aboutsummaryrefslogtreecommitdiff
path: root/gcc/rtl-ssa/functions.h
blob: 58d0b50ea83537665649e8151213824213c841bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
// Function-related RTL SSA classes                                 -*- C++ -*-
// Copyright (C) 2020-2024 Free Software Foundation, Inc.
//
// This file is part of GCC.
//
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
//
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3.  If not see
// <http://www.gnu.org/licenses/>.

namespace rtl_ssa {

// SSA-related information about a function.  It contains three levels
// of information, each in reverse postorder:
//
// - a list of extended basic blocks
// - a list of basic blocks
// - a list of instructions
//
// It also maintains a list of definitions of memory, and a list of
// definitions of each register.
//
// See doc/rtl.texi for more details about the way this information
// is organized and how changes to it are made.
class function_info
{
  // The default obstack alignment takes long double into account.
  // Since we have no use for that here, and since we allocate many
  // relatively small objects, it's better to specify an alignment
  // explicitly.  The allocation routines assert that the alignment
  // is enough for the objects being allocated.
  //
  // Because various structures use pointer_mux, we need at least 2 bytes
  // of alignment.
  static const size_t obstack_alignment = sizeof (void *);

public:
  // Construct SSA form for function FN.
  function_info (function *fn);
  ~function_info ();

  // Return a list of all the extended basic blocks in the function, in reverse
  // postorder.  The list includes the entry and exit blocks.
  iterator_range<ebb_iterator> ebbs () const;

  // Like ebbs (), but in the reverse order.
  iterator_range<reverse_ebb_iterator> reverse_ebbs () const;

  // Return a list of all the basic blocks in the function, in reverse
  // postorder.  The list includes the entry and exit blocks.
  iterator_range<bb_iterator> bbs () const;

  // Like bbs (), but in the reverse order.
  iterator_range<reverse_bb_iterator> reverse_bbs () const;

  // Return the SSA information for the basic block with index INDEX.
  bb_info *bb (unsigned int index) const { return m_bbs[index]; }

  // Return the SSA information for CFG_BB.
  bb_info *bb (basic_block cfg_bb) const { return m_bbs[cfg_bb->index]; }

  // Create a temporary def.
  set_info *create_set (obstack_watermark &watermark,
			insn_info *insn,
			resource_info resource);

  // Create a temporary insn with code INSN_CODE and pattern PAT.
  insn_info *create_insn (obstack_watermark &watermark,
			  rtx_code insn_code,
			  rtx pat);

  // Return a list of all the instructions in the function, in reverse
  // postorder.  The list includes both real and artificial instructions.
  //
  // Iterations over the list will pick up any new instructions that are
  // inserted after the iterator's current instruction.
  iterator_range<any_insn_iterator> all_insns () const;

  // Like all_insns (), but in the reverse order.
  //
  // Iterations over the list will pick up any new instructions that are
  // inserted before the iterator's current instruction.
  iterator_range<reverse_any_insn_iterator> reverse_all_insns () const;

  // Like all_insns (), but without the debug instructions.
  iterator_range<nondebug_insn_iterator> nondebug_insns () const;

  // Like reverse_all_insns (), but without the debug instructions.
  iterator_range<reverse_nondebug_insn_iterator>
    reverse_nondebug_insns () const;

  // Return the first and last instructions in insns ().
  insn_info *first_insn () const { return m_first_insn; }
  insn_info *last_insn () const { return m_last_insn; }

  // Return a list of all definitions of memory, in reverse postorder.
  // This includes both real stores by instructions and artificial
  // definitions by things like phi nodes.
  iterator_range<def_iterator> mem_defs () const;

  // Return a list of all definitions of register REGNO, in reverse postorder.
  // This includes both real stores by instructions and artificial
  // definitions by things like phi nodes.
  iterator_range<def_iterator> reg_defs (unsigned int regno) const;

  // Return true if SET is the only set of SET->resource () and if it
  // dominates all uses (excluding uses of SET->resource () at points
  // where SET->resource () is always undefined).
  bool is_single_dominating_def (const set_info *set) const;

  // Check if all uses of register REGNO are either unconditionally undefined
  // or use the same single dominating definition.  Return the definition
  // if so, otherwise return null.
  set_info *single_dominating_def (unsigned int regno) const;

  // Look for a definition of RESOURCE at INSN.  Return the result of the
  // search as a def_lookup; see the comments there for more details.
  def_lookup find_def (resource_info resource, insn_info *insn);

  // Return an RAII object that owns all temporary RTL SSA memory
  // allocated during a change attempt.  The object should remain in
  // scope until the change has been aborted or successfully completed.
  obstack_watermark new_change_attempt () { return &m_temp_obstack; }

  // SET and INSN belong to the same EBB, with SET occuring before INSN.
  // Return true if SET is still available at INSN.
  bool remains_available_at_insn (const set_info *set, insn_info *insn);

  // SET either occurs in BB or is known to be available on entry to BB.
  // Return true if it is also available on exit from BB.  (The value
  // might or might not be live.)
  bool remains_available_on_exit (const set_info *set, bb_info *bb);

  // Make a best attempt to check whether the values used by USES are
  // available on entry to BB, without solving a full dataflow problem.
  // If all the values are already live on entry to BB or can be made
  // available there, return a use_array that describes the uses as
  // if they occured at the start of BB.  These uses are purely temporary,
  // and will not become permanent unless applied using change_insns.
  //
  // If the operation fails, return an invalid use_array.
  //
  // WATERMARK is a watermark returned by new_change_attempt ().
  // WILL_BE_DEBUG_USES is true if the returned use_array will be
  // used only for debug instructions.
  use_array make_uses_available (obstack_watermark &watermark,
				 use_array uses, bb_info *bb,
				 bool will_be_debug_uses);

  // If CHANGE doesn't already clobber REGNO, try to add such a clobber,
  // limiting the movement range in order to make the clobber valid.
  // When determining whether REGNO is live, ignore accesses made by an
  // instruction I if IGNORE (I) is true.  The caller then assumes the
  // responsibility of ensuring that CHANGE and I are placed in a valid order.
  //
  // Return true on success.  Leave CHANGE unmodified when returning false.
  //
  // WATERMARK is a watermark returned by new_change_attempt ().
  template<typename IgnorePredicate>
  bool add_regno_clobber (obstack_watermark &watermark, insn_change &change,
			  unsigned int regno, IgnorePredicate ignore);

  // Return true if change_insns will be able to perform the changes
  // described by CHANGES.
  bool verify_insn_changes (array_slice<insn_change *const> changes);

  // Perform all the changes in CHANGES, keeping the instructions in the
  // order specified by the CHANGES array.  On return, the SSA information
  // remains up-to-date.  The same is true for instruction-level DF
  // information, although the block-level DF information might be
  // marked dirty.
  void change_insns (array_slice<insn_change *> changes);

  // Like change_insns, but for a single change CHANGE.
  void change_insn (insn_change &change);

  // Given a use USE, re-parent it to get its def from NEW_DEF.
  void reparent_use (use_info *use, set_info *new_def);

  // If the changes that have been made to instructions require updates
  // to the CFG, perform those updates now.  Return true if something changed.
  // If it did:
  //
  // - The SSA information is now invalid and needs to be recomputed.
  //
  // - Dominance information is no longer available (in either direction).
  //
  // - The caller will need to call cleanup_cfg at some point.
  //
  // ??? We could probably update the SSA information for simple updates,
  // but currently nothing would benefit.  These late CFG changes are
  // relatively rare anyway, since gimple optimisers should remove most
  // unnecessary control flow.
  bool perform_pending_updates ();

  // Print the contents of the function to PP.
  void print (pretty_printer *pp) const;

  // Allocate an object of type T above the obstack watermark WM.
  template<typename T, typename... Ts>
  T *change_alloc (obstack_watermark &wm, Ts... args);

private:
  class bb_phi_info;
  class build_info;
  class bb_walker;

  // Return an RAII object that owns all objects allocated by
  // allocate_temp during its lifetime.
  obstack_watermark temp_watermark () { return &m_temp_obstack; }

  template<typename T, typename... Ts>
  T *allocate (Ts... args);

  template<typename T, typename... Ts>
  T *allocate_temp (Ts... args);

  access_array temp_access_array (access_array accesses);

  clobber_group *need_clobber_group (clobber_info *);
  def_node *need_def_node (def_info *);
  def_splay_tree need_def_splay_tree (def_info *);

  use_info *make_use_available (use_info *, bb_info *, bool);
  def_array insert_temp_clobber (obstack_watermark &, insn_info *,
				 unsigned int, def_array);

  void insert_def_before (def_info *, def_info *);
  void insert_def_after (def_info *, def_info *);
  void remove_def_from_list (def_info *);

  void add_clobber (clobber_info *, clobber_group *);
  void remove_clobber (clobber_info *, clobber_group *);
  void prepend_clobber_to_group (clobber_info *, clobber_group *);
  void append_clobber_to_group (clobber_info *, clobber_group *);
  void merge_clobber_groups (clobber_info *, clobber_info *,
			     def_info *);
  clobber_info *split_clobber_group (clobber_group *, insn_info *);

  void append_def (def_info *);
  void add_def (def_info *);
  void remove_def (def_info *);

  void need_use_splay_tree (set_info *);

  static void insert_use_before (use_info *, use_info *);
  static void insert_use_after (use_info *, use_info *);

  void add_use (use_info *);
  void remove_use (use_info *);

  insn_info::order_node *need_order_node (insn_info *);

  void add_insn_after (insn_info *, insn_info *);
  void append_insn (insn_info *);
  void remove_insn (insn_info *);

  insn_info *append_artificial_insn (bb_info *, rtx_insn * = nullptr);

  void start_insn_accesses ();
  void finish_insn_accesses (insn_info *);

  use_info *create_reg_use (build_info &, insn_info *, resource_info);
  void record_use (build_info &, insn_info *, rtx_obj_reference);
  void record_call_clobbers (build_info &, insn_info *, rtx_call_insn *);
  void record_def (build_info &, insn_info *, rtx_obj_reference);
  void add_insn_to_block (build_info &, rtx_insn *);

  void add_reg_unused_notes (insn_info *);

  void add_live_out_use (bb_info *, set_info *);
  set_info *live_out_value (bb_info *, set_info *);

  void append_phi (ebb_info *, phi_info *);
  void remove_phi (phi_info *);
  void delete_phi (phi_info *);
  void replace_phi (phi_info *, set_info *);
  phi_info *create_phi (ebb_info *, resource_info, access_info **,
			unsigned int);
  phi_info *create_degenerate_phi (ebb_info *, set_info *);

  bb_info *create_bb_info (basic_block);
  void append_bb (bb_info *);

  void process_uses_of_deleted_def (set_info *);
  insn_info *add_placeholder_after (insn_info *);
  void possibly_queue_changes (insn_change &);
  void finalize_new_accesses (insn_change &, insn_info *);
  void apply_changes_to_insn (insn_change &);

  void init_function_data ();
  void calculate_potential_phi_regs (build_info &);
  void place_phis (build_info &);
  void create_ebbs (build_info &);
  void add_entry_block_defs (build_info &);
  void calculate_ebb_live_in_for_debug (build_info &);
  void add_phi_nodes (build_info &);
  void add_artificial_accesses (build_info &, df_ref_flags);
  void add_block_contents (build_info &);
  void record_block_live_out (build_info &);
  void start_block (build_info &, bb_info *);
  void end_block (build_info &, bb_info *);
  void populate_phi_inputs (build_info &);
  void process_all_blocks ();

  void simplify_phi_setup (phi_info *, set_info **, bitmap);
  void simplify_phi_propagate (phi_info *, set_info **, bitmap, bitmap);
  void simplify_phis ();

  // The function that this object describes.
  function *m_fn;

  // The lowest (negative) in-use artificial insn uid minus one.
  int m_next_artificial_uid;

  // The highest in-use phi uid plus one.
  unsigned int m_next_phi_uid;

  // The highest in-use register number plus one.
  unsigned int m_num_regs;

  // M_DEFS[R] is the first definition of register R - 1 in a reverse
  // postorder traversal of the function, or null if the function has
  // no definition of R.  Applying last () gives the last definition of R.
  //
  // M_DEFS[0] is for memory; MEM_REGNO + 1 == 0.
  auto_vec<def_info *> m_defs;

  // M_BBS[BI] gives the SSA information about the block with index BI.
  auto_vec<bb_info *> m_bbs;

  // An obstack used to allocate the main RTL SSA information.
  obstack m_obstack;

  // An obstack used for temporary work, such as while building up a list
  // of possible instruction changes.
  obstack m_temp_obstack;

  // The start of each obstack, so that all memory in them can be freed.
  char *m_obstack_start;
  char *m_temp_obstack_start;

  // The entry and exit blocks.
  bb_info *m_first_bb;
  bb_info *m_last_bb;

  // The first and last instructions in a reverse postorder traversal
  // of the function.
  insn_info *m_first_insn;
  insn_info *m_last_insn;

  // The last nondebug instruction in the list of instructions.
  // This is only different from m_last_insn when building the initial
  // SSA information; after that, the last instruction is always a
  // BB end instruction.
  insn_info *m_last_nondebug_insn;

  // Temporary working state when building up lists of definitions and uses.
  // Keeping them around should reduce the number of unnecessary reallocations.
  auto_vec<access_info *> m_temp_defs;
  auto_vec<access_info *> m_temp_uses;

  // A list of phis that are no longer in use.  Their uids are still unique
  // and so can be recycled.
  phi_info *m_free_phis;

  // A list of instructions that have been changed in ways that need
  // further processing later, such as removing dead instructions or
  // altering the CFG.
  auto_vec<insn_info *> m_queued_insn_updates;

  // The INSN_UIDs of all instructions in M_QUEUED_INSN_UPDATES.
  auto_bitmap m_queued_insn_update_uids;

  // A basic_block is in this bitmap if we need to call purge_dead_edges
  // on it.  As with M_QUEUED_INSN_UPDATES, these updates are queued until
  // a convenient point.
  auto_bitmap m_need_to_purge_dead_edges;

  // The set of hard registers that are fully or partially clobbered
  // by at least one insn_call_clobbers_note.
  HARD_REG_SET m_clobbered_by_calls;
};

void pp_function (pretty_printer *, const function_info *);
}

void dump (FILE *, const rtl_ssa::function_info *);

void DEBUG_FUNCTION debug (const rtl_ssa::function_info *);