1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
|
/* Perform instruction reorganizations for delay slot filling.
Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
Hacked by Michael Tiemann (tiemann@cygnus.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Instruction reorganization pass.
This pass runs after register allocation and final jump
optimization. It should be the last pass to run before peephole.
It serves primarily to fill delay slots of insns, typically branch
and call insns. Other insns typically involve more complicated
interactions of data dependencies and resource constraints, and
are better handled by scheduling before register allocation (by the
function `schedule_insns').
The Branch Penalty is the number of extra cycles that are needed to
execute a branch insn. On an ideal machine, branches take a single
cycle, and the Branch Penalty is 0. Several RISC machines approach
branch delays differently:
The MIPS and AMD 29000 have a single branch delay slot. Most insns
(except other branches) can be used to fill this slot. When the
slot is filled, two insns execute in two cycles, reducing the
branch penalty to zero.
The Motorola 88000 conditionally exposes its branch delay slot,
so code is shorter when it is turned off, but will run faster
when useful insns are scheduled there.
The IBM ROMP has two forms of branch and call insns, both with and
without a delay slot. Much like the 88k, insns not using the delay
slot can be shorted (2 bytes vs. 4 bytes), but will run slowed.
The SPARC always has a branch delay slot, but its effects can be
annulled when the branch is not taken. This means that failing to
find other sources of insns, we can hoist an insn from the branch
target that would only be safe to execute knowing that the branch
is taken.
The HP-PA always has a branch delay slot. For unconditional branches
its effects can be annulled when the branch is taken. The effects
of the delay slot in a conditional branch can be nullified for forward
taken branches, or for untaken backward branches. This means
we can hoist insns from the fall-through path for forward branches or
steal insns from the target of backward branches.
Three techniques for filling delay slots have been implemented so far:
(1) `fill_simple_delay_slots' is the simplest, most efficient way
to fill delay slots. This pass first looks for insns which come
from before the branch and which are safe to execute after the
branch. Then it searches after the insn requiring delay slots or,
in the case of a branch, for insns that are after the point at
which the branch merges into the fallthrough code, if such a point
exists. When such insns are found, the branch penalty decreases
and no code expansion takes place.
(2) `fill_eager_delay_slots' is more complicated: it is used for
scheduling conditional jumps, or for scheduling jumps which cannot
be filled using (1). A machine need not have annulled jumps to use
this strategy, but it helps (by keeping more options open).
`fill_eager_delay_slots' tries to guess the direction the branch
will go; if it guesses right 100% of the time, it can reduce the
branch penalty as much as `fill_simple_delay_slots' does. If it
guesses wrong 100% of the time, it might as well schedule nops (or
on the m88k, unexpose the branch slot). When
`fill_eager_delay_slots' takes insns from the fall-through path of
the jump, usually there is no code expansion; when it takes insns
from the branch target, there is code expansion if it is not the
only way to reach that target.
(3) `relax_delay_slots' uses a set of rules to simplify code that
has been reorganized by (1) and (2). It finds cases where
conditional test can be eliminated, jumps can be threaded, extra
insns can be eliminated, etc. It is the job of (1) and (2) to do a
good job of scheduling locally; `relax_delay_slots' takes care of
making the various individual schedules work well together. It is
especially tuned to handle the control flow interactions of branch
insns. It does nothing for insns with delay slots that do not
branch.
On machines that use CC0, we are very conservative. We will not make
a copy of an insn involving CC0 since we want to maintain a 1-1
correspondence between the insn that sets and uses CC0. The insns are
allowed to be separated by placing an insn that sets CC0 (but not an insn
that uses CC0; we could do this, but it doesn't seem worthwhile) in a
delay slot. In that case, we point each insn at the other with REG_CC_USER
and REG_CC_SETTER notes. Note that these restrictions affect very few
machines because most RISC machines with delay slots will not use CC0
(the RT is the only known exception at this point).
Not yet implemented:
The Acorn Risc Machine can conditionally execute most insns, so
it is profitable to move single insns into a position to execute
based on the condition code of the previous insn.
The HP-PA can conditionally nullify insns, providing a similar
effect to the ARM, differing mostly in which insn is "in charge". */
#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "insn-config.h"
#include "conditions.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "regs.h"
#include "insn-flags.h"
#include "recog.h"
#include "flags.h"
#include "output.h"
#include "obstack.h"
#include "insn-attr.h"
/* Import list of registers used as spill regs from reload. */
extern HARD_REG_SET used_spill_regs;
#ifdef DELAY_SLOTS
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
#ifndef ANNUL_IFTRUE_SLOTS
#define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
#endif
#ifndef ANNUL_IFFALSE_SLOTS
#define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
#endif
/* Insns which have delay slots that have not yet been filled. */
static struct obstack unfilled_slots_obstack;
static rtx *unfilled_firstobj;
/* Define macros to refer to the first and last slot containing unfilled
insns. These are used because the list may move and its address
should be recomputed at each use. */
#define unfilled_slots_base \
((rtx *) obstack_base (&unfilled_slots_obstack))
#define unfilled_slots_next \
((rtx *) obstack_next_free (&unfilled_slots_obstack))
/* This structure is used to indicate which hardware resources are set or
needed by insns so far. */
struct resources
{
char memory; /* Insn sets or needs a memory location. */
char unch_memory; /* Insn sets of needs a "unchanging" MEM. */
char volatil; /* Insn sets or needs a volatile memory loc. */
char cc; /* Insn sets or needs the condition codes. */
HARD_REG_SET regs; /* Which registers are set or needed. */
};
/* Macro to clear all resources. */
#define CLEAR_RESOURCE(RES) \
do { (RES)->memory = (RES)->unch_memory = (RES)->volatil = (RES)->cc = 0; \
CLEAR_HARD_REG_SET ((RES)->regs); } while (0)
/* Indicates what resources are required at the beginning of the epilogue. */
static struct resources start_of_epilogue_needs;
/* Indicates what resources are required at function end. */
static struct resources end_of_function_needs;
/* Points to the label before the end of the function. */
static rtx end_of_function_label;
/* This structure is used to record liveness information at the targets or
fallthrough insns of branches. We will most likely need the information
at targets again, so save them in a hash table rather than recomputing them
each time. */
struct target_info
{
int uid; /* INSN_UID of target. */
struct target_info *next; /* Next info for same hash bucket. */
HARD_REG_SET live_regs; /* Registers live at target. */
int block; /* Basic block number containing target. */
int bb_tick; /* Generation count of basic block info. */
};
#define TARGET_HASH_PRIME 257
/* Define the hash table itself. */
static struct target_info **target_hash_table;
/* For each basic block, we maintain a generation number of its basic
block info, which is updated each time we move an insn from the
target of a jump. This is the generation number indexed by block
number. */
static int *bb_ticks;
/* Mapping between INSN_UID's and position in the code since INSN_UID's do
not always monotonically increase. */
static int *uid_to_ruid;
/* Highest valid index in `uid_to_ruid'. */
static int max_uid;
static void mark_referenced_resources PROTO((rtx, struct resources *, int));
static void mark_set_resources PROTO((rtx, struct resources *, int, int));
static int stop_search_p PROTO((rtx, int));
static int resource_conflicts_p PROTO((struct resources *,
struct resources *));
static int insn_references_resource_p PROTO((rtx, struct resources *, int));
static int insn_sets_resources_p PROTO((rtx, struct resources *, int));
static rtx find_end_label PROTO((void));
static rtx emit_delay_sequence PROTO((rtx, rtx, int, int));
static rtx add_to_delay_list PROTO((rtx, rtx));
static void delete_from_delay_slot PROTO((rtx));
static void delete_scheduled_jump PROTO((rtx));
static void note_delay_statistics PROTO((int, int));
static rtx optimize_skip PROTO((rtx));
static int get_jump_flags PROTO((rtx, rtx));
static int rare_destination PROTO((rtx));
static int mostly_true_jump PROTO((rtx, rtx));
static rtx get_branch_condition PROTO((rtx, rtx));
static int condition_dominates_p PROTO((rtx, rtx));
static rtx steal_delay_list_from_target PROTO((rtx, rtx, rtx, rtx,
struct resources *,
struct resources *,
struct resources *,
int, int *, int *, rtx *));
static rtx steal_delay_list_from_fallthrough PROTO((rtx, rtx, rtx, rtx,
struct resources *,
struct resources *,
struct resources *,
int, int *, int *));
static void try_merge_delay_insns PROTO((rtx, rtx));
static rtx redundant_insn PROTO((rtx, rtx, rtx));
static int own_thread_p PROTO((rtx, rtx, int));
static int find_basic_block PROTO((rtx));
static void update_block PROTO((rtx, rtx));
static int reorg_redirect_jump PROTO((rtx, rtx));
static void update_reg_dead_notes PROTO((rtx, rtx));
static void fix_reg_dead_note PROTO((rtx, rtx));
static void update_reg_unused_notes PROTO((rtx, rtx));
static void update_live_status PROTO((rtx, rtx));
static rtx next_insn_no_annul PROTO((rtx));
static void mark_target_live_regs PROTO((rtx, struct resources *));
static void fill_simple_delay_slots PROTO((rtx, int));
static rtx fill_slots_from_thread PROTO((rtx, rtx, rtx, rtx, int, int,
int, int, int, int *));
static void fill_eager_delay_slots PROTO((rtx));
static void relax_delay_slots PROTO((rtx));
static void make_return_insns PROTO((rtx));
static int redirect_with_delay_slots_safe_p PROTO ((rtx, rtx, rtx));
static int redirect_with_delay_list_safe_p PROTO ((rtx, rtx, rtx));
/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
which resources are references by the insn. If INCLUDE_CALLED_ROUTINE
is TRUE, resources used by the called routine will be included for
CALL_INSNs. */
static void
mark_referenced_resources (x, res, include_delayed_effects)
register rtx x;
register struct resources *res;
register int include_delayed_effects;
{
register enum rtx_code code = GET_CODE (x);
register int i, j;
register char *format_ptr;
/* Handle leaf items for which we set resource flags. Also, special-case
CALL, SET and CLOBBER operators. */
switch (code)
{
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case PC:
case SYMBOL_REF:
case LABEL_REF:
return;
case SUBREG:
if (GET_CODE (SUBREG_REG (x)) != REG)
mark_referenced_resources (SUBREG_REG (x), res, 0);
else
{
int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
for (i = regno; i < last_regno; i++)
SET_HARD_REG_BIT (res->regs, i);
}
return;
case REG:
for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
return;
case MEM:
/* If this memory shouldn't change, it really isn't referencing
memory. */
if (RTX_UNCHANGING_P (x))
res->unch_memory = 1;
else
res->memory = 1;
res->volatil = MEM_VOLATILE_P (x);
/* Mark registers used to access memory. */
mark_referenced_resources (XEXP (x, 0), res, 0);
return;
case CC0:
res->cc = 1;
return;
case UNSPEC_VOLATILE:
case ASM_INPUT:
case TRAP_IF:
/* Traditional asm's are always volatile. */
res->volatil = 1;
return;
case ASM_OPERANDS:
res->volatil = MEM_VOLATILE_P (x);
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
We can not just fall through here since then we would be confused
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
traditional asms unlike their normal usage. */
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
return;
case CALL:
/* The first operand will be a (MEM (xxx)) but doesn't really reference
memory. The second operand may be referenced, though. */
mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
mark_referenced_resources (XEXP (x, 1), res, 0);
return;
case SET:
/* Usually, the first operand of SET is set, not referenced. But
registers used to access memory are referenced. SET_DEST is
also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
mark_referenced_resources (SET_SRC (x), res, 0);
x = SET_DEST (x);
if (GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == ZERO_EXTRACT)
mark_referenced_resources (x, res, 0);
else if (GET_CODE (x) == SUBREG)
x = SUBREG_REG (x);
if (GET_CODE (x) == MEM)
mark_referenced_resources (XEXP (x, 0), res, 0);
return;
case CLOBBER:
return;
case CALL_INSN:
if (include_delayed_effects)
{
/* A CALL references memory, the frame pointer if it exists, the
stack pointer, any global registers and any registers given in
USE insns immediately in front of the CALL.
However, we may have moved some of the parameter loading insns
into the delay slot of this CALL. If so, the USE's for them
don't count and should be skipped. */
rtx insn = PREV_INSN (x);
rtx sequence = 0;
int seq_size = 0;
rtx next = NEXT_INSN (x);
int i;
/* If we are part of a delay slot sequence, point at the SEQUENCE. */
if (NEXT_INSN (insn) != x)
{
next = NEXT_INSN (NEXT_INSN (insn));
sequence = PATTERN (NEXT_INSN (insn));
seq_size = XVECLEN (sequence, 0);
if (GET_CODE (sequence) != SEQUENCE)
abort ();
}
res->memory = 1;
SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
if (frame_pointer_needed)
{
SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
#endif
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (global_regs[i])
SET_HARD_REG_BIT (res->regs, i);
/* Check for a NOTE_INSN_SETJMP. If it exists, then we must
assume that this call can need any register.
This is done to be more conservative about how we handle setjmp.
We assume that they both use and set all registers. Using all
registers ensures that a register will not be considered dead
just because it crosses a setjmp call. A register should be
considered dead only if the setjmp call returns non-zero. */
if (next && GET_CODE (next) == NOTE
&& NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
SET_HARD_REG_SET (res->regs);
{
rtx link;
for (link = CALL_INSN_FUNCTION_USAGE (x);
link;
link = XEXP (link, 1))
if (GET_CODE (XEXP (link, 0)) == USE)
{
for (i = 1; i < seq_size; i++)
{
rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
if (GET_CODE (slot_pat) == SET
&& rtx_equal_p (SET_DEST (slot_pat),
SET_DEST (XEXP (link, 0))))
break;
}
if (i >= seq_size)
mark_referenced_resources (SET_DEST (XEXP (link, 0)),
res, 0);
}
}
}
/* ... fall through to other INSN processing ... */
case INSN:
case JUMP_INSN:
#ifdef INSN_REFERENCES_ARE_DELAYED
if (! include_delayed_effects
&& INSN_REFERENCES_ARE_DELAYED (x))
return;
#endif
/* No special processing, just speed up. */
mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
return;
}
/* Process each sub-expression and flag what it needs. */
format_ptr = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++)
switch (*format_ptr++)
{
case 'e':
mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
break;
case 'E':
for (j = 0; j < XVECLEN (x, i); j++)
mark_referenced_resources (XVECEXP (x, i, j), res,
include_delayed_effects);
break;
}
}
/* Given X, a part of an insn, and a pointer to a `struct resource', RES,
indicate which resources are modified by the insn. If INCLUDE_CALLED_ROUTINE
is nonzero, also mark resources potentially set by the called routine.
If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
objects are being referenced instead of set.
We never mark the insn as modifying the condition code unless it explicitly
SETs CC0 even though this is not totally correct. The reason for this is
that we require a SET of CC0 to immediately precede the reference to CC0.
So if some other insn sets CC0 as a side-effect, we know it cannot affect
our computation and thus may be placed in a delay slot. */
static void
mark_set_resources (x, res, in_dest, include_delayed_effects)
register rtx x;
register struct resources *res;
int in_dest;
int include_delayed_effects;
{
register enum rtx_code code;
register int i, j;
register char *format_ptr;
restart:
code = GET_CODE (x);
switch (code)
{
case NOTE:
case BARRIER:
case CODE_LABEL:
case USE:
case CONST_INT:
case CONST_DOUBLE:
case LABEL_REF:
case SYMBOL_REF:
case CONST:
case PC:
/* These don't set any resources. */
return;
case CC0:
if (in_dest)
res->cc = 1;
return;
case CALL_INSN:
/* Called routine modifies the condition code, memory, any registers
that aren't saved across calls, global registers and anything
explicitly CLOBBERed immediately after the CALL_INSN. */
if (include_delayed_effects)
{
rtx next = NEXT_INSN (x);
rtx prev = PREV_INSN (x);
rtx link;
res->cc = res->memory = 1;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (call_used_regs[i] || global_regs[i])
SET_HARD_REG_BIT (res->regs, i);
/* If X is part of a delay slot sequence, then NEXT should be
the first insn after the sequence. */
if (NEXT_INSN (prev) != x)
next = NEXT_INSN (NEXT_INSN (prev));
for (link = CALL_INSN_FUNCTION_USAGE (x);
link; link = XEXP (link, 1))
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1, 0);
/* Check for a NOTE_INSN_SETJMP. If it exists, then we must
assume that this call can clobber any register. */
if (next && GET_CODE (next) == NOTE
&& NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
SET_HARD_REG_SET (res->regs);
}
/* ... and also what it's RTL says it modifies, if anything. */
case JUMP_INSN:
case INSN:
/* An insn consisting of just a CLOBBER (or USE) is just for flow
and doesn't actually do anything, so we ignore it. */
#ifdef INSN_SETS_ARE_DELAYED
if (! include_delayed_effects
&& INSN_SETS_ARE_DELAYED (x))
return;
#endif
x = PATTERN (x);
if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
goto restart;
return;
case SET:
/* If the source of a SET is a CALL, this is actually done by
the called routine. So only include it if we are to include the
effects of the calling routine. */
mark_set_resources (SET_DEST (x), res,
(include_delayed_effects
|| GET_CODE (SET_SRC (x)) != CALL),
0);
mark_set_resources (SET_SRC (x), res, 0, 0);
return;
case CLOBBER:
mark_set_resources (XEXP (x, 0), res, 1, 0);
return;
case SEQUENCE:
for (i = 0; i < XVECLEN (x, 0); i++)
if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
&& INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
mark_set_resources (XVECEXP (x, 0, i), res, 0,
include_delayed_effects);
return;
case POST_INC:
case PRE_INC:
case POST_DEC:
case PRE_DEC:
mark_set_resources (XEXP (x, 0), res, 1, 0);
return;
case ZERO_EXTRACT:
mark_set_resources (XEXP (x, 0), res, in_dest, 0);
mark_set_resources (XEXP (x, 1), res, 0, 0);
mark_set_resources (XEXP (x, 2), res, 0, 0);
return;
case MEM:
if (in_dest)
{
res->memory = 1;
res->unch_memory = RTX_UNCHANGING_P (x);
res->volatil = MEM_VOLATILE_P (x);
}
mark_set_resources (XEXP (x, 0), res, 0, 0);
return;
case SUBREG:
if (in_dest)
{
if (GET_CODE (SUBREG_REG (x)) != REG)
mark_set_resources (SUBREG_REG (x), res,
in_dest, include_delayed_effects);
else
{
int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
for (i = regno; i < last_regno; i++)
SET_HARD_REG_BIT (res->regs, i);
}
}
return;
case REG:
if (in_dest)
for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
return;
}
/* Process each sub-expression and flag what it needs. */
format_ptr = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++)
switch (*format_ptr++)
{
case 'e':
mark_set_resources (XEXP (x, i), res, in_dest, include_delayed_effects);
break;
case 'E':
for (j = 0; j < XVECLEN (x, i); j++)
mark_set_resources (XVECEXP (x, i, j), res, in_dest,
include_delayed_effects);
break;
}
}
/* Return TRUE if this insn should stop the search for insn to fill delay
slots. LABELS_P indicates that labels should terminate the search.
In all cases, jumps terminate the search. */
static int
stop_search_p (insn, labels_p)
rtx insn;
int labels_p;
{
if (insn == 0)
return 1;
switch (GET_CODE (insn))
{
case NOTE:
case CALL_INSN:
return 0;
case CODE_LABEL:
return labels_p;
case JUMP_INSN:
case BARRIER:
return 1;
case INSN:
/* OK unless it contains a delay slot or is an `asm' insn of some type.
We don't know anything about these. */
return (GET_CODE (PATTERN (insn)) == SEQUENCE
|| GET_CODE (PATTERN (insn)) == ASM_INPUT
|| asm_noperands (PATTERN (insn)) >= 0);
default:
abort ();
}
}
/* Return TRUE if any resources are marked in both RES1 and RES2 or if either
resource set contains a volatile memory reference. Otherwise, return FALSE. */
static int
resource_conflicts_p (res1, res2)
struct resources *res1, *res2;
{
if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
|| (res1->unch_memory && res2->unch_memory)
|| res1->volatil || res2->volatil)
return 1;
#ifdef HARD_REG_SET
return (res1->regs & res2->regs) != HARD_CONST (0);
#else
{
int i;
for (i = 0; i < HARD_REG_SET_LONGS; i++)
if ((res1->regs[i] & res2->regs[i]) != 0)
return 1;
return 0;
}
#endif
}
/* Return TRUE if any resource marked in RES, a `struct resources', is
referenced by INSN. If INCLUDE_CALLED_ROUTINE is set, return if the called
routine is using those resources.
We compute this by computing all the resources referenced by INSN and
seeing if this conflicts with RES. It might be faster to directly check
ourselves, and this is the way it used to work, but it means duplicating
a large block of complex code. */
static int
insn_references_resource_p (insn, res, include_delayed_effects)
register rtx insn;
register struct resources *res;
int include_delayed_effects;
{
struct resources insn_res;
CLEAR_RESOURCE (&insn_res);
mark_referenced_resources (insn, &insn_res, include_delayed_effects);
return resource_conflicts_p (&insn_res, res);
}
/* Return TRUE if INSN modifies resources that are marked in RES.
INCLUDE_CALLED_ROUTINE is set if the actions of that routine should be
included. CC0 is only modified if it is explicitly set; see comments
in front of mark_set_resources for details. */
static int
insn_sets_resource_p (insn, res, include_delayed_effects)
register rtx insn;
register struct resources *res;
int include_delayed_effects;
{
struct resources insn_sets;
CLEAR_RESOURCE (&insn_sets);
mark_set_resources (insn, &insn_sets, 0, include_delayed_effects);
return resource_conflicts_p (&insn_sets, res);
}
/* Find a label at the end of the function or before a RETURN. If there is
none, make one. */
static rtx
find_end_label ()
{
rtx insn;
/* If we found one previously, return it. */
if (end_of_function_label)
return end_of_function_label;
/* Otherwise, see if there is a label at the end of the function. If there
is, it must be that RETURN insns aren't needed, so that is our return
label and we don't have to do anything else. */
insn = get_last_insn ();
while (GET_CODE (insn) == NOTE
|| (GET_CODE (insn) == INSN
&& (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)))
insn = PREV_INSN (insn);
/* When a target threads its epilogue we might already have a
suitable return insn. If so put a label before it for the
end_of_function_label. */
if (GET_CODE (insn) == BARRIER
&& GET_CODE (PREV_INSN (insn)) == JUMP_INSN
&& GET_CODE (PATTERN (PREV_INSN (insn))) == RETURN)
{
rtx temp = PREV_INSN (PREV_INSN (insn));
end_of_function_label = gen_label_rtx ();
LABEL_NUSES (end_of_function_label) = 0;
/* Put the label before an USE insns that may proceed the RETURN insn. */
while (GET_CODE (temp) == USE)
temp = PREV_INSN (temp);
emit_label_after (end_of_function_label, temp);
}
else if (GET_CODE (insn) == CODE_LABEL)
end_of_function_label = insn;
else
{
/* Otherwise, make a new label and emit a RETURN and BARRIER,
if needed. */
end_of_function_label = gen_label_rtx ();
LABEL_NUSES (end_of_function_label) = 0;
emit_label (end_of_function_label);
#ifdef HAVE_return
if (HAVE_return)
{
/* The return we make may have delay slots too. */
rtx insn = gen_return ();
insn = emit_jump_insn (insn);
emit_barrier ();
if (num_delay_slots (insn) > 0)
obstack_ptr_grow (&unfilled_slots_obstack, insn);
}
#endif
}
/* Show one additional use for this label so it won't go away until
we are done. */
++LABEL_NUSES (end_of_function_label);
return end_of_function_label;
}
/* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
the pattern of INSN with the SEQUENCE.
Chain the insns so that NEXT_INSN of each insn in the sequence points to
the next and NEXT_INSN of the last insn in the sequence points to
the first insn after the sequence. Similarly for PREV_INSN. This makes
it easier to scan all insns.
Returns the SEQUENCE that replaces INSN. */
static rtx
emit_delay_sequence (insn, list, length, avail)
rtx insn;
rtx list;
int length;
int avail;
{
register int i = 1;
register rtx li;
int had_barrier = 0;
/* Allocate the the rtvec to hold the insns and the SEQUENCE. */
rtvec seqv = rtvec_alloc (length + 1);
rtx seq = gen_rtx (SEQUENCE, VOIDmode, seqv);
rtx seq_insn = make_insn_raw (seq);
rtx first = get_insns ();
rtx last = get_last_insn ();
/* Make a copy of the insn having delay slots. */
rtx delay_insn = copy_rtx (insn);
/* If INSN is followed by a BARRIER, delete the BARRIER since it will only
confuse further processing. Update LAST in case it was the last insn.
We will put the BARRIER back in later. */
if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == BARRIER)
{
delete_insn (NEXT_INSN (insn));
last = get_last_insn ();
had_barrier = 1;
}
/* Splice our SEQUENCE into the insn stream where INSN used to be. */
NEXT_INSN (seq_insn) = NEXT_INSN (insn);
PREV_INSN (seq_insn) = PREV_INSN (insn);
if (insn == last)
set_new_first_and_last_insn (first, seq_insn);
else
PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
if (insn == first)
set_new_first_and_last_insn (seq_insn, last);
else
NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
/* Build our SEQUENCE and rebuild the insn chain. */
XVECEXP (seq, 0, 0) = delay_insn;
INSN_DELETED_P (delay_insn) = 0;
PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
for (li = list; li; li = XEXP (li, 1), i++)
{
rtx tem = XEXP (li, 0);
rtx note;
/* Show that this copy of the insn isn't deleted. */
INSN_DELETED_P (tem) = 0;
XVECEXP (seq, 0, i) = tem;
PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
/* Remove any REG_DEAD notes because we can't rely on them now
that the insn has been moved. */
for (note = REG_NOTES (tem); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_DEAD)
XEXP (note, 0) = const0_rtx;
}
NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
/* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
last insn in that SEQUENCE to point to us. Similarly for the first
insn in the following insn if it is a SEQUENCE. */
if (PREV_INSN (seq_insn) && GET_CODE (PREV_INSN (seq_insn)) == INSN
&& GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
= seq_insn;
if (NEXT_INSN (seq_insn) && GET_CODE (NEXT_INSN (seq_insn)) == INSN
&& GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
/* If there used to be a BARRIER, put it back. */
if (had_barrier)
emit_barrier_after (seq_insn);
if (i != length + 1)
abort ();
return seq_insn;
}
/* Add INSN to DELAY_LIST and return the head of the new list. The list must
be in the order in which the insns are to be executed. */
static rtx
add_to_delay_list (insn, delay_list)
rtx insn;
rtx delay_list;
{
/* If we have an empty list, just make a new list element. If
INSN has it's block number recorded, clear it since we may
be moving the insn to a new block. */
if (delay_list == 0)
{
struct target_info *tinfo;
for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
tinfo; tinfo = tinfo->next)
if (tinfo->uid == INSN_UID (insn))
break;
if (tinfo)
tinfo->block = -1;
return gen_rtx (INSN_LIST, VOIDmode, insn, NULL_RTX);
}
/* Otherwise this must be an INSN_LIST. Add INSN to the end of the
list. */
XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
return delay_list;
}
/* Delete INSN from the the delay slot of the insn that it is in. This may
produce an insn without anything in its delay slots. */
static void
delete_from_delay_slot (insn)
rtx insn;
{
rtx trial, seq_insn, seq, prev;
rtx delay_list = 0;
int i;
/* We first must find the insn containing the SEQUENCE with INSN in its
delay slot. Do this by finding an insn, TRIAL, where
PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
for (trial = insn;
PREV_INSN (NEXT_INSN (trial)) == trial;
trial = NEXT_INSN (trial))
;
seq_insn = PREV_INSN (NEXT_INSN (trial));
seq = PATTERN (seq_insn);
/* Create a delay list consisting of all the insns other than the one
we are deleting (unless we were the only one). */
if (XVECLEN (seq, 0) > 2)
for (i = 1; i < XVECLEN (seq, 0); i++)
if (XVECEXP (seq, 0, i) != insn)
delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
/* Delete the old SEQUENCE, re-emit the insn that used to have the delay
list, and rebuild the delay list if non-empty. */
prev = PREV_INSN (seq_insn);
trial = XVECEXP (seq, 0, 0);
delete_insn (seq_insn);
add_insn_after (trial, prev);
if (GET_CODE (trial) == JUMP_INSN
&& (simplejump_p (trial) || GET_CODE (PATTERN (trial)) == RETURN))
emit_barrier_after (trial);
/* If there are any delay insns, remit them. Otherwise clear the
annul flag. */
if (delay_list)
trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2, 0);
else
INSN_ANNULLED_BRANCH_P (trial) = 0;
INSN_FROM_TARGET_P (insn) = 0;
/* Show we need to fill this insn again. */
obstack_ptr_grow (&unfilled_slots_obstack, trial);
}
/* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
the insn that sets CC0 for it and delete it too. */
static void
delete_scheduled_jump (insn)
rtx insn;
{
/* Delete the insn that sets cc0 for us. On machines without cc0, we could
delete the insn that sets the condition code, but it is hard to find it.
Since this case is rare anyway, don't bother trying; there would likely
be other insns that became dead anyway, which we wouldn't know to
delete. */
#ifdef HAVE_cc0
if (reg_mentioned_p (cc0_rtx, insn))
{
rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
/* If a reg-note was found, it points to an insn to set CC0. This
insn is in the delay list of some other insn. So delete it from
the delay list it was in. */
if (note)
{
if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
&& sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
delete_from_delay_slot (XEXP (note, 0));
}
else
{
/* The insn setting CC0 is our previous insn, but it may be in
a delay slot. It will be the last insn in the delay slot, if
it is. */
rtx trial = previous_insn (insn);
if (GET_CODE (trial) == NOTE)
trial = prev_nonnote_insn (trial);
if (sets_cc0_p (PATTERN (trial)) != 1
|| FIND_REG_INC_NOTE (trial, 0))
return;
if (PREV_INSN (NEXT_INSN (trial)) == trial)
delete_insn (trial);
else
delete_from_delay_slot (trial);
}
}
#endif
delete_insn (insn);
}
/* Counters for delay-slot filling. */
#define NUM_REORG_FUNCTIONS 2
#define MAX_DELAY_HISTOGRAM 3
#define MAX_REORG_PASSES 2
static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
static int reorg_pass_number;
static void
note_delay_statistics (slots_filled, index)
int slots_filled, index;
{
num_insns_needing_delays[index][reorg_pass_number]++;
if (slots_filled > MAX_DELAY_HISTOGRAM)
slots_filled = MAX_DELAY_HISTOGRAM;
num_filled_delays[index][slots_filled][reorg_pass_number]++;
}
#if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
/* Optimize the following cases:
1. When a conditional branch skips over only one instruction,
use an annulling branch and put that insn in the delay slot.
Use either a branch that annuls when the condition if true or
invert the test with a branch that annuls when the condition is
false. This saves insns, since otherwise we must copy an insn
from the L1 target.
(orig) (skip) (otherwise)
Bcc.n L1 Bcc',a L1 Bcc,a L1'
insn insn insn2
L1: L1: L1:
insn2 insn2 insn2
insn3 insn3 L1':
insn3
2. When a conditional branch skips over only one instruction,
and after that, it unconditionally branches somewhere else,
perform the similar optimization. This saves executing the
second branch in the case where the inverted condition is true.
Bcc.n L1 Bcc',a L2
insn insn
L1: L1:
Bra L2 Bra L2
INSN is a JUMP_INSN.
This should be expanded to skip over N insns, where N is the number
of delay slots required. */
static rtx
optimize_skip (insn)
register rtx insn;
{
register rtx trial = next_nonnote_insn (insn);
rtx next_trial = next_active_insn (trial);
rtx delay_list = 0;
rtx target_label;
int flags;
flags = get_jump_flags (insn, JUMP_LABEL (insn));
if (trial == 0
|| GET_CODE (trial) != INSN
|| GET_CODE (PATTERN (trial)) == SEQUENCE
|| recog_memoized (trial) < 0
|| (! eligible_for_annul_false (insn, 0, trial, flags)
&& ! eligible_for_annul_true (insn, 0, trial, flags)))
return 0;
/* There are two cases where we are just executing one insn (we assume
here that a branch requires only one insn; this should be generalized
at some point): Where the branch goes around a single insn or where
we have one insn followed by a branch to the same label we branch to.
In both of these cases, inverting the jump and annulling the delay
slot give the same effect in fewer insns. */
if ((next_trial == next_active_insn (JUMP_LABEL (insn)))
|| (next_trial != 0
&& GET_CODE (next_trial) == JUMP_INSN
&& JUMP_LABEL (insn) == JUMP_LABEL (next_trial)
&& (simplejump_p (next_trial)
|| GET_CODE (PATTERN (next_trial)) == RETURN)))
{
if (eligible_for_annul_false (insn, 0, trial, flags))
{
if (invert_jump (insn, JUMP_LABEL (insn)))
INSN_FROM_TARGET_P (trial) = 1;
else if (! eligible_for_annul_true (insn, 0, trial, flags))
return 0;
}
delay_list = add_to_delay_list (trial, NULL_RTX);
next_trial = next_active_insn (trial);
update_block (trial, trial);
delete_insn (trial);
/* Also, if we are targeting an unconditional
branch, thread our jump to the target of that branch. Don't
change this into a RETURN here, because it may not accept what
we have in the delay slot. We'll fix this up later. */
if (next_trial && GET_CODE (next_trial) == JUMP_INSN
&& (simplejump_p (next_trial)
|| GET_CODE (PATTERN (next_trial)) == RETURN))
{
target_label = JUMP_LABEL (next_trial);
if (target_label == 0)
target_label = find_end_label ();
/* Recompute the flags based on TARGET_LABEL since threading
the jump to TARGET_LABEL may change the direction of the
jump (which may change the circumstances in which the
delay slot is nullified). */
flags = get_jump_flags (insn, target_label);
if (eligible_for_annul_true (insn, 0, trial, flags))
reorg_redirect_jump (insn, target_label);
}
INSN_ANNULLED_BRANCH_P (insn) = 1;
}
return delay_list;
}
#endif
/* Encode and return branch direction and prediction information for
INSN assuming it will jump to LABEL.
Non conditional branches return no direction information and
are predicted as very likely taken. */
static int
get_jump_flags (insn, label)
rtx insn, label;
{
int flags;
/* get_jump_flags can be passed any insn with delay slots, these may
be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
direction information, and only if they are conditional jumps.
If LABEL is zero, then there is no way to determine the branch
direction. */
if (GET_CODE (insn) == JUMP_INSN
&& (condjump_p (insn) || condjump_in_parallel_p (insn))
&& INSN_UID (insn) <= max_uid
&& label != 0
&& INSN_UID (label) <= max_uid)
flags
= (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
? ATTR_FLAG_forward : ATTR_FLAG_backward;
/* No valid direction information. */
else
flags = 0;
/* If insn is a conditional branch call mostly_true_jump to get
determine the branch prediction.
Non conditional branches are predicted as very likely taken. */
if (GET_CODE (insn) == JUMP_INSN
&& (condjump_p (insn) || condjump_in_parallel_p (insn)))
{
int prediction;
prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
switch (prediction)
{
case 2:
flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
break;
case 1:
flags |= ATTR_FLAG_likely;
break;
case 0:
flags |= ATTR_FLAG_unlikely;
break;
case -1:
flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
break;
default:
abort();
}
}
else
flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
return flags;
}
/* Return 1 if INSN is a destination that will be branched to rarely (the
return point of a function); return 2 if DEST will be branched to very
rarely (a call to a function that doesn't return). Otherwise,
return 0. */
static int
rare_destination (insn)
rtx insn;
{
int jump_count = 0;
rtx next;
for (; insn; insn = next)
{
if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
insn = XVECEXP (PATTERN (insn), 0, 0);
next = NEXT_INSN (insn);
switch (GET_CODE (insn))
{
case CODE_LABEL:
return 0;
case BARRIER:
/* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
don't scan past JUMP_INSNs, so any barrier we find here must
have been after a CALL_INSN and hence mean the call doesn't
return. */
return 2;
case JUMP_INSN:
if (GET_CODE (PATTERN (insn)) == RETURN)
return 1;
else if (simplejump_p (insn)
&& jump_count++ < 10)
next = JUMP_LABEL (insn);
else
return 0;
}
}
/* If we got here it means we hit the end of the function. So this
is an unlikely destination. */
return 1;
}
/* Return truth value of the statement that this branch
is mostly taken. If we think that the branch is extremely likely
to be taken, we return 2. If the branch is slightly more likely to be
taken, return 1. If the branch is slightly less likely to be taken,
return 0 and if the branch is highly unlikely to be taken, return -1.
CONDITION, if non-zero, is the condition that JUMP_INSN is testing. */
static int
mostly_true_jump (jump_insn, condition)
rtx jump_insn, condition;
{
rtx target_label = JUMP_LABEL (jump_insn);
rtx insn;
int rare_dest = rare_destination (target_label);
int rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
/* If this is a branch outside a loop, it is highly unlikely. */
if (GET_CODE (PATTERN (jump_insn)) == SET
&& GET_CODE (SET_SRC (PATTERN (jump_insn))) == IF_THEN_ELSE
&& ((GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 1)) == LABEL_REF
&& LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 1)))
|| (GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 2)) == LABEL_REF
&& LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 2)))))
return -1;
if (target_label)
{
/* If this is the test of a loop, it is very likely true. We scan
backwards from the target label. If we find a NOTE_INSN_LOOP_BEG
before the next real insn, we assume the branch is to the top of
the loop. */
for (insn = PREV_INSN (target_label);
insn && GET_CODE (insn) == NOTE;
insn = PREV_INSN (insn))
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
return 2;
/* If this is a jump to the test of a loop, it is likely true. We scan
forwards from the target label. If we find a NOTE_INSN_LOOP_VTOP
before the next real insn, we assume the branch is to the loop branch
test. */
for (insn = NEXT_INSN (target_label);
insn && GET_CODE (insn) == NOTE;
insn = PREV_INSN (insn))
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP)
return 1;
}
/* Look at the relative rarities of the fallthrough and destination. If
they differ, we can predict the branch that way. */
switch (rare_fallthrough - rare_dest)
{
case -2:
return -1;
case -1:
return 0;
case 0:
break;
case 1:
return 1;
case 2:
return 2;
}
/* If we couldn't figure out what this jump was, assume it won't be
taken. This should be rare. */
if (condition == 0)
return 0;
/* EQ tests are usually false and NE tests are usually true. Also,
most quantities are positive, so we can make the appropriate guesses
about signed comparisons against zero. */
switch (GET_CODE (condition))
{
case CONST_INT:
/* Unconditional branch. */
return 1;
case EQ:
return 0;
case NE:
return 1;
case LE:
case LT:
if (XEXP (condition, 1) == const0_rtx)
return 0;
break;
case GE:
case GT:
if (XEXP (condition, 1) == const0_rtx)
return 1;
break;
}
/* Predict backward branches usually take, forward branches usually not. If
we don't know whether this is forward or backward, assume the branch
will be taken, since most are. */
return (target_label == 0 || INSN_UID (jump_insn) > max_uid
|| INSN_UID (target_label) > max_uid
|| (uid_to_ruid[INSN_UID (jump_insn)]
> uid_to_ruid[INSN_UID (target_label)]));;
}
/* Return the condition under which INSN will branch to TARGET. If TARGET
is zero, return the condition under which INSN will return. If INSN is
an unconditional branch, return const_true_rtx. If INSN isn't a simple
type of jump, or it doesn't go to TARGET, return 0. */
static rtx
get_branch_condition (insn, target)
rtx insn;
rtx target;
{
rtx pat = PATTERN (insn);
rtx src;
if (condjump_in_parallel_p (insn))
pat = XVECEXP (pat, 0, 0);
if (GET_CODE (pat) == RETURN)
return target == 0 ? const_true_rtx : 0;
else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
return 0;
src = SET_SRC (pat);
if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
return const_true_rtx;
else if (GET_CODE (src) == IF_THEN_ELSE
&& ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN)
|| (GET_CODE (XEXP (src, 1)) == LABEL_REF
&& XEXP (XEXP (src, 1), 0) == target))
&& XEXP (src, 2) == pc_rtx)
return XEXP (src, 0);
else if (GET_CODE (src) == IF_THEN_ELSE
&& ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN)
|| (GET_CODE (XEXP (src, 2)) == LABEL_REF
&& XEXP (XEXP (src, 2), 0) == target))
&& XEXP (src, 1) == pc_rtx)
return gen_rtx (reverse_condition (GET_CODE (XEXP (src, 0))),
GET_MODE (XEXP (src, 0)),
XEXP (XEXP (src, 0), 0), XEXP (XEXP (src, 0), 1));
return 0;
}
/* Return non-zero if CONDITION is more strict than the condition of
INSN, i.e., if INSN will always branch if CONDITION is true. */
static int
condition_dominates_p (condition, insn)
rtx condition;
rtx insn;
{
rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
enum rtx_code code = GET_CODE (condition);
enum rtx_code other_code;
if (rtx_equal_p (condition, other_condition)
|| other_condition == const_true_rtx)
return 1;
else if (condition == const_true_rtx || other_condition == 0)
return 0;
other_code = GET_CODE (other_condition);
if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
|| ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
|| ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
return 0;
return comparison_dominates_p (code, other_code);
}
/* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
any insns already in the delay slot of JUMP. */
static int
redirect_with_delay_slots_safe_p (jump, newlabel, seq)
rtx jump, newlabel, seq;
{
int flags, slots, i;
rtx pat = PATTERN (seq);
/* Make sure all the delay slots of this jump would still
be valid after threading the jump. If they are still
valid, then return non-zero. */
flags = get_jump_flags (jump, newlabel);
for (i = 1; i < XVECLEN (pat, 0); i++)
if (! (
#ifdef ANNUL_IFFALSE_SLOTS
(INSN_ANNULLED_BRANCH_P (jump)
&& INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
? eligible_for_annul_false (jump, i - 1,
XVECEXP (pat, 0, i), flags) :
#endif
#ifdef ANNUL_IFTRUE_SLOTS
(INSN_ANNULLED_BRANCH_P (jump)
&& ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
? eligible_for_annul_true (jump, i - 1,
XVECEXP (pat, 0, i), flags) :
#endif
eligible_for_delay (jump, i -1, XVECEXP (pat, 0, i), flags)))
break;
return (i == XVECLEN (pat, 0));
}
/* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
any insns we wish to place in the delay slot of JUMP. */
static int
redirect_with_delay_list_safe_p (jump, newlabel, delay_list)
rtx jump, newlabel, delay_list;
{
int flags, i;
rtx li;
/* Make sure all the insns in DELAY_LIST would still be
valid after threading the jump. If they are still
valid, then return non-zero. */
flags = get_jump_flags (jump, newlabel);
for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
if (! (
#ifdef ANNUL_IFFALSE_SLOTS
(INSN_ANNULLED_BRANCH_P (jump)
&& INSN_FROM_TARGET_P (XEXP (li, 0)))
? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
#endif
#ifdef ANNUL_IFTRUE_SLOTS
(INSN_ANNULLED_BRANCH_P (jump)
&& ! INSN_FROM_TARGET_P (XEXP (li, 0)))
? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
#endif
eligible_for_delay (jump, i, XEXP (li, 0), flags)))
break;
return (li == NULL);
}
/* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
the condition tested by INSN is CONDITION and the resources shown in
OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
from SEQ's delay list, in addition to whatever insns it may execute
(in DELAY_LIST). SETS and NEEDED are denote resources already set and
needed while searching for delay slot insns. Return the concatenated
delay list if possible, otherwise, return 0.
SLOTS_TO_FILL is the total number of slots required by INSN, and
PSLOTS_FILLED points to the number filled so far (also the number of
insns in DELAY_LIST). It is updated with the number that have been
filled from the SEQUENCE, if any.
PANNUL_P points to a non-zero value if we already know that we need
to annul INSN. If this routine determines that annulling is needed,
it may set that value non-zero.
PNEW_THREAD points to a location that is to receive the place at which
execution should continue. */
static rtx
steal_delay_list_from_target (insn, condition, seq, delay_list,
sets, needed, other_needed,
slots_to_fill, pslots_filled, pannul_p,
pnew_thread)
rtx insn, condition;
rtx seq;
rtx delay_list;
struct resources *sets, *needed, *other_needed;
int slots_to_fill;
int *pslots_filled;
int *pannul_p;
rtx *pnew_thread;
{
rtx temp;
int slots_remaining = slots_to_fill - *pslots_filled;
int total_slots_filled = *pslots_filled;
rtx new_delay_list = 0;
int must_annul = *pannul_p;
int i;
/* We can't do anything if there are more delay slots in SEQ than we
can handle, or if we don't know that it will be a taken branch.
We know that it will be a taken branch if it is either an unconditional
branch or a conditional branch with a stricter branch condition.
Also, exit if the branch has more than one set, since then it is computing
other results that can't be ignored, e.g. the HPPA mov&branch instruction.
??? It may be possible to move other sets into INSN in addition to
moving the instructions in the delay slots. */
if (XVECLEN (seq, 0) - 1 > slots_remaining
|| ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
|| ! single_set (XVECEXP (seq, 0, 0)))
return delay_list;
for (i = 1; i < XVECLEN (seq, 0); i++)
{
rtx trial = XVECEXP (seq, 0, i);
int flags;
if (insn_references_resource_p (trial, sets, 0)
|| insn_sets_resource_p (trial, needed, 0)
|| insn_sets_resource_p (trial, sets, 0)
#ifdef HAVE_cc0
/* If TRIAL sets CC0, we can't copy it, so we can't steal this
delay list. */
|| find_reg_note (trial, REG_CC_USER, NULL_RTX)
#endif
/* If TRIAL is from the fallthrough code of an annulled branch insn
in SEQ, we cannot use it. */
|| (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
&& ! INSN_FROM_TARGET_P (trial)))
return delay_list;
/* If this insn was already done (usually in a previous delay slot),
pretend we put it in our delay slot. */
if (redundant_insn (trial, insn, new_delay_list))
continue;
/* We will end up re-vectoring this branch, so compute flags
based on jumping to the new label. */
flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
if (! must_annul
&& ((condition == const_true_rtx
|| (! insn_sets_resource_p (trial, other_needed, 0)
&& ! may_trap_p (PATTERN (trial)))))
? eligible_for_delay (insn, total_slots_filled, trial, flags)
: (must_annul = 1,
eligible_for_annul_false (insn, total_slots_filled, trial, flags)))
{
temp = copy_rtx (trial);
INSN_FROM_TARGET_P (temp) = 1;
new_delay_list = add_to_delay_list (temp, new_delay_list);
total_slots_filled++;
if (--slots_remaining == 0)
break;
}
else
return delay_list;
}
/* Show the place to which we will be branching. */
*pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
/* Add any new insns to the delay list and update the count of the
number of slots filled. */
*pslots_filled = total_slots_filled;
*pannul_p = must_annul;
if (delay_list == 0)
return new_delay_list;
for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
return delay_list;
}
/* Similar to steal_delay_list_from_target except that SEQ is on the
fallthrough path of INSN. Here we only do something if the delay insn
of SEQ is an unconditional branch. In that case we steal its delay slot
for INSN since unconditional branches are much easier to fill. */
static rtx
steal_delay_list_from_fallthrough (insn, condition, seq,
delay_list, sets, needed, other_needed,
slots_to_fill, pslots_filled, pannul_p)
rtx insn, condition;
rtx seq;
rtx delay_list;
struct resources *sets, *needed, *other_needed;
int slots_to_fill;
int *pslots_filled;
int *pannul_p;
{
int i;
int flags;
flags = get_jump_flags (insn, JUMP_LABEL (insn));
/* We can't do anything if SEQ's delay insn isn't an
unconditional branch. */
if (! simplejump_p (XVECEXP (seq, 0, 0))
&& GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN)
return delay_list;
for (i = 1; i < XVECLEN (seq, 0); i++)
{
rtx trial = XVECEXP (seq, 0, i);
/* If TRIAL sets CC0, stealing it will move it too far from the use
of CC0. */
if (insn_references_resource_p (trial, sets, 0)
|| insn_sets_resource_p (trial, needed, 0)
|| insn_sets_resource_p (trial, sets, 0)
#ifdef HAVE_cc0
|| sets_cc0_p (PATTERN (trial))
#endif
)
break;
/* If this insn was already done, we don't need it. */
if (redundant_insn (trial, insn, delay_list))
{
delete_from_delay_slot (trial);
continue;
}
if (! *pannul_p
&& ((condition == const_true_rtx
|| (! insn_sets_resource_p (trial, other_needed, 0)
&& ! may_trap_p (PATTERN (trial)))))
? eligible_for_delay (insn, *pslots_filled, trial, flags)
: (*pannul_p = 1,
eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
{
delete_from_delay_slot (trial);
delay_list = add_to_delay_list (trial, delay_list);
if (++(*pslots_filled) == slots_to_fill)
break;
}
else
break;
}
return delay_list;
}
/* Try merging insns starting at THREAD which match exactly the insns in
INSN's delay list.
If all insns were matched and the insn was previously annulling, the
annul bit will be cleared.
For each insn that is merged, if the branch is or will be non-annulling,
we delete the merged insn. */
static void
try_merge_delay_insns (insn, thread)
rtx insn, thread;
{
rtx trial, next_trial;
rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn);
int slot_number = 1;
int num_slots = XVECLEN (PATTERN (insn), 0);
rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
struct resources set, needed;
rtx merged_insns = 0;
int i;
int flags;
flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
CLEAR_RESOURCE (&needed);
CLEAR_RESOURCE (&set);
/* If this is not an annulling branch, take into account anything needed in
NEXT_TO_MATCH. This prevents two increments from being incorrectly
folded into one. If we are annulling, this would be the correct
thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
will essentially disable this optimization. This method is somewhat of
a kludge, but I don't see a better way.) */
if (! annul_p)
mark_referenced_resources (next_to_match, &needed, 1);
for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
{
rtx pat = PATTERN (trial);
rtx oldtrial = trial;
next_trial = next_nonnote_insn (trial);
/* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
if (GET_CODE (trial) == INSN
&& (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
continue;
if (GET_CODE (next_to_match) == GET_CODE (trial)
#ifdef HAVE_cc0
/* We can't share an insn that sets cc0. */
&& ! sets_cc0_p (pat)
#endif
&& ! insn_references_resource_p (trial, &set, 1)
&& ! insn_sets_resource_p (trial, &set, 1)
&& ! insn_sets_resource_p (trial, &needed, 1)
&& (trial = try_split (pat, trial, 0)) != 0
/* Update next_trial, in case try_split succeeded. */
&& (next_trial = next_nonnote_insn (trial))
/* Likewise THREAD. */
&& (thread = oldtrial == thread ? trial : thread)
&& rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
/* Have to test this condition if annul condition is different
from (and less restrictive than) non-annulling one. */
&& eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
{
if (! annul_p)
{
update_block (trial, thread);
if (trial == thread)
thread = next_active_insn (thread);
delete_insn (trial);
INSN_FROM_TARGET_P (next_to_match) = 0;
}
else
merged_insns = gen_rtx (INSN_LIST, VOIDmode, trial, merged_insns);
if (++slot_number == num_slots)
break;
next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
if (! annul_p)
mark_referenced_resources (next_to_match, &needed, 1);
}
mark_set_resources (trial, &set, 0, 1);
mark_referenced_resources (trial, &needed, 1);
}
/* See if we stopped on a filled insn. If we did, try to see if its
delay slots match. */
if (slot_number != num_slots
&& trial && GET_CODE (trial) == INSN
&& GET_CODE (PATTERN (trial)) == SEQUENCE
&& ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0)))
{
rtx pat = PATTERN (trial);
rtx filled_insn = XVECEXP (pat, 0, 0);
/* Account for resources set/needed by the filled insn. */
mark_set_resources (filled_insn, &set, 0, 1);
mark_referenced_resources (filled_insn, &needed, 1);
for (i = 1; i < XVECLEN (pat, 0); i++)
{
rtx dtrial = XVECEXP (pat, 0, i);
if (! insn_references_resource_p (dtrial, &set, 1)
&& ! insn_sets_resource_p (dtrial, &set, 1)
&& ! insn_sets_resource_p (dtrial, &needed, 1)
#ifdef HAVE_cc0
&& ! sets_cc0_p (PATTERN (dtrial))
#endif
&& rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
&& eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
{
if (! annul_p)
{
update_block (dtrial, thread);
delete_from_delay_slot (dtrial);
INSN_FROM_TARGET_P (next_to_match) = 0;
}
else
merged_insns = gen_rtx (INSN_LIST, SImode, dtrial,
merged_insns);
if (++slot_number == num_slots)
break;
next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
}
}
}
/* If all insns in the delay slot have been matched and we were previously
annulling the branch, we need not any more. In that case delete all the
merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn the
the delay list so that we know that it isn't only being used at the
target. */
if (slot_number == num_slots && annul_p)
{
for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
{
if (GET_MODE (merged_insns) == SImode)
{
update_block (XEXP (merged_insns, 0), thread);
delete_from_delay_slot (XEXP (merged_insns, 0));
}
else
{
update_block (XEXP (merged_insns, 0), thread);
delete_insn (XEXP (merged_insns, 0));
}
}
INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
}
}
/* See if INSN is redundant with an insn in front of TARGET. Often this
is called when INSN is a candidate for a delay slot of TARGET.
DELAY_LIST are insns that will be placed in delay slots of TARGET in front
of INSN. Often INSN will be redundant with an insn in a delay slot of
some previous insn. This happens when we have a series of branches to the
same label; in that case the first insn at the target might want to go
into each of the delay slots.
If we are not careful, this routine can take up a significant fraction
of the total compilation time (4%), but only wins rarely. Hence we
speed this routine up by making two passes. The first pass goes back
until it hits a label and sees if it find an insn with an identical
pattern. Only in this (relatively rare) event does it check for
data conflicts.
We do not split insns we encounter. This could cause us not to find a
redundant insn, but the cost of splitting seems greater than the possible
gain in rare cases. */
static rtx
redundant_insn (insn, target, delay_list)
rtx insn;
rtx target;
rtx delay_list;
{
rtx target_main = target;
rtx ipat = PATTERN (insn);
rtx trial, pat;
struct resources needed, set;
int i;
/* Scan backwards looking for a match. */
for (trial = PREV_INSN (target); trial; trial = PREV_INSN (trial))
{
if (GET_CODE (trial) == CODE_LABEL)
return 0;
if (GET_RTX_CLASS (GET_CODE (trial)) != 'i')
continue;
pat = PATTERN (trial);
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
continue;
if (GET_CODE (pat) == SEQUENCE)
{
/* Stop for a CALL and its delay slots because it is difficult to
track its resource needs correctly. */
if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN)
return 0;
/* Stop for an INSN or JUMP_INSN with delayed effects and its delay
slots because it is difficult to track its resource needs
correctly. */
#ifdef INSN_SETS_ARE_DELAYED
if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
return 0;
#endif
#ifdef INSN_REFERENCES_ARE_DELAYED
if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
return 0;
#endif
/* See if any of the insns in the delay slot match, updating
resource requirements as we go. */
for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
&& rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat))
break;
/* If found a match, exit this loop early. */
if (i > 0)
break;
}
else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat))
break;
}
/* If we didn't find an insn that matches, return 0. */
if (trial == 0)
return 0;
/* See what resources this insn sets and needs. If they overlap, or
if this insn references CC0, it can't be redundant. */
CLEAR_RESOURCE (&needed);
CLEAR_RESOURCE (&set);
mark_set_resources (insn, &set, 0, 1);
mark_referenced_resources (insn, &needed, 1);
/* If TARGET is a SEQUENCE, get the main insn. */
if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE)
target_main = XVECEXP (PATTERN (target), 0, 0);
if (resource_conflicts_p (&needed, &set)
#ifdef HAVE_cc0
|| reg_mentioned_p (cc0_rtx, ipat)
#endif
/* The insn requiring the delay may not set anything needed or set by
INSN. */
|| insn_sets_resource_p (target_main, &needed, 1)
|| insn_sets_resource_p (target_main, &set, 1))
return 0;
/* Insns we pass may not set either NEEDED or SET, so merge them for
simpler tests. */
needed.memory |= set.memory;
needed.unch_memory |= set.unch_memory;
IOR_HARD_REG_SET (needed.regs, set.regs);
/* This insn isn't redundant if it conflicts with an insn that either is
or will be in a delay slot of TARGET. */
while (delay_list)
{
if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, 1))
return 0;
delay_list = XEXP (delay_list, 1);
}
if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE)
for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed, 1))
return 0;
/* Scan backwards until we reach a label or an insn that uses something
INSN sets or sets something insn uses or sets. */
for (trial = PREV_INSN (target);
trial && GET_CODE (trial) != CODE_LABEL;
trial = PREV_INSN (trial))
{
if (GET_CODE (trial) != INSN && GET_CODE (trial) != CALL_INSN
&& GET_CODE (trial) != JUMP_INSN)
continue;
pat = PATTERN (trial);
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
continue;
if (GET_CODE (pat) == SEQUENCE)
{
/* If this is a CALL_INSN and its delay slots, it is hard to track
the resource needs properly, so give up. */
if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN)
return 0;
/* If this this is an INSN or JUMP_INSN with delayed effects, it
is hard to track the resource needs properly, so give up. */
#ifdef INSN_SETS_ARE_DELAYED
if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
return 0;
#endif
#ifdef INSN_REFERENCES_ARE_DELAYED
if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
return 0;
#endif
/* See if any of the insns in the delay slot match, updating
resource requirements as we go. */
for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
{
rtx candidate = XVECEXP (pat, 0, i);
/* If an insn will be annulled if the branch is false, it isn't
considered as a possible duplicate insn. */
if (rtx_equal_p (PATTERN (candidate), ipat)
&& ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
&& INSN_FROM_TARGET_P (candidate)))
{
/* Show that this insn will be used in the sequel. */
INSN_FROM_TARGET_P (candidate) = 0;
return candidate;
}
/* Unless this is an annulled insn from the target of a branch,
we must stop if it sets anything needed or set by INSN. */
if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
|| ! INSN_FROM_TARGET_P (candidate))
&& insn_sets_resource_p (candidate, &needed, 1))
return 0;
}
/* If the insn requiring the delay slot conflicts with INSN, we
must stop. */
if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, 1))
return 0;
}
else
{
/* See if TRIAL is the same as INSN. */
pat = PATTERN (trial);
if (rtx_equal_p (pat, ipat))
return trial;
/* Can't go any further if TRIAL conflicts with INSN. */
if (insn_sets_resource_p (trial, &needed, 1))
return 0;
}
}
return 0;
}
/* Return 1 if THREAD can only be executed in one way. If LABEL is non-zero,
it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
is non-zero, we are allowed to fall into this thread; otherwise, we are
not.
If LABEL is used more than one or we pass a label other than LABEL before
finding an active insn, we do not own this thread. */
static int
own_thread_p (thread, label, allow_fallthrough)
rtx thread;
rtx label;
int allow_fallthrough;
{
rtx active_insn;
rtx insn;
/* We don't own the function end. */
if (thread == 0)
return 0;
/* Get the first active insn, or THREAD, if it is an active insn. */
active_insn = next_active_insn (PREV_INSN (thread));
for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == CODE_LABEL
&& (insn != label || LABEL_NUSES (insn) != 1))
return 0;
if (allow_fallthrough)
return 1;
/* Ensure that we reach a BARRIER before any insn or label. */
for (insn = prev_nonnote_insn (thread);
insn == 0 || GET_CODE (insn) != BARRIER;
insn = prev_nonnote_insn (insn))
if (insn == 0
|| GET_CODE (insn) == CODE_LABEL
|| (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER))
return 0;
return 1;
}
/* Find the number of the basic block that starts closest to INSN. Return -1
if we couldn't find such a basic block. */
static int
find_basic_block (insn)
rtx insn;
{
int i;
/* Scan backwards to the previous BARRIER. Then see if we can find a
label that starts a basic block. Return the basic block number. */
for (insn = prev_nonnote_insn (insn);
insn && GET_CODE (insn) != BARRIER;
insn = prev_nonnote_insn (insn))
;
/* The start of the function is basic block zero. */
if (insn == 0)
return 0;
/* See if any of the upcoming CODE_LABELs start a basic block. If we reach
anything other than a CODE_LABEL or note, we can't find this code. */
for (insn = next_nonnote_insn (insn);
insn && GET_CODE (insn) == CODE_LABEL;
insn = next_nonnote_insn (insn))
{
for (i = 0; i < n_basic_blocks; i++)
if (insn == basic_block_head[i])
return i;
}
return -1;
}
/* Called when INSN is being moved from a location near the target of a jump.
We leave a marker of the form (use (INSN)) immediately in front
of WHERE for mark_target_live_regs. These markers will be deleted when
reorg finishes.
We used to try to update the live status of registers if WHERE is at
the start of a basic block, but that can't work since we may remove a
BARRIER in relax_delay_slots. */
static void
update_block (insn, where)
rtx insn;
rtx where;
{
int b;
/* Ignore if this was in a delay slot and it came from the target of
a branch. */
if (INSN_FROM_TARGET_P (insn))
return;
emit_insn_before (gen_rtx (USE, VOIDmode, insn), where);
/* INSN might be making a value live in a block where it didn't use to
be. So recompute liveness information for this block. */
b = find_basic_block (insn);
if (b != -1)
bb_ticks[b]++;
}
/* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
the basic block containing the jump. */
static int
reorg_redirect_jump (jump, nlabel)
rtx jump;
rtx nlabel;
{
int b = find_basic_block (jump);
if (b != -1)
bb_ticks[b]++;
return redirect_jump (jump, nlabel);
}
/* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
that reference values used in INSN. If we find one, then we move the
REG_DEAD note to INSN.
This is needed to handle the case where an later insn (after INSN) has a
REG_DEAD note for a register used by INSN, and this later insn subsequently
gets moved before a CODE_LABEL because it is a redundant insn. In this
case, mark_target_live_regs may be confused into thinking the register
is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
static void
update_reg_dead_notes (insn, delayed_insn)
rtx insn, delayed_insn;
{
rtx p, link, next;
for (p = next_nonnote_insn (insn); p != delayed_insn;
p = next_nonnote_insn (p))
for (link = REG_NOTES (p); link; link = next)
{
next = XEXP (link, 1);
if (REG_NOTE_KIND (link) != REG_DEAD
|| GET_CODE (XEXP (link, 0)) != REG)
continue;
if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
{
/* Move the REG_DEAD note from P to INSN. */
remove_note (p, link);
XEXP (link, 1) = REG_NOTES (insn);
REG_NOTES (insn) = link;
}
}
}
/* Called when an insn redundant with start_insn is deleted. If there
is a REG_DEAD note for the target of start_insn between start_insn
and stop_insn, then the REG_DEAD note needs to be deleted since the
value no longer dies there.
If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
confused into thinking the register is dead. */
static void
fix_reg_dead_note (start_insn, stop_insn)
rtx start_insn, stop_insn;
{
rtx p, link, next;
for (p = next_nonnote_insn (start_insn); p != stop_insn;
p = next_nonnote_insn (p))
for (link = REG_NOTES (p); link; link = next)
{
next = XEXP (link, 1);
if (REG_NOTE_KIND (link) != REG_DEAD
|| GET_CODE (XEXP (link, 0)) != REG)
continue;
if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
{
remove_note (p, link);
return;
}
}
}
/* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
This handles the case of udivmodXi4 instructions which optimize their
output depending on whether any REG_UNUSED notes are present.
we must make sure that INSN calculates as many results as REDUNDANT_INSN
does. */
static void
update_reg_unused_notes (insn, redundant_insn)
rtx insn, redundant_insn;
{
rtx p, link, next;
for (link = REG_NOTES (insn); link; link = next)
{
next = XEXP (link, 1);
if (REG_NOTE_KIND (link) != REG_UNUSED
|| GET_CODE (XEXP (link, 0)) != REG)
continue;
if (! find_regno_note (redundant_insn, REG_UNUSED,
REGNO (XEXP (link, 0))))
remove_note (insn, link);
}
}
/* Marks registers possibly live at the current place being scanned by
mark_target_live_regs. Used only by next two function. */
static HARD_REG_SET current_live_regs;
/* Marks registers for which we have seen a REG_DEAD note but no assignment.
Also only used by the next two functions. */
static HARD_REG_SET pending_dead_regs;
/* Utility function called from mark_target_live_regs via note_stores.
It deadens any CLOBBERed registers and livens any SET registers. */
static void
update_live_status (dest, x)
rtx dest;
rtx x;
{
int first_regno, last_regno;
int i;
if (GET_CODE (dest) != REG
&& (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG))
return;
if (GET_CODE (dest) == SUBREG)
first_regno = REGNO (SUBREG_REG (dest)) + SUBREG_WORD (dest);
else
first_regno = REGNO (dest);
last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest));
if (GET_CODE (x) == CLOBBER)
for (i = first_regno; i < last_regno; i++)
CLEAR_HARD_REG_BIT (current_live_regs, i);
else
for (i = first_regno; i < last_regno; i++)
{
SET_HARD_REG_BIT (current_live_regs, i);
CLEAR_HARD_REG_BIT (pending_dead_regs, i);
}
}
/* Similar to next_insn, but ignores insns in the delay slots of
an annulled branch. */
static rtx
next_insn_no_annul (insn)
rtx insn;
{
if (insn)
{
/* If INSN is an annulled branch, skip any insns from the target
of the branch. */
if (INSN_ANNULLED_BRANCH_P (insn)
&& NEXT_INSN (PREV_INSN (insn)) != insn)
while (INSN_FROM_TARGET_P (NEXT_INSN (insn)))
insn = NEXT_INSN (insn);
insn = NEXT_INSN (insn);
if (insn && GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
insn = XVECEXP (PATTERN (insn), 0, 0);
}
return insn;
}
/* A subroutine of mark_target_live_regs. Search forward from TARGET
looking for registers that are set before they are used. These are dead.
Stop after passing a few conditional jumps, and/or a small
number of unconditional branches. */
static rtx
find_dead_or_set_registers (target, res, jump_target, jump_count, set, needed)
rtx target;
struct resources *res;
rtx *jump_target;
int jump_count;
struct resources set, needed;
{
HARD_REG_SET scratch;
rtx insn, next;
rtx jump_insn = 0;
int i;
for (insn = target; insn; insn = next)
{
rtx this_jump_insn = insn;
next = NEXT_INSN (insn);
switch (GET_CODE (insn))
{
case CODE_LABEL:
/* After a label, any pending dead registers that weren't yet
used can be made dead. */
AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
CLEAR_HARD_REG_SET (pending_dead_regs);
/* All spill registers are dead at a label, so kill all of the
ones that aren't needed also. */
COPY_HARD_REG_SET (scratch, used_spill_regs);
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
AND_COMPL_HARD_REG_SET (res->regs, scratch);
continue;
case BARRIER:
case NOTE:
continue;
case INSN:
if (GET_CODE (PATTERN (insn)) == USE)
{
/* If INSN is a USE made by update_block, we care about the
underlying insn. Any registers set by the underlying insn
are live since the insn is being done somewhere else. */
if (GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
mark_set_resources (XEXP (PATTERN (insn), 0), res, 0, 1);
/* All other USE insns are to be ignored. */
continue;
}
else if (GET_CODE (PATTERN (insn)) == CLOBBER)
continue;
else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
{
/* An unconditional jump can be used to fill the delay slot
of a call, so search for a JUMP_INSN in any position. */
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
{
this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
if (GET_CODE (this_jump_insn) == JUMP_INSN)
break;
}
}
}
if (GET_CODE (this_jump_insn) == JUMP_INSN)
{
if (jump_count++ < 10)
{
if (simplejump_p (this_jump_insn)
|| GET_CODE (PATTERN (this_jump_insn)) == RETURN)
{
next = JUMP_LABEL (this_jump_insn);
if (jump_insn == 0)
{
jump_insn = insn;
if (jump_target)
*jump_target = JUMP_LABEL (this_jump_insn);
}
}
else if (condjump_p (this_jump_insn)
|| condjump_in_parallel_p (this_jump_insn))
{
struct resources target_set, target_res;
struct resources fallthrough_res;
/* We can handle conditional branches here by following
both paths, and then IOR the results of the two paths
together, which will give us registers that are dead
on both paths. Since this is expensive, we give it
a much higher cost than unconditional branches. The
cost was chosen so that we will follow at most 1
conditional branch. */
jump_count += 4;
if (jump_count >= 10)
break;
mark_referenced_resources (insn, &needed, 1);
/* For an annulled branch, mark_set_resources ignores slots
filled by instructions from the target. This is correct
if the branch is not taken. Since we are following both
paths from the branch, we must also compute correct info
if the branch is taken. We do this by inverting all of
the INSN_FROM_TARGET_P bits, calling mark_set_resources,
and then inverting the INSN_FROM_TARGET_P bits again. */
if (GET_CODE (PATTERN (insn)) == SEQUENCE
&& INSN_ANNULLED_BRANCH_P (this_jump_insn))
{
for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
= ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
target_set = set;
mark_set_resources (insn, &target_set, 0, 1);
for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
= ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
mark_set_resources (insn, &set, 0, 1);
}
else
{
mark_set_resources (insn, &set, 0, 1);
target_set = set;
}
target_res = *res;
COPY_HARD_REG_SET (scratch, target_set.regs);
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
fallthrough_res = *res;
COPY_HARD_REG_SET (scratch, set.regs);
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
&target_res, 0, jump_count,
target_set, needed);
find_dead_or_set_registers (next,
&fallthrough_res, 0, jump_count,
set, needed);
IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
break;
}
else
break;
}
else
{
/* Don't try this optimization if we expired our jump count
above, since that would mean there may be an infinite loop
in the function being compiled. */
jump_insn = 0;
break;
}
}
mark_referenced_resources (insn, &needed, 1);
mark_set_resources (insn, &set, 0, 1);
COPY_HARD_REG_SET (scratch, set.regs);
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
AND_COMPL_HARD_REG_SET (res->regs, scratch);
}
return jump_insn;
}
/* Set the resources that are live at TARGET.
If TARGET is zero, we refer to the end of the current function and can
return our precomputed value.
Otherwise, we try to find out what is live by consulting the basic block
information. This is tricky, because we must consider the actions of
reload and jump optimization, which occur after the basic block information
has been computed.
Accordingly, we proceed as follows::
We find the previous BARRIER and look at all immediately following labels
(with no intervening active insns) to see if any of them start a basic
block. If we hit the start of the function first, we use block 0.
Once we have found a basic block and a corresponding first insns, we can
accurately compute the live status from basic_block_live_regs and
reg_renumber. (By starting at a label following a BARRIER, we are immune
to actions taken by reload and jump.) Then we scan all insns between
that point and our target. For each CLOBBER (or for call-clobbered regs
when we pass a CALL_INSN), mark the appropriate registers are dead. For
a SET, mark them as live.
We have to be careful when using REG_DEAD notes because they are not
updated by such things as find_equiv_reg. So keep track of registers
marked as dead that haven't been assigned to, and mark them dead at the
next CODE_LABEL since reload and jump won't propagate values across labels.
If we cannot find the start of a basic block (should be a very rare
case, if it can happen at all), mark everything as potentially live.
Next, scan forward from TARGET looking for things set or clobbered
before they are used. These are not live.
Because we can be called many times on the same target, save our results
in a hash table indexed by INSN_UID. */
static void
mark_target_live_regs (target, res)
rtx target;
struct resources *res;
{
int b = -1;
int i;
struct target_info *tinfo;
rtx insn, next;
rtx jump_insn = 0;
rtx jump_target;
HARD_REG_SET scratch;
struct resources set, needed;
int jump_count = 0;
/* Handle end of function. */
if (target == 0)
{
*res = end_of_function_needs;
return;
}
/* We have to assume memory is needed, but the CC isn't. */
res->memory = 1;
res->volatil = res->unch_memory = 0;
res->cc = 0;
/* See if we have computed this value already. */
for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
tinfo; tinfo = tinfo->next)
if (tinfo->uid == INSN_UID (target))
break;
/* Start by getting the basic block number. If we have saved information,
we can get it from there unless the insn at the start of the basic block
has been deleted. */
if (tinfo && tinfo->block != -1
&& ! INSN_DELETED_P (basic_block_head[tinfo->block]))
b = tinfo->block;
if (b == -1)
b = find_basic_block (target);
if (tinfo)
{
/* If the information is up-to-date, use it. Otherwise, we will
update it below. */
if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
{
COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
return;
}
}
else
{
/* Allocate a place to put our results and chain it into the
hash table. */
tinfo = (struct target_info *) oballoc (sizeof (struct target_info));
tinfo->uid = INSN_UID (target);
tinfo->block = b;
tinfo->next = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
}
CLEAR_HARD_REG_SET (pending_dead_regs);
/* If we found a basic block, get the live registers from it and update
them with anything set or killed between its start and the insn before
TARGET. Otherwise, we must assume everything is live. */
if (b != -1)
{
regset regs_live = basic_block_live_at_start[b];
int offset, j;
REGSET_ELT_TYPE bit;
int regno;
rtx start_insn, stop_insn;
/* Compute hard regs live at start of block -- this is the real hard regs
marked live, plus live pseudo regs that have been renumbered to
hard regs. */
#ifdef HARD_REG_SET
current_live_regs = *regs_live;
#else
COPY_HARD_REG_SET (current_live_regs, regs_live);
#endif
for (offset = 0, i = 0; offset < regset_size; offset++)
{
if (regs_live[offset] == 0)
i += REGSET_ELT_BITS;
else
for (bit = 1; bit && i < max_regno; bit <<= 1, i++)
if ((regs_live[offset] & bit)
&& (regno = reg_renumber[i]) >= 0)
for (j = regno;
j < regno + HARD_REGNO_NREGS (regno,
PSEUDO_REGNO_MODE (i));
j++)
SET_HARD_REG_BIT (current_live_regs, j);
}
/* Get starting and ending insn, handling the case where each might
be a SEQUENCE. */
start_insn = (b == 0 ? get_insns () : basic_block_head[b]);
stop_insn = target;
if (GET_CODE (start_insn) == INSN
&& GET_CODE (PATTERN (start_insn)) == SEQUENCE)
start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
if (GET_CODE (stop_insn) == INSN
&& GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
stop_insn = next_insn (PREV_INSN (stop_insn));
for (insn = start_insn; insn != stop_insn;
insn = next_insn_no_annul (insn))
{
rtx link;
rtx real_insn = insn;
/* If this insn is from the target of a branch, it isn't going to
be used in the sequel. If it is used in both cases, this
test will not be true. */
if (INSN_FROM_TARGET_P (insn))
continue;
/* If this insn is a USE made by update_block, we care about the
underlying insn. */
if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
&& GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
real_insn = XEXP (PATTERN (insn), 0);
if (GET_CODE (real_insn) == CALL_INSN)
{
/* CALL clobbers all call-used regs that aren't fixed except
sp, ap, and fp. Do this before setting the result of the
call live. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (call_used_regs[i]
&& i != STACK_POINTER_REGNUM && i != FRAME_POINTER_REGNUM
&& i != ARG_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
&& i != HARD_FRAME_POINTER_REGNUM
#endif
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
&& ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
#endif
#ifdef PIC_OFFSET_TABLE_REGNUM
&& ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
#endif
)
CLEAR_HARD_REG_BIT (current_live_regs, i);
/* A CALL_INSN sets any global register live, since it may
have been modified by the call. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (global_regs[i])
SET_HARD_REG_BIT (current_live_regs, i);
}
/* Mark anything killed in an insn to be deadened at the next
label. Ignore USE insns; the only REG_DEAD notes will be for
parameters. But they might be early. A CALL_INSN will usually
clobber registers used for parameters. It isn't worth bothering
with the unlikely case when it won't. */
if ((GET_CODE (real_insn) == INSN
&& GET_CODE (PATTERN (real_insn)) != USE
&& GET_CODE (PATTERN (real_insn)) != CLOBBER)
|| GET_CODE (real_insn) == JUMP_INSN
|| GET_CODE (real_insn) == CALL_INSN)
{
for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_DEAD
&& GET_CODE (XEXP (link, 0)) == REG
&& REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
{
int first_regno = REGNO (XEXP (link, 0));
int last_regno
= (first_regno
+ HARD_REGNO_NREGS (first_regno,
GET_MODE (XEXP (link, 0))));
for (i = first_regno; i < last_regno; i++)
SET_HARD_REG_BIT (pending_dead_regs, i);
}
note_stores (PATTERN (real_insn), update_live_status);
/* If any registers were unused after this insn, kill them.
These notes will always be accurate. */
for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_UNUSED
&& GET_CODE (XEXP (link, 0)) == REG
&& REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
{
int first_regno = REGNO (XEXP (link, 0));
int last_regno
= (first_regno
+ HARD_REGNO_NREGS (first_regno,
GET_MODE (XEXP (link, 0))));
for (i = first_regno; i < last_regno; i++)
CLEAR_HARD_REG_BIT (current_live_regs, i);
}
}
else if (GET_CODE (real_insn) == CODE_LABEL)
{
/* A label clobbers the pending dead registers since neither
reload nor jump will propagate a value across a label. */
AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
CLEAR_HARD_REG_SET (pending_dead_regs);
}
/* The beginning of the epilogue corresponds to the end of the
RTL chain when there are no epilogue insns. Certain resources
are implicitly required at that point. */
else if (GET_CODE (real_insn) == NOTE
&& NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
}
COPY_HARD_REG_SET (res->regs, current_live_regs);
tinfo->block = b;
tinfo->bb_tick = bb_ticks[b];
}
else
/* We didn't find the start of a basic block. Assume everything
in use. This should happen only extremely rarely. */
SET_HARD_REG_SET (res->regs);
CLEAR_RESOURCE (&set);
CLEAR_RESOURCE (&needed);
jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
set, needed);
/* If we hit an unconditional branch, we have another way of finding out
what is live: we can see what is live at the branch target and include
anything used but not set before the branch. The only things that are
live are those that are live using the above test and the test below. */
if (jump_insn)
{
struct resources new_resources;
rtx stop_insn = next_active_insn (jump_insn);
mark_target_live_regs (next_active_insn (jump_target), &new_resources);
CLEAR_RESOURCE (&set);
CLEAR_RESOURCE (&needed);
/* Include JUMP_INSN in the needed registers. */
for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
{
mark_referenced_resources (insn, &needed, 1);
COPY_HARD_REG_SET (scratch, needed.regs);
AND_COMPL_HARD_REG_SET (scratch, set.regs);
IOR_HARD_REG_SET (new_resources.regs, scratch);
mark_set_resources (insn, &set, 0, 1);
}
AND_HARD_REG_SET (res->regs, new_resources.regs);
}
COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
}
/* Scan a function looking for insns that need a delay slot and find insns to
put into the delay slot.
NON_JUMPS_P is non-zero if we are to only try to fill non-jump insns (such
as calls). We do these first since we don't want jump insns (that are
easier to fill) to get the only insns that could be used for non-jump insns.
When it is zero, only try to fill JUMP_INSNs.
When slots are filled in this manner, the insns (including the
delay_insn) are put together in a SEQUENCE rtx. In this fashion,
it is possible to tell whether a delay slot has really been filled
or not. `final' knows how to deal with this, by communicating
through FINAL_SEQUENCE. */
static void
fill_simple_delay_slots (first, non_jumps_p)
rtx first;
int non_jumps_p;
{
register rtx insn, pat, trial, next_trial;
register int i, j;
int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
struct resources needed, set;
int slots_to_fill, slots_filled;
rtx delay_list;
for (i = 0; i < num_unfilled_slots; i++)
{
int flags;
/* Get the next insn to fill. If it has already had any slots assigned,
we can't do anything with it. Maybe we'll improve this later. */
insn = unfilled_slots_base[i];
if (insn == 0
|| INSN_DELETED_P (insn)
|| (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
|| (GET_CODE (insn) == JUMP_INSN && non_jumps_p)
|| (GET_CODE (insn) != JUMP_INSN && ! non_jumps_p))
continue;
if (GET_CODE (insn) == JUMP_INSN)
flags = get_jump_flags (insn, JUMP_LABEL (insn));
else
flags = get_jump_flags (insn, NULL_RTX);
slots_to_fill = num_delay_slots (insn);
if (slots_to_fill == 0)
abort ();
/* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
says how many. After initialization, first try optimizing
call _foo call _foo
nop add %o7,.-L1,%o7
b,a L1
nop
If this case applies, the delay slot of the call is filled with
the unconditional jump. This is done first to avoid having the
delay slot of the call filled in the backward scan. Also, since
the unconditional jump is likely to also have a delay slot, that
insn must exist when it is subsequently scanned.
This is tried on each insn with delay slots as some machines
have insns which perform calls, but are not represented as
CALL_INSNs. */
slots_filled = 0;
delay_list = 0;
if ((trial = next_active_insn (insn))
&& GET_CODE (trial) == JUMP_INSN
&& simplejump_p (trial)
&& eligible_for_delay (insn, slots_filled, trial, flags)
&& no_labels_between_p (insn, trial))
{
rtx *tmp;
slots_filled++;
delay_list = add_to_delay_list (trial, delay_list);
/* TRIAL may have had its delay slot filled, then unfilled. When
the delay slot is unfilled, TRIAL is placed back on the unfilled
slots obstack. Unfortunately, it is placed on the end of the
obstack, not in its original location. Therefore, we must search
from entry i + 1 to the end of the unfilled slots obstack to
try and find TRIAL. */
tmp = &unfilled_slots_base[i + 1];
while (*tmp != trial && tmp != unfilled_slots_next)
tmp++;
/* Remove the unconditional jump from consideration for delay slot
filling and unthread it. */
if (*tmp == trial)
*tmp = 0;
{
rtx next = NEXT_INSN (trial);
rtx prev = PREV_INSN (trial);
if (prev)
NEXT_INSN (prev) = next;
if (next)
PREV_INSN (next) = prev;
}
}
/* Now, scan backwards from the insn to search for a potential
delay-slot candidate. Stop searching when a label or jump is hit.
For each candidate, if it is to go into the delay slot (moved
forward in execution sequence), it must not need or set any resources
that were set by later insns and must not set any resources that
are needed for those insns.
The delay slot insn itself sets resources unless it is a call
(in which case the called routine, not the insn itself, is doing
the setting). */
if (slots_filled < slots_to_fill)
{
CLEAR_RESOURCE (&needed);
CLEAR_RESOURCE (&set);
mark_set_resources (insn, &set, 0, 0);
mark_referenced_resources (insn, &needed, 0);
for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
trial = next_trial)
{
next_trial = prev_nonnote_insn (trial);
/* This must be an INSN or CALL_INSN. */
pat = PATTERN (trial);
/* USE and CLOBBER at this level was just for flow; ignore it. */
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
continue;
/* Check for resource conflict first, to avoid unnecessary
splitting. */
if (! insn_references_resource_p (trial, &set, 1)
&& ! insn_sets_resource_p (trial, &set, 1)
&& ! insn_sets_resource_p (trial, &needed, 1)
#ifdef HAVE_cc0
/* Can't separate set of cc0 from its use. */
&& ! (reg_mentioned_p (cc0_rtx, pat)
&& ! sets_cc0_p (cc0_rtx, pat))
#endif
)
{
trial = try_split (pat, trial, 1);
next_trial = prev_nonnote_insn (trial);
if (eligible_for_delay (insn, slots_filled, trial, flags))
{
/* In this case, we are searching backward, so if we
find insns to put on the delay list, we want
to put them at the head, rather than the
tail, of the list. */
update_reg_dead_notes (trial, insn);
delay_list = gen_rtx (INSN_LIST, VOIDmode,
trial, delay_list);
update_block (trial, trial);
delete_insn (trial);
if (slots_to_fill == ++slots_filled)
break;
continue;
}
}
mark_set_resources (trial, &set, 0, 1);
mark_referenced_resources (trial, &needed, 1);
}
}
/* If all needed slots haven't been filled, we come here. */
/* Try to optimize case of jumping around a single insn. */
#if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
if (slots_filled != slots_to_fill
&& delay_list == 0
&& GET_CODE (insn) == JUMP_INSN
&& (condjump_p (insn) || condjump_in_parallel_p (insn)))
{
delay_list = optimize_skip (insn);
if (delay_list)
slots_filled += 1;
}
#endif
/* Try to get insns from beyond the insn needing the delay slot.
These insns can neither set or reference resources set in insns being
skipped, cannot set resources in the insn being skipped, and, if this
is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
call might not return).
There used to be code which continued past the target label if
we saw all uses of the target label. This code did not work,
because it failed to account for some instructions which were
both annulled and marked as from the target. This can happen as a
result of optimize_skip. Since this code was redundant with
fill_eager_delay_slots anyways, it was just deleted. */
if (slots_filled != slots_to_fill
&& (GET_CODE (insn) != JUMP_INSN
|| ((condjump_p (insn) || condjump_in_parallel_p (insn))
&& ! simplejump_p (insn)
&& JUMP_LABEL (insn) != 0)))
{
rtx target = 0;
int maybe_never = 0;
struct resources needed_at_jump;
CLEAR_RESOURCE (&needed);
CLEAR_RESOURCE (&set);
if (GET_CODE (insn) == CALL_INSN)
{
mark_set_resources (insn, &set, 0, 1);
mark_referenced_resources (insn, &needed, 1);
maybe_never = 1;
}
else
{
mark_set_resources (insn, &set, 0, 1);
mark_referenced_resources (insn, &needed, 1);
if (GET_CODE (insn) == JUMP_INSN)
target = JUMP_LABEL (insn);
}
for (trial = next_nonnote_insn (insn); trial; trial = next_trial)
{
rtx pat, trial_delay;
next_trial = next_nonnote_insn (trial);
if (GET_CODE (trial) == CODE_LABEL
|| GET_CODE (trial) == BARRIER)
break;
/* We must have an INSN, JUMP_INSN, or CALL_INSN. */
pat = PATTERN (trial);
/* Stand-alone USE and CLOBBER are just for flow. */
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
continue;
/* If this already has filled delay slots, get the insn needing
the delay slots. */
if (GET_CODE (pat) == SEQUENCE)
trial_delay = XVECEXP (pat, 0, 0);
else
trial_delay = trial;
/* If this is a jump insn to our target, indicate that we have
seen another jump to it. If we aren't handling a conditional
jump, stop our search. Otherwise, compute the needs at its
target and add them to NEEDED. */
if (GET_CODE (trial_delay) == JUMP_INSN)
{
if (target == 0)
break;
else if (JUMP_LABEL (trial_delay) != target)
{
mark_target_live_regs
(next_active_insn (JUMP_LABEL (trial_delay)),
&needed_at_jump);
needed.memory |= needed_at_jump.memory;
needed.unch_memory |= needed_at_jump.unch_memory;
IOR_HARD_REG_SET (needed.regs, needed_at_jump.regs);
}
}
/* See if we have a resource problem before we try to
split. */
if (target == 0
&& GET_CODE (pat) != SEQUENCE
&& ! insn_references_resource_p (trial, &set, 1)
&& ! insn_sets_resource_p (trial, &set, 1)
&& ! insn_sets_resource_p (trial, &needed, 1)
#ifdef HAVE_cc0
&& ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
#endif
&& ! (maybe_never && may_trap_p (pat))
&& (trial = try_split (pat, trial, 0))
&& eligible_for_delay (insn, slots_filled, trial, flags))
{
next_trial = next_nonnote_insn (trial);
delay_list = add_to_delay_list (trial, delay_list);
#ifdef HAVE_cc0
if (reg_mentioned_p (cc0_rtx, pat))
link_cc0_insns (trial);
#endif
delete_insn (trial);
if (slots_to_fill == ++slots_filled)
break;
continue;
}
mark_set_resources (trial, &set, 0, 1);
mark_referenced_resources (trial, &needed, 1);
/* Ensure we don't put insns between the setting of cc and the
comparison by moving a setting of cc into an earlier delay
slot since these insns could clobber the condition code. */
set.cc = 1;
/* If this is a call or jump, we might not get here. */
if (GET_CODE (trial_delay) == CALL_INSN
|| GET_CODE (trial_delay) == JUMP_INSN)
maybe_never = 1;
}
/* If there are slots left to fill and our search was stopped by an
unconditional branch, try the insn at the branch target. We can
redirect the branch if it works.
Don't do this if the insn at the branch target is a branch. */
if (slots_to_fill != slots_filled
&& trial
&& GET_CODE (trial) == JUMP_INSN
&& simplejump_p (trial)
&& (target == 0 || JUMP_LABEL (trial) == target)
&& (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
&& ! (GET_CODE (next_trial) == INSN
&& GET_CODE (PATTERN (next_trial)) == SEQUENCE)
&& GET_CODE (next_trial) != JUMP_INSN
&& ! insn_references_resource_p (next_trial, &set, 1)
&& ! insn_sets_resource_p (next_trial, &set, 1)
&& ! insn_sets_resource_p (next_trial, &needed, 1)
#ifdef HAVE_cc0
&& ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
#endif
&& ! (maybe_never && may_trap_p (PATTERN (next_trial)))
&& (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
&& eligible_for_delay (insn, slots_filled, next_trial, flags))
{
rtx new_label = next_active_insn (next_trial);
if (new_label != 0)
new_label = get_label_before (new_label);
else
new_label = find_end_label ();
delay_list
= add_to_delay_list (copy_rtx (next_trial), delay_list);
slots_filled++;
reorg_redirect_jump (trial, new_label);
/* If we merged because we both jumped to the same place,
redirect the original insn also. */
if (target)
reorg_redirect_jump (insn, new_label);
}
}
/* If this is an unconditional jump, then try to get insns from the
target of the jump. */
if (GET_CODE (insn) == JUMP_INSN
&& simplejump_p (insn)
&& slots_filled != slots_to_fill)
delay_list
= fill_slots_from_thread (insn, const_true_rtx,
next_active_insn (JUMP_LABEL (insn)),
NULL, 1, 1,
own_thread_p (JUMP_LABEL (insn),
JUMP_LABEL (insn), 0),
0, slots_to_fill, &slots_filled);
if (delay_list)
unfilled_slots_base[i]
= emit_delay_sequence (insn, delay_list,
slots_filled, slots_to_fill);
if (slots_to_fill == slots_filled)
unfilled_slots_base[i] = 0;
note_delay_statistics (slots_filled, 0);
}
#ifdef DELAY_SLOTS_FOR_EPILOGUE
/* See if the epilogue needs any delay slots. Try to fill them if so.
The only thing we can do is scan backwards from the end of the
function. If we did this in a previous pass, it is incorrect to do it
again. */
if (current_function_epilogue_delay_list)
return;
slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
if (slots_to_fill == 0)
return;
slots_filled = 0;
CLEAR_RESOURCE (&set);
/* The frame pointer and stack pointer are needed at the beginning of
the epilogue, so instructions setting them can not be put in the
epilogue delay slot. However, everything else needed at function
end is safe, so we don't want to use end_of_function_needs here. */
CLEAR_RESOURCE (&needed);
if (frame_pointer_needed)
{
SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
#endif
#ifdef EXIT_IGNORE_STACK
if (! EXIT_IGNORE_STACK)
#endif
SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
}
else
SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
for (trial = get_last_insn (); ! stop_search_p (trial, 1);
trial = PREV_INSN (trial))
{
if (GET_CODE (trial) == NOTE)
continue;
pat = PATTERN (trial);
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
continue;
if (! insn_references_resource_p (trial, &set, 1)
&& ! insn_sets_resource_p (trial, &needed, 1)
&& ! insn_sets_resource_p (trial, &set, 1)
#ifdef HAVE_cc0
/* Don't want to mess with cc0 here. */
&& ! reg_mentioned_p (cc0_rtx, pat)
#endif
)
{
trial = try_split (pat, trial, 1);
if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
{
/* Here as well we are searching backward, so put the
insns we find on the head of the list. */
current_function_epilogue_delay_list
= gen_rtx (INSN_LIST, VOIDmode, trial,
current_function_epilogue_delay_list);
mark_referenced_resources (trial, &end_of_function_needs, 1);
update_block (trial, trial);
delete_insn (trial);
/* Clear deleted bit so final.c will output the insn. */
INSN_DELETED_P (trial) = 0;
if (slots_to_fill == ++slots_filled)
break;
continue;
}
}
mark_set_resources (trial, &set, 0, 1);
mark_referenced_resources (trial, &needed, 1);
}
note_delay_statistics (slots_filled, 0);
#endif
}
/* Try to find insns to place in delay slots.
INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
or is an unconditional branch if CONDITION is const_true_rtx.
*PSLOTS_FILLED is updated with the number of slots that we have filled.
THREAD is a flow-of-control, either the insns to be executed if the
branch is true or if the branch is false, THREAD_IF_TRUE says which.
OPPOSITE_THREAD is the thread in the opposite direction. It is used
to see if any potential delay slot insns set things needed there.
LIKELY is non-zero if it is extremely likely that the branch will be
taken and THREAD_IF_TRUE is set. This is used for the branch at the
end of a loop back up to the top.
OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
thread. I.e., it is the fallthrough code of our jump or the target of the
jump when we are the only jump going there.
If OWN_THREAD is false, it must be the "true" thread of a jump. In that
case, we can only take insns from the head of the thread for our delay
slot. We then adjust the jump to point after the insns we have taken. */
static rtx
fill_slots_from_thread (insn, condition, thread, opposite_thread, likely,
thread_if_true, own_thread, own_opposite_thread,
slots_to_fill, pslots_filled)
rtx insn;
rtx condition;
rtx thread, opposite_thread;
int likely;
int thread_if_true;
int own_thread, own_opposite_thread;
int slots_to_fill, *pslots_filled;
{
rtx new_thread;
rtx delay_list = 0;
struct resources opposite_needed, set, needed;
rtx trial;
int lose = 0;
int must_annul = 0;
int flags;
/* Validate our arguments. */
if ((condition == const_true_rtx && ! thread_if_true)
|| (! own_thread && ! thread_if_true))
abort ();
flags = get_jump_flags (insn, JUMP_LABEL (insn));
/* If our thread is the end of subroutine, we can't get any delay
insns from that. */
if (thread == 0)
return 0;
/* If this is an unconditional branch, nothing is needed at the
opposite thread. Otherwise, compute what is needed there. */
if (condition == const_true_rtx)
CLEAR_RESOURCE (&opposite_needed);
else
mark_target_live_regs (opposite_thread, &opposite_needed);
/* If the insn at THREAD can be split, do it here to avoid having to
update THREAD and NEW_THREAD if it is done in the loop below. Also
initialize NEW_THREAD. */
new_thread = thread = try_split (PATTERN (thread), thread, 0);
/* Scan insns at THREAD. We are looking for an insn that can be removed
from THREAD (it neither sets nor references resources that were set
ahead of it and it doesn't set anything needs by the insns ahead of
it) and that either can be placed in an annulling insn or aren't
needed at OPPOSITE_THREAD. */
CLEAR_RESOURCE (&needed);
CLEAR_RESOURCE (&set);
/* If we do not own this thread, we must stop as soon as we find
something that we can't put in a delay slot, since all we can do
is branch into THREAD at a later point. Therefore, labels stop
the search if this is not the `true' thread. */
for (trial = thread;
! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
trial = next_nonnote_insn (trial))
{
rtx pat, old_trial;
/* If we have passed a label, we no longer own this thread. */
if (GET_CODE (trial) == CODE_LABEL)
{
own_thread = 0;
continue;
}
pat = PATTERN (trial);
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
continue;
/* If TRIAL conflicts with the insns ahead of it, we lose. Also,
don't separate or copy insns that set and use CC0. */
if (! insn_references_resource_p (trial, &set, 1)
&& ! insn_sets_resource_p (trial, &set, 1)
&& ! insn_sets_resource_p (trial, &needed, 1)
#ifdef HAVE_cc0
&& ! (reg_mentioned_p (cc0_rtx, pat)
&& (! own_thread || ! sets_cc0_p (pat)))
#endif
)
{
rtx prior_insn;
/* If TRIAL is redundant with some insn before INSN, we don't
actually need to add it to the delay list; we can merely pretend
we did. */
if (prior_insn = redundant_insn (trial, insn, delay_list))
{
fix_reg_dead_note (prior_insn, insn);
if (own_thread)
{
update_block (trial, thread);
if (trial == thread)
{
thread = next_active_insn (thread);
if (new_thread == trial)
new_thread = thread;
}
delete_insn (trial);
}
else
{
update_reg_unused_notes (prior_insn, trial);
new_thread = next_active_insn (trial);
}
continue;
}
/* There are two ways we can win: If TRIAL doesn't set anything
needed at the opposite thread and can't trap, or if it can
go into an annulled delay slot. */
if (condition == const_true_rtx
|| (! insn_sets_resource_p (trial, &opposite_needed, 1)
&& ! may_trap_p (pat)))
{
old_trial = trial;
trial = try_split (pat, trial, 0);
if (new_thread == old_trial)
new_thread = trial;
if (thread == old_trial)
thread = trial;
pat = PATTERN (trial);
if (eligible_for_delay (insn, *pslots_filled, trial, flags))
goto winner;
}
else if (0
#ifdef ANNUL_IFTRUE_SLOTS
|| ! thread_if_true
#endif
#ifdef ANNUL_IFFALSE_SLOTS
|| thread_if_true
#endif
)
{
old_trial = trial;
trial = try_split (pat, trial, 0);
if (new_thread == old_trial)
new_thread = trial;
if (thread == old_trial)
thread = trial;
pat = PATTERN (trial);
if ((thread_if_true
? eligible_for_annul_false (insn, *pslots_filled, trial, flags)
: eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
{
rtx temp;
must_annul = 1;
winner:
#ifdef HAVE_cc0
if (reg_mentioned_p (cc0_rtx, pat))
link_cc0_insns (trial);
#endif
/* If we own this thread, delete the insn. If this is the
destination of a branch, show that a basic block status
may have been updated. In any case, mark the new
starting point of this thread. */
if (own_thread)
{
update_block (trial, thread);
delete_insn (trial);
}
else
new_thread = next_active_insn (trial);
temp = own_thread ? trial : copy_rtx (trial);
if (thread_if_true)
INSN_FROM_TARGET_P (temp) = 1;
delay_list = add_to_delay_list (temp, delay_list);
if (slots_to_fill == ++(*pslots_filled))
{
/* Even though we have filled all the slots, we
may be branching to a location that has a
redundant insn. Skip any if so. */
while (new_thread && ! own_thread
&& ! insn_sets_resource_p (new_thread, &set, 1)
&& ! insn_sets_resource_p (new_thread, &needed, 1)
&& ! insn_references_resource_p (new_thread,
&set, 1)
&& redundant_insn (new_thread, insn, delay_list))
new_thread = next_active_insn (new_thread);
break;
}
continue;
}
}
}
/* This insn can't go into a delay slot. */
lose = 1;
mark_set_resources (trial, &set, 0, 1);
mark_referenced_resources (trial, &needed, 1);
/* Ensure we don't put insns between the setting of cc and the comparison
by moving a setting of cc into an earlier delay slot since these insns
could clobber the condition code. */
set.cc = 1;
/* If this insn is a register-register copy and the next insn has
a use of our destination, change it to use our source. That way,
it will become a candidate for our delay slot the next time
through this loop. This case occurs commonly in loops that
scan a list.
We could check for more complex cases than those tested below,
but it doesn't seem worth it. It might also be a good idea to try
to swap the two insns. That might do better.
We can't do this if the next insn modifies our destination, because
that would make the replacement into the insn invalid. We also can't
do this if it modifies our source, because it might be an earlyclobber
operand. This latter test also prevents updating the contents of
a PRE_INC. */
if (GET_CODE (trial) == INSN && GET_CODE (pat) == SET
&& GET_CODE (SET_SRC (pat)) == REG
&& GET_CODE (SET_DEST (pat)) == REG)
{
rtx next = next_nonnote_insn (trial);
if (next && GET_CODE (next) == INSN
&& GET_CODE (PATTERN (next)) != USE
&& ! reg_set_p (SET_DEST (pat), next)
&& ! reg_set_p (SET_SRC (pat), next)
&& reg_referenced_p (SET_DEST (pat), PATTERN (next)))
validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
}
}
/* If we stopped on a branch insn that has delay slots, see if we can
steal some of the insns in those slots. */
if (trial && GET_CODE (trial) == INSN
&& GET_CODE (PATTERN (trial)) == SEQUENCE
&& GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN)
{
/* If this is the `true' thread, we will want to follow the jump,
so we can only do this if we have taken everything up to here. */
if (thread_if_true && trial == new_thread)
delay_list
= steal_delay_list_from_target (insn, condition, PATTERN (trial),
delay_list, &set, &needed,
&opposite_needed, slots_to_fill,
pslots_filled, &must_annul,
&new_thread);
else if (! thread_if_true)
delay_list
= steal_delay_list_from_fallthrough (insn, condition,
PATTERN (trial),
delay_list, &set, &needed,
&opposite_needed, slots_to_fill,
pslots_filled, &must_annul);
}
/* If we haven't found anything for this delay slot and it is very
likely that the branch will be taken, see if the insn at our target
increments or decrements a register with an increment that does not
depend on the destination register. If so, try to place the opposite
arithmetic insn after the jump insn and put the arithmetic insn in the
delay slot. If we can't do this, return. */
if (delay_list == 0 && likely && new_thread && GET_CODE (new_thread) == INSN)
{
rtx pat = PATTERN (new_thread);
rtx dest;
rtx src;
trial = new_thread;
pat = PATTERN (trial);
if (GET_CODE (trial) != INSN || GET_CODE (pat) != SET
|| ! eligible_for_delay (insn, 0, trial, flags))
return 0;
dest = SET_DEST (pat), src = SET_SRC (pat);
if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
&& rtx_equal_p (XEXP (src, 0), dest)
&& ! reg_overlap_mentioned_p (dest, XEXP (src, 1)))
{
rtx other = XEXP (src, 1);
rtx new_arith;
rtx ninsn;
/* If this is a constant adjustment, use the same code with
the negated constant. Otherwise, reverse the sense of the
arithmetic. */
if (GET_CODE (other) == CONST_INT)
new_arith = gen_rtx (GET_CODE (src), GET_MODE (src), dest,
negate_rtx (GET_MODE (src), other));
else
new_arith = gen_rtx (GET_CODE (src) == PLUS ? MINUS : PLUS,
GET_MODE (src), dest, other);
ninsn = emit_insn_after (gen_rtx (SET, VOIDmode, dest, new_arith),
insn);
if (recog_memoized (ninsn) < 0
|| (insn_extract (ninsn),
! constrain_operands (INSN_CODE (ninsn), 1)))
{
delete_insn (ninsn);
return 0;
}
if (own_thread)
{
update_block (trial, thread);
delete_insn (trial);
}
else
new_thread = next_active_insn (trial);
ninsn = own_thread ? trial : copy_rtx (trial);
if (thread_if_true)
INSN_FROM_TARGET_P (ninsn) = 1;
delay_list = add_to_delay_list (ninsn, NULL_RTX);
(*pslots_filled)++;
}
}
if (delay_list && must_annul)
INSN_ANNULLED_BRANCH_P (insn) = 1;
/* If we are to branch into the middle of this thread, find an appropriate
label or make a new one if none, and redirect INSN to it. If we hit the
end of the function, use the end-of-function label. */
if (new_thread != thread)
{
rtx label;
if (! thread_if_true)
abort ();
if (new_thread && GET_CODE (new_thread) == JUMP_INSN
&& (simplejump_p (new_thread)
|| GET_CODE (PATTERN (new_thread)) == RETURN)
&& redirect_with_delay_list_safe_p (insn,
JUMP_LABEL (new_thread),
delay_list))
new_thread = follow_jumps (JUMP_LABEL (new_thread));
if (new_thread == 0)
label = find_end_label ();
else if (GET_CODE (new_thread) == CODE_LABEL)
label = new_thread;
else
label = get_label_before (new_thread);
reorg_redirect_jump (insn, label);
}
return delay_list;
}
/* Make another attempt to find insns to place in delay slots.
We previously looked for insns located in front of the delay insn
and, for non-jump delay insns, located behind the delay insn.
Here only try to schedule jump insns and try to move insns from either
the target or the following insns into the delay slot. If annulling is
supported, we will be likely to do this. Otherwise, we can do this only
if safe. */
static void
fill_eager_delay_slots (first)
rtx first;
{
register rtx insn;
register int i;
int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
for (i = 0; i < num_unfilled_slots; i++)
{
rtx condition;
rtx target_label, insn_at_target, fallthrough_insn;
rtx delay_list = 0;
int own_target;
int own_fallthrough;
int prediction, slots_to_fill, slots_filled;
insn = unfilled_slots_base[i];
if (insn == 0
|| INSN_DELETED_P (insn)
|| GET_CODE (insn) != JUMP_INSN
|| ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
continue;
slots_to_fill = num_delay_slots (insn);
if (slots_to_fill == 0)
abort ();
slots_filled = 0;
target_label = JUMP_LABEL (insn);
condition = get_branch_condition (insn, target_label);
if (condition == 0)
continue;
/* Get the next active fallthrough and target insns and see if we own
them. Then see whether the branch is likely true. We don't need
to do a lot of this for unconditional branches. */
insn_at_target = next_active_insn (target_label);
own_target = own_thread_p (target_label, target_label, 0);
if (condition == const_true_rtx)
{
own_fallthrough = 0;
fallthrough_insn = 0;
prediction = 2;
}
else
{
fallthrough_insn = next_active_insn (insn);
own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
prediction = mostly_true_jump (insn, condition);
}
/* If this insn is expected to branch, first try to get insns from our
target, then our fallthrough insns. If it is not, expected to branch,
try the other order. */
if (prediction > 0)
{
delay_list
= fill_slots_from_thread (insn, condition, insn_at_target,
fallthrough_insn, prediction == 2, 1,
own_target, own_fallthrough,
slots_to_fill, &slots_filled);
if (delay_list == 0 && own_fallthrough)
{
/* Even though we didn't find anything for delay slots,
we might have found a redundant insn which we deleted
from the thread that was filled. So we have to recompute
the next insn at the target. */
target_label = JUMP_LABEL (insn);
insn_at_target = next_active_insn (target_label);
delay_list
= fill_slots_from_thread (insn, condition, fallthrough_insn,
insn_at_target, 0, 0,
own_fallthrough, own_target,
slots_to_fill, &slots_filled);
}
}
else
{
if (own_fallthrough)
delay_list
= fill_slots_from_thread (insn, condition, fallthrough_insn,
insn_at_target, 0, 0,
own_fallthrough, own_target,
slots_to_fill, &slots_filled);
if (delay_list == 0)
delay_list
= fill_slots_from_thread (insn, condition, insn_at_target,
next_active_insn (insn), 0, 1,
own_target, own_fallthrough,
slots_to_fill, &slots_filled);
}
if (delay_list)
unfilled_slots_base[i]
= emit_delay_sequence (insn, delay_list,
slots_filled, slots_to_fill);
if (slots_to_fill == slots_filled)
unfilled_slots_base[i] = 0;
note_delay_statistics (slots_filled, 1);
}
}
/* Once we have tried two ways to fill a delay slot, make a pass over the
code to try to improve the results and to do such things as more jump
threading. */
static void
relax_delay_slots (first)
rtx first;
{
register rtx insn, next, pat;
register rtx trial, delay_insn, target_label;
/* Look at every JUMP_INSN and see if we can improve it. */
for (insn = first; insn; insn = next)
{
rtx other;
next = next_active_insn (insn);
/* If this is a jump insn, see if it now jumps to a jump, jumps to
the next insn, or jumps to a label that is not the last of a
group of consecutive labels. */
if (GET_CODE (insn) == JUMP_INSN
&& (condjump_p (insn) || condjump_in_parallel_p (insn))
&& (target_label = JUMP_LABEL (insn)) != 0)
{
target_label = follow_jumps (target_label);
target_label = prev_label (next_active_insn (target_label));
if (target_label == 0)
target_label = find_end_label ();
if (next_active_insn (target_label) == next
&& ! condjump_in_parallel_p (insn))
{
delete_jump (insn);
continue;
}
if (target_label != JUMP_LABEL (insn))
reorg_redirect_jump (insn, target_label);
/* See if this jump branches around a unconditional jump.
If so, invert this jump and point it to the target of the
second jump. */
if (next && GET_CODE (next) == JUMP_INSN
&& (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
&& next_active_insn (target_label) == next_active_insn (next)
&& no_labels_between_p (insn, next))
{
rtx label = JUMP_LABEL (next);
/* Be careful how we do this to avoid deleting code or
labels that are momentarily dead. See similar optimization
in jump.c.
We also need to ensure we properly handle the case when
invert_jump fails. */
++LABEL_NUSES (target_label);
if (label)
++LABEL_NUSES (label);
if (invert_jump (insn, label))
{
delete_insn (next);
next = insn;
}
if (label)
--LABEL_NUSES (label);
if (--LABEL_NUSES (target_label) == 0)
delete_insn (target_label);
continue;
}
}
/* If this is an unconditional jump and the previous insn is a
conditional jump, try reversing the condition of the previous
insn and swapping our targets. The next pass might be able to
fill the slots.
Don't do this if we expect the conditional branch to be true, because
we would then be making the more common case longer. */
if (GET_CODE (insn) == JUMP_INSN
&& (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN)
&& (other = prev_active_insn (insn)) != 0
&& (condjump_p (other) || condjump_in_parallel_p (other))
&& no_labels_between_p (other, insn)
&& 0 < mostly_true_jump (other,
get_branch_condition (other,
JUMP_LABEL (other))))
{
rtx other_target = JUMP_LABEL (other);
target_label = JUMP_LABEL (insn);
/* Increment the count of OTHER_TARGET, so it doesn't get deleted
as we move the label. */
if (other_target)
++LABEL_NUSES (other_target);
if (invert_jump (other, target_label))
reorg_redirect_jump (insn, other_target);
if (other_target)
--LABEL_NUSES (other_target);
}
/* Now look only at cases where we have filled a delay slot. */
if (GET_CODE (insn) != INSN
|| GET_CODE (PATTERN (insn)) != SEQUENCE)
continue;
pat = PATTERN (insn);
delay_insn = XVECEXP (pat, 0, 0);
/* See if the first insn in the delay slot is redundant with some
previous insn. Remove it from the delay slot if so; then set up
to reprocess this insn. */
if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
{
delete_from_delay_slot (XVECEXP (pat, 0, 1));
next = prev_active_insn (next);
continue;
}
/* Now look only at the cases where we have a filled JUMP_INSN. */
if (GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN
|| ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
|| condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
continue;
target_label = JUMP_LABEL (delay_insn);
if (target_label)
{
/* If this jump goes to another unconditional jump, thread it, but
don't convert a jump into a RETURN here. */
trial = follow_jumps (target_label);
/* We use next_real_insn instead of next_active_insn, so that
the special USE insns emitted by reorg won't be ignored.
If they are ignored, then they will get deleted if target_label
is now unreachable, and that would cause mark_target_live_regs
to fail. */
trial = prev_label (next_real_insn (trial));
if (trial == 0 && target_label != 0)
trial = find_end_label ();
if (trial != target_label
&& redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
{
reorg_redirect_jump (delay_insn, trial);
target_label = trial;
}
/* If the first insn at TARGET_LABEL is redundant with a previous
insn, redirect the jump to the following insn process again. */
trial = next_active_insn (target_label);
if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
&& redundant_insn (trial, insn, 0))
{
trial = next_active_insn (trial);
if (trial == 0)
target_label = find_end_label ();
else
target_label = get_label_before (trial);
reorg_redirect_jump (delay_insn, target_label);
next = insn;
continue;
}
/* Similarly, if it is an unconditional jump with one insn in its
delay list and that insn is redundant, thread the jump. */
if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
&& XVECLEN (PATTERN (trial), 0) == 2
&& GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN
&& (simplejump_p (XVECEXP (PATTERN (trial), 0, 0))
|| GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN)
&& redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
{
target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
if (target_label == 0)
target_label = find_end_label ();
if (redirect_with_delay_slots_safe_p (delay_insn, target_label,
insn))
{
reorg_redirect_jump (delay_insn, target_label);
next = insn;
continue;
}
}
}
if (! INSN_ANNULLED_BRANCH_P (delay_insn)
&& prev_active_insn (target_label) == insn
&& ! condjump_in_parallel_p (delay_insn)
#ifdef HAVE_cc0
/* If the last insn in the delay slot sets CC0 for some insn,
various code assumes that it is in a delay slot. We could
put it back where it belonged and delete the register notes,
but it doesn't seem worthwhile in this uncommon case. */
&& ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
REG_CC_USER, NULL_RTX)
#endif
)
{
int i;
/* All this insn does is execute its delay list and jump to the
following insn. So delete the jump and just execute the delay
list insns.
We do this by deleting the INSN containing the SEQUENCE, then
re-emitting the insns separately, and then deleting the jump.
This allows the count of the jump target to be properly
decremented. */
/* Clear the from target bit, since these insns are no longer
in delay slots. */
for (i = 0; i < XVECLEN (pat, 0); i++)
INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
trial = PREV_INSN (insn);
delete_insn (insn);
emit_insn_after (pat, trial);
delete_scheduled_jump (delay_insn);
continue;
}
/* See if this is an unconditional jump around a single insn which is
identical to the one in its delay slot. In this case, we can just
delete the branch and the insn in its delay slot. */
if (next && GET_CODE (next) == INSN
&& prev_label (next_active_insn (next)) == target_label
&& simplejump_p (insn)
&& XVECLEN (pat, 0) == 2
&& rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
{
delete_insn (insn);
continue;
}
/* See if this jump (with its delay slots) branches around another
jump (without delay slots). If so, invert this jump and point
it to the target of the second jump. We cannot do this for
annulled jumps, though. Again, don't convert a jump to a RETURN
here. */
if (! INSN_ANNULLED_BRANCH_P (delay_insn)
&& next && GET_CODE (next) == JUMP_INSN
&& (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
&& next_active_insn (target_label) == next_active_insn (next)
&& no_labels_between_p (insn, next))
{
rtx label = JUMP_LABEL (next);
rtx old_label = JUMP_LABEL (delay_insn);
if (label == 0)
label = find_end_label ();
if (redirect_with_delay_slots_safe_p (delay_insn, label, insn))
{
/* Be careful how we do this to avoid deleting code or labels
that are momentarily dead. See similar optimization in
jump.c */
if (old_label)
++LABEL_NUSES (old_label);
if (invert_jump (delay_insn, label))
{
int i;
/* Must update the INSN_FROM_TARGET_P bits now that
the branch is reversed, so that mark_target_live_regs
will handle the delay slot insn correctly. */
for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
{
rtx slot = XVECEXP (PATTERN (insn), 0, i);
INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
}
delete_insn (next);
next = insn;
}
if (old_label && --LABEL_NUSES (old_label) == 0)
delete_insn (old_label);
continue;
}
}
/* If we own the thread opposite the way this insn branches, see if we
can merge its delay slots with following insns. */
if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
&& own_thread_p (NEXT_INSN (insn), 0, 1))
try_merge_delay_insns (insn, next);
else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
&& own_thread_p (target_label, target_label, 0))
try_merge_delay_insns (insn, next_active_insn (target_label));
/* If we get here, we haven't deleted INSN. But we may have deleted
NEXT, so recompute it. */
next = next_active_insn (insn);
}
}
#ifdef HAVE_return
/* Look for filled jumps to the end of function label. We can try to convert
them into RETURN insns if the insns in the delay slot are valid for the
RETURN as well. */
static void
make_return_insns (first)
rtx first;
{
rtx insn, jump_insn, pat;
rtx real_return_label = end_of_function_label;
int slots, i;
/* See if there is a RETURN insn in the function other than the one we
made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
into a RETURN to jump to it. */
for (insn = first; insn; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == RETURN)
{
real_return_label = get_label_before (insn);
break;
}
/* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
was equal to END_OF_FUNCTION_LABEL. */
LABEL_NUSES (real_return_label)++;
/* Clear the list of insns to fill so we can use it. */
obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
for (insn = first; insn; insn = NEXT_INSN (insn))
{
int flags;
/* Only look at filled JUMP_INSNs that go to the end of function
label. */
if (GET_CODE (insn) != INSN
|| GET_CODE (PATTERN (insn)) != SEQUENCE
|| GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN
|| JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label)
continue;
pat = PATTERN (insn);
jump_insn = XVECEXP (pat, 0, 0);
/* If we can't make the jump into a RETURN, try to redirect it to the best
RETURN and go on to the next insn. */
if (! reorg_redirect_jump (jump_insn, NULL_RTX))
{
/* Make sure redirecting the jump will not invalidate the delay
slot insns. */
if (redirect_with_delay_slots_safe_p (jump_insn,
real_return_label,
insn))
reorg_redirect_jump (jump_insn, real_return_label);
continue;
}
/* See if this RETURN can accept the insns current in its delay slot.
It can if it has more or an equal number of slots and the contents
of each is valid. */
flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
slots = num_delay_slots (jump_insn);
if (slots >= XVECLEN (pat, 0) - 1)
{
for (i = 1; i < XVECLEN (pat, 0); i++)
if (! (
#ifdef ANNUL_IFFALSE_SLOTS
(INSN_ANNULLED_BRANCH_P (jump_insn)
&& INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
? eligible_for_annul_false (jump_insn, i - 1,
XVECEXP (pat, 0, i), flags) :
#endif
#ifdef ANNUL_IFTRUE_SLOTS
(INSN_ANNULLED_BRANCH_P (jump_insn)
&& ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
? eligible_for_annul_true (jump_insn, i - 1,
XVECEXP (pat, 0, i), flags) :
#endif
eligible_for_delay (jump_insn, i -1, XVECEXP (pat, 0, i), flags)))
break;
}
else
i = 0;
if (i == XVECLEN (pat, 0))
continue;
/* We have to do something with this insn. If it is an unconditional
RETURN, delete the SEQUENCE and output the individual insns,
followed by the RETURN. Then set things up so we try to find
insns for its delay slots, if it needs some. */
if (GET_CODE (PATTERN (jump_insn)) == RETURN)
{
rtx prev = PREV_INSN (insn);
delete_insn (insn);
for (i = 1; i < XVECLEN (pat, 0); i++)
prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
emit_barrier_after (insn);
if (slots)
obstack_ptr_grow (&unfilled_slots_obstack, insn);
}
else
/* It is probably more efficient to keep this with its current
delay slot as a branch to a RETURN. */
reorg_redirect_jump (jump_insn, real_return_label);
}
/* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
new delay slots we have created. */
if (--LABEL_NUSES (real_return_label) == 0)
delete_insn (real_return_label);
fill_simple_delay_slots (first, 1);
fill_simple_delay_slots (first, 0);
}
#endif
/* Try to find insns to place in delay slots. */
void
dbr_schedule (first, file)
rtx first;
FILE *file;
{
rtx insn, next, epilogue_insn = 0;
int i;
#if 0
int old_flag_no_peephole = flag_no_peephole;
/* Execute `final' once in prescan mode to delete any insns that won't be
used. Don't let final try to do any peephole optimization--it will
ruin dataflow information for this pass. */
flag_no_peephole = 1;
final (first, 0, NO_DEBUG, 1, 1);
flag_no_peephole = old_flag_no_peephole;
#endif
/* If the current function has no insns other than the prologue and
epilogue, then do not try to fill any delay slots. */
if (n_basic_blocks == 0)
return;
/* Find the highest INSN_UID and allocate and initialize our map from
INSN_UID's to position in code. */
for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
{
if (INSN_UID (insn) > max_uid)
max_uid = INSN_UID (insn);
if (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
epilogue_insn = insn;
}
uid_to_ruid = (int *) alloca ((max_uid + 1) * sizeof (int *));
for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
uid_to_ruid[INSN_UID (insn)] = i;
/* Initialize the list of insns that need filling. */
if (unfilled_firstobj == 0)
{
gcc_obstack_init (&unfilled_slots_obstack);
unfilled_firstobj = (rtx *) obstack_alloc (&unfilled_slots_obstack, 0);
}
for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
{
rtx target;
INSN_ANNULLED_BRANCH_P (insn) = 0;
INSN_FROM_TARGET_P (insn) = 0;
/* Skip vector tables. We can't get attributes for them. */
if (GET_CODE (insn) == JUMP_INSN
&& (GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
continue;
if (num_delay_slots (insn) > 0)
obstack_ptr_grow (&unfilled_slots_obstack, insn);
/* Ensure all jumps go to the last of a set of consecutive labels. */
if (GET_CODE (insn) == JUMP_INSN
&& (condjump_p (insn) || condjump_in_parallel_p (insn))
&& JUMP_LABEL (insn) != 0
&& ((target = prev_label (next_active_insn (JUMP_LABEL (insn))))
!= JUMP_LABEL (insn)))
redirect_jump (insn, target);
}
/* Indicate what resources are required to be valid at the end of the current
function. The condition code never is and memory always is. If the
frame pointer is needed, it is and so is the stack pointer unless
EXIT_IGNORE_STACK is non-zero. If the frame pointer is not needed, the
stack pointer is. Registers used to return the function value are
needed. Registers holding global variables are needed. */
end_of_function_needs.cc = 0;
end_of_function_needs.memory = 1;
end_of_function_needs.unch_memory = 0;
CLEAR_HARD_REG_SET (end_of_function_needs.regs);
if (frame_pointer_needed)
{
SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
#endif
#ifdef EXIT_IGNORE_STACK
if (! EXIT_IGNORE_STACK)
#endif
SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
}
else
SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
if (current_function_return_rtx != 0
&& GET_CODE (current_function_return_rtx) == REG)
mark_referenced_resources (current_function_return_rtx,
&end_of_function_needs, 1);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (global_regs[i])
SET_HARD_REG_BIT (end_of_function_needs.regs, i);
/* The registers required to be live at the end of the function are
represented in the flow information as being dead just prior to
reaching the end of the function. For example, the return of a value
might be represented by a USE of the return register immediately
followed by an unconditional jump to the return label where the
return label is the end of the RTL chain. The end of the RTL chain
is then taken to mean that the return register is live.
This sequence is no longer maintained when epilogue instructions are
added to the RTL chain. To reconstruct the original meaning, the
start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
point where these registers become live (start_of_epilogue_needs).
If epilogue instructions are present, the registers set by those
instructions won't have been processed by flow. Thus, those
registers are additionally required at the end of the RTL chain
(end_of_function_needs). */
start_of_epilogue_needs = end_of_function_needs;
while (epilogue_insn = next_nonnote_insn (epilogue_insn))
mark_set_resources (epilogue_insn, &end_of_function_needs, 0, 1);
/* Show we haven't computed an end-of-function label yet. */
end_of_function_label = 0;
/* Allocate and initialize the tables used by mark_target_live_regs. */
target_hash_table
= (struct target_info **) alloca ((TARGET_HASH_PRIME
* sizeof (struct target_info *)));
bzero ((char *) target_hash_table,
TARGET_HASH_PRIME * sizeof (struct target_info *));
bb_ticks = (int *) alloca (n_basic_blocks * sizeof (int));
bzero ((char *) bb_ticks, n_basic_blocks * sizeof (int));
/* Initialize the statistics for this function. */
bzero ((char *) num_insns_needing_delays, sizeof num_insns_needing_delays);
bzero ((char *) num_filled_delays, sizeof num_filled_delays);
/* Now do the delay slot filling. Try everything twice in case earlier
changes make more slots fillable. */
for (reorg_pass_number = 0;
reorg_pass_number < MAX_REORG_PASSES;
reorg_pass_number++)
{
fill_simple_delay_slots (first, 1);
fill_simple_delay_slots (first, 0);
fill_eager_delay_slots (first);
relax_delay_slots (first);
}
/* Delete any USE insns made by update_block; subsequent passes don't need
them or know how to deal with them. */
for (insn = first; insn; insn = next)
{
next = NEXT_INSN (insn);
if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
&& GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
next = delete_insn (insn);
}
/* If we made an end of function label, indicate that it is now
safe to delete it by undoing our prior adjustment to LABEL_NUSES.
If it is now unused, delete it. */
if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0)
delete_insn (end_of_function_label);
#ifdef HAVE_return
if (HAVE_return && end_of_function_label != 0)
make_return_insns (first);
#endif
obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
/* It is not clear why the line below is needed, but it does seem to be. */
unfilled_firstobj = (rtx *) obstack_alloc (&unfilled_slots_obstack, 0);
/* Reposition the prologue and epilogue notes in case we moved the
prologue/epilogue insns. */
reposition_prologue_and_epilogue_notes (first);
if (file)
{
register int i, j, need_comma;
for (reorg_pass_number = 0;
reorg_pass_number < MAX_REORG_PASSES;
reorg_pass_number++)
{
fprintf (file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
{
need_comma = 0;
fprintf (file, ";; Reorg function #%d\n", i);
fprintf (file, ";; %d insns needing delay slots\n;; ",
num_insns_needing_delays[i][reorg_pass_number]);
for (j = 0; j < MAX_DELAY_HISTOGRAM; j++)
if (num_filled_delays[i][j][reorg_pass_number])
{
if (need_comma)
fprintf (file, ", ");
need_comma = 1;
fprintf (file, "%d got %d delays",
num_filled_delays[i][j][reorg_pass_number], j);
}
fprintf (file, "\n");
}
}
}
}
#endif /* DELAY_SLOTS */
|