresses this function's rtl
   constants pool.  */
#define CONSTANT_POOL_ADDRESS_P(RTX)					\
  (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)

/* 1 if RTX is a symbol_ref that addresses a value in the file's
   tree constant pool.  This information is private to varasm.c.  */
#define TREE_CONSTANT_POOL_ADDRESS_P(RTX)				\
  (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P",			\
		    (RTX), SYMBOL_REF)->frame_related)

/* Used if RTX is a symbol_ref, for machine-specific purposes.  */
#define SYMBOL_REF_FLAG(RTX)						\
  (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)

/* 1 if RTX is a symbol_ref that has been the library function in
   emit_library_call.  */
#define SYMBOL_REF_USED(RTX)						\
  (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)

/* 1 if RTX is a symbol_ref for a weak symbol.  */
#define SYMBOL_REF_WEAK(RTX)						\
  (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)

/* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
   SYMBOL_REF_CONSTANT.  */
#define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)

/* Set RTX's SYMBOL_REF_DECL to DECL.  RTX must not be a constant
   pool symbol.  */
#define SET_SYMBOL_REF_DECL(RTX, DECL) \
  (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))

/* The tree (decl or constant) associated with the symbol, or null.  */
#define SYMBOL_REF_DECL(RTX) \
  (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))

/* Set RTX's SYMBOL_REF_CONSTANT to C.  RTX must be a constant pool symbol.  */
#define SET_SYMBOL_REF_CONSTANT(RTX, C) \
  (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))

/* The rtx constant pool entry for a symbol, or null.  */
#define SYMBOL_REF_CONSTANT(RTX) \
  (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)

/* A set of flags on a symbol_ref that are, in some respects, redundant with
   information derivable from the tree decl associated with this symbol.
   Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
   decl.  In some cases this is a bug.  But beyond that, it's nice to cache
   this information to avoid recomputing it.  Finally, this allows space for
   the target to store more than one bit of information, as with
   SYMBOL_REF_FLAG.  */
#define SYMBOL_REF_FLAGS(RTX) \
  (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
   ->u2.symbol_ref_flags)

/* These flags are common enough to be defined for all targets.  They
   are computed by the default version of targetm.encode_section_info.  */

/* Set if this symbol is a function.  */
#define SYMBOL_FLAG_FUNCTION	(1 << 0)
#define SYMBOL_REF_FUNCTION_P(RTX) \
  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
/* Set if targetm.binds_local_p is true.  */
#define SYMBOL_FLAG_LOCAL	(1 << 1)
#define SYMBOL_REF_LOCAL_P(RTX) \
  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
/* Set if targetm.in_small_data_p is true.  */
#define SYMBOL_FLAG_SMALL	(1 << 2)
#define SYMBOL_REF_SMALL_P(RTX) \
  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
/* The three-bit field at [5:3] is true for TLS variables; use
   SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model.  */
#define SYMBOL_FLAG_TLS_SHIFT	3
#define SYMBOL_REF_TLS_MODEL(RTX) \
  ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
/* Set if this symbol is not defined in this translation unit.  */
#define SYMBOL_FLAG_EXTERNAL	(1 << 6)
#define SYMBOL_REF_EXTERNAL_P(RTX) \
  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
/* Set if this symbol has a block_symbol structure associated with it.  */
#define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
#define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
/* Set if this symbol is a section anchor.  SYMBOL_REF_ANCHOR_P implies
   SYMBOL_REF_HAS_BLOCK_INFO_P.  */
#define SYMBOL_FLAG_ANCHOR	(1 << 8)
#define SYMBOL_REF_ANCHOR_P(RTX) \
  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)

/* Subsequent bits are available for the target to use.  */
#define SYMBOL_FLAG_MACH_DEP_SHIFT	9
#define SYMBOL_FLAG_MACH_DEP		(1 << SYMBOL_FLAG_MACH_DEP_SHIFT)

/* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
   structure to which the symbol belongs, or NULL if it has not been
   assigned a block.  */
#define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)

/* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
   the first object in SYMBOL_REF_BLOCK (RTX).  The value is negative if
   RTX has not yet been assigned to a block, or it has not been given an
   offset within that block.  */
#define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)

/* True if RTX is flagged to be a scheduling barrier.  */
#define PREFETCH_SCHEDULE_BARRIER_P(RTX)					\
  (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)

/* Indicate whether the machine has any sort of auto increment addressing.
   If not, we can avoid checking for REG_INC notes.  */

#if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
     || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
     || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
     || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
#define AUTO_INC_DEC 1
#else
#define AUTO_INC_DEC 0
#endif

/* Define a macro to look for REG_INC notes,
   but save time on machines where they never exist.  */

#if AUTO_INC_DEC
#define FIND_REG_INC_NOTE(INSN, REG)			\
  ((REG) != NULL_RTX && REG_P ((REG))			\
   ? find_regno_note ((INSN), REG_INC, REGNO (REG))	\
   : find_reg_note ((INSN), REG_INC, (REG)))
#else
#define FIND_REG_INC_NOTE(INSN, REG) 0
#endif

#ifndef HAVE_PRE_INCREMENT
#define HAVE_PRE_INCREMENT 0
#endif

#ifndef HAVE_PRE_DECREMENT
#define HAVE_PRE_DECREMENT 0
#endif

#ifndef HAVE_POST_INCREMENT
#define HAVE_POST_INCREMENT 0
#endif

#ifndef HAVE_POST_DECREMENT
#define HAVE_POST_DECREMENT 0
#endif

#ifndef HAVE_POST_MODIFY_DISP
#define HAVE_POST_MODIFY_DISP 0
#endif

#ifndef HAVE_POST_MODIFY_REG
#define HAVE_POST_MODIFY_REG 0
#endif

#ifndef HAVE_PRE_MODIFY_DISP
#define HAVE_PRE_MODIFY_DISP 0
#endif

#ifndef HAVE_PRE_MODIFY_REG
#define HAVE_PRE_MODIFY_REG 0
#endif


/* Some architectures do not have complete pre/post increment/decrement
   instruction sets, or only move some modes efficiently.  These macros
   allow us to tune autoincrement generation.  */

#ifndef USE_LOAD_POST_INCREMENT
#define USE_LOAD_POST_INCREMENT(MODE)   HAVE_POST_INCREMENT
#endif

#ifndef USE_LOAD_POST_DECREMENT
#define USE_LOAD_POST_DECREMENT(MODE)   HAVE_POST_DECREMENT
#endif

#ifndef USE_LOAD_PRE_INCREMENT
#define USE_LOAD_PRE_INCREMENT(MODE)    HAVE_PRE_INCREMENT
#endif

#ifndef USE_LOAD_PRE_DECREMENT
#define USE_LOAD_PRE_DECREMENT(MODE)    HAVE_PRE_DECREMENT
#endif

#ifndef USE_STORE_POST_INCREMENT
#define USE_STORE_POST_INCREMENT(MODE)  HAVE_POST_INCREMENT
#endif

#ifndef USE_STORE_POST_DECREMENT
#define USE_STORE_POST_DECREMENT(MODE)  HAVE_POST_DECREMENT
#endif

#ifndef USE_STORE_PRE_INCREMENT
#define USE_STORE_PRE_INCREMENT(MODE)   HAVE_PRE_INCREMENT
#endif

#ifndef USE_STORE_PRE_DECREMENT
#define USE_STORE_PRE_DECREMENT(MODE)   HAVE_PRE_DECREMENT
#endif

/* Nonzero when we are generating CONCATs.  */
extern int generating_concat_p;

/* Nonzero when we are expanding trees to RTL.  */
extern int currently_expanding_to_rtl;

/* Generally useful functions.  */

#ifndef GENERATOR_FILE
/* Return the cost of SET X.  SPEED_P is true if optimizing for speed
   rather than size.  */

static inline int
set_rtx_cost (rtx x, bool speed_p)
{
  return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
}

/* Like set_rtx_cost, but return both the speed and size costs in C.  */

static inline void
get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
{
  get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
}

/* Return the cost of moving X into a register, relative to the cost
   of a register move.  SPEED_P is true if optimizing for speed rather
   than size.  */

static inline int
set_src_cost (rtx x, machine_mode mode, bool speed_p)
{
  return rtx_cost (x, mode, SET, 1, speed_p);
}

/* Like set_src_cost, but return both the speed and size costs in C.  */

static inline void
get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
{
  get_full_rtx_cost (x, mode, SET, 1, c);
}
#endif

/* A convenience macro to validate the arguments of a zero_extract
   expression.  It determines whether SIZE lies inclusively within
   [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
   and the sum lies inclusively within [1, RANGE].  RANGE must be
   >= 1, but SIZE and POS may be negative.  */
#define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
  (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
   && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
			   - (unsigned HOST_WIDE_INT)(POS)))

/* In explow.c */
extern HOST_WIDE_INT trunc_int_for_mode	(HOST_WIDE_INT, machine_mode);
extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
extern HOST_WIDE_INT get_stack_check_protect (void);

/* In rtl.c */
extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
inline rtx
rtx_init (rtx rt, RTX_CODE code)
{
  memset (rt, 0, RTX_HDR_SIZE);
  PUT_CODE (rt, code);
  return rt;
}
#define rtx_alloca(code) \
  rtx_init ((rtx) alloca (RTX_CODE_SIZE ((code))), (code))
extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
#define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
#define const_wide_int_alloc(NWORDS)				\
  rtx_alloc_v (CONST_WIDE_INT,					\
	       (sizeof (struct hwivec_def)			\
		+ ((NWORDS)-1) * sizeof (HOST_WIDE_INT)))	\

extern rtvec rtvec_alloc (int);
extern rtvec shallow_copy_rtvec (rtvec);
extern bool shared_const_p (const_rtx);
extern rtx copy_rtx (rtx);
extern enum rtx_code classify_insn (rtx);
extern void dump_rtx_statistics (void);

/* In emit-rtl.c */
extern rtx copy_rtx_if_shared (rtx);

/* In rtl.c */
extern unsigned int rtx_size (const_rtx);
extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
extern int rtx_equal_p (const_rtx, const_rtx);
extern bool rtvec_all_equal_p (const_rtvec);

/* Return true if X is a vector constant with a duplicated element value.  */

inline bool
const_vec_duplicate_p (const_rtx x)
{
  return (GET_CODE (x) == CONST_VECTOR
	  && CONST_VECTOR_NPATTERNS (x) == 1
	  && CONST_VECTOR_DUPLICATE_P (x));
}

/* Return true if X is a vector constant with a duplicated element value.
   Store the duplicated element in *ELT if so.  */

template <typename T>
inline bool
const_vec_duplicate_p (T x, T *elt)
{
  if (const_vec_duplicate_p (x))
    {
      *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
      return true;
    }
  return false;
}

/* Return true if X is a vector with a duplicated element value, either
   constant or nonconstant.  Store the duplicated element in *ELT if so.  */

template <typename T>
inline bool
vec_duplicate_p (T x, T *elt)
{
  if (GET_CODE (x) == VEC_DUPLICATE
      && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
    {
      *elt = XEXP (x, 0);
      return true;
    }
  return const_vec_duplicate_p (x, elt);
}

/* If X is a vector constant with a duplicated element value, return that
   element value, otherwise return X.  */

template <typename T>
inline T
unwrap_const_vec_duplicate (T x)
{
  if (const_vec_duplicate_p (x))
    x = CONST_VECTOR_ELT (x, 0);
  return x;
}

/* In emit-rtl.c.  */
extern wide_int const_vector_int_elt (const_rtx, unsigned int);
extern rtx const_vector_elt (const_rtx, unsigned int);
extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);

/* Return true if X is an integer constant vector that contains a linear
   series of the form:

   { B, B + S, B + 2 * S, B + 3 * S, ... }

   for a nonzero S.  Store B and S in *BASE_OUT and *STEP_OUT on sucess.  */

inline bool
const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
{
  if (GET_CODE (x) == CONST_VECTOR
      && CONST_VECTOR_NPATTERNS (x) == 1
      && !CONST_VECTOR_DUPLICATE_P (x))
    return const_vec_series_p_1 (x, base_out, step_out);
  return false;
}

/* Return true if X is a vector that contains a linear series of the
   form:

   { B, B + S, B + 2 * S, B + 3 * S, ... }

   where B and S are constant or nonconstant.  Store B and S in
   *BASE_OUT and *STEP_OUT on sucess.  */

inline bool
vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
{
  if (GET_CODE (x) == VEC_SERIES)
    {
      *base_out = XEXP (x, 0);
      *step_out = XEXP (x, 1);
      return true;
    }
  return const_vec_series_p (x, base_out, step_out);
}

/* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X.  */

inline scalar_int_mode
subreg_unpromoted_mode (rtx x)
{
  gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
  return as_a <scalar_int_mode> (GET_MODE (x));
}

/* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X.  */

inline scalar_int_mode
subreg_promoted_mode (rtx x)
{
  gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
  return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
}

/* In emit-rtl.c */
extern rtvec gen_rtvec_v (int, rtx *);
extern rtvec gen_rtvec_v (int, rtx_insn **);
extern rtx gen_reg_rtx (machine_mode);
extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
extern rtx gen_reg_rtx_and_attrs (rtx);
extern rtx_code_label *gen_label_rtx (void);
extern rtx gen_lowpart_common (machine_mode, rtx);

/* In cse.c */
extern rtx gen_lowpart_if_possible (machine_mode, rtx);

/* In emit-rtl.c */
extern rtx gen_highpart (machine_mode, rtx);
extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);

/* In emit-rtl.c */
extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
extern int subreg_lowpart_p (const_rtx);
extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64);

/* Return true if a subreg of mode OUTERMODE would only access part of
   an inner register with mode INNERMODE.  The other bits of the inner
   register would then be "don't care" on read.  The behavior for writes
   depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
   chunk would be clobbered but other bits would be preserved.  */

inline bool
partial_subreg_p (machine_mode outermode, machine_mode innermode)
{
  /* Modes involved in a subreg must be ordered.  In particular, we must
     always know at compile time whether the subreg is paradoxical.  */
  poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
  poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
  gcc_checking_assert (ordered_p (outer_prec, inner_prec));
  return maybe_lt (outer_prec, inner_prec);
}

/* Likewise return true if X is a subreg that is smaller than the inner
   register.  Use read_modify_subreg_p to test whether writing to such
   a subreg preserves any part of the inner register.  */

inline bool
partial_subreg_p (const_rtx x)
{
  if (GET_CODE (x) != SUBREG)
    return false;
  return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
}

/* Return true if a subreg with the given outer and inner modes is
   paradoxical.  */

inline bool
paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
{
  /* Modes involved in a subreg must be ordered.  In particular, we must
     always know at compile time whether the subreg is paradoxical.  */
  poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
  poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
  gcc_checking_assert (ordered_p (outer_prec, inner_prec));
  return maybe_gt (outer_prec, inner_prec);
}

/* Return true if X is a paradoxical subreg, false otherwise.  */

inline bool
paradoxical_subreg_p (const_rtx x)
{
  if (GET_CODE (x) != SUBREG)
    return false;
  return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
}

/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value.  */

inline poly_uint64
subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
{
  return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
				     GET_MODE_SIZE (innermode));
}

/* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
   return the smaller of the two modes if they are different sizes,
   otherwise return the outer mode.  */

inline machine_mode
narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
{
  return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
}

/* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
   return the mode that is big enough to hold both the outer and inner
   values.  Prefer the outer mode in the event of a tie.  */

inline machine_mode
wider_subreg_mode (machine_mode outermode, machine_mode innermode)
{
  return partial_subreg_p (outermode, innermode) ? innermode : outermode;
}

/* Likewise for subreg X.  */

inline machine_mode
wider_subreg_mode (const_rtx x)
{
  return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
}

extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64);

/* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value.  */

inline poly_uint64
subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
{
  return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
				      GET_MODE_SIZE (innermode));
}

extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
					poly_uint64);
extern poly_int64 subreg_memory_offset (const_rtx);
extern rtx make_safe_from (rtx, rtx);
extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
						addr_space_t, bool, bool);
extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
					      addr_space_t);
#define convert_memory_address(to_mode,x) \
	convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
extern const char *get_insn_name (int);
extern rtx_insn *get_last_insn_anywhere (void);
extern rtx_insn *get_first_nonnote_insn (void);
extern rtx_insn *get_last_nonnote_insn (void);
extern void start_sequence (void);
extern void push_to_sequence (rtx_insn *);
extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
extern void end_sequence (void);
#if TARGET_SUPPORTS_WIDE_INT == 0
extern double_int rtx_to_double_int (const_rtx);
#endif
extern void cwi_output_hex (FILE *, const_rtx);
#if TARGET_SUPPORTS_WIDE_INT == 0
extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
			       machine_mode);
#endif
extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);

/* In varasm.c  */
extern rtx force_const_mem (machine_mode, rtx);

/* In varasm.c  */

struct function;
extern rtx get_pool_constant (const_rtx);
extern rtx get_pool_constant_mark (rtx, bool *);
extern fixed_size_mode get_pool_mode (const_rtx);
extern rtx simplify_subtraction (rtx);
extern void decide_function_section (tree);

/* In emit-rtl.c */
extern rtx_insn *emit_insn_before (rtx, rtx_insn *);
extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t);
extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *);
extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *,
						    location_t);
extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t);
extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *);
extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t);
extern rtx_barrier *emit_barrier_before (rtx_insn *);
extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *);
extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
extern rtx_insn *emit_insn_after (rtx, rtx_insn *);
extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block);
extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t);
extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *);
extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *);
extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t);
extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *);
extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *);
extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t);
extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *);
extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *);
extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t);
extern rtx_barrier *emit_barrier_after (rtx_insn *);
extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *);
extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
extern rtx_insn *emit_insn (rtx);
extern rtx_insn *emit_debug_insn (rtx);
extern rtx_insn *emit_jump_insn (rtx);
extern rtx_insn *emit_call_insn (rtx);
extern rtx_code_label *emit_label (rtx);
extern rtx_jump_table_data *emit_jump_table_data (rtx);
extern rtx_barrier *emit_barrier (void);
extern rtx_note *emit_note (enum insn_note);
extern rtx_note *emit_note_copy (rtx_note *);
extern rtx_insn *gen_clobber (rtx);
extern rtx_insn *emit_clobber (rtx);
extern rtx_insn *gen_use (rtx);
extern rtx_insn *emit_use (rtx);
extern rtx_insn *make_insn_raw (rtx);
extern void add_function_usage_to (rtx, rtx);
extern rtx_call_insn *last_call_insn (void);
extern rtx_insn *previous_insn (rtx_insn *);
extern rtx_insn *next_insn (rtx_insn *);
extern rtx_insn *prev_nonnote_insn (rtx_insn *);
extern rtx_insn *next_nonnote_insn (rtx_insn *);
extern rtx_insn *prev_nondebug_insn (rtx_insn *);
extern rtx_insn *next_nondebug_insn (rtx_insn *);
extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
extern rtx_insn *prev_real_insn (rtx_insn *);
extern rtx_insn *next_real_insn (rtx_insn *);
extern rtx_insn *prev_real_nondebug_insn (rtx_insn *);
extern rtx_insn *next_real_nondebug_insn (rtx);
extern rtx_insn *prev_active_insn (rtx_insn *);
extern rtx_insn *next_active_insn (rtx_insn *);
extern int active_insn_p (const rtx_insn *);
extern rtx_insn *next_cc0_user (rtx_insn *);
extern rtx_insn *prev_cc0_setter (rtx_insn *);

/* In emit-rtl.c  */
extern int insn_line (const rtx_insn *);
extern const char * insn_file (const rtx_insn *);
extern tree insn_scope (const rtx_insn *);
extern expanded_location insn_location (const rtx_insn *);
extern location_t prologue_location, epilogue_location;

/* In jump.c */
extern enum rtx_code reverse_condition (enum rtx_code);
extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
extern enum rtx_code swap_condition (enum rtx_code);
extern enum rtx_code unsigned_condition (enum rtx_code);
extern enum rtx_code signed_condition (enum rtx_code);
extern void mark_jump_label (rtx, rtx_insn *, int);

/* Return true if integer comparison operator CODE interprets its operands
   as unsigned.  */

inline bool
unsigned_condition_p (enum rtx_code code)
{
  return unsigned_condition (code) == code;
}

/* In jump.c */
extern rtx_insn *delete_related_insns (rtx);

/* In recog.c  */
extern rtx *find_constant_term_loc (rtx *);

/* In emit-rtl.c  */
extern rtx_insn *try_split (rtx, rtx_insn *, int);

/* In insn-recog.c (generated by genrecog).  */
extern rtx_insn *split_insns (rtx, rtx_insn *);

/* In simplify-rtx.c  */
extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
					   rtx, machine_mode);
extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
				     machine_mode);
extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
					    rtx, rtx);
extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
				      rtx);
extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
				       machine_mode, rtx, rtx, rtx);
extern rtx simplify_const_relational_operation (enum rtx_code,
						machine_mode, rtx, rtx);
extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
					  machine_mode, rtx, rtx);
extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
			       machine_mode);
extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
				 machine_mode, rtx, rtx, rtx);
extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
				    machine_mode, rtx, rtx);
extern rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
				    rtx (*fn) (rtx, const_rtx, void *), void *);
extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
extern rtx simplify_rtx (const_rtx);
extern rtx avoid_constant_pool_reference (rtx);
extern rtx delegitimize_mem_from_attrs (rtx);
extern bool mode_signbit_p (machine_mode, const_rtx);
extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
extern bool val_signbit_known_set_p (machine_mode,
				     unsigned HOST_WIDE_INT);
extern bool val_signbit_known_clear_p (machine_mode,
				       unsigned HOST_WIDE_INT);

/* In reginfo.c  */
extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
					  const predefined_function_abi *);
extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);

/* In emit-rtl.c  */
extern rtx set_for_reg_notes (rtx);
extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
extern void set_insn_deleted (rtx_insn *);

/* Functions in rtlanal.c */

extern rtx single_set_2 (const rtx_insn *, const_rtx);
extern bool contains_symbol_ref_p (const_rtx);
extern bool contains_symbolic_reference_p (const_rtx);
extern bool contains_constant_pool_address_p (const_rtx);

/* Handle the cheap and common cases inline for performance.  */

inline rtx single_set (const rtx_insn *insn)
{
  if (!INSN_P (insn))
    return NULL_RTX;

  if (GET_CODE (PATTERN (insn)) == SET)
    return PATTERN (insn);

  /* Defer to the more expensive case.  */
  return single_set_2 (insn, PATTERN (insn));
}

extern scalar_int_mode get_address_mode (rtx mem);
extern int rtx_addr_can_trap_p (const_rtx);
extern bool nonzero_address_p (const_rtx);
extern int rtx_unstable_p (const_rtx);
extern bool rtx_varies_p (const_rtx, bool);
extern bool rtx_addr_varies_p (const_rtx, bool);
extern rtx get_call_rtx_from (const rtx_insn *);
extern tree get_call_fndecl (const rtx_insn *);
extern HOST_WIDE_INT get_integer_term (const_rtx);
extern rtx get_related_value (const_rtx);
extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
extern void split_const (rtx, rtx *, rtx *);
extern rtx strip_offset (rtx, poly_int64_pod *);
extern poly_int64 get_args_size (const_rtx);
extern bool unsigned_reg_p (rtx);
extern int reg_mentioned_p (const_rtx, const_rtx);
extern int count_occurrences (const_rtx, const_rtx, int);
extern int reg_referenced_p (const_rtx, const_rtx);
extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
extern int commutative_operand_precedence (rtx);
extern bool swap_commutative_operands_p (rtx, rtx);
extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
extern int modified_in_p (const_rtx, const_rtx);
extern int reg_set_p (const_rtx, const_rtx);
extern int multiple_sets (const_rtx);
extern int set_noop_p (const_rtx);
extern int noop_move_p (const rtx_insn *);
extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
extern const_rtx set_of (const_rtx, const_rtx);
extern void record_hard_reg_sets (rtx, const_rtx, void *);
extern void record_hard_reg_uses (rtx *, void *);
extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
extern void note_pattern_stores (const_rtx,
				 void (*) (rtx, const_rtx, void *), void *);
extern void note_stores (const rtx_insn *,
			 void (*) (rtx, const_rtx, void *), void *);
extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
extern int dead_or_set_p (const rtx_insn *, const_rtx);
extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
extern rtx find_reg_equal_equiv_note (const_rtx);
extern rtx find_constant_src (const rtx_insn *);
extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
extern void add_reg_note (rtx, enum reg_note, rtx);
extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
extern void add_args_size_note (rtx_insn *, poly_int64);
extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
extern rtx duplicate_reg_note (rtx);
extern void remove_note (rtx_insn *, const_rtx);
extern bool remove_reg_equal_equiv_notes (rtx_insn *, bool = false);
extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
extern int side_effects_p (const_rtx);
extern int volatile_refs_p (const_rtx);
extern int volatile_insn_p (const_rtx);
extern int may_trap_p_1 (const_rtx, unsigned);
extern int may_trap_p (const_rtx);
extern int may_trap_or_fault_p (const_rtx);
extern bool can_throw_internal (const_rtx);
extern bool can_throw_external (const_rtx);
extern bool insn_could_throw_p (const_rtx);
extern bool insn_nothrow_p (const_rtx);
extern bool can_nonlocal_goto (const rtx_insn *);
extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
extern void replace_label (rtx *, rtx, rtx, bool);
extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
extern bool rtx_referenced_p (const_rtx, const_rtx);
extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
extern rtx tablejump_casesi_pattern (const rtx_insn *insn);
extern int computed_jump_p (const rtx_insn *);
extern bool tls_referenced_p (const_rtx);
extern bool contains_mem_rtx_p (rtx x);

/* Overload for refers_to_regno_p for checking a single register.  */
inline bool
refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
{
  return refers_to_regno_p (regnum, regnum + 1, x, loc);
}

/* Callback for for_each_inc_dec, to process the autoinc operation OP
   within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
   NULL.  The callback is passed the same opaque ARG passed to
   for_each_inc_dec.  Return zero to continue looking for other
   autoinc operations or any other value to interrupt the traversal and
   return that value to the caller of for_each_inc_dec.  */
typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
				    rtx srcoff, void *arg);
extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);

typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
                                              rtx *, rtx *);
extern int rtx_equal_p_cb (const_rtx, const_rtx,
                           rtx_equal_p_callback_function);

typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
                                           machine_mode *);
extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
                             bool, hash_rtx_callback_function);

extern rtx regno_use_in (unsigned int, rtx);
extern int auto_inc_p (const_rtx);
extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
extern int loc_mentioned_in_p (rtx *, const_rtx);
extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
extern bool keep_with_call_p (const rtx_insn *);
extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
extern int pattern_cost (rtx, bool);
extern int insn_cost (rtx_insn *, bool);
extern unsigned seq_cost (const rtx_insn *, bool);

/* Given an insn and condition, return a canonical description of
   the test being made.  */
extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
				   int, int);

/* Given a JUMP_INSN, return a canonical description of the test
   being made.  */
extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);

/* Information about a subreg of a hard register.  */
struct subreg_info
{
  /* Offset of first hard register involved in the subreg.  */
  int offset;
  /* Number of hard registers involved in the subreg.  In the case of
     a paradoxical subreg, this is the number of registers that would
     be modified by writing to the subreg; some of them may be don't-care
     when reading from the subreg.  */
  int nregs;
  /* Whether this subreg can be represented as a hard reg with the new
     mode (by adding OFFSET to the original hard register).  */
  bool representable_p;
};

extern void subreg_get_info (unsigned int, machine_mode,
			     poly_uint64, machine_mode,
			     struct subreg_info *);

/* lists.c */

extern void free_EXPR_LIST_list (rtx_expr_list **);
extern void free_INSN_LIST_list (rtx_insn_list **);
extern void free_EXPR_LIST_node (rtx);
extern void free_INSN_LIST_node (rtx);
extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
extern rtx remove_list_elem (rtx, rtx *);
extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);


/* reginfo.c */

/* Resize reg info.  */
extern bool resize_reg_info (void);
/* Free up register info memory.  */
extern void free_reg_info (void);
extern void init_subregs_of_mode (void);
extern void finish_subregs_of_mode (void);

/* recog.c */
extern rtx extract_asm_operands (rtx);
extern int asm_noperands (const_rtx);
extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
					machine_mode *, location_t *);
extern void get_referenced_operands (const char *, bool *, unsigned int);

extern enum reg_class reg_preferred_class (int);
extern enum reg_class reg_alternate_class (int);
extern enum reg_class reg_allocno_class (int);
extern void setup_reg_classes (int, enum reg_class, enum reg_class,
			       enum reg_class);

extern void split_all_insns (void);
extern unsigned int split_all_insns_noflow (void);

#define MAX_SAVED_CONST_INT 64
extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];

#define const0_rtx	(const_int_rtx[MAX_SAVED_CONST_INT])
#define const1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+1])
#define const2_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+2])
#define constm1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT-1])
extern GTY(()) rtx const_true_rtx;

extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];

/* Returns a constant 0 rtx in mode MODE.  Integer modes are treated the
   same as VOIDmode.  */

#define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])

/* Likewise, for the constants 1 and 2 and -1.  */

#define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
#define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
#define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])

extern GTY(()) rtx pc_rtx;
extern GTY(()) rtx cc0_rtx;
extern GTY(()) rtx ret_rtx;
extern GTY(()) rtx simple_return_rtx;
extern GTY(()) rtx_insn *invalid_insn_rtx;

/* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
   is used to represent the frame pointer.  This is because the
   hard frame pointer and the automatic variables are separated by an amount
   that cannot be determined until after register allocation.  We can assume
   that in this case ELIMINABLE_REGS will be defined, one action of which
   will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM.  */
#ifndef HARD_FRAME_POINTER_REGNUM
#define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
#endif

#ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
#define HARD_FRAME_POINTER_IS_FRAME_POINTER \
  (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
#endif

#ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
#define HARD_FRAME_POINTER_IS_ARG_POINTER \
  (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
#endif

/* Index labels for global_rtl.  */
enum global_rtl_index
{
  GR_STACK_POINTER,
  GR_FRAME_POINTER,
/* For register elimination to work properly these hard_frame_pointer_rtx,
   frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
   the same register.  */
#if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
  GR_ARG_POINTER = GR_FRAME_POINTER,
#endif
#if HARD_FRAME_POINTER_IS_FRAME_POINTER
  GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
#else
  GR_HARD_FRAME_POINTER,
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
#if HARD_FRAME_POINTER_IS_ARG_POINTER
  GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
#else
  GR_ARG_POINTER,
#endif
#endif
  GR_VIRTUAL_INCOMING_ARGS,
  GR_VIRTUAL_STACK_ARGS,
  GR_VIRTUAL_STACK_DYNAMIC,
  GR_VIRTUAL_OUTGOING_ARGS,
  GR_VIRTUAL_CFA,
  GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,

  GR_MAX
};

/* Target-dependent globals.  */
struct GTY(()) target_rtl {
  /* All references to the hard registers in global_rtl_index go through
     these unique rtl objects.  On machines where the frame-pointer and
     arg-pointer are the same register, they use the same unique object.

     After register allocation, other rtl objects which used to be pseudo-regs
     may be clobbered to refer to the frame-pointer register.
     But references that were originally to the frame-pointer can be
     distinguished from the others because they contain frame_pointer_rtx.

     When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
     tricky: until register elimination has taken place hard_frame_pointer_rtx
     should be used if it is being set, and frame_pointer_rtx otherwise.  After
     register elimination hard_frame_pointer_rtx should always be used.
     On machines where the two registers are same (most) then these are the
     same.  */
  rtx x_global_rtl[GR_MAX];

  /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM).  */
  rtx x_pic_offset_table_rtx;

  /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
     This is used to implement __builtin_return_address for some machines;
     see for instance the MIPS port.  */
  rtx x_return_address_pointer_rtx;

  /* Commonly used RTL for hard registers.  These objects are not
     necessarily unique, so we allocate them separately from global_rtl.
     They are initialized once per compilation unit, then copied into
     regno_reg_rtx at the beginning of each function.  */
  rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];

  /* A sample (mem:M stack_pointer_rtx) rtx for each mode M.  */
  rtx x_top_of_stack[MAX_MACHINE_MODE];

  /* Static hunks of RTL used by the aliasing code; these are treated
     as persistent to avoid unnecessary RTL allocations.  */
  rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];

  /* The default memory attributes for each mode.  */
  class mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];

  /* Track if RTL has been initialized.  */
  bool target_specific_initialized;
};

extern GTY(()) struct target_rtl default_target_rtl;
#if SWITCHABLE_TARGET
extern struct target_rtl *this_target_rtl;
#else
#define this_target_rtl (&default_target_rtl)
#endif

#define global_rtl				\
  (this_target_rtl->x_global_rtl)
#define pic_offset_table_rtx \
  (this_target_rtl->x_pic_offset_table_rtx)
#define return_address_pointer_rtx \
  (this_target_rtl->x_return_address_pointer_rtx)
#define top_of_stack \
  (this_target_rtl->x_top_of_stack)
#define mode_mem_attrs \
  (this_target_rtl->x_mode_mem_attrs)

/* All references to certain hard regs, except those created
   by allocating pseudo regs into them (when that's possible),
   go through these unique rtx objects.  */
#define stack_pointer_rtx       (global_rtl[GR_STACK_POINTER])
#define frame_pointer_rtx       (global_rtl[GR_FRAME_POINTER])
#define hard_frame_pointer_rtx	(global_rtl[GR_HARD_FRAME_POINTER])
#define arg_pointer_rtx		(global_rtl[GR_ARG_POINTER])

#ifndef GENERATOR_FILE
/* Return the attributes of a MEM rtx.  */
static inline const class mem_attrs *
get_mem_attrs (const_rtx x)
{
  class mem_attrs *attrs;

  attrs = MEM_ATTRS (x);
  if (!attrs)
    attrs = mode_mem_attrs[(int) GET_MODE (x)];
  return attrs;
}
#endif

/* Include the RTL generation functions.  */

#ifndef GENERATOR_FILE
#include "genrtl.h"
#undef gen_rtx_ASM_INPUT
#define gen_rtx_ASM_INPUT(MODE, ARG0)				\
  gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
#define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC)			\
  gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
#endif

/* There are some RTL codes that require special attention; the
   generation functions included above do the raw handling.  If you
   add to this list, modify special_rtx in gengenrtl.c as well.  */

extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
extern rtx_insn *
gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
	      basic_block bb, rtx pattern, int location, int code,
	      rtx reg_notes);
extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
extern rtx init_raw_REG (rtx, machine_mode, unsigned int);
extern rtx gen_raw_REG (machine_mode, unsigned int);
#define alloca_raw_REG(mode, regno) \
  init_raw_REG (rtx_alloca (REG), (mode), (regno))
extern rtx gen_rtx_REG (machine_mode, unsigned int);
extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
extern rtx gen_rtx_MEM (machine_mode, rtx);
extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
				 enum var_init_status);

#ifdef GENERATOR_FILE
#define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
#else
static inline void
PUT_MODE (rtx x, machine_mode mode)
{
  if (REG_P (x))
    set_mode_and_regno (x, mode, REGNO (x));
  else
    PUT_MODE_RAW (x, mode);
}
#endif

#define GEN_INT(N)  gen_rtx_CONST_INT (VOIDmode, (N))

/* Virtual registers are used during RTL generation to refer to locations into
   the stack frame when the actual location isn't known until RTL generation
   is complete.  The routine instantiate_virtual_regs replaces these with
   the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
   a constant.  */

#define FIRST_VIRTUAL_REGISTER	(FIRST_PSEUDO_REGISTER)

/* This points to the first word of the incoming arguments passed on the stack,
   either by the caller or by the callee when pretending it was passed by the
   caller.  */

#define virtual_incoming_args_rtx       (global_rtl[GR_VIRTUAL_INCOMING_ARGS])

#define VIRTUAL_INCOMING_ARGS_REGNUM	(FIRST_VIRTUAL_REGISTER)

/* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
   variable on the stack.  Otherwise, it points to the first variable on
   the stack.  */

#define virtual_stack_vars_rtx	        (global_rtl[GR_VIRTUAL_STACK_ARGS])

#define VIRTUAL_STACK_VARS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 1)

/* This points to the location of dynamically-allocated memory on the stack
   immediately after the stack pointer has been adjusted by the amount
   desired.  */

#define virtual_stack_dynamic_rtx	(global_rtl[GR_VIRTUAL_STACK_DYNAMIC])

#define VIRTUAL_STACK_DYNAMIC_REGNUM	((FIRST_VIRTUAL_REGISTER) + 2)

/* This points to the location in the stack at which outgoing arguments should
   be written when the stack is pre-pushed (arguments pushed using push
   insns always use sp).  */

#define virtual_outgoing_args_rtx	(global_rtl[GR_VIRTUAL_OUTGOING_ARGS])

#define VIRTUAL_OUTGOING_ARGS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 3)

/* This points to the Canonical Frame Address of the function.  This
   should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
   but is calculated relative to the arg pointer for simplicity; the
   frame pointer nor stack pointer are necessarily fixed relative to
   the CFA until after reload.  */

#define virtual_cfa_rtx			(global_rtl[GR_VIRTUAL_CFA])

#define VIRTUAL_CFA_REGNUM		((FIRST_VIRTUAL_REGISTER) + 4)

#define LAST_VIRTUAL_POINTER_REGISTER	((FIRST_VIRTUAL_REGISTER) + 4)

/* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
   when finalized.  */

#define virtual_preferred_stack_boundary_rtx \
	(global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])

#define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
					((FIRST_VIRTUAL_REGISTER) + 5)

#define LAST_VIRTUAL_REGISTER		((FIRST_VIRTUAL_REGISTER) + 5)

/* Nonzero if REGNUM is a pointer into the stack frame.  */
#define REGNO_PTR_FRAME_P(REGNUM)		\
  ((REGNUM) == STACK_POINTER_REGNUM		\
   || (REGNUM) == FRAME_POINTER_REGNUM		\
   || (REGNUM) == HARD_FRAME_POINTER_REGNUM	\
   || (REGNUM) == ARG_POINTER_REGNUM		\
   || ((REGNUM) >= FIRST_VIRTUAL_REGISTER	\
       && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))

/* REGNUM never really appearing in the INSN stream.  */
#define INVALID_REGNUM			(~(unsigned int) 0)

/* REGNUM for which no debug information can be generated.  */
#define IGNORED_DWARF_REGNUM            (INVALID_REGNUM - 1)

extern rtx output_constant_def (tree, int);
extern rtx lookup_constant_def (tree);

/* Nonzero after end of reload pass.
   Set to 1 or 0 by reload1.c.  */

extern int reload_completed;

/* Nonzero after thread_prologue_and_epilogue_insns has run.  */
extern int epilogue_completed;

/* Set to 1 while reload_as_needed is operating.
   Required by some machines to handle any generated moves differently.  */

extern int reload_in_progress;

/* Set to 1 while in lra.  */
extern int lra_in_progress;

/* This macro indicates whether you may create a new
   pseudo-register.  */

#define can_create_pseudo_p() (!reload_in_progress && !reload_completed)

#ifdef STACK_REGS
/* Nonzero after end of regstack pass.
   Set to 1 or 0 by reg-stack.c.  */
extern int regstack_completed;
#endif

/* If this is nonzero, we do not bother generating VOLATILE
   around volatile memory references, and we are willing to
   output indirect addresses.  If cse is to follow, we reject
   indirect addresses so a useful potential cse is generated;
   if it is used only once, instruction combination will produce
   the same indirect address eventually.  */
extern int cse_not_expected;

/* Translates rtx code to tree code, for those codes needed by
   real_arithmetic.  The function returns an int because the caller may not
   know what `enum tree_code' means.  */

extern int rtx_to_tree_code (enum rtx_code);

/* In cse.c */
extern int delete_trivially_dead_insns (rtx_insn *, int);
extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);

/* In dse.c */
extern bool check_for_inc_dec (rtx_insn *insn);

/* In jump.c */
extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
extern bool jump_to_label_p (const rtx_insn *);
extern int condjump_p (const rtx_insn *);
extern int any_condjump_p (const rtx_insn *);
extern int any_uncondjump_p (const rtx_insn *);
extern rtx pc_set (const rtx_insn *);
extern rtx condjump_label (const rtx_insn *);
extern int simplejump_p (const rtx_insn *);
extern int returnjump_p (const rtx_insn *);
extern int eh_returnjump_p (rtx_insn *);
extern int onlyjump_p (const rtx_insn *);
extern int only_sets_cc0_p (const_rtx);
extern int sets_cc0_p (const_rtx);
extern int invert_jump_1 (rtx_jump_insn *, rtx);
extern int invert_jump (rtx_jump_insn *, rtx, int);
extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
extern int true_regnum (const_rtx);
extern unsigned int reg_or_subregno (const_rtx);
extern int redirect_jump_1 (rtx_insn *, rtx);
extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
extern int redirect_jump (rtx_jump_insn *, rtx, int);
extern void rebuild_jump_labels (rtx_insn *);
extern void rebuild_jump_labels_chain (rtx_insn *);
extern rtx reversed_comparison (const_rtx, machine_mode);
extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
						     const_rtx, const rtx_insn *);
extern void delete_for_peephole (rtx_insn *, rtx_insn *);
extern int condjump_in_parallel_p (const rtx_insn *);

/* In emit-rtl.c.  */
extern int max_reg_num (void);
extern int max_label_num (void);
extern int get_first_label_num (void);
extern void maybe_set_first_label_num (rtx_code_label *);
extern void delete_insns_since (rtx_insn *);
extern void mark_reg_pointer (rtx, int);
extern void mark_user_reg (rtx);
extern void reset_used_flags (rtx);
extern void set_used_flags (rtx);
extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
extern int get_max_insn_count (void);
extern int in_sequence_p (void);
extern void init_emit (void);
extern void init_emit_regs (void);
extern void init_derived_machine_modes (void);
extern void init_emit_once (void);
extern void push_topmost_sequence (void);
extern void pop_topmost_sequence (void);
extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
extern unsigned int unshare_all_rtl (void);
extern void unshare_all_rtl_again (rtx_insn *);
extern void unshare_all_rtl_in_chain (rtx_insn *);
extern void verify_rtl_sharing (void);
extern void add_insn (rtx_insn *);
extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block);
extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block);
extern void remove_insn (rtx_insn *);
extern rtx_insn *emit (rtx, bool = true);
extern void emit_insn_at_entry (rtx);
extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
extern rtx gen_const_mem (machine_mode, rtx);
extern rtx gen_frame_mem (machine_mode, rtx);
extern rtx gen_tmp_stack_mem (machine_mode, rtx);
extern bool validate_subreg (machine_mode, machine_mode,
			     const_rtx, poly_uint64);

/* In combine.c  */
extern unsigned int extended_count (const_rtx, machine_mode, int);
extern rtx remove_death (unsigned int, rtx_insn *);
extern void dump_combine_stats (FILE *);
extern void dump_combine_total_stats (FILE *);
extern rtx make_compound_operation (rtx, enum rtx_code);

/* In sched-rgn.c.  */
extern void schedule_insns (void);

/* In sched-ebb.c.  */
extern void schedule_ebbs (void);

/* In sel-sched-dump.c.  */
extern void sel_sched_fix_param (const char *param, const char *val);

/* In print-rtl.c */
extern const char *print_rtx_head;
extern void debug (const rtx_def &ref);
extern void debug (const rtx_def *ptr);
extern void debug_rtx (const_rtx);
extern void debug_rtx_list (const rtx_insn *, int);
extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
extern void print_mem_expr (FILE *, const_tree);
extern void print_rtl (FILE *, const_rtx);
extern void print_simple_rtl (FILE *, const_rtx);
extern int print_rtl_single (FILE *, const_rtx);
extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
extern void print_inline_rtx (FILE *, const_rtx, int);

/* In stmt.c */
extern void expand_null_return (void);
extern void expand_naked_return (void);
extern void emit_jump (rtx);

/* Memory operation built-ins differ by return value.  Mapping
   of the enum values is following:
   - RETURN_BEGIN - return destination, e.g. memcpy
   - RETURN_END - return destination + n, e.g. mempcpy
   - RETURN_END_MINUS_ONE - return a pointer to the terminating
    null byte of the string, e.g. strcpy
*/

enum memop_ret
{
  RETURN_BEGIN,
  RETURN_END,
  RETURN_END_MINUS_ONE
};

/* In expr.c */
extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
			   unsigned int, memop_ret);
extern poly_int64 find_args_size_adjust (rtx_insn *);
extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64);

/* In expmed.c */
extern void init_expmed (void);
extern void expand_inc (rtx, rtx);
extern void expand_dec (rtx, rtx);

/* In lower-subreg.c */
extern void init_lower_subreg (void);

/* In gcse.c */
extern bool can_copy_p (machine_mode);
extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
extern rtx_insn *prepare_copy_insn (rtx, rtx);

/* In cprop.c */
extern rtx fis_get_condition (rtx_insn *);

/* In ira.c */
extern HARD_REG_SET eliminable_regset;
extern void mark_elimination (int, int);

/* In reginfo.c */
extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
extern int reg_class_subset_p (reg_class_t, reg_class_t);
extern void globalize_reg (tree, int);
extern void init_reg_modes_target (void);
extern void init_regs (void);
extern void reinit_regs (void);
extern void init_fake_stack_mems (void);
extern void save_register_info (void);
extern void init_reg_sets (void);
extern void regclass (rtx, int);
extern void reg_scan (rtx_insn *, unsigned int);
extern void fix_register (const char *, int, int);
extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);

/* In reload1.c */
extern int function_invariant_p (const_rtx);

/* In calls.c */
enum libcall_type
{
  LCT_NORMAL = 0,
  LCT_CONST = 1,
  LCT_PURE = 2,
  LCT_NORETURN = 3,
  LCT_THROW = 4,
  LCT_RETURNS_TWICE = 5
};

extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
				      machine_mode, int, rtx_mode_t *);

/* Output a library call and discard the returned value.  FUN is the
   address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
   of the (discarded) return value.  FN_TYPE is LCT_NORMAL for `normal'
   calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
   another LCT_ value for other types of library calls.

   There are different overloads of this function for different numbers
   of arguments.  In each case the argument value is followed by its mode.  */

inline void
emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
{
  emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
}

inline void
emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
		   rtx arg1, machine_mode arg1_mode)
{
  rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
  emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
}

inline void
emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
		   rtx arg1, machine_mode arg1_mode,
		   rtx arg2, machine_mode arg2_mode)
{
  rtx_mode_t args[] = {
    rtx_mode_t (arg1, arg1_mode),
    rtx_mode_t (arg2, arg2_mode)
  };
  emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
}

inline void
emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
		   rtx arg1, machine_mode arg1_mode,
		   rtx arg2, machine_mode arg2_mode,
		   rtx arg3, machine_mode arg3_mode)
{
  rtx_mode_t args[] = {
    rtx_mode_t (arg1, arg1_mode),
    rtx_mode_t (arg2, arg2_mode),
    rtx_mode_t (arg3, arg3_mode)
  };
  emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
}

inline void
emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
		   rtx arg1, machine_mode arg1_mode,
		   rtx arg2, machine_mode arg2_mode,
		   rtx arg3, machine_mode arg3_mode,
		   rtx arg4, machine_mode arg4_mode)
{
  rtx_mode_t args[] = {
    rtx_mode_t (arg1, arg1_mode),
    rtx_mode_t (arg2, arg2_mode),
    rtx_mode_t (arg3, arg3_mode),
    rtx_mode_t (arg4, arg4_mode)
  };
  emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
}

/* Like emit_library_call, but return the value produced by the call.
   Use VALUE to store the result if it is nonnull, otherwise pick a
   convenient location.  */

inline rtx
emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
			 machine_mode outmode)
{
  return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
}

inline rtx
emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
			 machine_mode outmode,
			 rtx arg1, machine_mode arg1_mode)
{
  rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
  return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
}

inline rtx
emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
			 machine_mode outmode,
			 rtx arg1, machine_mode arg1_mode,
			 rtx arg2, machine_mode arg2_mode)
{
  rtx_mode_t args[] = {
    rtx_mode_t (arg1, arg1_mode),
    rtx_mode_t (arg2, arg2_mode)
  };
  return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
}

inline rtx
emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
			 machine_mode outmode,
			 rtx arg1, machine_mode arg1_mode,
			 rtx arg2, machine_mode arg2_mode,
			 rtx arg3, machine_mode arg3_mode)
{
  rtx_mode_t args[] = {
    rtx_mode_t (arg1, arg1_mode),
    rtx_mode_t (arg2, arg2_mode),
    rtx_mode_t (arg3, arg3_mode)
  };
  return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
}

inline rtx
emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
			 machine_mode outmode,
			 rtx arg1, machine_mode arg1_mode,
			 rtx arg2, machine_mode arg2_mode,
			 rtx arg3, machine_mode arg3_mode,
			 rtx arg4, machine_mode arg4_mode)
{
  rtx_mode_t args[] = {
    rtx_mode_t (arg1, arg1_mode),
    rtx_mode_t (arg2, arg2_mode),
    rtx_mode_t (arg3, arg3_mode),
    rtx_mode_t (arg4, arg4_mode)
  };
  return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
}

/* In varasm.c */
extern void init_varasm_once (void);

extern rtx make_debug_expr_from_rtl (const_rtx);

/* In read-rtl.c */
#ifdef GENERATOR_FILE
extern bool read_rtx (const char *, vec<rtx> *);
#endif

/* In alias.c */
extern rtx canon_rtx (rtx);
extern int true_dependence (const_rtx, machine_mode, const_rtx);
extern rtx get_addr (rtx);
extern int canon_true_dependence (const_rtx, machine_mode, rtx,
				  const_rtx, rtx);
extern int read_dependence (const_rtx, const_rtx);
extern int anti_dependence (const_rtx, const_rtx);
extern int canon_anti_dependence (const_rtx, bool,
				  const_rtx, machine_mode, rtx);
extern int output_dependence (const_rtx, const_rtx);
extern int canon_output_dependence (const_rtx, bool,
				    const_rtx, machine_mode, rtx);
extern int may_alias_p (const_rtx, const_rtx);
extern void init_alias_target (void);
extern void init_alias_analysis (void);
extern void end_alias_analysis (void);
extern void vt_equate_reg_base_value (const_rtx, const_rtx);
extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
extern bool may_be_sp_based_p (rtx);
extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
extern rtx get_reg_known_value (unsigned int);
extern bool get_reg_known_equiv_p (unsigned int);
extern rtx get_reg_base_value (unsigned int);

#ifdef STACK_REGS
extern int stack_regs_mentioned (const_rtx insn);
#endif

/* In toplev.c */
extern GTY(()) rtx stack_limit_rtx;

/* In var-tracking.c */
extern unsigned int variable_tracking_main (void);
extern void delete_vta_debug_insns (bool);

/* In stor-layout.c.  */
extern void get_mode_bounds (scalar_int_mode, int,
			     scalar_int_mode, rtx *, rtx *);

/* In loop-iv.c  */
extern rtx canon_condition (rtx);
extern void simplify_using_condition (rtx, rtx *, bitmap);

/* In final.c  */
extern unsigned int compute_alignments (void);
extern void update_alignments (vec<rtx> &);
extern int asm_str_count (const char *templ);

struct rtl_hooks
{
  rtx (*gen_lowpart) (machine_mode, rtx);
  rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
  rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
			   unsigned HOST_WIDE_INT *);
  rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
				  unsigned int *);
  bool (*reg_truncated_to_mode) (machine_mode, const_rtx);

  /* Whenever you add entries here, make sure you adjust rtlhooks-def.h.  */
};

/* Each pass can provide its own.  */
extern struct rtl_hooks rtl_hooks;

/* ... but then it has to restore these.  */
extern const struct rtl_hooks general_rtl_hooks;

/* Keep this for the nonce.  */
#define gen_lowpart rtl_hooks.gen_lowpart

extern void insn_locations_init (void);
extern void insn_locations_finalize (void);
extern void set_curr_insn_location (location_t);
extern location_t curr_insn_location (void);
extern void set_insn_locations (rtx_insn *, location_t);

/* rtl-error.c */
extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;

#define fatal_insn(msgid, insn) \
	_fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
#define fatal_insn_not_found(insn) \
	_fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)

/* reginfo.c */
extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];

/* Information about the function that is propagated by the RTL backend.
   Available only for functions that has been already assembled.  */

struct GTY(()) cgraph_rtl_info {
  unsigned int preferred_incoming_stack_boundary;

  /* Which registers the function clobbers, either directly or by
     calling another function.  */
  HARD_REG_SET function_used_regs;
};

/* If loads from memories of mode MODE always sign or zero extend,
   return SIGN_EXTEND or ZERO_EXTEND as appropriate.  Return UNKNOWN
   otherwise.  */

inline rtx_code
load_extend_op (machine_mode mode)
{
  scalar_int_mode int_mode;
  if (is_a <scalar_int_mode> (mode, &int_mode)
      && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
    return LOAD_EXTEND_OP (int_mode);
  return UNKNOWN;
}

/* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
   and return the base.  Return X otherwise.  */

inline rtx
strip_offset_and_add (rtx x, poly_int64_pod *offset)
{
  if (GET_CODE (x) == PLUS)
    {
      poly_int64 suboffset;
      x = strip_offset (x, &suboffset);
      *offset = poly_uint64 (*offset) + suboffset;
    }
  return x;
}

/* Return true if X is an operation that always operates on the full
   registers for WORD_REGISTER_OPERATIONS architectures.  */

inline bool
word_register_operation_p (const_rtx x)
{
  switch (GET_CODE (x))
    {
    case CONST_INT:
    case ROTATE:
    case ROTATERT:
    case SIGN_EXTRACT:
    case ZERO_EXTRACT:
      return false;
    
    default:
      return true;
    }
}
    
/* gtype-desc.c.  */
extern void gt_ggc_mx (rtx &);
extern void gt_pch_nx (rtx &);
extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);

#endif /* ! GCC_RTL_H */