1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
|
/* Reload pseudo regs into hard regs for insns that require hard regs.
Copyright (C) 1987, 88, 89, 92-97, 1998 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "machmode.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "obstack.h"
#include "insn-config.h"
#include "insn-flags.h"
#include "insn-codes.h"
#include "flags.h"
#include "expr.h"
#include "regs.h"
#include "basic-block.h"
#include "reload.h"
#include "recog.h"
#include "output.h"
#include "real.h"
#include "toplev.h"
/* This file contains the reload pass of the compiler, which is
run after register allocation has been done. It checks that
each insn is valid (operands required to be in registers really
are in registers of the proper class) and fixes up invalid ones
by copying values temporarily into registers for the insns
that need them.
The results of register allocation are described by the vector
reg_renumber; the insns still contain pseudo regs, but reg_renumber
can be used to find which hard reg, if any, a pseudo reg is in.
The technique we always use is to free up a few hard regs that are
called ``reload regs'', and for each place where a pseudo reg
must be in a hard reg, copy it temporarily into one of the reload regs.
Reload regs are allocated locally for every instruction that needs
reloads. When there are pseudos which are allocated to a register that
has been chosen as a reload reg, such pseudos must be ``spilled''.
This means that they go to other hard regs, or to stack slots if no other
available hard regs can be found. Spilling can invalidate more
insns, requiring additional need for reloads, so we must keep checking
until the process stabilizes.
For machines with different classes of registers, we must keep track
of the register class needed for each reload, and make sure that
we allocate enough reload registers of each class.
The file reload.c contains the code that checks one insn for
validity and reports the reloads that it needs. This file
is in charge of scanning the entire rtl code, accumulating the
reload needs, spilling, assigning reload registers to use for
fixing up each insn, and generating the new insns to copy values
into the reload registers. */
#ifndef REGISTER_MOVE_COST
#define REGISTER_MOVE_COST(x, y) 2
#endif
/* During reload_as_needed, element N contains a REG rtx for the hard reg
into which reg N has been reloaded (perhaps for a previous insn). */
static rtx *reg_last_reload_reg;
/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
for an output reload that stores into reg N. */
static char *reg_has_output_reload;
/* Indicates which hard regs are reload-registers for an output reload
in the current insn. */
static HARD_REG_SET reg_is_output_reload;
/* Element N is the constant value to which pseudo reg N is equivalent,
or zero if pseudo reg N is not equivalent to a constant.
find_reloads looks at this in order to replace pseudo reg N
with the constant it stands for. */
rtx *reg_equiv_constant;
/* Element N is a memory location to which pseudo reg N is equivalent,
prior to any register elimination (such as frame pointer to stack
pointer). Depending on whether or not it is a valid address, this value
is transferred to either reg_equiv_address or reg_equiv_mem. */
rtx *reg_equiv_memory_loc;
/* Element N is the address of stack slot to which pseudo reg N is equivalent.
This is used when the address is not valid as a memory address
(because its displacement is too big for the machine.) */
rtx *reg_equiv_address;
/* Element N is the memory slot to which pseudo reg N is equivalent,
or zero if pseudo reg N is not equivalent to a memory slot. */
rtx *reg_equiv_mem;
/* Widest width in which each pseudo reg is referred to (via subreg). */
static int *reg_max_ref_width;
/* Element N is the list of insns that initialized reg N from its equivalent
constant or memory slot. */
static rtx *reg_equiv_init;
/* Vector to remember old contents of reg_renumber before spilling. */
static short *reg_old_renumber;
/* During reload_as_needed, element N contains the last pseudo regno reloaded
into hard register N. If that pseudo reg occupied more than one register,
reg_reloaded_contents points to that pseudo for each spill register in
use; all of these must remain set for an inheritance to occur. */
static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
/* During reload_as_needed, element N contains the insn for which
hard register N was last used. Its contents are significant only
when reg_reloaded_valid is set for this register. */
static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
static HARD_REG_SET reg_reloaded_valid;
/* Indicate if the register was dead at the end of the reload.
This is only valid if reg_reloaded_contents is set and valid. */
static HARD_REG_SET reg_reloaded_dead;
/* Number of spill-regs so far; number of valid elements of spill_regs. */
static int n_spills;
/* In parallel with spill_regs, contains REG rtx's for those regs.
Holds the last rtx used for any given reg, or 0 if it has never
been used for spilling yet. This rtx is reused, provided it has
the proper mode. */
static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
/* In parallel with spill_regs, contains nonzero for a spill reg
that was stored after the last time it was used.
The precise value is the insn generated to do the store. */
static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
/* This is the register that was stored with spill_reg_store. This is a
copy of reload_out / reload_out_reg when the value was stored; if
reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
/* This table is the inverse mapping of spill_regs:
indexed by hard reg number,
it contains the position of that reg in spill_regs,
or -1 for something that is not in spill_regs.
?!? This is no longer accurate. */
static short spill_reg_order[FIRST_PSEUDO_REGISTER];
/* This reg set indicates registers that can't be used as spill registers for
the currently processed insn. These are the hard registers which are live
during the insn, but not allocated to pseudos, as well as fixed
registers. */
static HARD_REG_SET bad_spill_regs;
/* These are the hard registers that can't be used as spill register for any
insn. This includes registers used for user variables and registers that
we can't eliminate. A register that appears in this set also can't be used
to retry register allocation. */
static HARD_REG_SET bad_spill_regs_global;
/* Describes order of use of registers for reloading
of spilled pseudo-registers. `n_spills' is the number of
elements that are actually valid; new ones are added at the end.
Both spill_regs and spill_reg_order are used on two occasions:
once during find_reload_regs, where they keep track of the spill registers
for a single insn, but also during reload_as_needed where they show all
the registers ever used by reload. For the latter case, the information
is calculated during finish_spills. */
static short spill_regs[FIRST_PSEUDO_REGISTER];
/* This vector of reg sets indicates, for each pseudo, which hard registers
may not be used for retrying global allocation because the register was
formerly spilled from one of them. If we allowed reallocating a pseudo to
a register that it was already allocated to, reload might not
terminate. */
static HARD_REG_SET *pseudo_previous_regs;
/* This vector of reg sets indicates, for each pseudo, which hard
registers may not be used for retrying global allocation because they
are used as spill registers during one of the insns in which the
pseudo is live. */
static HARD_REG_SET *pseudo_forbidden_regs;
/* All hard regs that have been used as spill registers for any insn are
marked in this set. */
static HARD_REG_SET used_spill_regs;
/* Index of last register assigned as a spill register. We allocate in
a round-robin fashion. */
static int last_spill_reg;
/* Describes order of preference for putting regs into spill_regs.
Contains the numbers of all the hard regs, in order most preferred first.
This order is different for each function.
It is set up by order_regs_for_reload.
Empty elements at the end contain -1. */
static short potential_reload_regs[FIRST_PSEUDO_REGISTER];
/* Nonzero if indirect addressing is supported on the machine; this means
that spilling (REG n) does not require reloading it into a register in
order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
value indicates the level of indirect addressing supported, e.g., two
means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
a hard register. */
static char spill_indirect_levels;
/* Nonzero if indirect addressing is supported when the innermost MEM is
of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
which these are valid is the same as spill_indirect_levels, above. */
char indirect_symref_ok;
/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
char double_reg_address_ok;
/* Record the stack slot for each spilled hard register. */
static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
/* Width allocated so far for that stack slot. */
static int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
/* Record which pseudos needed to be spilled. */
static regset spilled_pseudos;
/* First uid used by insns created by reload in this function.
Used in find_equiv_reg. */
int reload_first_uid;
/* Flag set by local-alloc or global-alloc if anything is live in
a call-clobbered reg across calls. */
int caller_save_needed;
/* Set to 1 while reload_as_needed is operating.
Required by some machines to handle any generated moves differently. */
int reload_in_progress = 0;
/* These arrays record the insn_code of insns that may be needed to
perform input and output reloads of special objects. They provide a
place to pass a scratch register. */
enum insn_code reload_in_optab[NUM_MACHINE_MODES];
enum insn_code reload_out_optab[NUM_MACHINE_MODES];
/* This obstack is used for allocation of rtl during register elimination.
The allocated storage can be freed once find_reloads has processed the
insn. */
struct obstack reload_obstack;
/* Points to the beginning of the reload_obstack. All insn_chain structures
are allocated first. */
char *reload_startobj;
/* The point after all insn_chain structures. Used to quickly deallocate
memory used while processing one insn. */
char *reload_firstobj;
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
/* List of labels that must never be deleted. */
extern rtx forced_labels;
/* List of insn_chain instructions, one for every insn that reload needs to
examine. */
struct insn_chain *reload_insn_chain;
/* List of all insns needing reloads. */
static struct insn_chain *insns_need_reload;
/* This structure is used to record information about register eliminations.
Each array entry describes one possible way of eliminating a register
in favor of another. If there is more than one way of eliminating a
particular register, the most preferred should be specified first. */
struct elim_table
{
int from; /* Register number to be eliminated. */
int to; /* Register number used as replacement. */
int initial_offset; /* Initial difference between values. */
int can_eliminate; /* Non-zero if this elimination can be done. */
int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
insns made by reload. */
int offset; /* Current offset between the two regs. */
int previous_offset; /* Offset at end of previous insn. */
int ref_outside_mem; /* "to" has been referenced outside a MEM. */
rtx from_rtx; /* REG rtx for the register to be eliminated.
We cannot simply compare the number since
we might then spuriously replace a hard
register corresponding to a pseudo
assigned to the reg to be eliminated. */
rtx to_rtx; /* REG rtx for the replacement. */
};
static struct elim_table * reg_eliminate = 0;
/* This is an intermediate structure to initialize the table. It has
exactly the members provided by ELIMINABLE_REGS. */
static struct elim_table_1
{
int from;
int to;
} reg_eliminate_1[] =
/* If a set of eliminable registers was specified, define the table from it.
Otherwise, default to the normal case of the frame pointer being
replaced by the stack pointer. */
#ifdef ELIMINABLE_REGS
ELIMINABLE_REGS;
#else
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
#endif
#define NUM_ELIMINABLE_REGS (sizeof reg_eliminate_1/sizeof reg_eliminate_1[0])
/* Record the number of pending eliminations that have an offset not equal
to their initial offset. If non-zero, we use a new copy of each
replacement result in any insns encountered. */
int num_not_at_initial_offset;
/* Count the number of registers that we may be able to eliminate. */
static int num_eliminable;
/* For each label, we record the offset of each elimination. If we reach
a label by more than one path and an offset differs, we cannot do the
elimination. This information is indexed by the number of the label.
The first table is an array of flags that records whether we have yet
encountered a label and the second table is an array of arrays, one
entry in the latter array for each elimination. */
static char *offsets_known_at;
static int (*offsets_at)[NUM_ELIMINABLE_REGS];
/* Number of labels in the current function. */
static int num_labels;
struct hard_reg_n_uses
{
int regno;
unsigned int uses;
};
static void maybe_fix_stack_asms PROTO((void));
static void calculate_needs_all_insns PROTO((int));
static void calculate_needs PROTO((struct insn_chain *));
static void find_reload_regs PROTO((struct insn_chain *chain,
FILE *));
static void find_tworeg_group PROTO((struct insn_chain *, int,
FILE *));
static void find_group PROTO((struct insn_chain *, int,
FILE *));
static int possible_group_p PROTO((struct insn_chain *, int));
static void count_possible_groups PROTO((struct insn_chain *, int));
static int modes_equiv_for_class_p PROTO((enum machine_mode,
enum machine_mode,
enum reg_class));
static void delete_caller_save_insns PROTO((void));
static void spill_failure PROTO((rtx));
static void new_spill_reg PROTO((struct insn_chain *, int, int,
int, FILE *));
static void maybe_mark_pseudo_spilled PROTO((int));
static void delete_dead_insn PROTO((rtx));
static void alter_reg PROTO((int, int));
static void set_label_offsets PROTO((rtx, rtx, int));
static int eliminate_regs_in_insn PROTO((rtx, int));
static void update_eliminable_offsets PROTO((void));
static void mark_not_eliminable PROTO((rtx, rtx));
static void set_initial_elim_offsets PROTO((void));
static void verify_initial_elim_offsets PROTO((void));
static void set_initial_label_offsets PROTO((void));
static void set_offsets_for_label PROTO((rtx));
static void init_elim_table PROTO((void));
static void update_eliminables PROTO((HARD_REG_SET *));
static void spill_hard_reg PROTO((int, FILE *, int));
static int finish_spills PROTO((int, FILE *));
static void ior_hard_reg_set PROTO((HARD_REG_SET *, HARD_REG_SET *));
static void scan_paradoxical_subregs PROTO((rtx));
static int hard_reg_use_compare PROTO((const GENERIC_PTR, const GENERIC_PTR));
static void count_pseudo PROTO((struct hard_reg_n_uses *, int));
static void order_regs_for_reload PROTO((struct insn_chain *));
static void reload_as_needed PROTO((int));
static void forget_old_reloads_1 PROTO((rtx, rtx));
static int reload_reg_class_lower PROTO((const GENERIC_PTR, const GENERIC_PTR));
static void mark_reload_reg_in_use PROTO((int, int, enum reload_type,
enum machine_mode));
static void clear_reload_reg_in_use PROTO((int, int, enum reload_type,
enum machine_mode));
static int reload_reg_free_p PROTO((int, int, enum reload_type));
static int reload_reg_free_for_value_p PROTO((int, int, enum reload_type, rtx, rtx, int, int));
static int reload_reg_reaches_end_p PROTO((int, int, enum reload_type));
static int allocate_reload_reg PROTO((struct insn_chain *, int, int,
int));
static void choose_reload_regs PROTO((struct insn_chain *));
static void merge_assigned_reloads PROTO((rtx));
static void emit_reload_insns PROTO((struct insn_chain *));
static void delete_output_reload PROTO((rtx, int, int));
static void delete_address_reloads PROTO((rtx, rtx));
static void delete_address_reloads_1 PROTO((rtx, rtx, rtx));
static rtx inc_for_reload PROTO((rtx, rtx, rtx, int));
static int constraint_accepts_reg_p PROTO((char *, rtx));
static void reload_cse_regs_1 PROTO((rtx));
static void reload_cse_invalidate_regno PROTO((int, enum machine_mode, int));
static int reload_cse_mem_conflict_p PROTO((rtx, rtx));
static void reload_cse_invalidate_mem PROTO((rtx));
static void reload_cse_invalidate_rtx PROTO((rtx, rtx));
static int reload_cse_regno_equal_p PROTO((int, rtx, enum machine_mode));
static int reload_cse_noop_set_p PROTO((rtx, rtx));
static int reload_cse_simplify_set PROTO((rtx, rtx));
static int reload_cse_simplify_operands PROTO((rtx));
static void reload_cse_check_clobber PROTO((rtx, rtx));
static void reload_cse_record_set PROTO((rtx, rtx));
static void reload_combine PROTO((void));
static void reload_combine_note_use PROTO((rtx *, rtx));
static void reload_combine_note_store PROTO((rtx, rtx));
static void reload_cse_move2add PROTO((rtx));
static void move2add_note_store PROTO((rtx, rtx));
/* Initialize the reload pass once per compilation. */
void
init_reload ()
{
register int i;
/* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
Set spill_indirect_levels to the number of levels such addressing is
permitted, zero if it is not permitted at all. */
register rtx tem
= gen_rtx_MEM (Pmode,
gen_rtx_PLUS (Pmode,
gen_rtx_REG (Pmode, LAST_VIRTUAL_REGISTER + 1),
GEN_INT (4)));
spill_indirect_levels = 0;
while (memory_address_p (QImode, tem))
{
spill_indirect_levels++;
tem = gen_rtx_MEM (Pmode, tem);
}
/* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
indirect_symref_ok = memory_address_p (QImode, tem);
/* See if reg+reg is a valid (and offsettable) address. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
tem = gen_rtx_PLUS (Pmode,
gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
gen_rtx_REG (Pmode, i));
/* This way, we make sure that reg+reg is an offsettable address. */
tem = plus_constant (tem, 4);
if (memory_address_p (QImode, tem))
{
double_reg_address_ok = 1;
break;
}
}
/* Initialize obstack for our rtl allocation. */
gcc_obstack_init (&reload_obstack);
reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
}
/* List of insn chains that are currently unused. */
static struct insn_chain *unused_insn_chains = 0;
/* Allocate an empty insn_chain structure. */
struct insn_chain *
new_insn_chain ()
{
struct insn_chain *c;
if (unused_insn_chains == 0)
{
c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
c->live_before = OBSTACK_ALLOC_REG_SET (&reload_obstack);
c->live_after = OBSTACK_ALLOC_REG_SET (&reload_obstack);
}
else
{
c = unused_insn_chains;
unused_insn_chains = c->next;
}
c->is_caller_save_insn = 0;
c->need_operand_change = 0;
c->need_reload = 0;
c->need_elim = 0;
return c;
}
/* Small utility function to set all regs in hard reg set TO which are
allocated to pseudos in regset FROM. */
void
compute_use_by_pseudos (to, from)
HARD_REG_SET *to;
regset from;
{
int regno;
EXECUTE_IF_SET_IN_REG_SET
(from, FIRST_PSEUDO_REGISTER, regno,
{
int r = reg_renumber[regno];
int nregs;
if (r < 0)
abort ();
nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
while (nregs-- > 0)
SET_HARD_REG_BIT (*to, r + nregs);
});
}
/* Global variables used by reload and its subroutines. */
/* Set during calculate_needs if an insn needs register elimination. */
static int something_needs_elimination;
/* Set during calculate_needs if an insn needs an operand changed. */
int something_needs_operands_changed;
/* Nonzero means we couldn't get enough spill regs. */
static int failure;
/* Main entry point for the reload pass.
FIRST is the first insn of the function being compiled.
GLOBAL nonzero means we were called from global_alloc
and should attempt to reallocate any pseudoregs that we
displace from hard regs we will use for reloads.
If GLOBAL is zero, we do not have enough information to do that,
so any pseudo reg that is spilled must go to the stack.
DUMPFILE is the global-reg debugging dump file stream, or 0.
If it is nonzero, messages are written to it to describe
which registers are seized as reload regs, which pseudo regs
are spilled from them, and where the pseudo regs are reallocated to.
Return value is nonzero if reload failed
and we must not do any more for this function. */
int
reload (first, global, dumpfile)
rtx first;
int global;
FILE *dumpfile;
{
register int i;
register rtx insn;
register struct elim_table *ep;
/* The two pointers used to track the true location of the memory used
for label offsets. */
char *real_known_ptr = NULL_PTR;
int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
/* Make sure even insns with volatile mem refs are recognizable. */
init_recog ();
failure = 0;
reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
/* Make sure that the last insn in the chain
is not something that needs reloading. */
emit_note (NULL_PTR, NOTE_INSN_DELETED);
/* Enable find_equiv_reg to distinguish insns made by reload. */
reload_first_uid = get_max_uid ();
#ifdef SECONDARY_MEMORY_NEEDED
/* Initialize the secondary memory table. */
clear_secondary_mem ();
#endif
/* We don't have a stack slot for any spill reg yet. */
bzero ((char *) spill_stack_slot, sizeof spill_stack_slot);
bzero ((char *) spill_stack_slot_width, sizeof spill_stack_slot_width);
/* Initialize the save area information for caller-save, in case some
are needed. */
init_save_areas ();
/* Compute which hard registers are now in use
as homes for pseudo registers.
This is done here rather than (eg) in global_alloc
because this point is reached even if not optimizing. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
mark_home_live (i);
/* A function that receives a nonlocal goto must save all call-saved
registers. */
if (current_function_has_nonlocal_label)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (! call_used_regs[i] && ! fixed_regs[i])
regs_ever_live[i] = 1;
}
/* Find all the pseudo registers that didn't get hard regs
but do have known equivalent constants or memory slots.
These include parameters (known equivalent to parameter slots)
and cse'd or loop-moved constant memory addresses.
Record constant equivalents in reg_equiv_constant
so they will be substituted by find_reloads.
Record memory equivalents in reg_mem_equiv so they can
be substituted eventually by altering the REG-rtx's. */
reg_equiv_constant = (rtx *) xmalloc (max_regno * sizeof (rtx));
bzero ((char *) reg_equiv_constant, max_regno * sizeof (rtx));
reg_equiv_memory_loc = (rtx *) xmalloc (max_regno * sizeof (rtx));
bzero ((char *) reg_equiv_memory_loc, max_regno * sizeof (rtx));
reg_equiv_mem = (rtx *) xmalloc (max_regno * sizeof (rtx));
bzero ((char *) reg_equiv_mem, max_regno * sizeof (rtx));
reg_equiv_init = (rtx *) xmalloc (max_regno * sizeof (rtx));
bzero ((char *) reg_equiv_init, max_regno * sizeof (rtx));
reg_equiv_address = (rtx *) xmalloc (max_regno * sizeof (rtx));
bzero ((char *) reg_equiv_address, max_regno * sizeof (rtx));
reg_max_ref_width = (int *) xmalloc (max_regno * sizeof (int));
bzero ((char *) reg_max_ref_width, max_regno * sizeof (int));
reg_old_renumber = (short *) xmalloc (max_regno * sizeof (short));
bcopy (reg_renumber, reg_old_renumber, max_regno * sizeof (short));
pseudo_forbidden_regs
= (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
pseudo_previous_regs
= (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
CLEAR_HARD_REG_SET (bad_spill_regs_global);
bzero ((char *) pseudo_previous_regs, max_regno * sizeof (HARD_REG_SET));
/* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
Also find all paradoxical subregs and find largest such for each pseudo.
On machines with small register classes, record hard registers that
are used for user variables. These can never be used for spills.
Also look for a "constant" NOTE_INSN_SETJMP. This means that all
caller-saved registers must be marked live. */
for (insn = first; insn; insn = NEXT_INSN (insn))
{
rtx set = single_set (insn);
if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (! call_used_regs[i])
regs_ever_live[i] = 1;
if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
{
rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
if (note
#ifdef LEGITIMATE_PIC_OPERAND_P
&& (! CONSTANT_P (XEXP (note, 0)) || ! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
#endif
)
{
rtx x = XEXP (note, 0);
i = REGNO (SET_DEST (set));
if (i > LAST_VIRTUAL_REGISTER)
{
if (GET_CODE (x) == MEM)
{
/* If the operand is a PLUS, the MEM may be shared,
so make sure we have an unshared copy here. */
if (GET_CODE (XEXP (x, 0)) == PLUS)
x = copy_rtx (x);
reg_equiv_memory_loc[i] = x;
}
else if (CONSTANT_P (x))
{
if (LEGITIMATE_CONSTANT_P (x))
reg_equiv_constant[i] = x;
else
reg_equiv_memory_loc[i]
= force_const_mem (GET_MODE (SET_DEST (set)), x);
}
else
continue;
/* If this register is being made equivalent to a MEM
and the MEM is not SET_SRC, the equivalencing insn
is one with the MEM as a SET_DEST and it occurs later.
So don't mark this insn now. */
if (GET_CODE (x) != MEM
|| rtx_equal_p (SET_SRC (set), x))
reg_equiv_init[i]
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
}
}
}
/* If this insn is setting a MEM from a register equivalent to it,
this is the equivalencing insn. */
else if (set && GET_CODE (SET_DEST (set)) == MEM
&& GET_CODE (SET_SRC (set)) == REG
&& reg_equiv_memory_loc[REGNO (SET_SRC (set))]
&& rtx_equal_p (SET_DEST (set),
reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
reg_equiv_init[REGNO (SET_SRC (set))]
= gen_rtx_INSN_LIST (VOIDmode, insn,
reg_equiv_init[REGNO (SET_SRC (set))]);
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
scan_paradoxical_subregs (PATTERN (insn));
}
init_elim_table ();
num_labels = max_label_num () - get_first_label_num ();
/* Allocate the tables used to store offset information at labels. */
/* We used to use alloca here, but the size of what it would try to
allocate would occasionally cause it to exceed the stack limit and
cause a core dump. */
real_known_ptr = xmalloc (num_labels);
real_at_ptr
= (int (*)[NUM_ELIMINABLE_REGS])
xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
offsets_known_at = real_known_ptr - get_first_label_num ();
offsets_at
= (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
/* Alter each pseudo-reg rtx to contain its hard reg number.
Assign stack slots to the pseudos that lack hard regs or equivalents.
Do not touch virtual registers. */
for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
alter_reg (i, -1);
/* If we have some registers we think can be eliminated, scan all insns to
see if there is an insn that sets one of these registers to something
other than itself plus a constant. If so, the register cannot be
eliminated. Doing this scan here eliminates an extra pass through the
main reload loop in the most common case where register elimination
cannot be done. */
for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
|| GET_CODE (insn) == CALL_INSN)
note_stores (PATTERN (insn), mark_not_eliminable);
#ifndef REGISTER_CONSTRAINTS
/* If all the pseudo regs have hard regs,
except for those that are never referenced,
we know that no reloads are needed. */
/* But that is not true if there are register constraints, since
in that case some pseudos might be in the wrong kind of hard reg. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_renumber[i] == -1 && REG_N_REFS (i) != 0)
break;
if (i == max_regno && num_eliminable == 0 && ! caller_save_needed)
{
free (real_known_ptr);
free (real_at_ptr);
free (reg_equiv_constant);
free (reg_equiv_memory_loc);
free (reg_equiv_mem);
free (reg_equiv_init);
free (reg_equiv_address);
free (reg_max_ref_width);
free (reg_old_renumber);
free (pseudo_previous_regs);
free (pseudo_forbidden_regs);
return 0;
}
#endif
maybe_fix_stack_asms ();
insns_need_reload = 0;
something_needs_elimination = 0;
/* Initialize to -1, which means take the first spill register. */
last_spill_reg = -1;
spilled_pseudos = ALLOCA_REG_SET ();
/* Spill any hard regs that we know we can't eliminate. */
CLEAR_HARD_REG_SET (used_spill_regs);
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (! ep->can_eliminate)
spill_hard_reg (ep->from, dumpfile, 1);
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
if (frame_pointer_needed)
spill_hard_reg (HARD_FRAME_POINTER_REGNUM, dumpfile, 1);
#endif
finish_spills (global, dumpfile);
/* From now on, we need to emit any moves without making new pseudos. */
reload_in_progress = 1;
/* This loop scans the entire function each go-round
and repeats until one repetition spills no additional hard regs. */
for (;;)
{
int something_changed;
int did_spill;
struct insn_chain *chain;
HOST_WIDE_INT starting_frame_size;
/* Round size of stack frame to BIGGEST_ALIGNMENT. This must be done
here because the stack size may be a part of the offset computation
for register elimination, and there might have been new stack slots
created in the last iteration of this loop. */
assign_stack_local (BLKmode, 0, 0);
starting_frame_size = get_frame_size ();
set_initial_elim_offsets ();
set_initial_label_offsets ();
/* For each pseudo register that has an equivalent location defined,
try to eliminate any eliminable registers (such as the frame pointer)
assuming initial offsets for the replacement register, which
is the normal case.
If the resulting location is directly addressable, substitute
the MEM we just got directly for the old REG.
If it is not addressable but is a constant or the sum of a hard reg
and constant, it is probably not addressable because the constant is
out of range, in that case record the address; we will generate
hairy code to compute the address in a register each time it is
needed. Similarly if it is a hard register, but one that is not
valid as an address register.
If the location is not addressable, but does not have one of the
above forms, assign a stack slot. We have to do this to avoid the
potential of producing lots of reloads if, e.g., a location involves
a pseudo that didn't get a hard register and has an equivalent memory
location that also involves a pseudo that didn't get a hard register.
Perhaps at some point we will improve reload_when_needed handling
so this problem goes away. But that's very hairy. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
{
rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
XEXP (x, 0)))
reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
else if (CONSTANT_P (XEXP (x, 0))
|| (GET_CODE (XEXP (x, 0)) == REG
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
|| (GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
&& (REGNO (XEXP (XEXP (x, 0), 0))
< FIRST_PSEUDO_REGISTER)
&& CONSTANT_P (XEXP (XEXP (x, 0), 1))))
reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
else
{
/* Make a new stack slot. Then indicate that something
changed so we go back and recompute offsets for
eliminable registers because the allocation of memory
below might change some offset. reg_equiv_{mem,address}
will be set up for this pseudo on the next pass around
the loop. */
reg_equiv_memory_loc[i] = 0;
reg_equiv_init[i] = 0;
alter_reg (i, -1);
}
}
if (caller_save_needed)
setup_save_areas ();
/* If we allocated another stack slot, redo elimination bookkeeping. */
if (starting_frame_size != get_frame_size ())
continue;
if (caller_save_needed)
{
save_call_clobbered_regs ();
/* That might have allocated new insn_chain structures. */
reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
}
calculate_needs_all_insns (global);
CLEAR_REG_SET (spilled_pseudos);
did_spill = 0;
something_changed = 0;
/* If we allocated any new memory locations, make another pass
since it might have changed elimination offsets. */
if (starting_frame_size != get_frame_size ())
something_changed = 1;
{
HARD_REG_SET to_spill;
CLEAR_HARD_REG_SET (to_spill);
update_eliminables (&to_spill);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (to_spill, i))
{
spill_hard_reg (i, dumpfile, 1);
did_spill = 1;
/* Regardless of the state of spills, if we previously had
a register that we thought we could eliminate, but no can
not eliminate, we must run another pass.
Consider pseudos which have an entry in reg_equiv_* which
reference an eliminable register. We must make another pass
to update reg_equiv_* so that we do not substitute in the
old value from when we thought the elimination could be
performed. */
something_changed = 1;
}
}
CLEAR_HARD_REG_SET (used_spill_regs);
/* Try to satisfy the needs for each insn. */
for (chain = insns_need_reload; chain != 0;
chain = chain->next_need_reload)
find_reload_regs (chain, dumpfile);
if (failure)
goto failed;
if (insns_need_reload != 0 || did_spill)
something_changed |= finish_spills (global, dumpfile);
if (! something_changed)
break;
if (caller_save_needed)
delete_caller_save_insns ();
}
/* If global-alloc was run, notify it of any register eliminations we have
done. */
if (global)
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->can_eliminate)
mark_elimination (ep->from, ep->to);
/* If a pseudo has no hard reg, delete the insns that made the equivalence.
If that insn didn't set the register (i.e., it copied the register to
memory), just delete that insn instead of the equivalencing insn plus
anything now dead. If we call delete_dead_insn on that insn, we may
delete the insn that actually sets the register if the register dies
there and that is incorrect. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
{
if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
{
rtx list;
for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
{
rtx equiv_insn = XEXP (list, 0);
if (GET_CODE (equiv_insn) == NOTE)
continue;
if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
delete_dead_insn (equiv_insn);
else
{
PUT_CODE (equiv_insn, NOTE);
NOTE_SOURCE_FILE (equiv_insn) = 0;
NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
}
}
}
}
/* Use the reload registers where necessary
by generating move instructions to move the must-be-register
values into or out of the reload registers. */
if (insns_need_reload != 0 || something_needs_elimination
|| something_needs_operands_changed)
{
int old_frame_size = get_frame_size ();
reload_as_needed (global);
if (old_frame_size != get_frame_size ())
abort ();
if (num_eliminable)
verify_initial_elim_offsets ();
}
/* If we were able to eliminate the frame pointer, show that it is no
longer live at the start of any basic block. If it ls live by
virtue of being in a pseudo, that pseudo will be marked live
and hence the frame pointer will be known to be live via that
pseudo. */
if (! frame_pointer_needed)
for (i = 0; i < n_basic_blocks; i++)
CLEAR_REGNO_REG_SET (basic_block_live_at_start[i],
HARD_FRAME_POINTER_REGNUM);
/* Come here (with failure set nonzero) if we can't get enough spill regs
and we decide not to abort about it. */
failed:
reload_in_progress = 0;
/* Now eliminate all pseudo regs by modifying them into
their equivalent memory references.
The REG-rtx's for the pseudos are modified in place,
so all insns that used to refer to them now refer to memory.
For a reg that has a reg_equiv_address, all those insns
were changed by reloading so that no insns refer to it any longer;
but the DECL_RTL of a variable decl may refer to it,
and if so this causes the debugging info to mention the variable. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
{
rtx addr = 0;
int in_struct = 0;
int is_readonly = 0;
if (reg_equiv_memory_loc[i])
{
in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
}
if (reg_equiv_mem[i])
addr = XEXP (reg_equiv_mem[i], 0);
if (reg_equiv_address[i])
addr = reg_equiv_address[i];
if (addr)
{
if (reg_renumber[i] < 0)
{
rtx reg = regno_reg_rtx[i];
XEXP (reg, 0) = addr;
REG_USERVAR_P (reg) = 0;
RTX_UNCHANGING_P (reg) = is_readonly;
MEM_IN_STRUCT_P (reg) = in_struct;
/* We have no alias information about this newly created
MEM. */
MEM_ALIAS_SET (reg) = 0;
PUT_CODE (reg, MEM);
}
else if (reg_equiv_mem[i])
XEXP (reg_equiv_mem[i], 0) = addr;
}
}
/* We've finished reloading. This reload_completed must be set before we
perform instruction splitting below. */
reload_completed = 1;
/* Make a pass over all the insns and delete all USEs which we inserted
only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
notes. Delete all CLOBBER insns and simplify (subreg (reg)) operands. */
for (insn = first; insn; insn = NEXT_INSN (insn))
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
rtx *pnote;
if ((GET_CODE (PATTERN (insn)) == USE
&& find_reg_note (insn, REG_EQUAL, NULL_RTX))
|| GET_CODE (PATTERN (insn)) == CLOBBER)
{
PUT_CODE (insn, NOTE);
NOTE_SOURCE_FILE (insn) = 0;
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
continue;
}
pnote = ®_NOTES (insn);
while (*pnote != 0)
{
if (REG_NOTE_KIND (*pnote) == REG_DEAD
|| REG_NOTE_KIND (*pnote) == REG_UNUSED)
*pnote = XEXP (*pnote, 1);
else
pnote = &XEXP (*pnote, 1);
}
/* And simplify (subreg (reg)) if it appears as an operand. */
cleanup_subreg_operands (insn);
/* If optimizing and we are performing instruction scheduling after
reload, then go ahead and split insns now since we are about to
recompute flow information anyway. */
if (optimize && flag_schedule_insns_after_reload)
{
rtx last, first;
last = try_split (PATTERN (insn), insn, 1);
if (last != insn)
{
PUT_CODE (insn, NOTE);
NOTE_SOURCE_FILE (insn) = 0;
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
}
}
}
/* If we are doing stack checking, give a warning if this function's
frame size is larger than we expect. */
if (flag_stack_check && ! STACK_CHECK_BUILTIN)
{
HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
size += UNITS_PER_WORD;
if (size > STACK_CHECK_MAX_FRAME_SIZE)
warning ("frame size too large for reliable stack checking");
}
/* Indicate that we no longer have known memory locations or constants. */
if (reg_equiv_constant)
free (reg_equiv_constant);
reg_equiv_constant = 0;
if (reg_equiv_memory_loc)
free (reg_equiv_memory_loc);
reg_equiv_memory_loc = 0;
if (real_known_ptr)
free (real_known_ptr);
if (real_at_ptr)
free (real_at_ptr);
free (reg_equiv_mem);
free (reg_equiv_init);
free (reg_equiv_address);
free (reg_max_ref_width);
free (reg_old_renumber);
free (pseudo_previous_regs);
free (pseudo_forbidden_regs);
FREE_REG_SET (spilled_pseudos);
CLEAR_HARD_REG_SET (used_spill_regs);
for (i = 0; i < n_spills; i++)
SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
/* Free all the insn_chain structures at once. */
obstack_free (&reload_obstack, reload_startobj);
unused_insn_chains = 0;
return failure;
}
/* Yet another special case. Unfortunately, reg-stack forces people to
write incorrect clobbers in asm statements. These clobbers must not
cause the register to appear in bad_spill_regs, otherwise we'll call
fatal_insn later. We clear the corresponding regnos in the live
register sets to avoid this.
The whole thing is rather sick, I'm afraid. */
static void
maybe_fix_stack_asms ()
{
#ifdef STACK_REGS
char *constraints[MAX_RECOG_OPERANDS];
enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
struct insn_chain *chain;
for (chain = reload_insn_chain; chain != 0; chain = chain->next)
{
int i, noperands;
HARD_REG_SET clobbered, allowed;
rtx pat;
if (GET_RTX_CLASS (GET_CODE (chain->insn)) != 'i'
|| (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
continue;
pat = PATTERN (chain->insn);
if (GET_CODE (pat) != PARALLEL)
continue;
CLEAR_HARD_REG_SET (clobbered);
CLEAR_HARD_REG_SET (allowed);
/* First, make a mask of all stack regs that are clobbered. */
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx t = XVECEXP (pat, 0, i);
if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
}
/* Get the operand values and constraints out of the insn. */
decode_asm_operands (pat, recog_operand, recog_operand_loc,
constraints, operand_mode);
/* For every operand, see what registers are allowed. */
for (i = 0; i < noperands; i++)
{
char *p = constraints[i];
/* For every alternative, we compute the class of registers allowed
for reloading in CLS, and merge its contents into the reg set
ALLOWED. */
int cls = (int) NO_REGS;
for (;;)
{
char c = *p++;
if (c == '\0' || c == ',' || c == '#')
{
/* End of one alternative - mark the regs in the current
class, and reset the class. */
IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
cls = NO_REGS;
if (c == '#')
do {
c = *p++;
} while (c != '\0' && c != ',');
if (c == '\0')
break;
continue;
}
switch (c)
{
case '=': case '+': case '*': case '%': case '?': case '!':
case '0': case '1': case '2': case '3': case '4': case 'm':
case '<': case '>': case 'V': case 'o': case '&': case 'E':
case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
case 'P':
#ifdef EXTRA_CONSTRAINT
case 'Q': case 'R': case 'S': case 'T': case 'U':
#endif
break;
case 'p':
cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
break;
case 'g':
case 'r':
cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
break;
default:
cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
}
}
}
/* Those of the registers which are clobbered, but allowed by the
constraints, must be usable as reload registers. So clear them
out of the life information. */
AND_HARD_REG_SET (allowed, clobbered);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (allowed, i))
{
CLEAR_REGNO_REG_SET (chain->live_before, i);
CLEAR_REGNO_REG_SET (chain->live_after, i);
}
}
#endif
}
/* Walk the chain of insns, and determine for each whether it needs reloads
and/or eliminations. Build the corresponding insns_need_reload list, and
set something_needs_elimination as appropriate. */
static void
calculate_needs_all_insns (global)
int global;
{
struct insn_chain **pprev_reload = &insns_need_reload;
struct insn_chain **pchain;
something_needs_elimination = 0;
for (pchain = &reload_insn_chain; *pchain != 0; pchain = &(*pchain)->next)
{
rtx insn;
struct insn_chain *chain;
chain = *pchain;
insn = chain->insn;
/* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
include REG_LABEL), we need to see what effects this has on the
known offsets at labels. */
if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
|| (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& REG_NOTES (insn) != 0))
set_label_offsets (insn, insn, 0);
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
rtx old_body = PATTERN (insn);
int old_code = INSN_CODE (insn);
rtx old_notes = REG_NOTES (insn);
int did_elimination = 0;
int operands_changed = 0;
/* If needed, eliminate any eliminable registers. */
if (num_eliminable)
did_elimination = eliminate_regs_in_insn (insn, 0);
/* Analyze the instruction. */
operands_changed = find_reloads (insn, 0, spill_indirect_levels,
global, spill_reg_order);
/* If a no-op set needs more than one reload, this is likely
to be something that needs input address reloads. We
can't get rid of this cleanly later, and it is of no use
anyway, so discard it now.
We only do this when expensive_optimizations is enabled,
since this complements reload inheritance / output
reload deletion, and it can make debugging harder. */
if (flag_expensive_optimizations && n_reloads > 1)
{
rtx set = single_set (insn);
if (set
&& SET_SRC (set) == SET_DEST (set)
&& GET_CODE (SET_SRC (set)) == REG
&& REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
{
PUT_CODE (insn, NOTE);
NOTE_SOURCE_FILE (insn) = 0;
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
continue;
}
}
if (num_eliminable)
update_eliminable_offsets ();
/* Remember for later shortcuts which insns had any reloads or
register eliminations. */
chain->need_elim = did_elimination;
chain->need_reload = n_reloads > 0;
chain->need_operand_change = operands_changed;
/* Discard any register replacements done. */
if (did_elimination)
{
obstack_free (&reload_obstack, reload_firstobj);
PATTERN (insn) = old_body;
INSN_CODE (insn) = old_code;
REG_NOTES (insn) = old_notes;
something_needs_elimination = 1;
}
something_needs_operands_changed |= operands_changed;
if (n_reloads != 0)
{
*pprev_reload = chain;
pprev_reload = &chain->next_need_reload;
calculate_needs (chain);
}
}
}
*pprev_reload = 0;
}
/* Compute the most additional registers needed by one instruction,
given by CHAIN. Collect information separately for each class of regs.
To compute the number of reload registers of each class needed for an
insn, we must simulate what choose_reload_regs can do. We do this by
splitting an insn into an "input" and an "output" part. RELOAD_OTHER
reloads are used in both. The input part uses those reloads,
RELOAD_FOR_INPUT reloads, which must be live over the entire input section
of reloads, and the maximum of all the RELOAD_FOR_INPUT_ADDRESS and
RELOAD_FOR_OPERAND_ADDRESS reloads, which conflict with the inputs.
The registers needed for output are RELOAD_OTHER and RELOAD_FOR_OUTPUT,
which are live for the entire output portion, and the maximum of all the
RELOAD_FOR_OUTPUT_ADDRESS reloads for each operand.
The total number of registers needed is the maximum of the
inputs and outputs. */
static void
calculate_needs (chain)
struct insn_chain *chain;
{
int i;
/* Each `struct needs' corresponds to one RELOAD_... type. */
struct {
struct needs other;
struct needs input;
struct needs output;
struct needs insn;
struct needs other_addr;
struct needs op_addr;
struct needs op_addr_reload;
struct needs in_addr[MAX_RECOG_OPERANDS];
struct needs in_addr_addr[MAX_RECOG_OPERANDS];
struct needs out_addr[MAX_RECOG_OPERANDS];
struct needs out_addr_addr[MAX_RECOG_OPERANDS];
} insn_needs;
bzero ((char *) chain->group_size, sizeof chain->group_size);
for (i = 0; i < N_REG_CLASSES; i++)
chain->group_mode[i] = VOIDmode;
bzero ((char *) &insn_needs, sizeof insn_needs);
/* Count each reload once in every class
containing the reload's own class. */
for (i = 0; i < n_reloads; i++)
{
register enum reg_class *p;
enum reg_class class = reload_reg_class[i];
int size;
enum machine_mode mode;
struct needs *this_needs;
/* Don't count the dummy reloads, for which one of the
regs mentioned in the insn can be used for reloading.
Don't count optional reloads.
Don't count reloads that got combined with others. */
if (reload_reg_rtx[i] != 0
|| reload_optional[i] != 0
|| (reload_out[i] == 0 && reload_in[i] == 0
&& ! reload_secondary_p[i]))
continue;
mode = reload_inmode[i];
if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
mode = reload_outmode[i];
size = CLASS_MAX_NREGS (class, mode);
/* Decide which time-of-use to count this reload for. */
switch (reload_when_needed[i])
{
case RELOAD_OTHER:
this_needs = &insn_needs.other;
break;
case RELOAD_FOR_INPUT:
this_needs = &insn_needs.input;
break;
case RELOAD_FOR_OUTPUT:
this_needs = &insn_needs.output;
break;
case RELOAD_FOR_INSN:
this_needs = &insn_needs.insn;
break;
case RELOAD_FOR_OTHER_ADDRESS:
this_needs = &insn_needs.other_addr;
break;
case RELOAD_FOR_INPUT_ADDRESS:
this_needs = &insn_needs.in_addr[reload_opnum[i]];
break;
case RELOAD_FOR_INPADDR_ADDRESS:
this_needs = &insn_needs.in_addr_addr[reload_opnum[i]];
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
this_needs = &insn_needs.out_addr[reload_opnum[i]];
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
this_needs = &insn_needs.out_addr_addr[reload_opnum[i]];
break;
case RELOAD_FOR_OPERAND_ADDRESS:
this_needs = &insn_needs.op_addr;
break;
case RELOAD_FOR_OPADDR_ADDR:
this_needs = &insn_needs.op_addr_reload;
break;
}
if (size > 1)
{
enum machine_mode other_mode, allocate_mode;
/* Count number of groups needed separately from
number of individual regs needed. */
this_needs->groups[(int) class]++;
p = reg_class_superclasses[(int) class];
while (*p != LIM_REG_CLASSES)
this_needs->groups[(int) *p++]++;
/* Record size and mode of a group of this class. */
/* If more than one size group is needed,
make all groups the largest needed size. */
if (chain->group_size[(int) class] < size)
{
other_mode = chain->group_mode[(int) class];
allocate_mode = mode;
chain->group_size[(int) class] = size;
chain->group_mode[(int) class] = mode;
}
else
{
other_mode = mode;
allocate_mode = chain->group_mode[(int) class];
}
/* Crash if two dissimilar machine modes both need
groups of consecutive regs of the same class. */
if (other_mode != VOIDmode && other_mode != allocate_mode
&& ! modes_equiv_for_class_p (allocate_mode,
other_mode, class))
fatal_insn ("Two dissimilar machine modes both need groups of consecutive regs of the same class",
chain->insn);
}
else if (size == 1)
{
this_needs->regs[(unsigned char)reload_nongroup[i]][(int) class] += 1;
p = reg_class_superclasses[(int) class];
while (*p != LIM_REG_CLASSES)
this_needs->regs[(unsigned char)reload_nongroup[i]][(int) *p++] += 1;
}
else
abort ();
}
/* All reloads have been counted for this insn;
now merge the various times of use.
This sets insn_needs, etc., to the maximum total number
of registers needed at any point in this insn. */
for (i = 0; i < N_REG_CLASSES; i++)
{
int j, in_max, out_max;
/* Compute normal and nongroup needs. */
for (j = 0; j <= 1; j++)
{
int k;
for (in_max = 0, out_max = 0, k = 0; k < reload_n_operands; k++)
{
in_max = MAX (in_max,
(insn_needs.in_addr[k].regs[j][i]
+ insn_needs.in_addr_addr[k].regs[j][i]));
out_max = MAX (out_max, insn_needs.out_addr[k].regs[j][i]);
out_max = MAX (out_max,
insn_needs.out_addr_addr[k].regs[j][i]);
}
/* RELOAD_FOR_INSN reloads conflict with inputs, outputs,
and operand addresses but not things used to reload
them. Similarly, RELOAD_FOR_OPERAND_ADDRESS reloads
don't conflict with things needed to reload inputs or
outputs. */
in_max = MAX (MAX (insn_needs.op_addr.regs[j][i],
insn_needs.op_addr_reload.regs[j][i]),
in_max);
out_max = MAX (out_max, insn_needs.insn.regs[j][i]);
insn_needs.input.regs[j][i]
= MAX (insn_needs.input.regs[j][i]
+ insn_needs.op_addr.regs[j][i]
+ insn_needs.insn.regs[j][i],
in_max + insn_needs.input.regs[j][i]);
insn_needs.output.regs[j][i] += out_max;
insn_needs.other.regs[j][i]
+= MAX (MAX (insn_needs.input.regs[j][i],
insn_needs.output.regs[j][i]),
insn_needs.other_addr.regs[j][i]);
}
/* Now compute group needs. */
for (in_max = 0, out_max = 0, j = 0; j < reload_n_operands; j++)
{
in_max = MAX (in_max, insn_needs.in_addr[j].groups[i]);
in_max = MAX (in_max, insn_needs.in_addr_addr[j].groups[i]);
out_max = MAX (out_max, insn_needs.out_addr[j].groups[i]);
out_max = MAX (out_max, insn_needs.out_addr_addr[j].groups[i]);
}
in_max = MAX (MAX (insn_needs.op_addr.groups[i],
insn_needs.op_addr_reload.groups[i]),
in_max);
out_max = MAX (out_max, insn_needs.insn.groups[i]);
insn_needs.input.groups[i]
= MAX (insn_needs.input.groups[i]
+ insn_needs.op_addr.groups[i]
+ insn_needs.insn.groups[i],
in_max + insn_needs.input.groups[i]);
insn_needs.output.groups[i] += out_max;
insn_needs.other.groups[i]
+= MAX (MAX (insn_needs.input.groups[i],
insn_needs.output.groups[i]),
insn_needs.other_addr.groups[i]);
}
/* Record the needs for later. */
chain->need = insn_needs.other;
}
/* Find a group of exactly 2 registers.
First try to fill out the group by spilling a single register which
would allow completion of the group.
Then try to create a new group from a pair of registers, neither of
which are explicitly used.
Then try to create a group from any pair of registers. */
static void
find_tworeg_group (chain, class, dumpfile)
struct insn_chain *chain;
int class;
FILE *dumpfile;
{
int i;
/* First, look for a register that will complete a group. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int j, other;
j = potential_reload_regs[i];
if (j >= 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, j)
&& ((j > 0 && (other = j - 1, spill_reg_order[other] >= 0)
&& TEST_HARD_REG_BIT (reg_class_contents[class], j)
&& TEST_HARD_REG_BIT (reg_class_contents[class], other)
&& HARD_REGNO_MODE_OK (other, chain->group_mode[class])
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, other)
/* We don't want one part of another group.
We could get "two groups" that overlap! */
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, other))
|| (j < FIRST_PSEUDO_REGISTER - 1
&& (other = j + 1, spill_reg_order[other] >= 0)
&& TEST_HARD_REG_BIT (reg_class_contents[class], j)
&& TEST_HARD_REG_BIT (reg_class_contents[class], other)
&& HARD_REGNO_MODE_OK (j, chain->group_mode[class])
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, other)
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, other))))
{
register enum reg_class *p;
/* We have found one that will complete a group,
so count off one group as provided. */
chain->need.groups[class]--;
p = reg_class_superclasses[class];
while (*p != LIM_REG_CLASSES)
{
if (chain->group_size [(int) *p] <= chain->group_size [class])
chain->need.groups[(int) *p]--;
p++;
}
/* Indicate both these regs are part of a group. */
SET_HARD_REG_BIT (chain->counted_for_groups, j);
SET_HARD_REG_BIT (chain->counted_for_groups, other);
break;
}
}
/* We can't complete a group, so start one. */
if (i == FIRST_PSEUDO_REGISTER)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int j, k;
j = potential_reload_regs[i];
/* Verify that J+1 is a potential reload reg. */
for (k = 0; k < FIRST_PSEUDO_REGISTER; k++)
if (potential_reload_regs[k] == j + 1)
break;
if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER
&& k < FIRST_PSEUDO_REGISTER
&& spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0
&& TEST_HARD_REG_BIT (reg_class_contents[class], j)
&& TEST_HARD_REG_BIT (reg_class_contents[class], j + 1)
&& HARD_REGNO_MODE_OK (j, chain->group_mode[class])
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, j + 1)
&& ! TEST_HARD_REG_BIT (bad_spill_regs, j + 1))
break;
}
/* I should be the index in potential_reload_regs
of the new reload reg we have found. */
new_spill_reg (chain, i, class, 0, dumpfile);
}
/* Find a group of more than 2 registers.
Look for a sufficient sequence of unspilled registers, and spill them all
at once. */
static void
find_group (chain, class, dumpfile)
struct insn_chain *chain;
int class;
FILE *dumpfile;
{
int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int j = potential_reload_regs[i];
if (j >= 0
&& j + chain->group_size[class] <= FIRST_PSEUDO_REGISTER
&& HARD_REGNO_MODE_OK (j, chain->group_mode[class]))
{
int k;
/* Check each reg in the sequence. */
for (k = 0; k < chain->group_size[class]; k++)
if (! (spill_reg_order[j + k] < 0
&& ! TEST_HARD_REG_BIT (bad_spill_regs, j + k)
&& TEST_HARD_REG_BIT (reg_class_contents[class], j + k)))
break;
/* We got a full sequence, so spill them all. */
if (k == chain->group_size[class])
{
register enum reg_class *p;
for (k = 0; k < chain->group_size[class]; k++)
{
int idx;
SET_HARD_REG_BIT (chain->counted_for_groups, j + k);
for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx++)
if (potential_reload_regs[idx] == j + k)
break;
new_spill_reg (chain, idx, class, 0, dumpfile);
}
/* We have found one that will complete a group,
so count off one group as provided. */
chain->need.groups[class]--;
p = reg_class_superclasses[class];
while (*p != LIM_REG_CLASSES)
{
if (chain->group_size [(int) *p]
<= chain->group_size [class])
chain->need.groups[(int) *p]--;
p++;
}
return;
}
}
}
/* There are no groups left. */
spill_failure (chain->insn);
failure = 1;
}
/* If pseudo REG conflicts with one of our reload registers, mark it as
spilled. */
static void
maybe_mark_pseudo_spilled (reg)
int reg;
{
int i;
int r = reg_renumber[reg];
int nregs;
if (r < 0)
abort ();
nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
for (i = 0; i < n_spills; i++)
if (r <= spill_regs[i] && r + nregs > spill_regs[i])
{
SET_REGNO_REG_SET (spilled_pseudos, reg);
return;
}
}
/* Find more reload regs to satisfy the remaining need of an insn, which
is given by CHAIN.
Do it by ascending class number, since otherwise a reg
might be spilled for a big class and might fail to count
for a smaller class even though it belongs to that class.
Count spilled regs in `spills', and add entries to
`spill_regs' and `spill_reg_order'.
??? Note there is a problem here.
When there is a need for a group in a high-numbered class,
and also need for non-group regs that come from a lower class,
the non-group regs are chosen first. If there aren't many regs,
they might leave no room for a group.
This was happening on the 386. To fix it, we added the code
that calls possible_group_p, so that the lower class won't
break up the last possible group.
Really fixing the problem would require changes above
in counting the regs already spilled, and in choose_reload_regs.
It might be hard to avoid introducing bugs there. */
static void
find_reload_regs (chain, dumpfile)
struct insn_chain *chain;
FILE *dumpfile;
{
int i, class;
short *group_needs = chain->need.groups;
short *simple_needs = chain->need.regs[0];
short *nongroup_needs = chain->need.regs[1];
if (dumpfile)
fprintf (dumpfile, "Spilling for insn %d.\n", INSN_UID (chain->insn));
/* Compute the order of preference for hard registers to spill.
Store them by decreasing preference in potential_reload_regs. */
order_regs_for_reload (chain);
/* So far, no hard regs have been spilled. */
n_spills = 0;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
spill_reg_order[i] = -1;
CLEAR_HARD_REG_SET (chain->used_spill_regs);
CLEAR_HARD_REG_SET (chain->counted_for_groups);
CLEAR_HARD_REG_SET (chain->counted_for_nongroups);
for (class = 0; class < N_REG_CLASSES; class++)
{
/* First get the groups of registers.
If we got single registers first, we might fragment
possible groups. */
while (group_needs[class] > 0)
{
/* If any single spilled regs happen to form groups,
count them now. Maybe we don't really need
to spill another group. */
count_possible_groups (chain, class);
if (group_needs[class] <= 0)
break;
/* Groups of size 2, the only groups used on most machines,
are treated specially. */
if (chain->group_size[class] == 2)
find_tworeg_group (chain, class, dumpfile);
else
find_group (chain, class, dumpfile);
if (failure)
return;
}
/* Now similarly satisfy all need for single registers. */
while (simple_needs[class] > 0 || nongroup_needs[class] > 0)
{
/* If we spilled enough regs, but they weren't counted
against the non-group need, see if we can count them now.
If so, we can avoid some actual spilling. */
if (simple_needs[class] <= 0 && nongroup_needs[class] > 0)
for (i = 0; i < n_spills; i++)
{
int regno = spill_regs[i];
if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
&& !TEST_HARD_REG_BIT (chain->counted_for_groups, regno)
&& !TEST_HARD_REG_BIT (chain->counted_for_nongroups, regno)
&& nongroup_needs[class] > 0)
{
register enum reg_class *p;
SET_HARD_REG_BIT (chain->counted_for_nongroups, regno);
nongroup_needs[class]--;
p = reg_class_superclasses[class];
while (*p != LIM_REG_CLASSES)
nongroup_needs[(int) *p++]--;
}
}
if (simple_needs[class] <= 0 && nongroup_needs[class] <= 0)
break;
/* Consider the potential reload regs that aren't
yet in use as reload regs, in order of preference.
Find the most preferred one that's in this class. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int regno = potential_reload_regs[i];
if (regno >= 0
&& TEST_HARD_REG_BIT (reg_class_contents[class], regno)
/* If this reg will not be available for groups,
pick one that does not foreclose possible groups.
This is a kludge, and not very general,
but it should be sufficient to make the 386 work,
and the problem should not occur on machines with
more registers. */
&& (nongroup_needs[class] == 0
|| possible_group_p (chain, regno)))
break;
}
/* If we couldn't get a register, try to get one even if we
might foreclose possible groups. This may cause problems
later, but that's better than aborting now, since it is
possible that we will, in fact, be able to form the needed
group even with this allocation. */
if (i >= FIRST_PSEUDO_REGISTER
&& asm_noperands (chain->insn) < 0)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (potential_reload_regs[i] >= 0
&& TEST_HARD_REG_BIT (reg_class_contents[class],
potential_reload_regs[i]))
break;
/* I should be the index in potential_reload_regs
of the new reload reg we have found. */
new_spill_reg (chain, i, class, 1, dumpfile);
if (failure)
return;
}
}
/* We know which hard regs to use, now mark the pseudos that live in them
as needing to be kicked out. */
EXECUTE_IF_SET_IN_REG_SET
(chain->live_before, FIRST_PSEUDO_REGISTER, i,
{
maybe_mark_pseudo_spilled (i);
});
EXECUTE_IF_SET_IN_REG_SET
(chain->live_after, FIRST_PSEUDO_REGISTER, i,
{
maybe_mark_pseudo_spilled (i);
});
IOR_HARD_REG_SET (used_spill_regs, chain->used_spill_regs);
}
void
dump_needs (chain, dumpfile)
struct insn_chain *chain;
FILE *dumpfile;
{
static char *reg_class_names[] = REG_CLASS_NAMES;
int i;
struct needs *n = &chain->need;
for (i = 0; i < N_REG_CLASSES; i++)
{
if (n->regs[i][0] > 0)
fprintf (dumpfile,
";; Need %d reg%s of class %s.\n",
n->regs[i][0], n->regs[i][0] == 1 ? "" : "s",
reg_class_names[i]);
if (n->regs[i][1] > 0)
fprintf (dumpfile,
";; Need %d nongroup reg%s of class %s.\n",
n->regs[i][1], n->regs[i][1] == 1 ? "" : "s",
reg_class_names[i]);
if (n->groups[i] > 0)
fprintf (dumpfile,
";; Need %d group%s (%smode) of class %s.\n",
n->groups[i], n->groups[i] == 1 ? "" : "s",
mode_name[(int) chain->group_mode[i]],
reg_class_names[i]);
}
}
/* Delete all insns that were inserted by emit_caller_save_insns during
this iteration. */
static void
delete_caller_save_insns ()
{
struct insn_chain *c = reload_insn_chain;
while (c != 0)
{
while (c != 0 && c->is_caller_save_insn)
{
struct insn_chain *next = c->next;
rtx insn = c->insn;
if (insn == basic_block_head[c->block])
basic_block_head[c->block] = NEXT_INSN (insn);
if (insn == basic_block_end[c->block])
basic_block_end[c->block] = PREV_INSN (insn);
if (c == reload_insn_chain)
reload_insn_chain = next;
if (NEXT_INSN (insn) != 0)
PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
if (PREV_INSN (insn) != 0)
NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
if (next)
next->prev = c->prev;
if (c->prev)
c->prev->next = next;
c->next = unused_insn_chains;
unused_insn_chains = c;
c = next;
}
if (c != 0)
c = c->next;
}
}
/* Nonzero if, after spilling reg REGNO for non-groups,
it will still be possible to find a group if we still need one. */
static int
possible_group_p (chain, regno)
struct insn_chain *chain;
int regno;
{
int i;
int class = (int) NO_REGS;
for (i = 0; i < (int) N_REG_CLASSES; i++)
if (chain->need.groups[i] > 0)
{
class = i;
break;
}
if (class == (int) NO_REGS)
return 1;
/* Consider each pair of consecutive registers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER - 1; i++)
{
/* Ignore pairs that include reg REGNO. */
if (i == regno || i + 1 == regno)
continue;
/* Ignore pairs that are outside the class that needs the group.
??? Here we fail to handle the case where two different classes
independently need groups. But this never happens with our
current machine descriptions. */
if (! (TEST_HARD_REG_BIT (reg_class_contents[class], i)
&& TEST_HARD_REG_BIT (reg_class_contents[class], i + 1)))
continue;
/* A pair of consecutive regs we can still spill does the trick. */
if (spill_reg_order[i] < 0 && spill_reg_order[i + 1] < 0
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i)
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1))
return 1;
/* A pair of one already spilled and one we can spill does it
provided the one already spilled is not otherwise reserved. */
if (spill_reg_order[i] < 0
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i)
&& spill_reg_order[i + 1] >= 0
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, i + 1)
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, i + 1))
return 1;
if (spill_reg_order[i + 1] < 0
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1)
&& spill_reg_order[i] >= 0
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, i)
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, i))
return 1;
}
return 0;
}
/* Count any groups of CLASS that can be formed from the registers recently
spilled. */
static void
count_possible_groups (chain, class)
struct insn_chain *chain;
int class;
{
HARD_REG_SET new;
int i, j;
/* Now find all consecutive groups of spilled registers
and mark each group off against the need for such groups.
But don't count them against ordinary need, yet. */
if (chain->group_size[class] == 0)
return;
CLEAR_HARD_REG_SET (new);
/* Make a mask of all the regs that are spill regs in class I. */
for (i = 0; i < n_spills; i++)
{
int regno = spill_regs[i];
if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
&& ! TEST_HARD_REG_BIT (chain->counted_for_groups, regno)
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, regno))
SET_HARD_REG_BIT (new, regno);
}
/* Find each consecutive group of them. */
for (i = 0; i < FIRST_PSEUDO_REGISTER && chain->need.groups[class] > 0; i++)
if (TEST_HARD_REG_BIT (new, i)
&& i + chain->group_size[class] <= FIRST_PSEUDO_REGISTER
&& HARD_REGNO_MODE_OK (i, chain->group_mode[class]))
{
for (j = 1; j < chain->group_size[class]; j++)
if (! TEST_HARD_REG_BIT (new, i + j))
break;
if (j == chain->group_size[class])
{
/* We found a group. Mark it off against this class's need for
groups, and against each superclass too. */
register enum reg_class *p;
chain->need.groups[class]--;
p = reg_class_superclasses[class];
while (*p != LIM_REG_CLASSES)
{
if (chain->group_size [(int) *p] <= chain->group_size [class])
chain->need.groups[(int) *p]--;
p++;
}
/* Don't count these registers again. */
for (j = 0; j < chain->group_size[class]; j++)
SET_HARD_REG_BIT (chain->counted_for_groups, i + j);
}
/* Skip to the last reg in this group. When i is incremented above,
it will then point to the first reg of the next possible group. */
i += j - 1;
}
}
/* ALLOCATE_MODE is a register mode that needs to be reloaded. OTHER_MODE is
another mode that needs to be reloaded for the same register class CLASS.
If any reg in CLASS allows ALLOCATE_MODE but not OTHER_MODE, fail.
ALLOCATE_MODE will never be smaller than OTHER_MODE.
This code used to also fail if any reg in CLASS allows OTHER_MODE but not
ALLOCATE_MODE. This test is unnecessary, because we will never try to put
something of mode ALLOCATE_MODE into an OTHER_MODE register. Testing this
causes unnecessary failures on machines requiring alignment of register
groups when the two modes are different sizes, because the larger mode has
more strict alignment rules than the smaller mode. */
static int
modes_equiv_for_class_p (allocate_mode, other_mode, class)
enum machine_mode allocate_mode, other_mode;
enum reg_class class;
{
register int regno;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
&& HARD_REGNO_MODE_OK (regno, allocate_mode)
&& ! HARD_REGNO_MODE_OK (regno, other_mode))
return 0;
}
return 1;
}
/* Handle the failure to find a register to spill.
INSN should be one of the insns which needed this particular spill reg. */
static void
spill_failure (insn)
rtx insn;
{
if (asm_noperands (PATTERN (insn)) >= 0)
error_for_asm (insn, "`asm' needs too many reloads");
else
fatal_insn ("Unable to find a register to spill.", insn);
}
/* Add a new register to the tables of available spill-registers.
CHAIN is the insn for which the register will be used; we decrease the
needs of that insn.
I is the index of this register in potential_reload_regs.
CLASS is the regclass whose need is being satisfied.
NONGROUP is 0 if this register is part of a group.
DUMPFILE is the same as the one that `reload' got. */
static void
new_spill_reg (chain, i, class, nongroup, dumpfile)
struct insn_chain *chain;
int i;
int class;
int nongroup;
FILE *dumpfile;
{
register enum reg_class *p;
int regno = potential_reload_regs[i];
if (i >= FIRST_PSEUDO_REGISTER)
{
spill_failure (chain->insn);
failure = 1;
return;
}
if (TEST_HARD_REG_BIT (bad_spill_regs, regno))
{
static char *reg_class_names[] = REG_CLASS_NAMES;
if (asm_noperands (PATTERN (chain->insn)) < 0)
{
/* The error message is still correct - we know only that it wasn't
an asm statement that caused the problem, but one of the global
registers declared by the users might have screwed us. */
error ("fixed or forbidden register %d (%s) was spilled for class %s.",
regno, reg_names[regno], reg_class_names[class]);
error ("This may be due to a compiler bug or to impossible asm");
error ("statements or clauses.");
fatal_insn ("This is the instruction:", chain->insn);
}
error_for_asm (chain->insn, "Invalid `asm' statement:");
error_for_asm (chain->insn,
"fixed or forbidden register %d (%s) was spilled for class %s.",
regno, reg_names[regno], reg_class_names[class]);
failure = 1;
return;
}
/* Make reg REGNO an additional reload reg. */
potential_reload_regs[i] = -1;
spill_regs[n_spills] = regno;
spill_reg_order[regno] = n_spills;
if (dumpfile)
fprintf (dumpfile, "Spilling reg %d.\n", regno);
SET_HARD_REG_BIT (chain->used_spill_regs, regno);
/* Clear off the needs we just satisfied. */
chain->need.regs[0][class]--;
p = reg_class_superclasses[class];
while (*p != LIM_REG_CLASSES)
chain->need.regs[0][(int) *p++]--;
if (nongroup && chain->need.regs[1][class] > 0)
{
SET_HARD_REG_BIT (chain->counted_for_nongroups, regno);
chain->need.regs[1][class]--;
p = reg_class_superclasses[class];
while (*p != LIM_REG_CLASSES)
chain->need.regs[1][(int) *p++]--;
}
n_spills++;
}
/* Delete an unneeded INSN and any previous insns who sole purpose is loading
data that is dead in INSN. */
static void
delete_dead_insn (insn)
rtx insn;
{
rtx prev = prev_real_insn (insn);
rtx prev_dest;
/* If the previous insn sets a register that dies in our insn, delete it
too. */
if (prev && GET_CODE (PATTERN (prev)) == SET
&& (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
&& reg_mentioned_p (prev_dest, PATTERN (insn))
&& find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
&& ! side_effects_p (SET_SRC (PATTERN (prev))))
delete_dead_insn (prev);
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
}
/* Modify the home of pseudo-reg I.
The new home is present in reg_renumber[I].
FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
or it may be -1, meaning there is none or it is not relevant.
This is used so that all pseudos spilled from a given hard reg
can share one stack slot. */
static void
alter_reg (i, from_reg)
register int i;
int from_reg;
{
/* When outputting an inline function, this can happen
for a reg that isn't actually used. */
if (regno_reg_rtx[i] == 0)
return;
/* If the reg got changed to a MEM at rtl-generation time,
ignore it. */
if (GET_CODE (regno_reg_rtx[i]) != REG)
return;
/* Modify the reg-rtx to contain the new hard reg
number or else to contain its pseudo reg number. */
REGNO (regno_reg_rtx[i])
= reg_renumber[i] >= 0 ? reg_renumber[i] : i;
/* If we have a pseudo that is needed but has no hard reg or equivalent,
allocate a stack slot for it. */
if (reg_renumber[i] < 0
&& REG_N_REFS (i) > 0
&& reg_equiv_constant[i] == 0
&& reg_equiv_memory_loc[i] == 0)
{
register rtx x;
int inherent_size = PSEUDO_REGNO_BYTES (i);
int total_size = MAX (inherent_size, reg_max_ref_width[i]);
int adjust = 0;
/* Each pseudo reg has an inherent size which comes from its own mode,
and a total size which provides room for paradoxical subregs
which refer to the pseudo reg in wider modes.
We can use a slot already allocated if it provides both
enough inherent space and enough total space.
Otherwise, we allocate a new slot, making sure that it has no less
inherent space, and no less total space, then the previous slot. */
if (from_reg == -1)
{
/* No known place to spill from => no slot to reuse. */
x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
inherent_size == total_size ? 0 : -1);
if (BYTES_BIG_ENDIAN)
/* Cancel the big-endian correction done in assign_stack_local.
Get the address of the beginning of the slot.
This is so we can do a big-endian correction unconditionally
below. */
adjust = inherent_size - total_size;
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
}
/* Reuse a stack slot if possible. */
else if (spill_stack_slot[from_reg] != 0
&& spill_stack_slot_width[from_reg] >= total_size
&& (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
>= inherent_size))
x = spill_stack_slot[from_reg];
/* Allocate a bigger slot. */
else
{
/* Compute maximum size needed, both for inherent size
and for total size. */
enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
rtx stack_slot;
if (spill_stack_slot[from_reg])
{
if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
> inherent_size)
mode = GET_MODE (spill_stack_slot[from_reg]);
if (spill_stack_slot_width[from_reg] > total_size)
total_size = spill_stack_slot_width[from_reg];
}
/* Make a slot with that size. */
x = assign_stack_local (mode, total_size,
inherent_size == total_size ? 0 : -1);
stack_slot = x;
if (BYTES_BIG_ENDIAN)
{
/* Cancel the big-endian correction done in assign_stack_local.
Get the address of the beginning of the slot.
This is so we can do a big-endian correction unconditionally
below. */
adjust = GET_MODE_SIZE (mode) - total_size;
if (adjust)
stack_slot = gen_rtx_MEM (mode_for_size (total_size
* BITS_PER_UNIT,
MODE_INT, 1),
plus_constant (XEXP (x, 0), adjust));
}
spill_stack_slot[from_reg] = stack_slot;
spill_stack_slot_width[from_reg] = total_size;
}
/* On a big endian machine, the "address" of the slot
is the address of the low part that fits its inherent mode. */
if (BYTES_BIG_ENDIAN && inherent_size < total_size)
adjust += (total_size - inherent_size);
/* If we have any adjustment to make, or if the stack slot is the
wrong mode, make a new stack slot. */
if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
{
x = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]),
plus_constant (XEXP (x, 0), adjust));
/* If this was shared among registers, must ensure we never
set it readonly since that can cause scheduling
problems. Note we would only have in this adjustment
case in any event, since the code above doesn't set it. */
if (from_reg == -1)
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
}
/* Save the stack slot for later. */
reg_equiv_memory_loc[i] = x;
}
}
/* Mark the slots in regs_ever_live for the hard regs
used by pseudo-reg number REGNO. */
void
mark_home_live (regno)
int regno;
{
register int i, lim;
i = reg_renumber[regno];
if (i < 0)
return;
lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
while (i < lim)
regs_ever_live[i++] = 1;
}
/* This function handles the tracking of elimination offsets around branches.
X is a piece of RTL being scanned.
INSN is the insn that it came from, if any.
INITIAL_P is non-zero if we are to set the offset to be the initial
offset and zero if we are setting the offset of the label to be the
current offset. */
static void
set_label_offsets (x, insn, initial_p)
rtx x;
rtx insn;
int initial_p;
{
enum rtx_code code = GET_CODE (x);
rtx tem;
unsigned int i;
struct elim_table *p;
switch (code)
{
case LABEL_REF:
if (LABEL_REF_NONLOCAL_P (x))
return;
x = XEXP (x, 0);
/* ... fall through ... */
case CODE_LABEL:
/* If we know nothing about this label, set the desired offsets. Note
that this sets the offset at a label to be the offset before a label
if we don't know anything about the label. This is not correct for
the label after a BARRIER, but is the best guess we can make. If
we guessed wrong, we will suppress an elimination that might have
been possible had we been able to guess correctly. */
if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
{
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
offsets_at[CODE_LABEL_NUMBER (x)][i]
= (initial_p ? reg_eliminate[i].initial_offset
: reg_eliminate[i].offset);
offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
}
/* Otherwise, if this is the definition of a label and it is
preceded by a BARRIER, set our offsets to the known offset of
that label. */
else if (x == insn
&& (tem = prev_nonnote_insn (insn)) != 0
&& GET_CODE (tem) == BARRIER)
set_offsets_for_label (insn);
else
/* If neither of the above cases is true, compare each offset
with those previously recorded and suppress any eliminations
where the offsets disagree. */
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
if (offsets_at[CODE_LABEL_NUMBER (x)][i]
!= (initial_p ? reg_eliminate[i].initial_offset
: reg_eliminate[i].offset))
reg_eliminate[i].can_eliminate = 0;
return;
case JUMP_INSN:
set_label_offsets (PATTERN (insn), insn, initial_p);
/* ... fall through ... */
case INSN:
case CALL_INSN:
/* Any labels mentioned in REG_LABEL notes can be branched to indirectly
and hence must have all eliminations at their initial offsets. */
for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
if (REG_NOTE_KIND (tem) == REG_LABEL)
set_label_offsets (XEXP (tem, 0), insn, 1);
return;
case ADDR_VEC:
case ADDR_DIFF_VEC:
/* Each of the labels in the address vector must be at their initial
offsets. We want the first field for ADDR_VEC and the second
field for ADDR_DIFF_VEC. */
for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
insn, initial_p);
return;
case SET:
/* We only care about setting PC. If the source is not RETURN,
IF_THEN_ELSE, or a label, disable any eliminations not at
their initial offsets. Similarly if any arm of the IF_THEN_ELSE
isn't one of those possibilities. For branches to a label,
call ourselves recursively.
Note that this can disable elimination unnecessarily when we have
a non-local goto since it will look like a non-constant jump to
someplace in the current function. This isn't a significant
problem since such jumps will normally be when all elimination
pairs are back to their initial offsets. */
if (SET_DEST (x) != pc_rtx)
return;
switch (GET_CODE (SET_SRC (x)))
{
case PC:
case RETURN:
return;
case LABEL_REF:
set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
return;
case IF_THEN_ELSE:
tem = XEXP (SET_SRC (x), 1);
if (GET_CODE (tem) == LABEL_REF)
set_label_offsets (XEXP (tem, 0), insn, initial_p);
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
break;
tem = XEXP (SET_SRC (x), 2);
if (GET_CODE (tem) == LABEL_REF)
set_label_offsets (XEXP (tem, 0), insn, initial_p);
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
break;
return;
default:
break;
}
/* If we reach here, all eliminations must be at their initial
offset because we are doing a jump to a variable address. */
for (p = reg_eliminate; p < ®_eliminate[NUM_ELIMINABLE_REGS]; p++)
if (p->offset != p->initial_offset)
p->can_eliminate = 0;
break;
default:
break;
}
}
/* Used for communication between the next two function to properly share
the vector for an ASM_OPERANDS. */
static struct rtvec_def *old_asm_operands_vec, *new_asm_operands_vec;
/* Scan X and replace any eliminable registers (such as fp) with a
replacement (such as sp), plus an offset.
MEM_MODE is the mode of an enclosing MEM. We need this to know how
much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
MEM, we are allowed to replace a sum of a register and the constant zero
with the register, which we cannot do outside a MEM. In addition, we need
to record the fact that a register is referenced outside a MEM.
If INSN is an insn, it is the insn containing X. If we replace a REG
in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
CLOBBER of the pseudo after INSN so find_equiv_regs will know that
the REG is being modified.
Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
That's used when we eliminate in expressions stored in notes.
This means, do not set ref_outside_mem even if the reference
is outside of MEMs.
If we see a modification to a register we know about, take the
appropriate action (see case SET, below).
REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
replacements done assuming all offsets are at their initial values. If
they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
encounter, return the actual location so that find_reloads will do
the proper thing. */
rtx
eliminate_regs (x, mem_mode, insn)
rtx x;
enum machine_mode mem_mode;
rtx insn;
{
enum rtx_code code = GET_CODE (x);
struct elim_table *ep;
int regno;
rtx new;
int i, j;
char *fmt;
int copied = 0;
switch (code)
{
case CONST_INT:
case CONST_DOUBLE:
case CONST:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
case CC0:
case ASM_INPUT:
case ADDR_VEC:
case ADDR_DIFF_VEC:
case RETURN:
return x;
case ADDRESSOF:
/* This is only for the benefit of the debugging backends, which call
eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
removed after CSE. */
new = eliminate_regs (XEXP (x, 0), 0, insn);
if (GET_CODE (new) == MEM)
return XEXP (new, 0);
return x;
case REG:
regno = REGNO (x);
/* First handle the case where we encounter a bare register that
is eliminable. Replace it with a PLUS. */
if (regno < FIRST_PSEUDO_REGISTER)
{
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == x && ep->can_eliminate)
{
if (! mem_mode
/* Refs inside notes don't count for this purpose. */
&& ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
|| GET_CODE (insn) == INSN_LIST)))
ep->ref_outside_mem = 1;
return plus_constant (ep->to_rtx, ep->previous_offset);
}
}
return x;
case PLUS:
/* If this is the sum of an eliminable register and a constant, rework
the sum. */
if (GET_CODE (XEXP (x, 0)) == REG
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
&& CONSTANT_P (XEXP (x, 1)))
{
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
{
if (! mem_mode
/* Refs inside notes don't count for this purpose. */
&& ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
|| GET_CODE (insn) == INSN_LIST)))
ep->ref_outside_mem = 1;
/* The only time we want to replace a PLUS with a REG (this
occurs when the constant operand of the PLUS is the negative
of the offset) is when we are inside a MEM. We won't want
to do so at other times because that would change the
structure of the insn in a way that reload can't handle.
We special-case the commonest situation in
eliminate_regs_in_insn, so just replace a PLUS with a
PLUS here, unless inside a MEM. */
if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) == - ep->previous_offset)
return ep->to_rtx;
else
return gen_rtx_PLUS (Pmode, ep->to_rtx,
plus_constant (XEXP (x, 1),
ep->previous_offset));
}
/* If the register is not eliminable, we are done since the other
operand is a constant. */
return x;
}
/* If this is part of an address, we want to bring any constant to the
outermost PLUS. We will do this by doing register replacement in
our operands and seeing if a constant shows up in one of them.
We assume here this is part of an address (or a "load address" insn)
since an eliminable register is not likely to appear in any other
context.
If we have (plus (eliminable) (reg)), we want to produce
(plus (plus (replacement) (reg) (const))). If this was part of a
normal add insn, (plus (replacement) (reg)) will be pushed as a
reload. This is the desired action. */
{
rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
{
/* If one side is a PLUS and the other side is a pseudo that
didn't get a hard register but has a reg_equiv_constant,
we must replace the constant here since it may no longer
be in the position of any operand. */
if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
&& REGNO (new1) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (new1)] < 0
&& reg_equiv_constant != 0
&& reg_equiv_constant[REGNO (new1)] != 0)
new1 = reg_equiv_constant[REGNO (new1)];
else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
&& REGNO (new0) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (new0)] < 0
&& reg_equiv_constant[REGNO (new0)] != 0)
new0 = reg_equiv_constant[REGNO (new0)];
new = form_sum (new0, new1);
/* As above, if we are not inside a MEM we do not want to
turn a PLUS into something else. We might try to do so here
for an addition of 0 if we aren't optimizing. */
if (! mem_mode && GET_CODE (new) != PLUS)
return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
else
return new;
}
}
return x;
case MULT:
/* If this is the product of an eliminable register and a
constant, apply the distribute law and move the constant out
so that we have (plus (mult ..) ..). This is needed in order
to keep load-address insns valid. This case is pathological.
We ignore the possibility of overflow here. */
if (GET_CODE (XEXP (x, 0)) == REG
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
{
if (! mem_mode
/* Refs inside notes don't count for this purpose. */
&& ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
|| GET_CODE (insn) == INSN_LIST)))
ep->ref_outside_mem = 1;
return
plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
ep->previous_offset * INTVAL (XEXP (x, 1)));
}
/* ... fall through ... */
case CALL:
case COMPARE:
case MINUS:
case DIV: case UDIV:
case MOD: case UMOD:
case AND: case IOR: case XOR:
case ROTATERT: case ROTATE:
case ASHIFTRT: case LSHIFTRT: case ASHIFT:
case NE: case EQ:
case GE: case GT: case GEU: case GTU:
case LE: case LT: case LEU: case LTU:
{
rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
rtx new1
= XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
}
return x;
case EXPR_LIST:
/* If we have something in XEXP (x, 0), the usual case, eliminate it. */
if (XEXP (x, 0))
{
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
if (new != XEXP (x, 0))
x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
}
/* ... fall through ... */
case INSN_LIST:
/* Now do eliminations in the rest of the chain. If this was
an EXPR_LIST, this might result in allocating more memory than is
strictly needed, but it simplifies the code. */
if (XEXP (x, 1))
{
new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
if (new != XEXP (x, 1))
return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
}
return x;
case PRE_INC:
case POST_INC:
case PRE_DEC:
case POST_DEC:
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->to_rtx == XEXP (x, 0))
{
int size = GET_MODE_SIZE (mem_mode);
/* If more bytes than MEM_MODE are pushed, account for them. */
#ifdef PUSH_ROUNDING
if (ep->to_rtx == stack_pointer_rtx)
size = PUSH_ROUNDING (size);
#endif
if (code == PRE_DEC || code == POST_DEC)
ep->offset += size;
else
ep->offset -= size;
}
/* Fall through to generic unary operation case. */
case STRICT_LOW_PART:
case NEG: case NOT:
case SIGN_EXTEND: case ZERO_EXTEND:
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
case FLOAT: case FIX:
case UNSIGNED_FIX: case UNSIGNED_FLOAT:
case ABS:
case SQRT:
case FFS:
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
if (new != XEXP (x, 0))
return gen_rtx_fmt_e (code, GET_MODE (x), new);
return x;
case SUBREG:
/* Similar to above processing, but preserve SUBREG_WORD.
Convert (subreg (mem)) to (mem) if not paradoxical.
Also, if we have a non-paradoxical (subreg (pseudo)) and the
pseudo didn't get a hard reg, we must replace this with the
eliminated version of the memory location because push_reloads
may do the replacement in certain circumstances. */
if (GET_CODE (SUBREG_REG (x)) == REG
&& (GET_MODE_SIZE (GET_MODE (x))
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
&& reg_equiv_memory_loc != 0
&& reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
{
#if 0
new = eliminate_regs (reg_equiv_memory_loc[REGNO (SUBREG_REG (x))],
mem_mode, insn);
/* If we didn't change anything, we must retain the pseudo. */
if (new == reg_equiv_memory_loc[REGNO (SUBREG_REG (x))])
new = SUBREG_REG (x);
else
{
/* In this case, we must show that the pseudo is used in this
insn so that delete_output_reload will do the right thing. */
if (insn != 0 && GET_CODE (insn) != EXPR_LIST
&& GET_CODE (insn) != INSN_LIST)
REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode,
SUBREG_REG (x)),
insn))
= gen_rtx_EXPR_LIST (REG_EQUAL, new, NULL_RTX);
/* Ensure NEW isn't shared in case we have to reload it. */
new = copy_rtx (new);
}
#else
new = SUBREG_REG (x);
#endif
}
else
new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
if (new != XEXP (x, 0))
{
int x_size = GET_MODE_SIZE (GET_MODE (x));
int new_size = GET_MODE_SIZE (GET_MODE (new));
if (GET_CODE (new) == MEM
&& ((x_size < new_size
#ifdef WORD_REGISTER_OPERATIONS
/* On these machines, combine can create rtl of the form
(set (subreg:m1 (reg:m2 R) 0) ...)
where m1 < m2, and expects something interesting to
happen to the entire word. Moreover, it will use the
(reg:m2 R) later, expecting all bits to be preserved.
So if the number of words is the same, preserve the
subreg so that push_reloads can see it. */
&& ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD)
#endif
)
|| (x_size == new_size))
)
{
int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
enum machine_mode mode = GET_MODE (x);
if (BYTES_BIG_ENDIAN)
offset += (MIN (UNITS_PER_WORD,
GET_MODE_SIZE (GET_MODE (new)))
- MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
PUT_MODE (new, mode);
XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
return new;
}
else
return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_WORD (x));
}
return x;
case USE:
/* If using a register that is the source of an eliminate we still
think can be performed, note it cannot be performed since we don't
know how this register is used. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->from_rtx == XEXP (x, 0))
ep->can_eliminate = 0;
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
if (new != XEXP (x, 0))
return gen_rtx_fmt_e (code, GET_MODE (x), new);
return x;
case CLOBBER:
/* If clobbering a register that is the replacement register for an
elimination we still think can be performed, note that it cannot
be performed. Otherwise, we need not be concerned about it. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->to_rtx == XEXP (x, 0))
ep->can_eliminate = 0;
new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
if (new != XEXP (x, 0))
return gen_rtx_fmt_e (code, GET_MODE (x), new);
return x;
case ASM_OPERANDS:
{
rtx *temp_vec;
/* Properly handle sharing input and constraint vectors. */
if (ASM_OPERANDS_INPUT_VEC (x) != old_asm_operands_vec)
{
/* When we come to a new vector not seen before,
scan all its elements; keep the old vector if none
of them changes; otherwise, make a copy. */
old_asm_operands_vec = ASM_OPERANDS_INPUT_VEC (x);
temp_vec = (rtx *) alloca (XVECLEN (x, 3) * sizeof (rtx));
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
temp_vec[i] = eliminate_regs (ASM_OPERANDS_INPUT (x, i),
mem_mode, insn);
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
if (temp_vec[i] != ASM_OPERANDS_INPUT (x, i))
break;
if (i == ASM_OPERANDS_INPUT_LENGTH (x))
new_asm_operands_vec = old_asm_operands_vec;
else
new_asm_operands_vec
= gen_rtvec_v (ASM_OPERANDS_INPUT_LENGTH (x), temp_vec);
}
/* If we had to copy the vector, copy the entire ASM_OPERANDS. */
if (new_asm_operands_vec == old_asm_operands_vec)
return x;
new = gen_rtx_ASM_OPERANDS (VOIDmode, ASM_OPERANDS_TEMPLATE (x),
ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
ASM_OPERANDS_OUTPUT_IDX (x),
new_asm_operands_vec,
ASM_OPERANDS_INPUT_CONSTRAINT_VEC (x),
ASM_OPERANDS_SOURCE_FILE (x),
ASM_OPERANDS_SOURCE_LINE (x));
new->volatil = x->volatil;
return new;
}
case SET:
/* Check for setting a register that we know about. */
if (GET_CODE (SET_DEST (x)) == REG)
{
/* See if this is setting the replacement register for an
elimination.
If DEST is the hard frame pointer, we do nothing because we
assume that all assignments to the frame pointer are for
non-local gotos and are being done at a time when they are valid
and do not disturb anything else. Some machines want to
eliminate a fake argument pointer (or even a fake frame pointer)
with either the real frame or the stack pointer. Assignments to
the hard frame pointer must not prevent this elimination. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->to_rtx == SET_DEST (x)
&& SET_DEST (x) != hard_frame_pointer_rtx)
{
/* If it is being incremented, adjust the offset. Otherwise,
this elimination can't be done. */
rtx src = SET_SRC (x);
if (GET_CODE (src) == PLUS
&& XEXP (src, 0) == SET_DEST (x)
&& GET_CODE (XEXP (src, 1)) == CONST_INT)
ep->offset -= INTVAL (XEXP (src, 1));
else
ep->can_eliminate = 0;
}
/* Now check to see we are assigning to a register that can be
eliminated. If so, it must be as part of a PARALLEL, since we
will not have been called if this is a single SET. So indicate
that we can no longer eliminate this reg. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == SET_DEST (x) && ep->can_eliminate)
ep->can_eliminate = 0;
}
/* Now avoid the loop below in this common case. */
{
rtx new0 = eliminate_regs (SET_DEST (x), 0, insn);
rtx new1 = eliminate_regs (SET_SRC (x), 0, insn);
/* If SET_DEST changed from a REG to a MEM and INSN is an insn,
write a CLOBBER insn. */
if (GET_CODE (SET_DEST (x)) == REG && GET_CODE (new0) == MEM
&& insn != 0 && GET_CODE (insn) != EXPR_LIST
&& GET_CODE (insn) != INSN_LIST)
emit_insn_after (gen_rtx_CLOBBER (VOIDmode, SET_DEST (x)), insn);
if (new0 != SET_DEST (x) || new1 != SET_SRC (x))
return gen_rtx_SET (VOIDmode, new0, new1);
}
return x;
case MEM:
/* This is only for the benefit of the debugging backends, which call
eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
removed after CSE. */
if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
/* Our only special processing is to pass the mode of the MEM to our
recursive call and copy the flags. While we are here, handle this
case more efficiently. */
new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn);
if (new != XEXP (x, 0))
{
new = gen_rtx_MEM (GET_MODE (x), new);
new->volatil = x->volatil;
new->unchanging = x->unchanging;
new->in_struct = x->in_struct;
return new;
}
else
return x;
default:
break;
}
/* Process each of our operands recursively. If any have changed, make a
copy of the rtx. */
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
{
if (*fmt == 'e')
{
new = eliminate_regs (XEXP (x, i), mem_mode, insn);
if (new != XEXP (x, i) && ! copied)
{
rtx new_x = rtx_alloc (code);
bcopy ((char *) x, (char *) new_x,
(sizeof (*new_x) - sizeof (new_x->fld)
+ sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
x = new_x;
copied = 1;
}
XEXP (x, i) = new;
}
else if (*fmt == 'E')
{
int copied_vec = 0;
for (j = 0; j < XVECLEN (x, i); j++)
{
new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
if (new != XVECEXP (x, i, j) && ! copied_vec)
{
rtvec new_v = gen_rtvec_vv (XVECLEN (x, i),
XVEC (x, i)->elem);
if (! copied)
{
rtx new_x = rtx_alloc (code);
bcopy ((char *) x, (char *) new_x,
(sizeof (*new_x) - sizeof (new_x->fld)
+ (sizeof (new_x->fld[0])
* GET_RTX_LENGTH (code))));
x = new_x;
copied = 1;
}
XVEC (x, i) = new_v;
copied_vec = 1;
}
XVECEXP (x, i, j) = new;
}
}
}
return x;
}
/* Scan INSN and eliminate all eliminable registers in it.
If REPLACE is nonzero, do the replacement destructively. Also
delete the insn as dead it if it is setting an eliminable register.
If REPLACE is zero, do all our allocations in reload_obstack.
If no eliminations were done and this insn doesn't require any elimination
processing (these are not identical conditions: it might be updating sp,
but not referencing fp; this needs to be seen during reload_as_needed so
that the offset between fp and sp can be taken into consideration), zero
is returned. Otherwise, 1 is returned. */
static int
eliminate_regs_in_insn (insn, replace)
rtx insn;
int replace;
{
rtx old_body = PATTERN (insn);
rtx old_set = single_set (insn);
rtx new_body;
int val = 0;
struct elim_table *ep;
if (! replace)
push_obstacks (&reload_obstack, &reload_obstack);
if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
&& REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
{
/* Check for setting an eliminable register. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
{
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
/* If this is setting the frame pointer register to the
hardware frame pointer register and this is an elimination
that will be done (tested above), this insn is really
adjusting the frame pointer downward to compensate for
the adjustment done before a nonlocal goto. */
if (ep->from == FRAME_POINTER_REGNUM
&& ep->to == HARD_FRAME_POINTER_REGNUM)
{
rtx src = SET_SRC (old_set);
int offset, ok = 0;
rtx prev_insn, prev_set;
if (src == ep->to_rtx)
offset = 0, ok = 1;
else if (GET_CODE (src) == PLUS
&& GET_CODE (XEXP (src, 0)) == CONST_INT
&& XEXP (src, 1) == ep->to_rtx)
offset = INTVAL (XEXP (src, 0)), ok = 1;
else if (GET_CODE (src) == PLUS
&& GET_CODE (XEXP (src, 1)) == CONST_INT
&& XEXP (src, 0) == ep->to_rtx)
offset = INTVAL (XEXP (src, 1)), ok = 1;
else if ((prev_insn = prev_nonnote_insn (insn)) != 0
&& (prev_set = single_set (prev_insn)) != 0
&& rtx_equal_p (SET_DEST (prev_set), src))
{
src = SET_SRC (prev_set);
if (src == ep->to_rtx)
offset = 0, ok = 1;
else if (GET_CODE (src) == PLUS
&& GET_CODE (XEXP (src, 0)) == CONST_INT
&& XEXP (src, 1) == ep->to_rtx)
offset = INTVAL (XEXP (src, 0)), ok = 1;
else if (GET_CODE (src) == PLUS
&& GET_CODE (XEXP (src, 1)) == CONST_INT
&& XEXP (src, 0) == ep->to_rtx)
offset = INTVAL (XEXP (src, 1)), ok = 1;
}
if (ok)
{
if (replace)
{
rtx src
= plus_constant (ep->to_rtx, offset - ep->offset);
/* First see if this insn remains valid when we
make the change. If not, keep the INSN_CODE
the same and let reload fit it up. */
validate_change (insn, &SET_SRC (old_set), src, 1);
validate_change (insn, &SET_DEST (old_set),
ep->to_rtx, 1);
if (! apply_change_group ())
{
SET_SRC (old_set) = src;
SET_DEST (old_set) = ep->to_rtx;
}
}
val = 1;
goto done;
}
}
#endif
/* In this case this insn isn't serving a useful purpose. We
will delete it in reload_as_needed once we know that this
elimination is, in fact, being done.
If REPLACE isn't set, we can't delete this insn, but needn't
process it since it won't be used unless something changes. */
if (replace)
delete_dead_insn (insn);
val = 1;
goto done;
}
/* Check for (set (reg) (plus (reg from) (offset))) where the offset
in the insn is the negative of the offset in FROM. Substitute
(set (reg) (reg to)) for the insn and change its code.
We have to do this here, rather than in eliminate_regs, so that we can
change the insn code. */
if (GET_CODE (SET_SRC (old_set)) == PLUS
&& GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
&& GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT)
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == XEXP (SET_SRC (old_set), 0)
&& ep->can_eliminate)
{
/* We must stop at the first elimination that will be used.
If this one would replace the PLUS with a REG, do it
now. Otherwise, quit the loop and let eliminate_regs
do its normal replacement. */
if (ep->offset == - INTVAL (XEXP (SET_SRC (old_set), 1)))
{
/* We assume here that we don't need a PARALLEL of
any CLOBBERs for this assignment. There's not
much we can do if we do need it. */
PATTERN (insn) = gen_rtx_SET (VOIDmode,
SET_DEST (old_set),
ep->to_rtx);
INSN_CODE (insn) = -1;
val = 1;
goto done;
}
break;
}
}
old_asm_operands_vec = 0;
/* Replace the body of this insn with a substituted form. If we changed
something, return non-zero.
If we are replacing a body that was a (set X (plus Y Z)), try to
re-recognize the insn. We do this in case we had a simple addition
but now can do this as a load-address. This saves an insn in this
common case. */
new_body = eliminate_regs (old_body, 0, replace ? insn : NULL_RTX);
if (new_body != old_body)
{
/* If we aren't replacing things permanently and we changed something,
make another copy to ensure that all the RTL is new. Otherwise
things can go wrong if find_reload swaps commutative operands
and one is inside RTL that has been copied while the other is not. */
/* Don't copy an asm_operands because (1) there's no need and (2)
copy_rtx can't do it properly when there are multiple outputs. */
if (! replace && asm_noperands (old_body) < 0)
new_body = copy_rtx (new_body);
/* If we had a move insn but now we don't, rerecognize it. This will
cause spurious re-recognition if the old move had a PARALLEL since
the new one still will, but we can't call single_set without
having put NEW_BODY into the insn and the re-recognition won't
hurt in this rare case. */
if (old_set != 0
&& ((GET_CODE (SET_SRC (old_set)) == REG
&& (GET_CODE (new_body) != SET
|| GET_CODE (SET_SRC (new_body)) != REG))
/* If this was a load from or store to memory, compare
the MEM in recog_operand to the one in the insn. If they
are not equal, then rerecognize the insn. */
|| (old_set != 0
&& ((GET_CODE (SET_SRC (old_set)) == MEM
&& SET_SRC (old_set) != recog_operand[1])
|| (GET_CODE (SET_DEST (old_set)) == MEM
&& SET_DEST (old_set) != recog_operand[0])))
/* If this was an add insn before, rerecognize. */
|| GET_CODE (SET_SRC (old_set)) == PLUS))
{
if (! validate_change (insn, &PATTERN (insn), new_body, 0))
/* If recognition fails, store the new body anyway.
It's normal to have recognition failures here
due to bizarre memory addresses; reloading will fix them. */
PATTERN (insn) = new_body;
}
else
PATTERN (insn) = new_body;
val = 1;
}
/* Loop through all elimination pairs. See if any have changed.
We also detect a cases where register elimination cannot be done,
namely, if a register would be both changed and referenced outside a MEM
in the resulting insn since such an insn is often undefined and, even if
not, we cannot know what meaning will be given to it. Note that it is
valid to have a register used in an address in an insn that changes it
(presumably with a pre- or post-increment or decrement).
If anything changes, return nonzero. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
ep->can_eliminate = 0;
ep->ref_outside_mem = 0;
if (ep->previous_offset != ep->offset)
val = 1;
}
done:
/* If we changed something, perform elimination in REG_NOTES. This is
needed even when REPLACE is zero because a REG_DEAD note might refer
to a register that we eliminate and could cause a different number
of spill registers to be needed in the final reload pass than in
the pre-passes. */
if (val && REG_NOTES (insn) != 0)
REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
if (! replace)
pop_obstacks ();
return val;
}
/* Loop through all elimination pairs.
Recalculate the number not at initial offset.
Compute the maximum offset (minimum offset if the stack does not
grow downward) for each elimination pair. */
static void
update_eliminable_offsets ()
{
struct elim_table *ep;
num_not_at_initial_offset = 0;
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
ep->previous_offset = ep->offset;
if (ep->can_eliminate && ep->offset != ep->initial_offset)
num_not_at_initial_offset++;
}
}
/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
replacement we currently believe is valid, mark it as not eliminable if X
modifies DEST in any way other than by adding a constant integer to it.
If DEST is the frame pointer, we do nothing because we assume that
all assignments to the hard frame pointer are nonlocal gotos and are being
done at a time when they are valid and do not disturb anything else.
Some machines want to eliminate a fake argument pointer with either the
frame or stack pointer. Assignments to the hard frame pointer must not
prevent this elimination.
Called via note_stores from reload before starting its passes to scan
the insns of the function. */
static void
mark_not_eliminable (dest, x)
rtx dest;
rtx x;
{
register unsigned int i;
/* A SUBREG of a hard register here is just changing its mode. We should
not see a SUBREG of an eliminable hard register, but check just in
case. */
if (GET_CODE (dest) == SUBREG)
dest = SUBREG_REG (dest);
if (dest == hard_frame_pointer_rtx)
return;
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
&& (GET_CODE (x) != SET
|| GET_CODE (SET_SRC (x)) != PLUS
|| XEXP (SET_SRC (x), 0) != dest
|| GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
{
reg_eliminate[i].can_eliminate_previous
= reg_eliminate[i].can_eliminate = 0;
num_eliminable--;
}
}
/* Verify that the initial elimination offsets did not change since the
last call to set_initial_elim_offsets. This is used to catch cases
where something illegal happened during reload_as_needed that could
cause incorrect code to be generated if we did not check for it. */
static void
verify_initial_elim_offsets ()
{
int t;
#ifdef ELIMINABLE_REGS
struct elim_table *ep;
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
if (t != ep->initial_offset)
abort ();
}
#else
INITIAL_FRAME_POINTER_OFFSET (t);
if (t != reg_eliminate[0].initial_offset)
abort ();
#endif
}
/* Reset all offsets on eliminable registers to their initial values. */
static void
set_initial_elim_offsets ()
{
struct elim_table *ep = reg_eliminate;
#ifdef ELIMINABLE_REGS
for (; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
ep->previous_offset = ep->offset = ep->initial_offset;
}
#else
INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
ep->previous_offset = ep->offset = ep->initial_offset;
#endif
num_not_at_initial_offset = 0;
}
/* Initialize the known label offsets.
Set a known offset for each forced label to be at the initial offset
of each elimination. We do this because we assume that all
computed jumps occur from a location where each elimination is
at its initial offset.
For all other labels, show that we don't know the offsets. */
static void
set_initial_label_offsets ()
{
rtx x;
bzero ((char *) &offsets_known_at[get_first_label_num ()], num_labels);
for (x = forced_labels; x; x = XEXP (x, 1))
if (XEXP (x, 0))
set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
}
/* Set all elimination offsets to the known values for the code label given
by INSN. */
static void
set_offsets_for_label (insn)
rtx insn;
{
int i;
int label_nr = CODE_LABEL_NUMBER (insn);
struct elim_table *ep;
num_not_at_initial_offset = 0;
for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
{
ep->offset = ep->previous_offset = offsets_at[label_nr][i];
if (ep->can_eliminate && ep->offset != ep->initial_offset)
num_not_at_initial_offset++;
}
}
/* See if anything that happened changes which eliminations are valid.
For example, on the Sparc, whether or not the frame pointer can
be eliminated can depend on what registers have been used. We need
not check some conditions again (such as flag_omit_frame_pointer)
since they can't have changed. */
static void
update_eliminables (pset)
HARD_REG_SET *pset;
{
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
int previous_frame_pointer_needed = frame_pointer_needed;
#endif
struct elim_table *ep;
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
#ifdef ELIMINABLE_REGS
|| ! CAN_ELIMINATE (ep->from, ep->to)
#endif
)
ep->can_eliminate = 0;
/* Look for the case where we have discovered that we can't replace
register A with register B and that means that we will now be
trying to replace register A with register C. This means we can
no longer replace register C with register B and we need to disable
such an elimination, if it exists. This occurs often with A == ap,
B == sp, and C == fp. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
struct elim_table *op;
register int new_to = -1;
if (! ep->can_eliminate && ep->can_eliminate_previous)
{
/* Find the current elimination for ep->from, if there is a
new one. */
for (op = reg_eliminate;
op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
if (op->from == ep->from && op->can_eliminate)
{
new_to = op->to;
break;
}
/* See if there is an elimination of NEW_TO -> EP->TO. If so,
disable it. */
for (op = reg_eliminate;
op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
if (op->from == new_to && op->to == ep->to)
op->can_eliminate = 0;
}
}
/* See if any registers that we thought we could eliminate the previous
time are no longer eliminable. If so, something has changed and we
must spill the register. Also, recompute the number of eliminable
registers and see if the frame pointer is needed; it is if there is
no elimination of the frame pointer that we can perform. */
frame_pointer_needed = 1;
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
&& ep->to != HARD_FRAME_POINTER_REGNUM)
frame_pointer_needed = 0;
if (! ep->can_eliminate && ep->can_eliminate_previous)
{
ep->can_eliminate_previous = 0;
SET_HARD_REG_BIT (*pset, ep->from);
num_eliminable--;
}
}
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
/* If we didn't need a frame pointer last time, but we do now, spill
the hard frame pointer. */
if (frame_pointer_needed && ! previous_frame_pointer_needed)
SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
#endif
}
/* Initialize the table of registers to eliminate. */
static void
init_elim_table ()
{
struct elim_table *ep;
#ifdef ELIMINABLE_REGS
struct elim_table_1 *ep1;
#endif
if (!reg_eliminate)
{
reg_eliminate = (struct elim_table *)
xmalloc(sizeof(struct elim_table) * NUM_ELIMINABLE_REGS);
bzero ((PTR) reg_eliminate,
sizeof(struct elim_table) * NUM_ELIMINABLE_REGS);
}
/* Does this function require a frame pointer? */
frame_pointer_needed = (! flag_omit_frame_pointer
#ifdef EXIT_IGNORE_STACK
/* ?? If EXIT_IGNORE_STACK is set, we will not save
and restore sp for alloca. So we can't eliminate
the frame pointer in that case. At some point,
we should improve this by emitting the
sp-adjusting insns for this case. */
|| (current_function_calls_alloca
&& EXIT_IGNORE_STACK)
#endif
|| FRAME_POINTER_REQUIRED);
num_eliminable = 0;
#ifdef ELIMINABLE_REGS
for (ep = reg_eliminate, ep1 = reg_eliminate_1;
ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
{
ep->from = ep1->from;
ep->to = ep1->to;
ep->can_eliminate = ep->can_eliminate_previous
= (CAN_ELIMINATE (ep->from, ep->to)
&& ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
}
#else
reg_eliminate[0].from = reg_eliminate_1[0].from;
reg_eliminate[0].to = reg_eliminate_1[0].to;
reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
= ! frame_pointer_needed;
#endif
/* Count the number of eliminable registers and build the FROM and TO
REG rtx's. Note that code in gen_rtx will cause, e.g.,
gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
We depend on this. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
num_eliminable += ep->can_eliminate;
ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
}
}
/* Kick all pseudos out of hard register REGNO.
If DUMPFILE is nonzero, log actions taken on that file.
If CANT_ELIMINATE is nonzero, it means that we are doing this spill
because we found we can't eliminate some register. In the case, no pseudos
are allowed to be in the register, even if they are only in a block that
doesn't require spill registers, unlike the case when we are spilling this
hard reg to produce another spill register.
Return nonzero if any pseudos needed to be kicked out. */
static void
spill_hard_reg (regno, dumpfile, cant_eliminate)
register int regno;
FILE *dumpfile;
int cant_eliminate;
{
register int i;
if (cant_eliminate)
{
SET_HARD_REG_BIT (bad_spill_regs_global, regno);
regs_ever_live[regno] = 1;
}
/* Spill every pseudo reg that was allocated to this reg
or to something that overlaps this reg. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_renumber[i] >= 0
&& reg_renumber[i] <= regno
&& (reg_renumber[i]
+ HARD_REGNO_NREGS (reg_renumber[i],
PSEUDO_REGNO_MODE (i))
> regno))
SET_REGNO_REG_SET (spilled_pseudos, i);
}
/* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
static void
ior_hard_reg_set (set1, set2)
HARD_REG_SET *set1, *set2;
{
IOR_HARD_REG_SET (*set1, *set2);
}
/* After find_reload_regs has been run for all insn that need reloads,
and/or spill_hard_regs was called, this function is used to actually
spill pseudo registers and try to reallocate them. It also sets up the
spill_regs array for use by choose_reload_regs. */
static int
finish_spills (global, dumpfile)
int global;
FILE *dumpfile;
{
struct insn_chain *chain;
int something_changed = 0;
int i;
/* Build the spill_regs array for the function. */
/* If there are some registers still to eliminate and one of the spill regs
wasn't ever used before, additional stack space may have to be
allocated to store this register. Thus, we may have changed the offset
between the stack and frame pointers, so mark that something has changed.
One might think that we need only set VAL to 1 if this is a call-used
register. However, the set of registers that must be saved by the
prologue is not identical to the call-used set. For example, the
register used by the call insn for the return PC is a call-used register,
but must be saved by the prologue. */
n_spills = 0;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (used_spill_regs, i))
{
spill_reg_order[i] = n_spills;
spill_regs[n_spills++] = i;
if (num_eliminable && ! regs_ever_live[i])
something_changed = 1;
regs_ever_live[i] = 1;
}
else
spill_reg_order[i] = -1;
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (REGNO_REG_SET_P (spilled_pseudos, i))
{
/* Record the current hard register the pseudo is allocated to in
pseudo_previous_regs so we avoid reallocating it to the same
hard reg in a later pass. */
if (reg_renumber[i] < 0)
abort ();
SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
/* Mark it as no longer having a hard register home. */
reg_renumber[i] = -1;
/* We will need to scan everything again. */
something_changed = 1;
}
/* Retry global register allocation if possible. */
if (global)
{
bzero ((char *) pseudo_forbidden_regs, max_regno * sizeof (HARD_REG_SET));
/* For every insn that needs reloads, set the registers used as spill
regs in pseudo_forbidden_regs for every pseudo live across the
insn. */
for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
{
EXECUTE_IF_SET_IN_REG_SET
(chain->live_before, FIRST_PSEUDO_REGISTER, i,
{
ior_hard_reg_set (pseudo_forbidden_regs + i,
&chain->used_spill_regs);
});
EXECUTE_IF_SET_IN_REG_SET
(chain->live_after, FIRST_PSEUDO_REGISTER, i,
{
ior_hard_reg_set (pseudo_forbidden_regs + i,
&chain->used_spill_regs);
});
}
/* Retry allocating the spilled pseudos. For each reg, merge the
various reg sets that indicate which hard regs can't be used,
and call retry_global_alloc.
We change spill_pseudos here to only contain pseudos that did not
get a new hard register. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_old_renumber[i] != reg_renumber[i])
{
HARD_REG_SET forbidden;
COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
retry_global_alloc (i, forbidden);
if (reg_renumber[i] >= 0)
CLEAR_REGNO_REG_SET (spilled_pseudos, i);
}
}
/* Fix up the register information in the insn chain.
This involves deleting those of the spilled pseudos which did not get
a new hard register home from the live_{before,after} sets. */
for (chain = reload_insn_chain; chain; chain = chain->next)
{
HARD_REG_SET used_by_pseudos;
HARD_REG_SET used_by_pseudos2;
AND_COMPL_REG_SET (chain->live_before, spilled_pseudos);
AND_COMPL_REG_SET (chain->live_after, spilled_pseudos);
/* Mark any unallocated hard regs as available for spills. That
makes inheritance work somewhat better. */
if (chain->need_reload)
{
REG_SET_TO_HARD_REG_SET (used_by_pseudos, chain->live_before);
REG_SET_TO_HARD_REG_SET (used_by_pseudos2, chain->live_after);
IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
/* Save the old value for the sanity test below. */
COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
compute_use_by_pseudos (&used_by_pseudos, chain->live_before);
compute_use_by_pseudos (&used_by_pseudos, chain->live_after);
COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
/* Make sure we only enlarge the set. */
GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
abort ();
ok:;
}
}
/* Let alter_reg modify the reg rtx's for the modified pseudos. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
{
int regno = reg_renumber[i];
if (reg_old_renumber[i] == regno)
continue;
alter_reg (i, reg_old_renumber[i]);
reg_old_renumber[i] = regno;
if (dumpfile)
{
if (regno == -1)
fprintf (dumpfile, " Register %d now on stack.\n\n", i);
else
fprintf (dumpfile, " Register %d now in %d.\n\n",
i, reg_renumber[i]);
}
}
return something_changed;
}
/* Find all paradoxical subregs within X and update reg_max_ref_width.
Also mark any hard registers used to store user variables as
forbidden from being used for spill registers. */
static void
scan_paradoxical_subregs (x)
register rtx x;
{
register int i;
register char *fmt;
register enum rtx_code code = GET_CODE (x);
switch (code)
{
case REG:
#if 0
if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
&& REG_USERVAR_P (x))
SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
#endif
return;
case CONST_INT:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
case CONST_DOUBLE:
case CC0:
case PC:
case USE:
case CLOBBER:
return;
case SUBREG:
if (GET_CODE (SUBREG_REG (x)) == REG
&& GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
reg_max_ref_width[REGNO (SUBREG_REG (x))]
= GET_MODE_SIZE (GET_MODE (x));
return;
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
scan_paradoxical_subregs (XEXP (x, i));
else if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (x, i) - 1; j >=0; j--)
scan_paradoxical_subregs (XVECEXP (x, i, j));
}
}
}
static int
hard_reg_use_compare (p1p, p2p)
const GENERIC_PTR p1p;
const GENERIC_PTR p2p;
{
struct hard_reg_n_uses *p1 = (struct hard_reg_n_uses *)p1p;
struct hard_reg_n_uses *p2 = (struct hard_reg_n_uses *)p2p;
int bad1 = TEST_HARD_REG_BIT (bad_spill_regs, p1->regno);
int bad2 = TEST_HARD_REG_BIT (bad_spill_regs, p2->regno);
if (bad1 && bad2)
return p1->regno - p2->regno;
if (bad1)
return 1;
if (bad2)
return -1;
if (p1->uses > p2->uses)
return 1;
if (p1->uses < p2->uses)
return -1;
/* If regs are equally good, sort by regno,
so that the results of qsort leave nothing to chance. */
return p1->regno - p2->regno;
}
/* Used for communication between order_regs_for_reload and count_pseudo.
Used to avoid counting one pseudo twice. */
static regset pseudos_counted;
/* Update the costs in N_USES, considering that pseudo REG is live. */
static void
count_pseudo (n_uses, reg)
struct hard_reg_n_uses *n_uses;
int reg;
{
int r = reg_renumber[reg];
int nregs;
if (REGNO_REG_SET_P (pseudos_counted, reg))
return;
SET_REGNO_REG_SET (pseudos_counted, reg);
if (r < 0)
abort ();
nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
while (nregs-- > 0)
n_uses[r++].uses += REG_N_REFS (reg);
}
/* Choose the order to consider regs for use as reload registers
based on how much trouble would be caused by spilling one.
Store them in order of decreasing preference in potential_reload_regs. */
static void
order_regs_for_reload (chain)
struct insn_chain *chain;
{
register int i;
register int o = 0;
struct hard_reg_n_uses hard_reg_n_uses[FIRST_PSEUDO_REGISTER];
pseudos_counted = ALLOCA_REG_SET ();
COPY_HARD_REG_SET (bad_spill_regs, bad_spill_regs_global);
/* Count number of uses of each hard reg by pseudo regs allocated to it
and then order them by decreasing use. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int j;
hard_reg_n_uses[i].regno = i;
hard_reg_n_uses[i].uses = 0;
/* Test the various reasons why we can't use a register for
spilling in this insn. */
if (fixed_regs[i]
|| REGNO_REG_SET_P (chain->live_before, i)
|| REGNO_REG_SET_P (chain->live_after, i))
{
SET_HARD_REG_BIT (bad_spill_regs, i);
continue;
}
/* Now find out which pseudos are allocated to it, and update
hard_reg_n_uses. */
CLEAR_REG_SET (pseudos_counted);
EXECUTE_IF_SET_IN_REG_SET
(chain->live_before, FIRST_PSEUDO_REGISTER, j,
{
count_pseudo (hard_reg_n_uses, j);
});
EXECUTE_IF_SET_IN_REG_SET
(chain->live_after, FIRST_PSEUDO_REGISTER, j,
{
count_pseudo (hard_reg_n_uses, j);
});
}
FREE_REG_SET (pseudos_counted);
/* Prefer registers not so far used, for use in temporary loading.
Among them, if REG_ALLOC_ORDER is defined, use that order.
Otherwise, prefer registers not preserved by calls. */
#ifdef REG_ALLOC_ORDER
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int regno = reg_alloc_order[i];
if (hard_reg_n_uses[regno].uses == 0
&& ! TEST_HARD_REG_BIT (bad_spill_regs, regno))
potential_reload_regs[o++] = regno;
}
#else
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (hard_reg_n_uses[i].uses == 0 && call_used_regs[i]
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i))
potential_reload_regs[o++] = i;
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (hard_reg_n_uses[i].uses == 0 && ! call_used_regs[i]
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i))
potential_reload_regs[o++] = i;
}
#endif
qsort (hard_reg_n_uses, FIRST_PSEUDO_REGISTER,
sizeof hard_reg_n_uses[0], hard_reg_use_compare);
/* Now add the regs that are already used,
preferring those used less often. The fixed and otherwise forbidden
registers will be at the end of this list. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (hard_reg_n_uses[i].uses != 0
&& ! TEST_HARD_REG_BIT (bad_spill_regs, hard_reg_n_uses[i].regno))
potential_reload_regs[o++] = hard_reg_n_uses[i].regno;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (bad_spill_regs, hard_reg_n_uses[i].regno))
potential_reload_regs[o++] = hard_reg_n_uses[i].regno;
}
/* Reload pseudo-registers into hard regs around each insn as needed.
Additional register load insns are output before the insn that needs it
and perhaps store insns after insns that modify the reloaded pseudo reg.
reg_last_reload_reg and reg_reloaded_contents keep track of
which registers are already available in reload registers.
We update these for the reloads that we perform,
as the insns are scanned. */
static void
reload_as_needed (live_known)
int live_known;
{
struct insn_chain *chain;
register int i;
rtx x;
bzero ((char *) spill_reg_rtx, sizeof spill_reg_rtx);
bzero ((char *) spill_reg_store, sizeof spill_reg_store);
reg_last_reload_reg = (rtx *) alloca (max_regno * sizeof (rtx));
bzero ((char *) reg_last_reload_reg, max_regno * sizeof (rtx));
reg_has_output_reload = (char *) alloca (max_regno);
CLEAR_HARD_REG_SET (reg_reloaded_valid);
set_initial_elim_offsets ();
for (chain = reload_insn_chain; chain; chain = chain->next)
{
rtx prev;
rtx insn = chain->insn;
rtx old_next = NEXT_INSN (insn);
/* If we pass a label, copy the offsets from the label information
into the current offsets of each elimination. */
if (GET_CODE (insn) == CODE_LABEL)
set_offsets_for_label (insn);
else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
rtx oldpat = PATTERN (insn);
/* If this is a USE and CLOBBER of a MEM, ensure that any
references to eliminable registers have been removed. */
if ((GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)
&& GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
XEXP (XEXP (PATTERN (insn), 0), 0)
= eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
GET_MODE (XEXP (PATTERN (insn), 0)),
NULL_RTX);
/* If we need to do register elimination processing, do so.
This might delete the insn, in which case we are done. */
if (num_eliminable && chain->need_elim)
{
eliminate_regs_in_insn (insn, 1);
if (GET_CODE (insn) == NOTE)
{
update_eliminable_offsets ();
continue;
}
}
/* If need_elim is nonzero but need_reload is zero, one might think
that we could simply set n_reloads to 0. However, find_reloads
could have done some manipulation of the insn (such as swapping
commutative operands), and these manipulations are lost during
the first pass for every insn that needs register elimination.
So the actions of find_reloads must be redone here. */
if (! chain->need_elim && ! chain->need_reload
&& ! chain->need_operand_change)
n_reloads = 0;
/* First find the pseudo regs that must be reloaded for this insn.
This info is returned in the tables reload_... (see reload.h).
Also modify the body of INSN by substituting RELOAD
rtx's for those pseudo regs. */
else
{
bzero (reg_has_output_reload, max_regno);
CLEAR_HARD_REG_SET (reg_is_output_reload);
find_reloads (insn, 1, spill_indirect_levels, live_known,
spill_reg_order);
}
if (num_eliminable && chain->need_elim)
update_eliminable_offsets ();
if (n_reloads > 0)
{
rtx next = NEXT_INSN (insn);
rtx p;
prev = PREV_INSN (insn);
/* Now compute which reload regs to reload them into. Perhaps
reusing reload regs from previous insns, or else output
load insns to reload them. Maybe output store insns too.
Record the choices of reload reg in reload_reg_rtx. */
choose_reload_regs (chain);
/* Merge any reloads that we didn't combine for fear of
increasing the number of spill registers needed but now
discover can be safely merged. */
if (SMALL_REGISTER_CLASSES)
merge_assigned_reloads (insn);
/* Generate the insns to reload operands into or out of
their reload regs. */
emit_reload_insns (chain);
/* Substitute the chosen reload regs from reload_reg_rtx
into the insn's body (or perhaps into the bodies of other
load and store insn that we just made for reloading
and that we moved the structure into). */
subst_reloads ();
/* If this was an ASM, make sure that all the reload insns
we have generated are valid. If not, give an error
and delete them. */
if (asm_noperands (PATTERN (insn)) >= 0)
for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
if (p != insn && GET_RTX_CLASS (GET_CODE (p)) == 'i'
&& (recog_memoized (p) < 0
|| (extract_insn (p), ! constrain_operands (1))))
{
error_for_asm (insn,
"`asm' operand requires impossible reload");
PUT_CODE (p, NOTE);
NOTE_SOURCE_FILE (p) = 0;
NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
}
}
/* Any previously reloaded spilled pseudo reg, stored in this insn,
is no longer validly lying around to save a future reload.
Note that this does not detect pseudos that were reloaded
for this insn in order to be stored in
(obeying register constraints). That is correct; such reload
registers ARE still valid. */
note_stores (oldpat, forget_old_reloads_1);
/* There may have been CLOBBER insns placed after INSN. So scan
between INSN and NEXT and use them to forget old reloads. */
for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
note_stores (PATTERN (x), forget_old_reloads_1);
#ifdef AUTO_INC_DEC
/* Likewise for regs altered by auto-increment in this insn.
REG_INC notes have been changed by reloading:
find_reloads_address_1 records substitutions for them,
which have been performed by subst_reloads above. */
for (i = n_reloads - 1; i >= 0; i--)
{
rtx in_reg = reload_in_reg[i];
if (in_reg)
{
enum rtx_code code = GET_CODE (in_reg);
/* PRE_INC / PRE_DEC will have the reload register ending up
with the same value as the stack slot, but that doesn't
hold true for POST_INC / POST_DEC. Either we have to
convert the memory access to a true POST_INC / POST_DEC,
or we can't use the reload register for inheritance. */
if ((code == POST_INC || code == POST_DEC)
&& TEST_HARD_REG_BIT (reg_reloaded_valid,
REGNO (reload_reg_rtx[i]))
/* Make sure it is the inc/dec pseudo, and not
some other (e.g. output operand) pseudo. */
&& (reg_reloaded_contents[REGNO (reload_reg_rtx[i])]
== REGNO (XEXP (in_reg, 0))))
{
rtx reload_reg = reload_reg_rtx[i];
enum machine_mode mode = GET_MODE (reload_reg);
int n = 0;
rtx p;
for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
{
/* We really want to ignore REG_INC notes here, so
use PATTERN (p) as argument to reg_set_p . */
if (reg_set_p (reload_reg, PATTERN (p)))
break;
n = count_occurrences (PATTERN (p), reload_reg);
if (! n)
continue;
if (n == 1)
n = validate_replace_rtx (reload_reg,
gen_rtx (code, mode,
reload_reg), p);
break;
}
if (n == 1)
REG_NOTES (p) = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
REG_NOTES (p));
else
forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX);
}
}
}
#if 0 /* ??? Is this code obsolete now? Need to check carefully. */
/* Likewise for regs altered by auto-increment in this insn.
But note that the reg-notes are not changed by reloading:
they still contain the pseudo-regs, not the spill regs. */
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
if (REG_NOTE_KIND (x) == REG_INC)
{
/* See if this pseudo reg was reloaded in this insn.
If so, its last-reload info is still valid
because it is based on this insn's reload. */
for (i = 0; i < n_reloads; i++)
if (reload_out[i] == XEXP (x, 0))
break;
if (i == n_reloads)
forget_old_reloads_1 (XEXP (x, 0), NULL_RTX);
}
#endif
#endif
}
/* A reload reg's contents are unknown after a label. */
if (GET_CODE (insn) == CODE_LABEL)
CLEAR_HARD_REG_SET (reg_reloaded_valid);
/* Don't assume a reload reg is still good after a call insn
if it is a call-used reg. */
else if (GET_CODE (insn) == CALL_INSN)
AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
/* In case registers overlap, allow certain insns to invalidate
particular hard registers. */
#ifdef INSN_CLOBBERS_REGNO_P
for (i = 0 ; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (reg_reloaded_valid, i)
&& INSN_CLOBBERS_REGNO_P (insn, i))
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i);
#endif
#ifdef USE_C_ALLOCA
alloca (0);
#endif
}
}
/* Discard all record of any value reloaded from X,
or reloaded in X from someplace else;
unless X is an output reload reg of the current insn.
X may be a hard reg (the reload reg)
or it may be a pseudo reg that was reloaded from. */
static void
forget_old_reloads_1 (x, ignored)
rtx x;
rtx ignored ATTRIBUTE_UNUSED;
{
register int regno;
int nr;
int offset = 0;
/* note_stores does give us subregs of hard regs. */
while (GET_CODE (x) == SUBREG)
{
offset += SUBREG_WORD (x);
x = SUBREG_REG (x);
}
if (GET_CODE (x) != REG)
return;
regno = REGNO (x) + offset;
if (regno >= FIRST_PSEUDO_REGISTER)
nr = 1;
else
{
int i;
nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
/* Storing into a spilled-reg invalidates its contents.
This can happen if a block-local pseudo is allocated to that reg
and it wasn't spilled because this block's total need is 0.
Then some insn might have an optional reload and use this reg. */
for (i = 0; i < nr; i++)
/* But don't do this if the reg actually serves as an output
reload reg in the current instruction. */
if (n_reloads == 0
|| ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
}
/* Since value of X has changed,
forget any value previously copied from it. */
while (nr-- > 0)
/* But don't forget a copy if this is the output reload
that establishes the copy's validity. */
if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
reg_last_reload_reg[regno + nr] = 0;
}
/* For each reload, the mode of the reload register. */
static enum machine_mode reload_mode[MAX_RELOADS];
/* For each reload, the largest number of registers it will require. */
static int reload_nregs[MAX_RELOADS];
/* Comparison function for qsort to decide which of two reloads
should be handled first. *P1 and *P2 are the reload numbers. */
static int
reload_reg_class_lower (r1p, r2p)
const GENERIC_PTR r1p;
const GENERIC_PTR r2p;
{
register int r1 = *(short *)r1p, r2 = *(short *)r2p;
register int t;
/* Consider required reloads before optional ones. */
t = reload_optional[r1] - reload_optional[r2];
if (t != 0)
return t;
/* Count all solitary classes before non-solitary ones. */
t = ((reg_class_size[(int) reload_reg_class[r2]] == 1)
- (reg_class_size[(int) reload_reg_class[r1]] == 1));
if (t != 0)
return t;
/* Aside from solitaires, consider all multi-reg groups first. */
t = reload_nregs[r2] - reload_nregs[r1];
if (t != 0)
return t;
/* Consider reloads in order of increasing reg-class number. */
t = (int) reload_reg_class[r1] - (int) reload_reg_class[r2];
if (t != 0)
return t;
/* If reloads are equally urgent, sort by reload number,
so that the results of qsort leave nothing to chance. */
return r1 - r2;
}
/* The following HARD_REG_SETs indicate when each hard register is
used for a reload of various parts of the current insn. */
/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
static HARD_REG_SET reload_reg_used;
/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
static HARD_REG_SET reload_reg_used_in_op_addr;
/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
static HARD_REG_SET reload_reg_used_in_op_addr_reload;
/* If reg is in use for a RELOAD_FOR_INSN reload. */
static HARD_REG_SET reload_reg_used_in_insn;
/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
static HARD_REG_SET reload_reg_used_in_other_addr;
/* If reg is in use as a reload reg for any sort of reload. */
static HARD_REG_SET reload_reg_used_at_all;
/* If reg is use as an inherited reload. We just mark the first register
in the group. */
static HARD_REG_SET reload_reg_used_for_inherit;
/* Records which hard regs are allocated to a pseudo during any point of the
current insn. */
static HARD_REG_SET reg_used_by_pseudo;
/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
TYPE. MODE is used to indicate how many consecutive regs are
actually used. */
static void
mark_reload_reg_in_use (regno, opnum, type, mode)
int regno;
int opnum;
enum reload_type type;
enum machine_mode mode;
{
int nregs = HARD_REGNO_NREGS (regno, mode);
int i;
for (i = regno; i < nregs + regno; i++)
{
switch (type)
{
case RELOAD_OTHER:
SET_HARD_REG_BIT (reload_reg_used, i);
break;
case RELOAD_FOR_INPUT_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
break;
case RELOAD_FOR_INPADDR_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
break;
case RELOAD_FOR_OPERAND_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
break;
case RELOAD_FOR_OPADDR_ADDR:
SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
break;
case RELOAD_FOR_OTHER_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
break;
case RELOAD_FOR_INPUT:
SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
break;
case RELOAD_FOR_OUTPUT:
SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
break;
case RELOAD_FOR_INSN:
SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
break;
}
SET_HARD_REG_BIT (reload_reg_used_at_all, i);
}
}
/* Similarly, but show REGNO is no longer in use for a reload. */
static void
clear_reload_reg_in_use (regno, opnum, type, mode)
int regno;
int opnum;
enum reload_type type;
enum machine_mode mode;
{
int nregs = HARD_REGNO_NREGS (regno, mode);
int start_regno, end_regno;
int i;
/* A complication is that for some reload types, inheritance might
allow multiple reloads of the same types to share a reload register.
We set check_opnum if we have to check only reloads with the same
operand number, and check_any if we have to check all reloads. */
int check_opnum = 0;
int check_any = 0;
HARD_REG_SET *used_in_set;
switch (type)
{
case RELOAD_OTHER:
used_in_set = &reload_reg_used;
break;
case RELOAD_FOR_INPUT_ADDRESS:
used_in_set = &reload_reg_used_in_input_addr[opnum];
break;
case RELOAD_FOR_INPADDR_ADDRESS:
check_opnum = 1;
used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
used_in_set = &reload_reg_used_in_output_addr[opnum];
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
check_opnum = 1;
used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
break;
case RELOAD_FOR_OPERAND_ADDRESS:
used_in_set = &reload_reg_used_in_op_addr;
break;
case RELOAD_FOR_OPADDR_ADDR:
check_any = 1;
used_in_set = &reload_reg_used_in_op_addr_reload;
break;
case RELOAD_FOR_OTHER_ADDRESS:
used_in_set = &reload_reg_used_in_other_addr;
check_any = 1;
break;
case RELOAD_FOR_INPUT:
used_in_set = &reload_reg_used_in_input[opnum];
break;
case RELOAD_FOR_OUTPUT:
used_in_set = &reload_reg_used_in_output[opnum];
break;
case RELOAD_FOR_INSN:
used_in_set = &reload_reg_used_in_insn;
break;
default:
abort ();
}
/* We resolve conflicts with remaining reloads of the same type by
excluding the intervals of of reload registers by them from the
interval of freed reload registers. Since we only keep track of
one set of interval bounds, we might have to exclude somewhat
more then what would be necessary if we used a HARD_REG_SET here.
But this should only happen very infrequently, so there should
be no reason to worry about it. */
start_regno = regno;
end_regno = regno + nregs;
if (check_opnum || check_any)
{
for (i = n_reloads - 1; i >= 0; i--)
{
if (reload_when_needed[i] == type
&& (check_any || reload_opnum[i] == opnum)
&& reload_reg_rtx[i])
{
int conflict_start = true_regnum (reload_reg_rtx[i]);
int conflict_end
= (conflict_start
+ HARD_REGNO_NREGS (conflict_start, reload_mode[i]));
/* If there is an overlap with the first to-be-freed register,
adjust the interval start. */
if (conflict_start <= start_regno && conflict_end > start_regno)
start_regno = conflict_end;
/* Otherwise, if there is a conflict with one of the other
to-be-freed registers, adjust the interval end. */
if (conflict_start > start_regno && conflict_start < end_regno)
end_regno = conflict_start;
}
}
}
for (i = start_regno; i < end_regno; i++)
CLEAR_HARD_REG_BIT (*used_in_set, i);
}
/* 1 if reg REGNO is free as a reload reg for a reload of the sort
specified by OPNUM and TYPE. */
static int
reload_reg_free_p (regno, opnum, type)
int regno;
int opnum;
enum reload_type type;
{
int i;
/* In use for a RELOAD_OTHER means it's not available for anything. */
if (TEST_HARD_REG_BIT (reload_reg_used, regno))
return 0;
switch (type)
{
case RELOAD_OTHER:
/* In use for anything means we can't use it for RELOAD_OTHER. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
return 0;
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return 1;
case RELOAD_FOR_INPUT:
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
return 0;
if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
return 0;
/* If it is used for some other input, can't use it. */
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
/* If it is used in a later operand's address, can't use it. */
for (i = opnum + 1; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
return 0;
return 1;
case RELOAD_FOR_INPUT_ADDRESS:
/* Can't use a register if it is used for an input address for this
operand or used as an input in an earlier one. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
return 0;
for (i = 0; i < opnum; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return 1;
case RELOAD_FOR_INPADDR_ADDRESS:
/* Can't use a register if it is used for an input address
for this operand or used as an input in an earlier
one. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
return 0;
for (i = 0; i < opnum; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return 1;
case RELOAD_FOR_OUTPUT_ADDRESS:
/* Can't use a register if it is used for an output address for this
operand or used as an output in this or a later operand. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
return 0;
for (i = opnum; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return 1;
case RELOAD_FOR_OUTADDR_ADDRESS:
/* Can't use a register if it is used for an output address
for this operand or used as an output in this or a
later operand. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
return 0;
for (i = opnum; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return 1;
case RELOAD_FOR_OPERAND_ADDRESS:
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
case RELOAD_FOR_OPADDR_ADDR:
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
case RELOAD_FOR_OUTPUT:
/* This cannot share a register with RELOAD_FOR_INSN reloads, other
outputs, or an operand address for this or an earlier output. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
return 0;
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
for (i = 0; i <= opnum; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
return 0;
return 1;
case RELOAD_FOR_INSN:
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
case RELOAD_FOR_OTHER_ADDRESS:
return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
}
abort ();
}
/* Return 1 if the value in reload reg REGNO, as used by a reload
needed for the part of the insn specified by OPNUM and TYPE,
is still available in REGNO at the end of the insn.
We can assume that the reload reg was already tested for availability
at the time it is needed, and we should not check this again,
in case the reg has already been marked in use. */
static int
reload_reg_reaches_end_p (regno, opnum, type)
int regno;
int opnum;
enum reload_type type;
{
int i;
switch (type)
{
case RELOAD_OTHER:
/* Since a RELOAD_OTHER reload claims the reg for the entire insn,
its value must reach the end. */
return 1;
/* If this use is for part of the insn,
its value reaches if no subsequent part uses the same register.
Just like the above function, don't try to do this with lots
of fallthroughs. */
case RELOAD_FOR_OTHER_ADDRESS:
/* Here we check for everything else, since these don't conflict
with anything else and everything comes later. */
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used, regno));
case RELOAD_FOR_INPUT_ADDRESS:
case RELOAD_FOR_INPADDR_ADDRESS:
/* Similar, except that we check only for this and subsequent inputs
and the address of only subsequent inputs and we do not need
to check for RELOAD_OTHER objects since they are known not to
conflict. */
for (i = opnum; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
for (i = opnum + 1; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
return 0;
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
return 0;
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
case RELOAD_FOR_INPUT:
/* Similar to input address, except we start at the next operand for
both input and input address and we do not check for
RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
would conflict. */
for (i = opnum + 1; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
/* ... fall through ... */
case RELOAD_FOR_OPERAND_ADDRESS:
/* Check outputs and their addresses. */
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return 1;
case RELOAD_FOR_OPADDR_ADDR:
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
&& !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
case RELOAD_FOR_INSN:
/* These conflict with other outputs with RELOAD_OTHER. So
we need only check for output addresses. */
opnum = -1;
/* ... fall through ... */
case RELOAD_FOR_OUTPUT:
case RELOAD_FOR_OUTPUT_ADDRESS:
case RELOAD_FOR_OUTADDR_ADDRESS:
/* We already know these can't conflict with a later output. So the
only thing to check are later output addresses. */
for (i = opnum + 1; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
return 0;
return 1;
}
abort ();
}
/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
Return 0 otherwise.
This function uses the same algorithm as reload_reg_free_p above. */
int
reloads_conflict (r1, r2)
int r1, r2;
{
enum reload_type r1_type = reload_when_needed[r1];
enum reload_type r2_type = reload_when_needed[r2];
int r1_opnum = reload_opnum[r1];
int r2_opnum = reload_opnum[r2];
/* RELOAD_OTHER conflicts with everything. */
if (r2_type == RELOAD_OTHER)
return 1;
/* Otherwise, check conflicts differently for each type. */
switch (r1_type)
{
case RELOAD_FOR_INPUT:
return (r2_type == RELOAD_FOR_INSN
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS
|| r2_type == RELOAD_FOR_OPADDR_ADDR
|| r2_type == RELOAD_FOR_INPUT
|| ((r2_type == RELOAD_FOR_INPUT_ADDRESS
|| r2_type == RELOAD_FOR_INPADDR_ADDRESS)
&& r2_opnum > r1_opnum));
case RELOAD_FOR_INPUT_ADDRESS:
return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
|| (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
case RELOAD_FOR_INPADDR_ADDRESS:
return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
|| (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
case RELOAD_FOR_OUTPUT_ADDRESS:
return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
|| (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
case RELOAD_FOR_OUTADDR_ADDRESS:
return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
|| (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
case RELOAD_FOR_OPERAND_ADDRESS:
return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS);
case RELOAD_FOR_OPADDR_ADDR:
return (r2_type == RELOAD_FOR_INPUT
|| r2_type == RELOAD_FOR_OPADDR_ADDR);
case RELOAD_FOR_OUTPUT:
return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
|| ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
|| r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
&& r2_opnum >= r1_opnum));
case RELOAD_FOR_INSN:
return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
|| r2_type == RELOAD_FOR_INSN
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS);
case RELOAD_FOR_OTHER_ADDRESS:
return r2_type == RELOAD_FOR_OTHER_ADDRESS;
case RELOAD_OTHER:
return 1;
default:
abort ();
}
}
/* Vector of reload-numbers showing the order in which the reloads should
be processed. */
short reload_order[MAX_RELOADS];
/* Indexed by reload number, 1 if incoming value
inherited from previous insns. */
char reload_inherited[MAX_RELOADS];
/* For an inherited reload, this is the insn the reload was inherited from,
if we know it. Otherwise, this is 0. */
rtx reload_inheritance_insn[MAX_RELOADS];
/* If non-zero, this is a place to get the value of the reload,
rather than using reload_in. */
rtx reload_override_in[MAX_RELOADS];
/* For each reload, the hard register number of the register used,
or -1 if we did not need a register for this reload. */
int reload_spill_index[MAX_RELOADS];
/* Return 1 if the value in reload reg REGNO, as used by a reload
needed for the part of the insn specified by OPNUM and TYPE,
may be used to load VALUE into it.
Other read-only reloads with the same value do not conflict
unless OUT is non-zero and these other reloads have to live while
output reloads live.
If OUT is CONST0_RTX, this is a special case: it means that the
test should not be for using register REGNO as reload register, but
for copying from register REGNO into the reload register.
RELOADNUM is the number of the reload we want to load this value for;
a reload does not conflict with itself.
When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
reloads that load an address for the very reload we are considering.
The caller has to make sure that there is no conflict with the return
register. */
static int
reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
ignore_address_reloads)
int regno;
int opnum;
enum reload_type type;
rtx value, out;
int reloadnum;
{
int time1;
int i;
int copy = 0;
if (out == const0_rtx)
{
copy = 1;
out = NULL_RTX;
}
/* We use some pseudo 'time' value to check if the lifetimes of the
new register use would overlap with the one of a previous reload
that is not read-only or uses a different value.
The 'time' used doesn't have to be linear in any shape or form, just
monotonic.
Some reload types use different 'buckets' for each operand.
So there are MAX_RECOG_OPERANDS different time values for each
such reload type.
We compute TIME1 as the time when the register for the prospective
new reload ceases to be live, and TIME2 for each existing
reload as the time when that the reload register of that reload
becomes live.
Where there is little to be gained by exact lifetime calculations,
we just make conservative assumptions, i.e. a longer lifetime;
this is done in the 'default:' cases. */
switch (type)
{
case RELOAD_FOR_OTHER_ADDRESS:
time1 = 0;
break;
case RELOAD_OTHER:
time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
break;
/* For each input, we might have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
respectively, to the time values for these, we get distinct time
values. To get distinct time values for each operand, we have to
multiply opnum by at least three. We round that up to four because
multiply by four is often cheaper. */
case RELOAD_FOR_INPADDR_ADDRESS:
time1 = opnum * 4 + 2;
break;
case RELOAD_FOR_INPUT_ADDRESS:
time1 = opnum * 4 + 3;
break;
case RELOAD_FOR_INPUT:
/* All RELOAD_FOR_INPUT reloads remain live till the instruction
executes (inclusive). */
time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
break;
case RELOAD_FOR_OPADDR_ADDR:
/* opnum * 4 + 4
<= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
time1 = MAX_RECOG_OPERANDS * 4 + 1;
break;
case RELOAD_FOR_OPERAND_ADDRESS:
/* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
is executed. */
time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
break;
default:
time1 = MAX_RECOG_OPERANDS * 5 + 5;
}
for (i = 0; i < n_reloads; i++)
{
rtx reg = reload_reg_rtx[i];
if (reg && GET_CODE (reg) == REG
&& ((unsigned) regno - true_regnum (reg)
<= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
&& i != reloadnum)
{
if (! reload_in[i] || ! rtx_equal_p (reload_in[i], value)
|| reload_out[i] || out)
{
int time2;
switch (reload_when_needed[i])
{
case RELOAD_FOR_OTHER_ADDRESS:
time2 = 0;
break;
case RELOAD_FOR_INPADDR_ADDRESS:
/* find_reloads makes sure that a
RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
by at most one - the first -
RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
address reload is inherited, the address address reload
goes away, so we can ignore this conflict. */
if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
&& ignore_address_reloads
/* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
Then the address address is still needed to store
back the new address. */
&& ! reload_out[reloadnum])
continue;
/* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
reloads go away. */
if (type == RELOAD_FOR_INPUT && opnum == reload_opnum[i]
&& ignore_address_reloads
/* Unless we are reloading an auto_inc expression. */
&& ! reload_out[reloadnum])
continue;
time2 = reload_opnum[i] * 4 + 2;
break;
case RELOAD_FOR_INPUT_ADDRESS:
if (type == RELOAD_FOR_INPUT && opnum == reload_opnum[i]
&& ignore_address_reloads
&& ! reload_out[reloadnum])
continue;
time2 = reload_opnum[i] * 4 + 3;
break;
case RELOAD_FOR_INPUT:
time2 = reload_opnum[i] * 4 + 4;
break;
/* reload_opnum[i] * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
== MAX_RECOG_OPERAND * 4 */
case RELOAD_FOR_OPADDR_ADDR:
if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
&& ignore_address_reloads
&& ! reload_out[reloadnum])
continue;
time2 = MAX_RECOG_OPERANDS * 4 + 1;
break;
case RELOAD_FOR_OPERAND_ADDRESS:
time2 = MAX_RECOG_OPERANDS * 4 + 2;
break;
case RELOAD_FOR_INSN:
time2 = MAX_RECOG_OPERANDS * 4 + 3;
break;
case RELOAD_FOR_OUTPUT:
/* All RELOAD_FOR_OUTPUT reloads become live just after the
instruction is executed. */
time2 = MAX_RECOG_OPERANDS * 4 + 4;
break;
/* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
the RELOAD_FOR_OUTPUT reloads, so assign it the same time
value. */
case RELOAD_FOR_OUTADDR_ADDRESS:
if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
&& ignore_address_reloads
&& ! reload_out[reloadnum])
continue;
time2 = MAX_RECOG_OPERANDS * 4 + 4 + reload_opnum[i];
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
time2 = MAX_RECOG_OPERANDS * 4 + 5 + reload_opnum[i];
break;
case RELOAD_OTHER:
/* If there is no conflict in the input part, handle this
like an output reload. */
if (! reload_in[i] || rtx_equal_p (reload_in[i], value))
{
time2 = MAX_RECOG_OPERANDS * 4 + 4;
break;
}
time2 = 1;
/* RELOAD_OTHER might be live beyond instruction execution,
but this is not obvious when we set time2 = 1. So check
here if there might be a problem with the new reload
clobbering the register used by the RELOAD_OTHER. */
if (out)
return 0;
break;
default:
return 0;
}
if ((time1 >= time2
&& (! reload_in[i] || reload_out[i]
|| ! rtx_equal_p (reload_in[i], value)))
|| (out && reload_out_reg[reloadnum]
&& time2 >= MAX_RECOG_OPERANDS * 4 + 3))
return 0;
}
}
}
return 1;
}
/* Find a spill register to use as a reload register for reload R.
LAST_RELOAD is non-zero if this is the last reload for the insn being
processed.
Set reload_reg_rtx[R] to the register allocated.
If NOERROR is nonzero, we return 1 if successful,
or 0 if we couldn't find a spill reg and we didn't change anything. */
static int
allocate_reload_reg (chain, r, last_reload, noerror)
struct insn_chain *chain;
int r;
int last_reload;
int noerror;
{
rtx insn = chain->insn;
int i, pass, count, regno;
rtx new;
/* If we put this reload ahead, thinking it is a group,
then insist on finding a group. Otherwise we can grab a
reg that some other reload needs.
(That can happen when we have a 68000 DATA_OR_FP_REG
which is a group of data regs or one fp reg.)
We need not be so restrictive if there are no more reloads
for this insn.
??? Really it would be nicer to have smarter handling
for that kind of reg class, where a problem like this is normal.
Perhaps those classes should be avoided for reloading
by use of more alternatives. */
int force_group = reload_nregs[r] > 1 && ! last_reload;
/* If we want a single register and haven't yet found one,
take any reg in the right class and not in use.
If we want a consecutive group, here is where we look for it.
We use two passes so we can first look for reload regs to
reuse, which are already in use for other reloads in this insn,
and only then use additional registers.
I think that maximizing reuse is needed to make sure we don't
run out of reload regs. Suppose we have three reloads, and
reloads A and B can share regs. These need two regs.
Suppose A and B are given different regs.
That leaves none for C. */
for (pass = 0; pass < 2; pass++)
{
/* I is the index in spill_regs.
We advance it round-robin between insns to use all spill regs
equally, so that inherited reloads have a chance
of leapfrogging each other. Don't do this, however, when we have
group needs and failure would be fatal; if we only have a relatively
small number of spill registers, and more than one of them has
group needs, then by starting in the middle, we may end up
allocating the first one in such a way that we are not left with
sufficient groups to handle the rest. */
if (noerror || ! force_group)
i = last_spill_reg;
else
i = -1;
for (count = 0; count < n_spills; count++)
{
int class = (int) reload_reg_class[r];
int regnum;
i++;
if (i >= n_spills)
i -= n_spills;
regnum = spill_regs[i];
if ((reload_reg_free_p (regnum, reload_opnum[r],
reload_when_needed[r])
|| (reload_in[r]
/* We check reload_reg_used to make sure we
don't clobber the return register. */
&& ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
&& reload_reg_free_for_value_p (regnum,
reload_opnum[r],
reload_when_needed[r],
reload_in[r],
reload_out[r], r, 1)))
&& TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
&& HARD_REGNO_MODE_OK (regnum, reload_mode[r])
/* Look first for regs to share, then for unshared. But
don't share regs used for inherited reloads; they are
the ones we want to preserve. */
&& (pass
|| (TEST_HARD_REG_BIT (reload_reg_used_at_all,
regnum)
&& ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
regnum))))
{
int nr = HARD_REGNO_NREGS (regnum, reload_mode[r]);
/* Avoid the problem where spilling a GENERAL_OR_FP_REG
(on 68000) got us two FP regs. If NR is 1,
we would reject both of them. */
if (force_group)
nr = CLASS_MAX_NREGS (reload_reg_class[r], reload_mode[r]);
/* If we need only one reg, we have already won. */
if (nr == 1)
{
/* But reject a single reg if we demand a group. */
if (force_group)
continue;
break;
}
/* Otherwise check that as many consecutive regs as we need
are available here.
Also, don't use for a group registers that are
needed for nongroups. */
if (! TEST_HARD_REG_BIT (chain->counted_for_nongroups, regnum))
while (nr > 1)
{
regno = regnum + nr - 1;
if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
&& spill_reg_order[regno] >= 0
&& reload_reg_free_p (regno, reload_opnum[r],
reload_when_needed[r])
&& ! TEST_HARD_REG_BIT (chain->counted_for_nongroups,
regno)))
break;
nr--;
}
if (nr == 1)
break;
}
}
/* If we found something on pass 1, omit pass 2. */
if (count < n_spills)
break;
}
/* We should have found a spill register by now. */
if (count == n_spills)
{
if (noerror)
return 0;
goto failure;
}
/* I is the index in SPILL_REG_RTX of the reload register we are to
allocate. Get an rtx for it and find its register number. */
new = spill_reg_rtx[i];
if (new == 0 || GET_MODE (new) != reload_mode[r])
spill_reg_rtx[i] = new
= gen_rtx_REG (reload_mode[r], spill_regs[i]);
regno = true_regnum (new);
/* Detect when the reload reg can't hold the reload mode.
This used to be one `if', but Sequent compiler can't handle that. */
if (HARD_REGNO_MODE_OK (regno, reload_mode[r]))
{
enum machine_mode test_mode = VOIDmode;
if (reload_in[r])
test_mode = GET_MODE (reload_in[r]);
/* If reload_in[r] has VOIDmode, it means we will load it
in whatever mode the reload reg has: to wit, reload_mode[r].
We have already tested that for validity. */
/* Aside from that, we need to test that the expressions
to reload from or into have modes which are valid for this
reload register. Otherwise the reload insns would be invalid. */
if (! (reload_in[r] != 0 && test_mode != VOIDmode
&& ! HARD_REGNO_MODE_OK (regno, test_mode)))
if (! (reload_out[r] != 0
&& ! HARD_REGNO_MODE_OK (regno, GET_MODE (reload_out[r]))))
{
/* The reg is OK. */
last_spill_reg = i;
/* Mark as in use for this insn the reload regs we use
for this. */
mark_reload_reg_in_use (spill_regs[i], reload_opnum[r],
reload_when_needed[r], reload_mode[r]);
reload_reg_rtx[r] = new;
reload_spill_index[r] = spill_regs[i];
return 1;
}
}
/* The reg is not OK. */
if (noerror)
return 0;
failure:
if (asm_noperands (PATTERN (insn)) < 0)
/* It's the compiler's fault. */
fatal_insn ("Could not find a spill register", insn);
/* It's the user's fault; the operand's mode and constraint
don't match. Disable this reload so we don't crash in final. */
error_for_asm (insn,
"`asm' operand constraint incompatible with operand size");
reload_in[r] = 0;
reload_out[r] = 0;
reload_reg_rtx[r] = 0;
reload_optional[r] = 1;
reload_secondary_p[r] = 1;
return 1;
}
/* Assign hard reg targets for the pseudo-registers we must reload
into hard regs for this insn.
Also output the instructions to copy them in and out of the hard regs.
For machines with register classes, we are responsible for
finding a reload reg in the proper class. */
static void
choose_reload_regs (chain)
struct insn_chain *chain;
{
rtx insn = chain->insn;
register int i, j;
int max_group_size = 1;
enum reg_class group_class = NO_REGS;
int inheritance;
int pass;
rtx save_reload_reg_rtx[MAX_RELOADS];
char save_reload_inherited[MAX_RELOADS];
rtx save_reload_inheritance_insn[MAX_RELOADS];
rtx save_reload_override_in[MAX_RELOADS];
int save_reload_spill_index[MAX_RELOADS];
HARD_REG_SET save_reload_reg_used;
HARD_REG_SET save_reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
HARD_REG_SET save_reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
HARD_REG_SET save_reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
HARD_REG_SET save_reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
HARD_REG_SET save_reload_reg_used_in_input[MAX_RECOG_OPERANDS];
HARD_REG_SET save_reload_reg_used_in_output[MAX_RECOG_OPERANDS];
HARD_REG_SET save_reload_reg_used_in_op_addr;
HARD_REG_SET save_reload_reg_used_in_op_addr_reload;
HARD_REG_SET save_reload_reg_used_in_insn;
HARD_REG_SET save_reload_reg_used_in_other_addr;
HARD_REG_SET save_reload_reg_used_at_all;
bzero (reload_inherited, MAX_RELOADS);
bzero ((char *) reload_inheritance_insn, MAX_RELOADS * sizeof (rtx));
bzero ((char *) reload_override_in, MAX_RELOADS * sizeof (rtx));
CLEAR_HARD_REG_SET (reload_reg_used);
CLEAR_HARD_REG_SET (reload_reg_used_at_all);
CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
CLEAR_HARD_REG_SET (reg_used_by_pseudo);
compute_use_by_pseudos (®_used_by_pseudo, chain->live_before);
compute_use_by_pseudos (®_used_by_pseudo, chain->live_after);
for (i = 0; i < reload_n_operands; i++)
{
CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
}
IOR_COMPL_HARD_REG_SET (reload_reg_used, chain->used_spill_regs);
#if 0 /* Not needed, now that we can always retry without inheritance. */
/* See if we have more mandatory reloads than spill regs.
If so, then we cannot risk optimizations that could prevent
reloads from sharing one spill register.
Since we will try finding a better register than reload_reg_rtx
unless it is equal to reload_in or reload_out, count such reloads. */
{
int tem = 0;
for (j = 0; j < n_reloads; j++)
if (! reload_optional[j]
&& (reload_in[j] != 0 || reload_out[j] != 0 || reload_secondary_p[j])
&& (reload_reg_rtx[j] == 0
|| (! rtx_equal_p (reload_reg_rtx[j], reload_in[j])
&& ! rtx_equal_p (reload_reg_rtx[j], reload_out[j]))))
tem++;
if (tem > n_spills)
must_reuse = 1;
}
#endif
/* In order to be certain of getting the registers we need,
we must sort the reloads into order of increasing register class.
Then our grabbing of reload registers will parallel the process
that provided the reload registers.
Also note whether any of the reloads wants a consecutive group of regs.
If so, record the maximum size of the group desired and what
register class contains all the groups needed by this insn. */
for (j = 0; j < n_reloads; j++)
{
reload_order[j] = j;
reload_spill_index[j] = -1;
reload_mode[j]
= (reload_inmode[j] == VOIDmode
|| (GET_MODE_SIZE (reload_outmode[j])
> GET_MODE_SIZE (reload_inmode[j])))
? reload_outmode[j] : reload_inmode[j];
reload_nregs[j] = CLASS_MAX_NREGS (reload_reg_class[j], reload_mode[j]);
if (reload_nregs[j] > 1)
{
max_group_size = MAX (reload_nregs[j], max_group_size);
group_class = reg_class_superunion[(int)reload_reg_class[j]][(int)group_class];
}
/* If we have already decided to use a certain register,
don't use it in another way. */
if (reload_reg_rtx[j])
mark_reload_reg_in_use (REGNO (reload_reg_rtx[j]), reload_opnum[j],
reload_when_needed[j], reload_mode[j]);
}
if (n_reloads > 1)
qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
bcopy ((char *) reload_reg_rtx, (char *) save_reload_reg_rtx,
sizeof reload_reg_rtx);
bcopy (reload_inherited, save_reload_inherited, sizeof reload_inherited);
bcopy ((char *) reload_inheritance_insn,
(char *) save_reload_inheritance_insn,
sizeof reload_inheritance_insn);
bcopy ((char *) reload_override_in, (char *) save_reload_override_in,
sizeof reload_override_in);
bcopy ((char *) reload_spill_index, (char *) save_reload_spill_index,
sizeof reload_spill_index);
COPY_HARD_REG_SET (save_reload_reg_used, reload_reg_used);
COPY_HARD_REG_SET (save_reload_reg_used_at_all, reload_reg_used_at_all);
COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr,
reload_reg_used_in_op_addr);
COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr_reload,
reload_reg_used_in_op_addr_reload);
COPY_HARD_REG_SET (save_reload_reg_used_in_insn,
reload_reg_used_in_insn);
COPY_HARD_REG_SET (save_reload_reg_used_in_other_addr,
reload_reg_used_in_other_addr);
for (i = 0; i < reload_n_operands; i++)
{
COPY_HARD_REG_SET (save_reload_reg_used_in_output[i],
reload_reg_used_in_output[i]);
COPY_HARD_REG_SET (save_reload_reg_used_in_input[i],
reload_reg_used_in_input[i]);
COPY_HARD_REG_SET (save_reload_reg_used_in_input_addr[i],
reload_reg_used_in_input_addr[i]);
COPY_HARD_REG_SET (save_reload_reg_used_in_inpaddr_addr[i],
reload_reg_used_in_inpaddr_addr[i]);
COPY_HARD_REG_SET (save_reload_reg_used_in_output_addr[i],
reload_reg_used_in_output_addr[i]);
COPY_HARD_REG_SET (save_reload_reg_used_in_outaddr_addr[i],
reload_reg_used_in_outaddr_addr[i]);
}
/* If -O, try first with inheritance, then turning it off.
If not -O, don't do inheritance.
Using inheritance when not optimizing leads to paradoxes
with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
because one side of the comparison might be inherited. */
for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
{
/* Process the reloads in order of preference just found.
Beyond this point, subregs can be found in reload_reg_rtx.
This used to look for an existing reloaded home for all
of the reloads, and only then perform any new reloads.
But that could lose if the reloads were done out of reg-class order
because a later reload with a looser constraint might have an old
home in a register needed by an earlier reload with a tighter constraint.
To solve this, we make two passes over the reloads, in the order
described above. In the first pass we try to inherit a reload
from a previous insn. If there is a later reload that needs a
class that is a proper subset of the class being processed, we must
also allocate a spill register during the first pass.
Then make a second pass over the reloads to allocate any reloads
that haven't been given registers yet. */
CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
for (j = 0; j < n_reloads; j++)
{
register int r = reload_order[j];
/* Ignore reloads that got marked inoperative. */
if (reload_out[r] == 0 && reload_in[r] == 0
&& ! reload_secondary_p[r])
continue;
/* If find_reloads chose to use reload_in or reload_out as a reload
register, we don't need to chose one. Otherwise, try even if it
found one since we might save an insn if we find the value lying
around.
Try also when reload_in is a pseudo without a hard reg. */
if (reload_in[r] != 0 && reload_reg_rtx[r] != 0
&& (rtx_equal_p (reload_in[r], reload_reg_rtx[r])
|| (rtx_equal_p (reload_out[r], reload_reg_rtx[r])
&& GET_CODE (reload_in[r]) != MEM
&& true_regnum (reload_in[r]) < FIRST_PSEUDO_REGISTER)))
continue;
#if 0 /* No longer needed for correct operation.
It might give better code, or might not; worth an experiment? */
/* If this is an optional reload, we can't inherit from earlier insns
until we are sure that any non-optional reloads have been allocated.
The following code takes advantage of the fact that optional reloads
are at the end of reload_order. */
if (reload_optional[r] != 0)
for (i = 0; i < j; i++)
if ((reload_out[reload_order[i]] != 0
|| reload_in[reload_order[i]] != 0
|| reload_secondary_p[reload_order[i]])
&& ! reload_optional[reload_order[i]]
&& reload_reg_rtx[reload_order[i]] == 0)
allocate_reload_reg (chain, reload_order[i], 0, inheritance);
#endif
/* First see if this pseudo is already available as reloaded
for a previous insn. We cannot try to inherit for reloads
that are smaller than the maximum number of registers needed
for groups unless the register we would allocate cannot be used
for the groups.
We could check here to see if this is a secondary reload for
an object that is already in a register of the desired class.
This would avoid the need for the secondary reload register.
But this is complex because we can't easily determine what
objects might want to be loaded via this reload. So let a
register be allocated here. In `emit_reload_insns' we suppress
one of the loads in the case described above. */
if (inheritance)
{
int word = 0;
register int regno = -1;
enum machine_mode mode;
if (reload_in[r] == 0)
;
else if (GET_CODE (reload_in[r]) == REG)
{
regno = REGNO (reload_in[r]);
mode = GET_MODE (reload_in[r]);
}
else if (GET_CODE (reload_in_reg[r]) == REG)
{
regno = REGNO (reload_in_reg[r]);
mode = GET_MODE (reload_in_reg[r]);
}
else if (GET_CODE (reload_in_reg[r]) == SUBREG
&& GET_CODE (SUBREG_REG (reload_in_reg[r])) == REG)
{
word = SUBREG_WORD (reload_in_reg[r]);
regno = REGNO (SUBREG_REG (reload_in_reg[r]));
if (regno < FIRST_PSEUDO_REGISTER)
regno += word;
mode = GET_MODE (reload_in_reg[r]);
}
#ifdef AUTO_INC_DEC
else if ((GET_CODE (reload_in_reg[r]) == PRE_INC
|| GET_CODE (reload_in_reg[r]) == PRE_DEC
|| GET_CODE (reload_in_reg[r]) == POST_INC
|| GET_CODE (reload_in_reg[r]) == POST_DEC)
&& GET_CODE (XEXP (reload_in_reg[r], 0)) == REG)
{
regno = REGNO (XEXP (reload_in_reg[r], 0));
mode = GET_MODE (XEXP (reload_in_reg[r], 0));
reload_out[r] = reload_in[r];
}
#endif
#if 0
/* This won't work, since REGNO can be a pseudo reg number.
Also, it takes much more hair to keep track of all the things
that can invalidate an inherited reload of part of a pseudoreg. */
else if (GET_CODE (reload_in[r]) == SUBREG
&& GET_CODE (SUBREG_REG (reload_in[r])) == REG)
regno = REGNO (SUBREG_REG (reload_in[r])) + SUBREG_WORD (reload_in[r]);
#endif
if (regno >= 0 && reg_last_reload_reg[regno] != 0)
{
enum reg_class class = reload_reg_class[r], last_class;
rtx last_reg = reg_last_reload_reg[regno];
i = REGNO (last_reg) + word;
last_class = REGNO_REG_CLASS (i);
if ((GET_MODE_SIZE (GET_MODE (last_reg))
>= GET_MODE_SIZE (mode) + word * UNITS_PER_WORD)
&& reg_reloaded_contents[i] == regno
&& TEST_HARD_REG_BIT (reg_reloaded_valid, i)
&& HARD_REGNO_MODE_OK (i, reload_mode[r])
&& (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
/* Even if we can't use this register as a reload
register, we might use it for reload_override_in,
if copying it to the desired class is cheap
enough. */
|| ((REGISTER_MOVE_COST (last_class, class)
< MEMORY_MOVE_COST (mode, class, 1))
#ifdef SECONDARY_INPUT_RELOAD_CLASS
&& (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
last_reg)
== NO_REGS)
#endif
#ifdef SECONDARY_MEMORY_NEEDED
&& ! SECONDARY_MEMORY_NEEDED (last_class, class,
mode)
#endif
))
&& (reload_nregs[r] == max_group_size
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
i))
&& reload_reg_free_for_value_p (i, reload_opnum[r],
reload_when_needed[r],
reload_in[r],
const0_rtx, r, 1))
{
/* If a group is needed, verify that all the subsequent
registers still have their values intact. */
int nr
= HARD_REGNO_NREGS (i, reload_mode[r]);
int k;
for (k = 1; k < nr; k++)
if (reg_reloaded_contents[i + k] != regno
|| ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
break;
if (k == nr)
{
int i1;
last_reg = (GET_MODE (last_reg) == mode
? last_reg : gen_rtx_REG (mode, i));
/* We found a register that contains the
value we need. If this register is the
same as an `earlyclobber' operand of the
current insn, just mark it as a place to
reload from since we can't use it as the
reload register itself. */
for (i1 = 0; i1 < n_earlyclobbers; i1++)
if (reg_overlap_mentioned_for_reload_p
(reg_last_reload_reg[regno],
reload_earlyclobbers[i1]))
break;
if (i1 != n_earlyclobbers
|| ! (reload_reg_free_for_value_p
(i, reload_opnum[r], reload_when_needed[r],
reload_in[r], reload_out[r], r, 1))
/* Don't use it if we'd clobber a pseudo reg. */
|| (TEST_HARD_REG_BIT (reg_used_by_pseudo, i)
&& reload_out[r]
&& ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
/* Don't really use the inherited spill reg
if we need it wider than we've got it. */
|| (GET_MODE_SIZE (reload_mode[r])
> GET_MODE_SIZE (mode))
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
i)
/* If find_reloads chose reload_out as reload
register, stay with it - that leaves the
inherited register for subsequent reloads. */
|| (reload_out[r] && reload_reg_rtx[r]
&& rtx_equal_p (reload_out[r],
reload_reg_rtx[r])))
{
reload_override_in[r] = last_reg;
reload_inheritance_insn[r]
= reg_reloaded_insn[i];
}
else
{
int k;
/* We can use this as a reload reg. */
/* Mark the register as in use for this part of
the insn. */
mark_reload_reg_in_use (i,
reload_opnum[r],
reload_when_needed[r],
reload_mode[r]);
reload_reg_rtx[r] = last_reg;
reload_inherited[r] = 1;
reload_inheritance_insn[r]
= reg_reloaded_insn[i];
reload_spill_index[r] = i;
for (k = 0; k < nr; k++)
SET_HARD_REG_BIT (reload_reg_used_for_inherit,
i + k);
}
}
}
}
}
/* Here's another way to see if the value is already lying around. */
if (inheritance
&& reload_in[r] != 0
&& ! reload_inherited[r]
&& reload_out[r] == 0
&& (CONSTANT_P (reload_in[r])
|| GET_CODE (reload_in[r]) == PLUS
|| GET_CODE (reload_in[r]) == REG
|| GET_CODE (reload_in[r]) == MEM)
&& (reload_nregs[r] == max_group_size
|| ! reg_classes_intersect_p (reload_reg_class[r], group_class)))
{
register rtx equiv
= find_equiv_reg (reload_in[r], insn, reload_reg_class[r],
-1, NULL_PTR, 0, reload_mode[r]);
int regno;
if (equiv != 0)
{
if (GET_CODE (equiv) == REG)
regno = REGNO (equiv);
else if (GET_CODE (equiv) == SUBREG)
{
/* This must be a SUBREG of a hard register.
Make a new REG since this might be used in an
address and not all machines support SUBREGs
there. */
regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv);
equiv = gen_rtx_REG (reload_mode[r], regno);
}
else
abort ();
}
/* If we found a spill reg, reject it unless it is free
and of the desired class. */
if (equiv != 0
&& ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
&& ! reload_reg_free_for_value_p (regno, reload_opnum[r],
reload_when_needed[r],
reload_in[r],
reload_out[r], r, 1))
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
regno)))
equiv = 0;
if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, reload_mode[r]))
equiv = 0;
/* We found a register that contains the value we need.
If this register is the same as an `earlyclobber' operand
of the current insn, just mark it as a place to reload from
since we can't use it as the reload register itself. */
if (equiv != 0)
for (i = 0; i < n_earlyclobbers; i++)
if (reg_overlap_mentioned_for_reload_p (equiv,
reload_earlyclobbers[i]))
{
reload_override_in[r] = equiv;
equiv = 0;
break;
}
/* If the equiv register we have found is explicitly clobbered
in the current insn, it depends on the reload type if we
can use it, use it for reload_override_in, or not at all.
In particular, we then can't use EQUIV for a
RELOAD_FOR_OUTPUT_ADDRESS reload. */
if (equiv != 0 && regno_clobbered_p (regno, insn))
{
switch (reload_when_needed[r])
{
case RELOAD_FOR_OTHER_ADDRESS:
case RELOAD_FOR_INPADDR_ADDRESS:
case RELOAD_FOR_INPUT_ADDRESS:
case RELOAD_FOR_OPADDR_ADDR:
break;
case RELOAD_OTHER:
case RELOAD_FOR_INPUT:
case RELOAD_FOR_OPERAND_ADDRESS:
reload_override_in[r] = equiv;
/* Fall through. */
default:
equiv = 0;
break;
}
}
/* If we found an equivalent reg, say no code need be generated
to load it, and use it as our reload reg. */
if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
{
int nr = HARD_REGNO_NREGS (regno, reload_mode[r]);
int k;
reload_reg_rtx[r] = equiv;
reload_inherited[r] = 1;
/* If reg_reloaded_valid is not set for this register,
there might be a stale spill_reg_store lying around.
We must clear it, since otherwise emit_reload_insns
might delete the store. */
if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
spill_reg_store[regno] = NULL_RTX;
/* If any of the hard registers in EQUIV are spill
registers, mark them as in use for this insn. */
for (k = 0; k < nr; k++)
{
i = spill_reg_order[regno + k];
if (i >= 0)
{
mark_reload_reg_in_use (regno, reload_opnum[r],
reload_when_needed[r],
reload_mode[r]);
SET_HARD_REG_BIT (reload_reg_used_for_inherit,
regno + k);
}
}
}
}
/* If we found a register to use already, or if this is an optional
reload, we are done. */
if (reload_reg_rtx[r] != 0 || reload_optional[r] != 0)
continue;
#if 0 /* No longer needed for correct operation. Might or might not
give better code on the average. Want to experiment? */
/* See if there is a later reload that has a class different from our
class that intersects our class or that requires less register
than our reload. If so, we must allocate a register to this
reload now, since that reload might inherit a previous reload
and take the only available register in our class. Don't do this
for optional reloads since they will force all previous reloads
to be allocated. Also don't do this for reloads that have been
turned off. */
for (i = j + 1; i < n_reloads; i++)
{
int s = reload_order[i];
if ((reload_in[s] == 0 && reload_out[s] == 0
&& ! reload_secondary_p[s])
|| reload_optional[s])
continue;
if ((reload_reg_class[s] != reload_reg_class[r]
&& reg_classes_intersect_p (reload_reg_class[r],
reload_reg_class[s]))
|| reload_nregs[s] < reload_nregs[r])
break;
}
if (i == n_reloads)
continue;
allocate_reload_reg (chain, r, j == n_reloads - 1, inheritance);
#endif
}
/* Now allocate reload registers for anything non-optional that
didn't get one yet. */
for (j = 0; j < n_reloads; j++)
{
register int r = reload_order[j];
/* Ignore reloads that got marked inoperative. */
if (reload_out[r] == 0 && reload_in[r] == 0 && ! reload_secondary_p[r])
continue;
/* Skip reloads that already have a register allocated or are
optional. */
if (reload_reg_rtx[r] != 0 || reload_optional[r])
continue;
if (! allocate_reload_reg (chain, r, j == n_reloads - 1, inheritance))
break;
}
/* If that loop got all the way, we have won. */
if (j == n_reloads)
break;
/* Loop around and try without any inheritance. */
/* First undo everything done by the failed attempt
to allocate with inheritance. */
bcopy ((char *) save_reload_reg_rtx, (char *) reload_reg_rtx,
sizeof reload_reg_rtx);
bcopy ((char *) save_reload_inherited, (char *) reload_inherited,
sizeof reload_inherited);
bcopy ((char *) save_reload_inheritance_insn,
(char *) reload_inheritance_insn,
sizeof reload_inheritance_insn);
bcopy ((char *) save_reload_override_in, (char *) reload_override_in,
sizeof reload_override_in);
bcopy ((char *) save_reload_spill_index, (char *) reload_spill_index,
sizeof reload_spill_index);
COPY_HARD_REG_SET (reload_reg_used, save_reload_reg_used);
COPY_HARD_REG_SET (reload_reg_used_at_all, save_reload_reg_used_at_all);
COPY_HARD_REG_SET (reload_reg_used_in_op_addr,
save_reload_reg_used_in_op_addr);
COPY_HARD_REG_SET (reload_reg_used_in_op_addr_reload,
save_reload_reg_used_in_op_addr_reload);
COPY_HARD_REG_SET (reload_reg_used_in_insn,
save_reload_reg_used_in_insn);
COPY_HARD_REG_SET (reload_reg_used_in_other_addr,
save_reload_reg_used_in_other_addr);
for (i = 0; i < reload_n_operands; i++)
{
COPY_HARD_REG_SET (reload_reg_used_in_input[i],
save_reload_reg_used_in_input[i]);
COPY_HARD_REG_SET (reload_reg_used_in_output[i],
save_reload_reg_used_in_output[i]);
COPY_HARD_REG_SET (reload_reg_used_in_input_addr[i],
save_reload_reg_used_in_input_addr[i]);
COPY_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i],
save_reload_reg_used_in_inpaddr_addr[i]);
COPY_HARD_REG_SET (reload_reg_used_in_output_addr[i],
save_reload_reg_used_in_output_addr[i]);
COPY_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i],
save_reload_reg_used_in_outaddr_addr[i]);
}
}
/* If we thought we could inherit a reload, because it seemed that
nothing else wanted the same reload register earlier in the insn,
verify that assumption, now that all reloads have been assigned.
Likewise for reloads where reload_override_in has been set. */
/* If doing expensive optimizations, do one preliminary pass that doesn't
cancel any inheritance, but removes reloads that have been needed only
for reloads that we know can be inherited. */
for (pass = flag_expensive_optimizations; pass >= 0; pass--)
{
for (j = 0; j < n_reloads; j++)
{
register int r = reload_order[j];
rtx check_reg;
if (reload_inherited[r] && reload_reg_rtx[r])
check_reg = reload_reg_rtx[r];
else if (reload_override_in[r]
&& (GET_CODE (reload_override_in[r]) == REG
|| GET_CODE (reload_override_in[r]) == SUBREG))
check_reg = reload_override_in[r];
else
continue;
if (! reload_reg_free_for_value_p (true_regnum (check_reg),
reload_opnum[r],
reload_when_needed[r],
reload_in[r],
(reload_inherited[r]
? reload_out[r] : const0_rtx),
r, 1))
{
if (pass)
continue;
reload_inherited[r] = 0;
reload_override_in[r] = 0;
}
/* If we can inherit a RELOAD_FOR_INPUT, or can use a
reload_override_in, then we do not need its related
RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
likewise for other reload types.
We handle this by removing a reload when its only replacement
is mentioned in reload_in of the reload we are going to inherit.
A special case are auto_inc expressions; even if the input is
inherited, we still need the address for the output. We can
recognize them because they have RELOAD_OUT set but not
RELOAD_OUT_REG.
If we suceeded removing some reload and we are doing a preliminary
pass just to remove such reloads, make another pass, since the
removal of one reload might allow us to inherit another one. */
else if ((! reload_out[r] || reload_out_reg[r])
&& remove_address_replacements (reload_in[r]) && pass)
pass = 2;
}
}
/* Now that reload_override_in is known valid,
actually override reload_in. */
for (j = 0; j < n_reloads; j++)
if (reload_override_in[j])
reload_in[j] = reload_override_in[j];
/* If this reload won't be done because it has been cancelled or is
optional and not inherited, clear reload_reg_rtx so other
routines (such as subst_reloads) don't get confused. */
for (j = 0; j < n_reloads; j++)
if (reload_reg_rtx[j] != 0
&& ((reload_optional[j] && ! reload_inherited[j])
|| (reload_in[j] == 0 && reload_out[j] == 0
&& ! reload_secondary_p[j])))
{
int regno = true_regnum (reload_reg_rtx[j]);
if (spill_reg_order[regno] >= 0)
clear_reload_reg_in_use (regno, reload_opnum[j],
reload_when_needed[j], reload_mode[j]);
reload_reg_rtx[j] = 0;
}
/* Record which pseudos and which spill regs have output reloads. */
for (j = 0; j < n_reloads; j++)
{
register int r = reload_order[j];
i = reload_spill_index[r];
/* I is nonneg if this reload uses a register.
If reload_reg_rtx[r] is 0, this is an optional reload
that we opted to ignore. */
if (reload_out_reg[r] != 0 && GET_CODE (reload_out_reg[r]) == REG
&& reload_reg_rtx[r] != 0)
{
register int nregno = REGNO (reload_out_reg[r]);
int nr = 1;
if (nregno < FIRST_PSEUDO_REGISTER)
nr = HARD_REGNO_NREGS (nregno, reload_mode[r]);
while (--nr >= 0)
reg_has_output_reload[nregno + nr] = 1;
if (i >= 0)
{
nr = HARD_REGNO_NREGS (i, reload_mode[r]);
while (--nr >= 0)
SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
}
if (reload_when_needed[r] != RELOAD_OTHER
&& reload_when_needed[r] != RELOAD_FOR_OUTPUT
&& reload_when_needed[r] != RELOAD_FOR_INSN)
abort ();
}
}
}
/* Deallocate the reload register for reload R. This is called from
remove_address_replacements. */
void
deallocate_reload_reg (r)
int r;
{
int regno;
if (! reload_reg_rtx[r])
return;
regno = true_regnum (reload_reg_rtx[r]);
reload_reg_rtx[r] = 0;
if (spill_reg_order[regno] >= 0)
clear_reload_reg_in_use (regno, reload_opnum[r], reload_when_needed[r],
reload_mode[r]);
reload_spill_index[r] = -1;
}
/* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
reloads of the same item for fear that we might not have enough reload
registers. However, normally they will get the same reload register
and hence actually need not be loaded twice.
Here we check for the most common case of this phenomenon: when we have
a number of reloads for the same object, each of which were allocated
the same reload_reg_rtx, that reload_reg_rtx is not used for any other
reload, and is not modified in the insn itself. If we find such,
merge all the reloads and set the resulting reload to RELOAD_OTHER.
This will not increase the number of spill registers needed and will
prevent redundant code. */
static void
merge_assigned_reloads (insn)
rtx insn;
{
int i, j;
/* Scan all the reloads looking for ones that only load values and
are not already RELOAD_OTHER and ones whose reload_reg_rtx are
assigned and not modified by INSN. */
for (i = 0; i < n_reloads; i++)
{
int conflicting_input = 0;
int max_input_address_opnum = -1;
int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
if (reload_in[i] == 0 || reload_when_needed[i] == RELOAD_OTHER
|| reload_out[i] != 0 || reload_reg_rtx[i] == 0
|| reg_set_p (reload_reg_rtx[i], insn))
continue;
/* Look at all other reloads. Ensure that the only use of this
reload_reg_rtx is in a reload that just loads the same value
as we do. Note that any secondary reloads must be of the identical
class since the values, modes, and result registers are the
same, so we need not do anything with any secondary reloads. */
for (j = 0; j < n_reloads; j++)
{
if (i == j || reload_reg_rtx[j] == 0
|| ! reg_overlap_mentioned_p (reload_reg_rtx[j],
reload_reg_rtx[i]))
continue;
if (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
&& reload_opnum[j] > max_input_address_opnum)
max_input_address_opnum = reload_opnum[j];
/* If the reload regs aren't exactly the same (e.g, different modes)
or if the values are different, we can't merge this reload.
But if it is an input reload, we might still merge
RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
if (! rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j])
|| reload_out[j] != 0 || reload_in[j] == 0
|| ! rtx_equal_p (reload_in[i], reload_in[j]))
{
if (reload_when_needed[j] != RELOAD_FOR_INPUT
|| ((reload_when_needed[i] != RELOAD_FOR_INPUT_ADDRESS
|| reload_opnum[i] > reload_opnum[j])
&& reload_when_needed[i] != RELOAD_FOR_OTHER_ADDRESS))
break;
conflicting_input = 1;
if (min_conflicting_input_opnum > reload_opnum[j])
min_conflicting_input_opnum = reload_opnum[j];
}
}
/* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
we, in fact, found any matching reloads. */
if (j == n_reloads
&& max_input_address_opnum <= min_conflicting_input_opnum)
{
for (j = 0; j < n_reloads; j++)
if (i != j && reload_reg_rtx[j] != 0
&& rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j])
&& (! conflicting_input
|| reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
|| reload_when_needed[j] == RELOAD_FOR_OTHER_ADDRESS))
{
reload_when_needed[i] = RELOAD_OTHER;
reload_in[j] = 0;
reload_spill_index[j] = -1;
transfer_replacements (i, j);
}
/* If this is now RELOAD_OTHER, look for any reloads that load
parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
if they were for inputs, RELOAD_OTHER for outputs. Note that
this test is equivalent to looking for reloads for this operand
number. */
if (reload_when_needed[i] == RELOAD_OTHER)
for (j = 0; j < n_reloads; j++)
if (reload_in[j] != 0
&& reload_when_needed[i] != RELOAD_OTHER
&& reg_overlap_mentioned_for_reload_p (reload_in[j],
reload_in[i]))
reload_when_needed[j]
= ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
|| reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
}
}
}
/* Output insns to reload values in and out of the chosen reload regs. */
static void
emit_reload_insns (chain)
struct insn_chain *chain;
{
rtx insn = chain->insn;
register int j;
rtx input_reload_insns[MAX_RECOG_OPERANDS];
rtx other_input_address_reload_insns = 0;
rtx other_input_reload_insns = 0;
rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
rtx output_reload_insns[MAX_RECOG_OPERANDS];
rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
rtx operand_reload_insns = 0;
rtx other_operand_reload_insns = 0;
rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
rtx following_insn = NEXT_INSN (insn);
rtx before_insn = PREV_INSN (insn);
int special;
/* Values to be put in spill_reg_store are put here first. */
rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
HARD_REG_SET reg_reloaded_died;
CLEAR_HARD_REG_SET (reg_reloaded_died);
for (j = 0; j < reload_n_operands; j++)
input_reload_insns[j] = input_address_reload_insns[j]
= inpaddr_address_reload_insns[j]
= output_reload_insns[j] = output_address_reload_insns[j]
= outaddr_address_reload_insns[j]
= other_output_reload_insns[j] = 0;
/* Now output the instructions to copy the data into and out of the
reload registers. Do these in the order that the reloads were reported,
since reloads of base and index registers precede reloads of operands
and the operands may need the base and index registers reloaded. */
for (j = 0; j < n_reloads; j++)
{
register rtx old;
rtx oldequiv_reg = 0;
rtx this_reload_insn = 0;
int expect_occurrences = 1;
if (reload_reg_rtx[j]
&& REGNO (reload_reg_rtx[j]) < FIRST_PSEUDO_REGISTER)
new_spill_reg_store[REGNO (reload_reg_rtx[j])] = 0;
old = (reload_in[j] && GET_CODE (reload_in[j]) == MEM
? reload_in_reg[j] : reload_in[j]);
if (old != 0
/* AUTO_INC reloads need to be handled even if inherited. We got an
AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
&& (! reload_inherited[j] || (reload_out[j] && ! reload_out_reg[j]))
&& ! rtx_equal_p (reload_reg_rtx[j], old)
&& reload_reg_rtx[j] != 0)
{
register rtx reloadreg = reload_reg_rtx[j];
rtx oldequiv = 0;
enum machine_mode mode;
rtx *where;
/* Determine the mode to reload in.
This is very tricky because we have three to choose from.
There is the mode the insn operand wants (reload_inmode[J]).
There is the mode of the reload register RELOADREG.
There is the intrinsic mode of the operand, which we could find
by stripping some SUBREGs.
It turns out that RELOADREG's mode is irrelevant:
we can change that arbitrarily.
Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
then the reload reg may not support QImode moves, so use SImode.
If foo is in memory due to spilling a pseudo reg, this is safe,
because the QImode value is in the least significant part of a
slot big enough for a SImode. If foo is some other sort of
memory reference, then it is impossible to reload this case,
so previous passes had better make sure this never happens.
Then consider a one-word union which has SImode and one of its
members is a float, being fetched as (SUBREG:SF union:SI).
We must fetch that as SFmode because we could be loading into
a float-only register. In this case OLD's mode is correct.
Consider an immediate integer: it has VOIDmode. Here we need
to get a mode from something else.
In some cases, there is a fourth mode, the operand's
containing mode. If the insn specifies a containing mode for
this operand, it overrides all others.
I am not sure whether the algorithm here is always right,
but it does the right things in those cases. */
mode = GET_MODE (old);
if (mode == VOIDmode)
mode = reload_inmode[j];
#ifdef SECONDARY_INPUT_RELOAD_CLASS
/* If we need a secondary register for this operation, see if
the value is already in a register in that class. Don't
do this if the secondary register will be used as a scratch
register. */
if (reload_secondary_in_reload[j] >= 0
&& reload_secondary_in_icode[j] == CODE_FOR_nothing
&& optimize)
oldequiv
= find_equiv_reg (old, insn,
reload_reg_class[reload_secondary_in_reload[j]],
-1, NULL_PTR, 0, mode);
#endif
/* If reloading from memory, see if there is a register
that already holds the same value. If so, reload from there.
We can pass 0 as the reload_reg_p argument because
any other reload has either already been emitted,
in which case find_equiv_reg will see the reload-insn,
or has yet to be emitted, in which case it doesn't matter
because we will use this equiv reg right away. */
if (oldequiv == 0 && optimize
&& (GET_CODE (old) == MEM
|| (GET_CODE (old) == REG
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (old)] < 0)))
oldequiv = find_equiv_reg (old, insn, ALL_REGS,
-1, NULL_PTR, 0, mode);
if (oldequiv)
{
int regno = true_regnum (oldequiv);
/* Don't use OLDEQUIV if any other reload changes it at an
earlier stage of this insn or at this stage. */
if (! reload_reg_free_for_value_p (regno, reload_opnum[j],
reload_when_needed[j],
reload_in[j], const0_rtx, j,
0))
oldequiv = 0;
/* If it is no cheaper to copy from OLDEQUIV into the
reload register than it would be to move from memory,
don't use it. Likewise, if we need a secondary register
or memory. */
if (oldequiv != 0
&& ((REGNO_REG_CLASS (regno) != reload_reg_class[j]
&& (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno),
reload_reg_class[j])
>= MEMORY_MOVE_COST (mode, reload_reg_class[j], 1)))
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|| (SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j],
mode, oldequiv)
!= NO_REGS)
#endif
#ifdef SECONDARY_MEMORY_NEEDED
|| SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
reload_reg_class[j],
mode)
#endif
))
oldequiv = 0;
}
/* delete_output_reload is only invoked properly if old contains
the original pseudo register. Since this is replaced with a
hard reg when RELOAD_OVERRIDE_IN is set, see if we can
find the pseudo in RELOAD_IN_REG. */
if (oldequiv == 0
&& reload_override_in[j]
&& GET_CODE (reload_in_reg[j]) == REG)
{
oldequiv = old;
old = reload_in_reg[j];
}
if (oldequiv == 0)
oldequiv = old;
else if (GET_CODE (oldequiv) == REG)
oldequiv_reg = oldequiv;
else if (GET_CODE (oldequiv) == SUBREG)
oldequiv_reg = SUBREG_REG (oldequiv);
/* If we are reloading from a register that was recently stored in
with an output-reload, see if we can prove there was
actually no need to store the old value in it. */
if (optimize && GET_CODE (oldequiv) == REG
&& REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
&& spill_reg_store[REGNO (oldequiv)]
&& GET_CODE (old) == REG
&& (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
|| rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
reload_out_reg[j])))
delete_output_reload (insn, j, REGNO (oldequiv));
/* Encapsulate both RELOADREG and OLDEQUIV into that mode,
then load RELOADREG from OLDEQUIV. Note that we cannot use
gen_lowpart_common since it can do the wrong thing when
RELOADREG has a multi-word mode. Note that RELOADREG
must always be a REG here. */
if (GET_MODE (reloadreg) != mode)
reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
oldequiv = SUBREG_REG (oldequiv);
if (GET_MODE (oldequiv) != VOIDmode
&& mode != GET_MODE (oldequiv))
oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0);
/* Switch to the right place to emit the reload insns. */
switch (reload_when_needed[j])
{
case RELOAD_OTHER:
where = &other_input_reload_insns;
break;
case RELOAD_FOR_INPUT:
where = &input_reload_insns[reload_opnum[j]];
break;
case RELOAD_FOR_INPUT_ADDRESS:
where = &input_address_reload_insns[reload_opnum[j]];
break;
case RELOAD_FOR_INPADDR_ADDRESS:
where = &inpaddr_address_reload_insns[reload_opnum[j]];
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
where = &output_address_reload_insns[reload_opnum[j]];
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
where = &outaddr_address_reload_insns[reload_opnum[j]];
break;
case RELOAD_FOR_OPERAND_ADDRESS:
where = &operand_reload_insns;
break;
case RELOAD_FOR_OPADDR_ADDR:
where = &other_operand_reload_insns;
break;
case RELOAD_FOR_OTHER_ADDRESS:
where = &other_input_address_reload_insns;
break;
default:
abort ();
}
push_to_sequence (*where);
special = 0;
/* Auto-increment addresses must be reloaded in a special way. */
if (reload_out[j] && ! reload_out_reg[j])
{
/* We are not going to bother supporting the case where a
incremented register can't be copied directly from
OLDEQUIV since this seems highly unlikely. */
if (reload_secondary_in_reload[j] >= 0)
abort ();
if (reload_inherited[j])
oldequiv = reloadreg;
old = XEXP (reload_in_reg[j], 0);
if (optimize && GET_CODE (oldequiv) == REG
&& REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
&& spill_reg_store[REGNO (oldequiv)]
&& GET_CODE (old) == REG
&& (dead_or_set_p (insn,
spill_reg_stored_to[REGNO (oldequiv)])
|| rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
old)))
delete_output_reload (insn, j, REGNO (oldequiv));
/* Prevent normal processing of this reload. */
special = 1;
/* Output a special code sequence for this case. */
new_spill_reg_store[REGNO (reloadreg)]
= inc_for_reload (reloadreg, oldequiv, reload_out[j],
reload_inc[j]);
}
/* If we are reloading a pseudo-register that was set by the previous
insn, see if we can get rid of that pseudo-register entirely
by redirecting the previous insn into our reload register. */
else if (optimize && GET_CODE (old) == REG
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
&& dead_or_set_p (insn, old)
/* This is unsafe if some other reload
uses the same reg first. */
&& reload_reg_free_for_value_p (REGNO (reloadreg),
reload_opnum[j],
reload_when_needed[j],
old, reload_out[j],
j, 0))
{
rtx temp = PREV_INSN (insn);
while (temp && GET_CODE (temp) == NOTE)
temp = PREV_INSN (temp);
if (temp
&& GET_CODE (temp) == INSN
&& GET_CODE (PATTERN (temp)) == SET
&& SET_DEST (PATTERN (temp)) == old
/* Make sure we can access insn_operand_constraint. */
&& asm_noperands (PATTERN (temp)) < 0
/* This is unsafe if prev insn rejects our reload reg. */
&& constraint_accepts_reg_p (insn_operand_constraint[recog_memoized (temp)][0],
reloadreg)
/* This is unsafe if operand occurs more than once in current
insn. Perhaps some occurrences aren't reloaded. */
&& count_occurrences (PATTERN (insn), old) == 1
/* Don't risk splitting a matching pair of operands. */
&& ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
{
/* Store into the reload register instead of the pseudo. */
SET_DEST (PATTERN (temp)) = reloadreg;
/* If the previous insn is an output reload, the source is
a reload register, and its spill_reg_store entry will
contain the previous destination. This is now
invalid. */
if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
&& REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
{
spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
}
/* If these are the only uses of the pseudo reg,
pretend for GDB it lives in the reload reg we used. */
if (REG_N_DEATHS (REGNO (old)) == 1
&& REG_N_SETS (REGNO (old)) == 1)
{
reg_renumber[REGNO (old)] = REGNO (reload_reg_rtx[j]);
alter_reg (REGNO (old), -1);
}
special = 1;
}
}
/* We can't do that, so output an insn to load RELOADREG. */
if (! special)
{
#ifdef SECONDARY_INPUT_RELOAD_CLASS
rtx second_reload_reg = 0;
enum insn_code icode;
/* If we have a secondary reload, pick up the secondary register
and icode, if any. If OLDEQUIV and OLD are different or
if this is an in-out reload, recompute whether or not we
still need a secondary register and what the icode should
be. If we still need a secondary register and the class or
icode is different, go back to reloading from OLD if using
OLDEQUIV means that we got the wrong type of register. We
cannot have different class or icode due to an in-out reload
because we don't make such reloads when both the input and
output need secondary reload registers. */
if (reload_secondary_in_reload[j] >= 0)
{
int secondary_reload = reload_secondary_in_reload[j];
rtx real_oldequiv = oldequiv;
rtx real_old = old;
/* If OLDEQUIV is a pseudo with a MEM, get the real MEM
and similarly for OLD.
See comments in get_secondary_reload in reload.c. */
/* If it is a pseudo that cannot be replaced with its
equivalent MEM, we must fall back to reload_in, which
will have all the necessary substitutions registered. */
if (GET_CODE (oldequiv) == REG
&& REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
&& reg_equiv_memory_loc[REGNO (oldequiv)] != 0)
{
if (reg_equiv_address[REGNO (oldequiv)]
|| num_not_at_initial_offset)
real_oldequiv = reload_in[j];
else
real_oldequiv = reg_equiv_mem[REGNO (oldequiv)];
}
if (GET_CODE (old) == REG
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
&& reg_equiv_memory_loc[REGNO (old)] != 0)
{
if (reg_equiv_address[REGNO (old)]
|| num_not_at_initial_offset)
real_old = reload_in[j];
else
real_old = reg_equiv_mem[REGNO (old)];
}
second_reload_reg = reload_reg_rtx[secondary_reload];
icode = reload_secondary_in_icode[j];
if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
|| (reload_in[j] != 0 && reload_out[j] != 0))
{
enum reg_class new_class
= SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j],
mode, real_oldequiv);
if (new_class == NO_REGS)
second_reload_reg = 0;
else
{
enum insn_code new_icode;
enum machine_mode new_mode;
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
REGNO (second_reload_reg)))
oldequiv = old, real_oldequiv = real_old;
else
{
new_icode = reload_in_optab[(int) mode];
if (new_icode != CODE_FOR_nothing
&& ((insn_operand_predicate[(int) new_icode][0]
&& ! ((*insn_operand_predicate[(int) new_icode][0])
(reloadreg, mode)))
|| (insn_operand_predicate[(int) new_icode][1]
&& ! ((*insn_operand_predicate[(int) new_icode][1])
(real_oldequiv, mode)))))
new_icode = CODE_FOR_nothing;
if (new_icode == CODE_FOR_nothing)
new_mode = mode;
else
new_mode = insn_operand_mode[(int) new_icode][2];
if (GET_MODE (second_reload_reg) != new_mode)
{
if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
new_mode))
oldequiv = old, real_oldequiv = real_old;
else
second_reload_reg
= gen_rtx_REG (new_mode,
REGNO (second_reload_reg));
}
}
}
}
/* If we still need a secondary reload register, check
to see if it is being used as a scratch or intermediate
register and generate code appropriately. If we need
a scratch register, use REAL_OLDEQUIV since the form of
the insn may depend on the actual address if it is
a MEM. */
if (second_reload_reg)
{
if (icode != CODE_FOR_nothing)
{
emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
second_reload_reg));
special = 1;
}
else
{
/* See if we need a scratch register to load the
intermediate register (a tertiary reload). */
enum insn_code tertiary_icode
= reload_secondary_in_icode[secondary_reload];
if (tertiary_icode != CODE_FOR_nothing)
{
rtx third_reload_reg
= reload_reg_rtx[reload_secondary_in_reload[secondary_reload]];
emit_insn ((GEN_FCN (tertiary_icode)
(second_reload_reg, real_oldequiv,
third_reload_reg)));
}
else
gen_reload (second_reload_reg, real_oldequiv,
reload_opnum[j],
reload_when_needed[j]);
oldequiv = second_reload_reg;
}
}
}
#endif
if (! special && ! rtx_equal_p (reloadreg, oldequiv))
{
rtx real_oldequiv = oldequiv;
if ((GET_CODE (oldequiv) == REG
&& REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
&& reg_equiv_memory_loc[REGNO (oldequiv)] != 0)
|| (GET_CODE (oldequiv) == SUBREG
&& GET_CODE (SUBREG_REG (oldequiv)) == REG
&& (REGNO (SUBREG_REG (oldequiv))
>= FIRST_PSEUDO_REGISTER)
&& (reg_equiv_memory_loc
[REGNO (SUBREG_REG (oldequiv))] != 0)))
real_oldequiv = reload_in[j];
gen_reload (reloadreg, real_oldequiv, reload_opnum[j],
reload_when_needed[j]);
}
}
this_reload_insn = get_last_insn ();
/* End this sequence. */
*where = get_insns ();
end_sequence ();
/* Update reload_override_in so that delete_address_reloads_1
can see the actual register usage. */
if (oldequiv_reg)
reload_override_in[j] = oldequiv;
}
/* When inheriting a wider reload, we have a MEM in reload_in[j],
e.g. inheriting a SImode output reload for
(mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
if (optimize && reload_inherited[j] && reload_in[j]
&& GET_CODE (reload_in[j]) == MEM
&& GET_CODE (reload_in_reg[j]) == MEM
&& reload_spill_index[j] >= 0
&& TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
{
expect_occurrences
= count_occurrences (PATTERN (insn), reload_in[j]) == 1 ? 0 : -1;
reload_in[j]
= regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
}
/* If we are reloading a register that was recently stored in with an
output-reload, see if we can prove there was
actually no need to store the old value in it. */
if (optimize
&& (reload_inherited[j] || reload_override_in[j])
&& reload_reg_rtx[j]
&& GET_CODE (reload_reg_rtx[j]) == REG
&& spill_reg_store[REGNO (reload_reg_rtx[j])] != 0
#if 0
/* There doesn't seem to be any reason to restrict this to pseudos
and doing so loses in the case where we are copying from a
register of the wrong class. */
&& REGNO (spill_reg_stored_to[REGNO (reload_reg_rtx[j])])
>= FIRST_PSEUDO_REGISTER
#endif
/* The insn might have already some references to stackslots
replaced by MEMs, while reload_out_reg still names the
original pseudo. */
&& (dead_or_set_p (insn,
spill_reg_stored_to[REGNO (reload_reg_rtx[j])])
|| rtx_equal_p (spill_reg_stored_to[REGNO (reload_reg_rtx[j])],
reload_out_reg[j])))
delete_output_reload (insn, j, REGNO (reload_reg_rtx[j]));
/* Input-reloading is done. Now do output-reloading,
storing the value from the reload-register after the main insn
if reload_out[j] is nonzero.
??? At some point we need to support handling output reloads of
JUMP_INSNs or insns that set cc0. */
/* If this is an output reload that stores something that is
not loaded in this same reload, see if we can eliminate a previous
store. */
{
rtx pseudo = reload_out_reg[j];
if (pseudo
&& GET_CODE (pseudo) == REG
&& ! rtx_equal_p (reload_in_reg[j], pseudo)
&& REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
&& reg_last_reload_reg[REGNO (pseudo)])
{
int pseudo_no = REGNO (pseudo);
int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
/* We don't need to test full validity of last_regno for
inherit here; we only want to know if the store actually
matches the pseudo. */
if (reg_reloaded_contents[last_regno] == pseudo_no
&& spill_reg_store[last_regno]
&& rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
delete_output_reload (insn, j, last_regno);
}
}
old = reload_out_reg[j];
if (old != 0
&& reload_reg_rtx[j] != old
&& reload_reg_rtx[j] != 0)
{
register rtx reloadreg = reload_reg_rtx[j];
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
register rtx second_reloadreg = 0;
#endif
rtx note, p;
enum machine_mode mode;
int special = 0;
/* An output operand that dies right away does need a reload,
but need not be copied from it. Show the new location in the
REG_UNUSED note. */
if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
&& (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
{
XEXP (note, 0) = reload_reg_rtx[j];
continue;
}
/* Likewise for a SUBREG of an operand that dies. */
else if (GET_CODE (old) == SUBREG
&& GET_CODE (SUBREG_REG (old)) == REG
&& 0 != (note = find_reg_note (insn, REG_UNUSED,
SUBREG_REG (old))))
{
XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
reload_reg_rtx[j]);
continue;
}
else if (GET_CODE (old) == SCRATCH)
/* If we aren't optimizing, there won't be a REG_UNUSED note,
but we don't want to make an output reload. */
continue;
#if 0
/* Strip off of OLD any size-increasing SUBREGs such as
(SUBREG:SI foo:QI 0). */
while (GET_CODE (old) == SUBREG && SUBREG_WORD (old) == 0
&& (GET_MODE_SIZE (GET_MODE (old))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (old)))))
old = SUBREG_REG (old);
#endif
/* If is a JUMP_INSN, we can't support output reloads yet. */
if (GET_CODE (insn) == JUMP_INSN)
abort ();
if (reload_when_needed[j] == RELOAD_OTHER)
start_sequence ();
else
push_to_sequence (output_reload_insns[reload_opnum[j]]);
old = reload_out[j];
/* Determine the mode to reload in.
See comments above (for input reloading). */
mode = GET_MODE (old);
if (mode == VOIDmode)
{
/* VOIDmode should never happen for an output. */
if (asm_noperands (PATTERN (insn)) < 0)
/* It's the compiler's fault. */
fatal_insn ("VOIDmode on an output", insn);
error_for_asm (insn, "output operand is constant in `asm'");
/* Prevent crash--use something we know is valid. */
mode = word_mode;
old = gen_rtx_REG (mode, REGNO (reloadreg));
}
if (GET_MODE (reloadreg) != mode)
reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
/* If we need two reload regs, set RELOADREG to the intermediate
one, since it will be stored into OLD. We might need a secondary
register only for an input reload, so check again here. */
if (reload_secondary_out_reload[j] >= 0)
{
rtx real_old = old;
if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
&& reg_equiv_mem[REGNO (old)] != 0)
real_old = reg_equiv_mem[REGNO (old)];
if((SECONDARY_OUTPUT_RELOAD_CLASS (reload_reg_class[j],
mode, real_old)
!= NO_REGS))
{
second_reloadreg = reloadreg;
reloadreg = reload_reg_rtx[reload_secondary_out_reload[j]];
/* See if RELOADREG is to be used as a scratch register
or as an intermediate register. */
if (reload_secondary_out_icode[j] != CODE_FOR_nothing)
{
emit_insn ((GEN_FCN (reload_secondary_out_icode[j])
(real_old, second_reloadreg, reloadreg)));
special = 1;
}
else
{
/* See if we need both a scratch and intermediate reload
register. */
int secondary_reload = reload_secondary_out_reload[j];
enum insn_code tertiary_icode
= reload_secondary_out_icode[secondary_reload];
if (GET_MODE (reloadreg) != mode)
reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
if (tertiary_icode != CODE_FOR_nothing)
{
rtx third_reloadreg
= reload_reg_rtx[reload_secondary_out_reload[secondary_reload]];
rtx tem;
/* Copy primary reload reg to secondary reload reg.
(Note that these have been swapped above, then
secondary reload reg to OLD using our insn. */
/* If REAL_OLD is a paradoxical SUBREG, remove it
and try to put the opposite SUBREG on
RELOADREG. */
if (GET_CODE (real_old) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (real_old))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
&& 0 != (tem = gen_lowpart_common
(GET_MODE (SUBREG_REG (real_old)),
reloadreg)))
real_old = SUBREG_REG (real_old), reloadreg = tem;
gen_reload (reloadreg, second_reloadreg,
reload_opnum[j], reload_when_needed[j]);
emit_insn ((GEN_FCN (tertiary_icode)
(real_old, reloadreg, third_reloadreg)));
special = 1;
}
else
/* Copy between the reload regs here and then to
OUT later. */
gen_reload (reloadreg, second_reloadreg,
reload_opnum[j], reload_when_needed[j]);
}
}
}
#endif
/* Output the last reload insn. */
if (! special)
{
rtx set;
/* Don't output the last reload if OLD is not the dest of
INSN and is in the src and is clobbered by INSN. */
if (! flag_expensive_optimizations
|| GET_CODE (old) != REG
|| !(set = single_set (insn))
|| rtx_equal_p (old, SET_DEST (set))
|| !reg_mentioned_p (old, SET_SRC (set))
|| !regno_clobbered_p (REGNO (old), insn))
gen_reload (old, reloadreg, reload_opnum[j],
reload_when_needed[j]);
}
/* Look at all insns we emitted, just to be safe. */
for (p = get_insns (); p; p = NEXT_INSN (p))
if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
{
rtx pat = PATTERN (p);
/* If this output reload doesn't come from a spill reg,
clear any memory of reloaded copies of the pseudo reg.
If this output reload comes from a spill reg,
reg_has_output_reload will make this do nothing. */
note_stores (pat, forget_old_reloads_1);
if (reg_mentioned_p (reload_reg_rtx[j], pat))
{
rtx set = single_set (insn);
if (reload_spill_index[j] < 0
&& set
&& SET_SRC (set) == reload_reg_rtx[j])
{
int src = REGNO (SET_SRC (set));
reload_spill_index[j] = src;
SET_HARD_REG_BIT (reg_is_output_reload, src);
if (find_regno_note (insn, REG_DEAD, src))
SET_HARD_REG_BIT (reg_reloaded_died, src);
}
if (REGNO (reload_reg_rtx[j]) < FIRST_PSEUDO_REGISTER)
{
int s = reload_secondary_out_reload[j];
set = single_set (p);
/* If this reload copies only to the secondary reload
register, the secondary reload does the actual
store. */
if (s >= 0 && set == NULL_RTX)
; /* We can't tell what function the secondary reload
has and where the actual store to the pseudo is
made; leave new_spill_reg_store alone. */
else if (s >= 0
&& SET_SRC (set) == reload_reg_rtx[j]
&& SET_DEST (set) == reload_reg_rtx[s])
{
/* Usually the next instruction will be the
secondary reload insn; if we can confirm
that it is, setting new_spill_reg_store to
that insn will allow an extra optimization. */
rtx s_reg = reload_reg_rtx[s];
rtx next = NEXT_INSN (p);
reload_out[s] = reload_out[j];
reload_out_reg[s] = reload_out_reg[j];
set = single_set (next);
if (set && SET_SRC (set) == s_reg
&& ! new_spill_reg_store[REGNO (s_reg)])
{
SET_HARD_REG_BIT (reg_is_output_reload,
REGNO (s_reg));
new_spill_reg_store[REGNO (s_reg)] = next;
}
}
else
new_spill_reg_store[REGNO (reload_reg_rtx[j])] = p;
}
}
}
if (reload_when_needed[j] == RELOAD_OTHER)
{
emit_insns (other_output_reload_insns[reload_opnum[j]]);
other_output_reload_insns[reload_opnum[j]] = get_insns ();
}
else
output_reload_insns[reload_opnum[j]] = get_insns ();
end_sequence ();
}
}
/* Now write all the insns we made for reloads in the order expected by
the allocation functions. Prior to the insn being reloaded, we write
the following reloads:
RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
RELOAD_OTHER reloads.
For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
RELOAD_FOR_INPUT reload for the operand.
RELOAD_FOR_OPADDR_ADDRS reloads.
RELOAD_FOR_OPERAND_ADDRESS reloads.
After the insn being reloaded, we write the following:
For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
reloads for the operand. The RELOAD_OTHER output reloads are
output in descending order by reload number. */
emit_insns_before (other_input_address_reload_insns, insn);
emit_insns_before (other_input_reload_insns, insn);
for (j = 0; j < reload_n_operands; j++)
{
emit_insns_before (inpaddr_address_reload_insns[j], insn);
emit_insns_before (input_address_reload_insns[j], insn);
emit_insns_before (input_reload_insns[j], insn);
}
emit_insns_before (other_operand_reload_insns, insn);
emit_insns_before (operand_reload_insns, insn);
for (j = 0; j < reload_n_operands; j++)
{
emit_insns_before (outaddr_address_reload_insns[j], following_insn);
emit_insns_before (output_address_reload_insns[j], following_insn);
emit_insns_before (output_reload_insns[j], following_insn);
emit_insns_before (other_output_reload_insns[j], following_insn);
}
/* Keep basic block info up to date. */
if (n_basic_blocks)
{
if (basic_block_head[chain->block] == insn)
basic_block_head[chain->block] = NEXT_INSN (before_insn);
if (basic_block_end[chain->block] == insn)
basic_block_end[chain->block] = PREV_INSN (following_insn);
}
/* For all the spill regs newly reloaded in this instruction,
record what they were reloaded from, so subsequent instructions
can inherit the reloads.
Update spill_reg_store for the reloads of this insn.
Copy the elements that were updated in the loop above. */
for (j = 0; j < n_reloads; j++)
{
register int r = reload_order[j];
register int i = reload_spill_index[r];
/* I is nonneg if this reload used a register.
If reload_reg_rtx[r] is 0, this is an optional reload
that we opted to ignore. */
if (i >= 0 && reload_reg_rtx[r] != 0)
{
int nr
= HARD_REGNO_NREGS (i, GET_MODE (reload_reg_rtx[r]));
int k;
int part_reaches_end = 0;
int all_reaches_end = 1;
/* For a multi register reload, we need to check if all or part
of the value lives to the end. */
for (k = 0; k < nr; k++)
{
if (reload_reg_reaches_end_p (i + k, reload_opnum[r],
reload_when_needed[r]))
part_reaches_end = 1;
else
all_reaches_end = 0;
}
/* Ignore reloads that don't reach the end of the insn in
entirety. */
if (all_reaches_end)
{
/* First, clear out memory of what used to be in this spill reg.
If consecutive registers are used, clear them all. */
for (k = 0; k < nr; k++)
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
/* Maybe the spill reg contains a copy of reload_out. */
if (reload_out[r] != 0
&& (GET_CODE (reload_out[r]) == REG
#ifdef AUTO_INC_DEC
|| ! reload_out_reg[r]
#endif
|| GET_CODE (reload_out_reg[r]) == REG))
{
rtx out = (GET_CODE (reload_out[r]) == REG
? reload_out[r]
: reload_out_reg[r]
? reload_out_reg[r]
/* AUTO_INC */ : XEXP (reload_in_reg[r], 0));
register int nregno = REGNO (out);
int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
: HARD_REGNO_NREGS (nregno,
GET_MODE (reload_reg_rtx[r])));
spill_reg_store[i] = new_spill_reg_store[i];
spill_reg_stored_to[i] = out;
reg_last_reload_reg[nregno] = reload_reg_rtx[r];
/* If NREGNO is a hard register, it may occupy more than
one register. If it does, say what is in the
rest of the registers assuming that both registers
agree on how many words the object takes. If not,
invalidate the subsequent registers. */
if (nregno < FIRST_PSEUDO_REGISTER)
for (k = 1; k < nnr; k++)
reg_last_reload_reg[nregno + k]
= (nr == nnr
? gen_rtx_REG (reg_raw_mode[REGNO (reload_reg_rtx[r]) + k],
REGNO (reload_reg_rtx[r]) + k)
: 0);
/* Now do the inverse operation. */
for (k = 0; k < nr; k++)
{
CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
reg_reloaded_contents[i + k]
= (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
? nregno
: nregno + k);
reg_reloaded_insn[i + k] = insn;
SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
}
}
/* Maybe the spill reg contains a copy of reload_in. Only do
something if there will not be an output reload for
the register being reloaded. */
else if (reload_out_reg[r] == 0
&& reload_in[r] != 0
&& ((GET_CODE (reload_in[r]) == REG
&& REGNO (reload_in[r]) >= FIRST_PSEUDO_REGISTER
&& ! reg_has_output_reload[REGNO (reload_in[r])])
|| (GET_CODE (reload_in_reg[r]) == REG
&& ! reg_has_output_reload[REGNO (reload_in_reg[r])]))
&& ! reg_set_p (reload_reg_rtx[r], PATTERN (insn)))
{
register int nregno;
int nnr;
if (GET_CODE (reload_in[r]) == REG
&& REGNO (reload_in[r]) >= FIRST_PSEUDO_REGISTER)
nregno = REGNO (reload_in[r]);
else if (GET_CODE (reload_in_reg[r]) == REG)
nregno = REGNO (reload_in_reg[r]);
else
nregno = REGNO (XEXP (reload_in_reg[r], 0));
nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
: HARD_REGNO_NREGS (nregno,
GET_MODE (reload_reg_rtx[r])));
reg_last_reload_reg[nregno] = reload_reg_rtx[r];
if (nregno < FIRST_PSEUDO_REGISTER)
for (k = 1; k < nnr; k++)
reg_last_reload_reg[nregno + k]
= (nr == nnr
? gen_rtx_REG (reg_raw_mode[REGNO (reload_reg_rtx[r]) + k],
REGNO (reload_reg_rtx[r]) + k)
: 0);
/* Unless we inherited this reload, show we haven't
recently done a store.
Previous stores of inherited auto_inc expressions
also have to be discarded. */
if (! reload_inherited[r]
|| (reload_out[r] && ! reload_out_reg[r]))
spill_reg_store[i] = 0;
for (k = 0; k < nr; k++)
{
CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
reg_reloaded_contents[i + k]
= (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
? nregno
: nregno + k);
reg_reloaded_insn[i + k] = insn;
SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
}
}
}
/* However, if part of the reload reaches the end, then we must
invalidate the old info for the part that survives to the end. */
else if (part_reaches_end)
{
for (k = 0; k < nr; k++)
if (reload_reg_reaches_end_p (i + k,
reload_opnum[r],
reload_when_needed[r]))
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
}
}
/* The following if-statement was #if 0'd in 1.34 (or before...).
It's reenabled in 1.35 because supposedly nothing else
deals with this problem. */
/* If a register gets output-reloaded from a non-spill register,
that invalidates any previous reloaded copy of it.
But forget_old_reloads_1 won't get to see it, because
it thinks only about the original insn. So invalidate it here. */
if (i < 0 && reload_out[r] != 0
&& (GET_CODE (reload_out[r]) == REG
|| (GET_CODE (reload_out[r]) == MEM
&& GET_CODE (reload_out_reg[r]) == REG)))
{
rtx out = (GET_CODE (reload_out[r]) == REG
? reload_out[r] : reload_out_reg[r]);
register int nregno = REGNO (out);
if (nregno >= FIRST_PSEUDO_REGISTER)
{
rtx src_reg, store_insn;
reg_last_reload_reg[nregno] = 0;
/* If we can find a hard register that is stored, record
the storing insn so that we may delete this insn with
delete_output_reload. */
src_reg = reload_reg_rtx[r];
/* If this is an optional reload, try to find the source reg
from an input reload. */
if (! src_reg)
{
rtx set = single_set (insn);
if (SET_DEST (set) == reload_out[r])
{
int k;
src_reg = SET_SRC (set);
store_insn = insn;
for (k = 0; k < n_reloads; k++)
{
if (reload_in[k] == src_reg)
{
src_reg = reload_reg_rtx[k];
break;
}
}
}
}
else
store_insn = new_spill_reg_store[REGNO (src_reg)];
if (src_reg && GET_CODE (src_reg) == REG
&& REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
{
int src_regno = REGNO (src_reg);
int nr = HARD_REGNO_NREGS (src_regno, reload_mode[r]);
/* The place where to find a death note varies with
PRESERVE_DEATH_INFO_REGNO_P . The condition is not
necessarily checked exactly in the code that moves
notes, so just check both locations. */
rtx note = find_regno_note (insn, REG_DEAD, src_regno);
if (! note)
note = find_regno_note (store_insn, REG_DEAD, src_regno);
while (nr-- > 0)
{
spill_reg_store[src_regno + nr] = store_insn;
spill_reg_stored_to[src_regno + nr] = out;
reg_reloaded_contents[src_regno + nr] = nregno;
reg_reloaded_insn[src_regno + nr] = store_insn;
CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
if (note)
SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
else
CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
}
reg_last_reload_reg[nregno] = src_reg;
}
}
else
{
int num_regs = HARD_REGNO_NREGS (nregno,GET_MODE (reload_out[r]));
while (num_regs-- > 0)
reg_last_reload_reg[nregno + num_regs] = 0;
}
}
}
IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
}
/* Emit code to perform a reload from IN (which may be a reload register) to
OUT (which may also be a reload register). IN or OUT is from operand
OPNUM with reload type TYPE.
Returns first insn emitted. */
rtx
gen_reload (out, in, opnum, type)
rtx out;
rtx in;
int opnum;
enum reload_type type;
{
rtx last = get_last_insn ();
rtx tem;
/* If IN is a paradoxical SUBREG, remove it and try to put the
opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
if (GET_CODE (in) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (in))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
&& (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
in = SUBREG_REG (in), out = tem;
else if (GET_CODE (out) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (out))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
&& (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
out = SUBREG_REG (out), in = tem;
/* How to do this reload can get quite tricky. Normally, we are being
asked to reload a simple operand, such as a MEM, a constant, or a pseudo
register that didn't get a hard register. In that case we can just
call emit_move_insn.
We can also be asked to reload a PLUS that adds a register or a MEM to
another register, constant or MEM. This can occur during frame pointer
elimination and while reloading addresses. This case is handled by
trying to emit a single insn to perform the add. If it is not valid,
we use a two insn sequence.
Finally, we could be called to handle an 'o' constraint by putting
an address into a register. In that case, we first try to do this
with a named pattern of "reload_load_address". If no such pattern
exists, we just emit a SET insn and hope for the best (it will normally
be valid on machines that use 'o').
This entire process is made complex because reload will never
process the insns we generate here and so we must ensure that
they will fit their constraints and also by the fact that parts of
IN might be being reloaded separately and replaced with spill registers.
Because of this, we are, in some sense, just guessing the right approach
here. The one listed above seems to work.
??? At some point, this whole thing needs to be rethought. */
if (GET_CODE (in) == PLUS
&& (GET_CODE (XEXP (in, 0)) == REG
|| GET_CODE (XEXP (in, 0)) == SUBREG
|| GET_CODE (XEXP (in, 0)) == MEM)
&& (GET_CODE (XEXP (in, 1)) == REG
|| GET_CODE (XEXP (in, 1)) == SUBREG
|| CONSTANT_P (XEXP (in, 1))
|| GET_CODE (XEXP (in, 1)) == MEM))
{
/* We need to compute the sum of a register or a MEM and another
register, constant, or MEM, and put it into the reload
register. The best possible way of doing this is if the machine
has a three-operand ADD insn that accepts the required operands.
The simplest approach is to try to generate such an insn and see if it
is recognized and matches its constraints. If so, it can be used.
It might be better not to actually emit the insn unless it is valid,
but we need to pass the insn as an operand to `recog' and
`extract_insn' and it is simpler to emit and then delete the insn if
not valid than to dummy things up. */
rtx op0, op1, tem, insn;
int code;
op0 = find_replacement (&XEXP (in, 0));
op1 = find_replacement (&XEXP (in, 1));
/* Since constraint checking is strict, commutativity won't be
checked, so we need to do that here to avoid spurious failure
if the add instruction is two-address and the second operand
of the add is the same as the reload reg, which is frequently
the case. If the insn would be A = B + A, rearrange it so
it will be A = A + B as constrain_operands expects. */
if (GET_CODE (XEXP (in, 1)) == REG
&& REGNO (out) == REGNO (XEXP (in, 1)))
tem = op0, op0 = op1, op1 = tem;
if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
code = recog_memoized (insn);
if (code >= 0)
{
extract_insn (insn);
/* We want constrain operands to treat this insn strictly in
its validity determination, i.e., the way it would after reload
has completed. */
if (constrain_operands (1))
return insn;
}
delete_insns_since (last);
/* If that failed, we must use a conservative two-insn sequence.
use move to copy constant, MEM, or pseudo register to the reload
register since "move" will be able to handle an arbitrary operand,
unlike add which can't, in general. Then add the registers.
If there is another way to do this for a specific machine, a
DEFINE_PEEPHOLE should be specified that recognizes the sequence
we emit below. */
if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
|| (GET_CODE (op1) == REG
&& REGNO (op1) >= FIRST_PSEUDO_REGISTER))
tem = op0, op0 = op1, op1 = tem;
gen_reload (out, op0, opnum, type);
/* If OP0 and OP1 are the same, we can use OUT for OP1.
This fixes a problem on the 32K where the stack pointer cannot
be used as an operand of an add insn. */
if (rtx_equal_p (op0, op1))
op1 = out;
insn = emit_insn (gen_add2_insn (out, op1));
/* If that failed, copy the address register to the reload register.
Then add the constant to the reload register. */
code = recog_memoized (insn);
if (code >= 0)
{
extract_insn (insn);
/* We want constrain operands to treat this insn strictly in
its validity determination, i.e., the way it would after reload
has completed. */
if (constrain_operands (1))
{
/* Add a REG_EQUIV note so that find_equiv_reg can find it. */
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
return insn;
}
}
delete_insns_since (last);
gen_reload (out, op1, opnum, type);
insn = emit_insn (gen_add2_insn (out, op0));
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
}
#ifdef SECONDARY_MEMORY_NEEDED
/* If we need a memory location to do the move, do it that way. */
else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
&& GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
&& SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
REGNO_REG_CLASS (REGNO (out)),
GET_MODE (out)))
{
/* Get the memory to use and rewrite both registers to its mode. */
rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
if (GET_MODE (loc) != GET_MODE (out))
out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
if (GET_MODE (loc) != GET_MODE (in))
in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
gen_reload (loc, in, opnum, type);
gen_reload (out, loc, opnum, type);
}
#endif
/* If IN is a simple operand, use gen_move_insn. */
else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
emit_insn (gen_move_insn (out, in));
#ifdef HAVE_reload_load_address
else if (HAVE_reload_load_address)
emit_insn (gen_reload_load_address (out, in));
#endif
/* Otherwise, just write (set OUT IN) and hope for the best. */
else
emit_insn (gen_rtx_SET (VOIDmode, out, in));
/* Return the first insn emitted.
We can not just return get_last_insn, because there may have
been multiple instructions emitted. Also note that gen_move_insn may
emit more than one insn itself, so we can not assume that there is one
insn emitted per emit_insn_before call. */
return last ? NEXT_INSN (last) : get_insns ();
}
/* Delete a previously made output-reload
whose result we now believe is not needed.
First we double-check.
INSN is the insn now being processed.
LAST_RELOAD_REG is the hard register number for which we want to delete
the last output reload.
J is the reload-number that originally used REG. The caller has made
certain that reload J doesn't use REG any longer for input. */
static void
delete_output_reload (insn, j, last_reload_reg)
rtx insn;
int j;
int last_reload_reg;
{
rtx output_reload_insn = spill_reg_store[last_reload_reg];
rtx reg = spill_reg_stored_to[last_reload_reg];
int k;
int n_occurrences;
int n_inherited = 0;
register rtx i1;
rtx substed;
/* Get the raw pseudo-register referred to. */
while (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
substed = reg_equiv_memory_loc[REGNO (reg)];
/* This is unsafe if the operand occurs more often in the current
insn than it is inherited. */
for (k = n_reloads - 1; k >= 0; k--)
{
rtx reg2 = reload_in[k];
if (! reg2)
continue;
if (GET_CODE (reg2) == MEM || reload_override_in[k])
reg2 = reload_in_reg[k];
#ifdef AUTO_INC_DEC
if (reload_out[k] && ! reload_out_reg[k])
reg2 = XEXP (reload_in_reg[k], 0);
#endif
while (GET_CODE (reg2) == SUBREG)
reg2 = SUBREG_REG (reg2);
if (rtx_equal_p (reg2, reg))
{
if (reload_inherited[k] || reload_override_in[k] || k == j)
{
n_inherited++;
reg2 = reload_out_reg[k];
if (! reg2)
continue;
while (GET_CODE (reg2) == SUBREG)
reg2 = XEXP (reg2, 0);
if (rtx_equal_p (reg2, reg))
n_inherited++;
}
else
return;
}
}
n_occurrences = count_occurrences (PATTERN (insn), reg);
if (substed)
n_occurrences += count_occurrences (PATTERN (insn), substed);
if (n_occurrences > n_inherited)
return;
/* If the pseudo-reg we are reloading is no longer referenced
anywhere between the store into it and here,
and no jumps or labels intervene, then the value can get
here through the reload reg alone.
Otherwise, give up--return. */
for (i1 = NEXT_INSN (output_reload_insn);
i1 != insn; i1 = NEXT_INSN (i1))
{
if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
return;
if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
&& reg_mentioned_p (reg, PATTERN (i1)))
{
/* If this is USE in front of INSN, we only have to check that
there are no more references than accounted for by inheritance. */
while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
{
n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
i1 = NEXT_INSN (i1);
}
if (n_occurrences <= n_inherited && i1 == insn)
break;
return;
}
}
/* The caller has already checked that REG dies or is set in INSN.
It has also checked that we are optimizing, and thus some inaccurancies
in the debugging information are acceptable.
So we could just delete output_reload_insn.
But in some cases we can improve the debugging information without
sacrificing optimization - maybe even improving the code:
See if the pseudo reg has been completely replaced
with reload regs. If so, delete the store insn
and forget we had a stack slot for the pseudo. */
if (reload_out[j] != reload_in[j]
&& REG_N_DEATHS (REGNO (reg)) == 1
&& REG_N_SETS (REGNO (reg)) == 1
&& REG_BASIC_BLOCK (REGNO (reg)) >= 0
&& find_regno_note (insn, REG_DEAD, REGNO (reg)))
{
rtx i2;
/* We know that it was used only between here
and the beginning of the current basic block.
(We also know that the last use before INSN was
the output reload we are thinking of deleting, but never mind that.)
Search that range; see if any ref remains. */
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
{
rtx set = single_set (i2);
/* Uses which just store in the pseudo don't count,
since if they are the only uses, they are dead. */
if (set != 0 && SET_DEST (set) == reg)
continue;
if (GET_CODE (i2) == CODE_LABEL
|| GET_CODE (i2) == JUMP_INSN)
break;
if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
&& reg_mentioned_p (reg, PATTERN (i2)))
{
/* Some other ref remains; just delete the output reload we
know to be dead. */
delete_address_reloads (output_reload_insn, insn);
PUT_CODE (output_reload_insn, NOTE);
NOTE_SOURCE_FILE (output_reload_insn) = 0;
NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
return;
}
}
/* Delete the now-dead stores into this pseudo. */
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
{
rtx set = single_set (i2);
if (set != 0 && SET_DEST (set) == reg)
{
delete_address_reloads (i2, insn);
/* This might be a basic block head,
thus don't use delete_insn. */
PUT_CODE (i2, NOTE);
NOTE_SOURCE_FILE (i2) = 0;
NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
}
if (GET_CODE (i2) == CODE_LABEL
|| GET_CODE (i2) == JUMP_INSN)
break;
}
/* For the debugging info,
say the pseudo lives in this reload reg. */
reg_renumber[REGNO (reg)] = REGNO (reload_reg_rtx[j]);
alter_reg (REGNO (reg), -1);
}
delete_address_reloads (output_reload_insn, insn);
PUT_CODE (output_reload_insn, NOTE);
NOTE_SOURCE_FILE (output_reload_insn) = 0;
NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
}
/* We are going to delete DEAD_INSN. Recursively delete loads of
reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
CURRENT_INSN is being reloaded, so we have to check its reloads too. */
static void
delete_address_reloads (dead_insn, current_insn)
rtx dead_insn, current_insn;
{
rtx set = single_set (dead_insn);
rtx set2, dst, prev, next;
if (set)
{
rtx dst = SET_DEST (set);
if (GET_CODE (dst) == MEM)
delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
}
/* If we deleted the store from a reloaded post_{in,de}c expression,
we can delete the matching adds. */
prev = PREV_INSN (dead_insn);
next = NEXT_INSN (dead_insn);
if (! prev || ! next)
return;
set = single_set (next);
set2 = single_set (prev);
if (! set || ! set2
|| GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
|| GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
|| GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
return;
dst = SET_DEST (set);
if (! rtx_equal_p (dst, SET_DEST (set2))
|| ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
|| ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
|| (INTVAL (XEXP (SET_SRC (set), 1))
!= - INTVAL (XEXP (SET_SRC (set2), 1))))
return;
delete_insn (prev);
delete_insn (next);
}
/* Subfunction of delete_address_reloads: process registers found in X. */
static void
delete_address_reloads_1 (dead_insn, x, current_insn)
rtx dead_insn, x, current_insn;
{
rtx prev, set, dst, i2;
int i, j;
enum rtx_code code = GET_CODE (x);
if (code != REG)
{
char *fmt= GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >=0; j--)
delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
current_insn);
}
}
return;
}
if (spill_reg_order[REGNO (x)] < 0)
return;
/* Scan backwards for the insn that sets x. This might be a way back due
to inheritance. */
for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
{
code = GET_CODE (prev);
if (code == CODE_LABEL || code == JUMP_INSN)
return;
if (GET_RTX_CLASS (code) != 'i')
continue;
if (reg_set_p (x, PATTERN (prev)))
break;
if (reg_referenced_p (x, PATTERN (prev)))
return;
}
if (! prev || INSN_UID (prev) < reload_first_uid)
return;
/* Check that PREV only sets the reload register. */
set = single_set (prev);
if (! set)
return;
dst = SET_DEST (set);
if (GET_CODE (dst) != REG
|| ! rtx_equal_p (dst, x))
return;
if (! reg_set_p (dst, PATTERN (dead_insn)))
{
/* Check if DST was used in a later insn -
it might have been inherited. */
for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
{
if (GET_CODE (i2) == CODE_LABEL)
break;
if (GET_RTX_CLASS (GET_CODE (i2)) != 'i')
continue;
if (reg_referenced_p (dst, PATTERN (i2)))
{
/* If there is a reference to the register in the current insn,
it might be loaded in a non-inherited reload. If no other
reload uses it, that means the register is set before
referenced. */
if (i2 == current_insn)
{
for (j = n_reloads - 1; j >= 0; j--)
if ((reload_reg_rtx[j] == dst && reload_inherited[j])
|| reload_override_in[j] == dst)
return;
for (j = n_reloads - 1; j >= 0; j--)
if (reload_in[j] && reload_reg_rtx[j] == dst)
break;
if (j >= 0)
break;
}
return;
}
if (GET_CODE (i2) == JUMP_INSN)
break;
if (reg_set_p (dst, PATTERN (i2)))
break;
/* If DST is still live at CURRENT_INSN, check if it is used for
any reload. */
if (i2 == current_insn)
{
for (j = n_reloads - 1; j >= 0; j--)
if ((reload_reg_rtx[j] == dst && reload_inherited[j])
|| reload_override_in[j] == dst)
return;
/* ??? We can't finish the loop here, because dst might be
allocated to a pseudo in this block if no reload in this
block needs any of the clsses containing DST - see
spill_hard_reg. There is no easy way to tell this, so we
have to scan till the end of the basic block. */
}
}
}
delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
reg_reloaded_contents[REGNO (dst)] = -1;
/* Can't use delete_insn here because PREV might be a basic block head. */
PUT_CODE (prev, NOTE);
NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (prev) = 0;
}
/* Output reload-insns to reload VALUE into RELOADREG.
VALUE is an autoincrement or autodecrement RTX whose operand
is a register or memory location;
so reloading involves incrementing that location.
IN is either identical to VALUE, or some cheaper place to reload from.
INC_AMOUNT is the number to increment or decrement by (always positive).
This cannot be deduced from VALUE.
Return the instruction that stores into RELOADREG. */
static rtx
inc_for_reload (reloadreg, in, value, inc_amount)
rtx reloadreg;
rtx in, value;
int inc_amount;
{
/* REG or MEM to be copied and incremented. */
rtx incloc = XEXP (value, 0);
/* Nonzero if increment after copying. */
int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
rtx last;
rtx inc;
rtx add_insn;
int code;
rtx store;
rtx real_in = in == value ? XEXP (in, 0) : in;
/* No hard register is equivalent to this register after
inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
we could inc/dec that register as well (maybe even using it for
the source), but I'm not sure it's worth worrying about. */
if (GET_CODE (incloc) == REG)
reg_last_reload_reg[REGNO (incloc)] = 0;
if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
inc_amount = - inc_amount;
inc = GEN_INT (inc_amount);
/* If this is post-increment, first copy the location to the reload reg. */
if (post && real_in != reloadreg)
emit_insn (gen_move_insn (reloadreg, real_in));
if (in == value)
{
/* See if we can directly increment INCLOC. Use a method similar to
that in gen_reload. */
last = get_last_insn ();
add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
gen_rtx_PLUS (GET_MODE (incloc),
incloc, inc)));
code = recog_memoized (add_insn);
if (code >= 0)
{
extract_insn (add_insn);
if (constrain_operands (1))
{
/* If this is a pre-increment and we have incremented the value
where it lives, copy the incremented value to RELOADREG to
be used as an address. */
if (! post)
emit_insn (gen_move_insn (reloadreg, incloc));
return add_insn;
}
}
delete_insns_since (last);
}
/* If couldn't do the increment directly, must increment in RELOADREG.
The way we do this depends on whether this is pre- or post-increment.
For pre-increment, copy INCLOC to the reload register, increment it
there, then save back. */
if (! post)
{
if (in != reloadreg)
emit_insn (gen_move_insn (reloadreg, real_in));
emit_insn (gen_add2_insn (reloadreg, inc));
store = emit_insn (gen_move_insn (incloc, reloadreg));
}
else
{
/* Postincrement.
Because this might be a jump insn or a compare, and because RELOADREG
may not be available after the insn in an input reload, we must do
the incrementation before the insn being reloaded for.
We have already copied IN to RELOADREG. Increment the copy in
RELOADREG, save that back, then decrement RELOADREG so it has
the original value. */
emit_insn (gen_add2_insn (reloadreg, inc));
store = emit_insn (gen_move_insn (incloc, reloadreg));
emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
}
return store;
}
/* Return 1 if we are certain that the constraint-string STRING allows
the hard register REG. Return 0 if we can't be sure of this. */
static int
constraint_accepts_reg_p (string, reg)
char *string;
rtx reg;
{
int value = 0;
int regno = true_regnum (reg);
int c;
/* Initialize for first alternative. */
value = 0;
/* Check that each alternative contains `g' or `r'. */
while (1)
switch (c = *string++)
{
case 0:
/* If an alternative lacks `g' or `r', we lose. */
return value;
case ',':
/* If an alternative lacks `g' or `r', we lose. */
if (value == 0)
return 0;
/* Initialize for next alternative. */
value = 0;
break;
case 'g':
case 'r':
/* Any general reg wins for this alternative. */
if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
value = 1;
break;
default:
/* Any reg in specified class wins for this alternative. */
{
enum reg_class class = REG_CLASS_FROM_LETTER (c);
if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
value = 1;
}
}
}
/* Return the number of places FIND appears within X, but don't count
an occurrence if some SET_DEST is FIND. */
int
count_occurrences (x, find)
register rtx x, find;
{
register int i, j;
register enum rtx_code code;
register char *format_ptr;
int count;
if (x == find)
return 1;
if (x == 0)
return 0;
code = GET_CODE (x);
switch (code)
{
case REG:
case QUEUED:
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
case CC0:
return 0;
case MEM:
if (GET_CODE (find) == MEM && rtx_equal_p (x, find))
return 1;
break;
case SET:
if (SET_DEST (x) == find)
return count_occurrences (SET_SRC (x), find);
break;
default:
break;
}
format_ptr = GET_RTX_FORMAT (code);
count = 0;
for (i = 0; i < GET_RTX_LENGTH (code); i++)
{
switch (*format_ptr++)
{
case 'e':
count += count_occurrences (XEXP (x, i), find);
break;
case 'E':
if (XVEC (x, i) != NULL)
{
for (j = 0; j < XVECLEN (x, i); j++)
count += count_occurrences (XVECEXP (x, i, j), find);
}
break;
}
}
return count;
}
/* This array holds values which are equivalent to a hard register
during reload_cse_regs. Each array element is an EXPR_LIST of
values. Each time a hard register is set, we set the corresponding
array element to the value. Each time a hard register is copied
into memory, we add the memory location to the corresponding array
element. We don't store values or memory addresses with side
effects in this array.
If the value is a CONST_INT, then the mode of the containing
EXPR_LIST is the mode in which that CONST_INT was referenced.
We sometimes clobber a specific entry in a list. In that case, we
just set XEXP (list-entry, 0) to 0. */
static rtx *reg_values;
/* This is a preallocated REG rtx which we use as a temporary in
reload_cse_invalidate_regno, so that we don't need to allocate a
new one each time through a loop in that function. */
static rtx invalidate_regno_rtx;
/* Invalidate any entries in reg_values which depend on REGNO,
including those for REGNO itself. This is called if REGNO is
changing. If CLOBBER is true, then always forget anything we
currently know about REGNO. MODE is the mode of the assignment to
REGNO, which is used to determine how many hard registers are being
changed. If MODE is VOIDmode, then only REGNO is being changed;
this is used when invalidating call clobbered registers across a
call. */
static void
reload_cse_invalidate_regno (regno, mode, clobber)
int regno;
enum machine_mode mode;
int clobber;
{
int endregno;
register int i;
/* Our callers don't always go through true_regnum; we may see a
pseudo-register here from a CLOBBER or the like. We probably
won't ever see a pseudo-register that has a real register number,
for we check anyhow for safety. */
if (regno >= FIRST_PSEUDO_REGISTER)
regno = reg_renumber[regno];
if (regno < 0)
return;
if (mode == VOIDmode)
endregno = regno + 1;
else
endregno = regno + HARD_REGNO_NREGS (regno, mode);
if (clobber)
for (i = regno; i < endregno; i++)
reg_values[i] = 0;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
rtx x;
for (x = reg_values[i]; x; x = XEXP (x, 1))
{
if (XEXP (x, 0) != 0
&& refers_to_regno_p (regno, endregno, XEXP (x, 0), NULL_PTR))
{
/* If this is the only entry on the list, clear
reg_values[i]. Otherwise, just clear this entry on
the list. */
if (XEXP (x, 1) == 0 && x == reg_values[i])
{
reg_values[i] = 0;
break;
}
XEXP (x, 0) = 0;
}
}
}
/* We must look at earlier registers, in case REGNO is part of a
multi word value but is not the first register. If an earlier
register has a value in a mode which overlaps REGNO, then we must
invalidate that earlier register. Note that we do not need to
check REGNO or later registers (we must not check REGNO itself,
because we would incorrectly conclude that there was a conflict). */
for (i = 0; i < regno; i++)
{
rtx x;
for (x = reg_values[i]; x; x = XEXP (x, 1))
{
if (XEXP (x, 0) != 0)
{
PUT_MODE (invalidate_regno_rtx, GET_MODE (x));
REGNO (invalidate_regno_rtx) = i;
if (refers_to_regno_p (regno, endregno, invalidate_regno_rtx,
NULL_PTR))
{
reload_cse_invalidate_regno (i, VOIDmode, 1);
break;
}
}
}
}
}
/* The memory at address MEM_BASE is being changed.
Return whether this change will invalidate VAL. */
static int
reload_cse_mem_conflict_p (mem_base, val)
rtx mem_base;
rtx val;
{
enum rtx_code code;
char *fmt;
int i;
code = GET_CODE (val);
switch (code)
{
/* Get rid of a few simple cases quickly. */
case REG:
case PC:
case CC0:
case SCRATCH:
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case LABEL_REF:
return 0;
case MEM:
if (GET_MODE (mem_base) == BLKmode
|| GET_MODE (val) == BLKmode)
return 1;
if (anti_dependence (val, mem_base))
return 1;
/* The address may contain nested MEMs. */
break;
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (reload_cse_mem_conflict_p (mem_base, XEXP (val, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (val, i); j++)
if (reload_cse_mem_conflict_p (mem_base, XVECEXP (val, i, j)))
return 1;
}
}
return 0;
}
/* Invalidate any entries in reg_values which are changed because of a
store to MEM_RTX. If this is called because of a non-const call
instruction, MEM_RTX is (mem:BLK const0_rtx). */
static void
reload_cse_invalidate_mem (mem_rtx)
rtx mem_rtx;
{
register int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
rtx x;
for (x = reg_values[i]; x; x = XEXP (x, 1))
{
if (XEXP (x, 0) != 0
&& reload_cse_mem_conflict_p (mem_rtx, XEXP (x, 0)))
{
/* If this is the only entry on the list, clear
reg_values[i]. Otherwise, just clear this entry on
the list. */
if (XEXP (x, 1) == 0 && x == reg_values[i])
{
reg_values[i] = 0;
break;
}
XEXP (x, 0) = 0;
}
}
}
}
/* Invalidate DEST, which is being assigned to or clobbered. The
second parameter exists so that this function can be passed to
note_stores; it is ignored. */
static void
reload_cse_invalidate_rtx (dest, ignore)
rtx dest;
rtx ignore ATTRIBUTE_UNUSED;
{
while (GET_CODE (dest) == STRICT_LOW_PART
|| GET_CODE (dest) == SIGN_EXTRACT
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == SUBREG)
dest = XEXP (dest, 0);
if (GET_CODE (dest) == REG)
reload_cse_invalidate_regno (REGNO (dest), GET_MODE (dest), 1);
else if (GET_CODE (dest) == MEM)
reload_cse_invalidate_mem (dest);
}
/* Do a very simple CSE pass over the hard registers.
This function detects no-op moves where we happened to assign two
different pseudo-registers to the same hard register, and then
copied one to the other. Reload will generate a useless
instruction copying a register to itself.
This function also detects cases where we load a value from memory
into two different registers, and (if memory is more expensive than
registers) changes it to simply copy the first register into the
second register.
Another optimization is performed that scans the operands of each
instruction to see whether the value is already available in a
hard register. It then replaces the operand with the hard register
if possible, much like an optional reload would. */
static void
reload_cse_regs_1 (first)
rtx first;
{
char *firstobj;
rtx callmem;
register int i;
rtx insn;
init_alias_analysis ();
reg_values = (rtx *) alloca (FIRST_PSEUDO_REGISTER * sizeof (rtx));
bzero ((char *)reg_values, FIRST_PSEUDO_REGISTER * sizeof (rtx));
/* Create our EXPR_LIST structures on reload_obstack, so that we can
free them when we are done. */
push_obstacks (&reload_obstack, &reload_obstack);
firstobj = (char *) obstack_alloc (&reload_obstack, 0);
/* We pass this to reload_cse_invalidate_mem to invalidate all of
memory for a non-const call instruction. */
callmem = gen_rtx_MEM (BLKmode, const0_rtx);
/* This is used in reload_cse_invalidate_regno to avoid consing a
new REG in a loop in that function. */
invalidate_regno_rtx = gen_rtx_REG (VOIDmode, 0);
for (insn = first; insn; insn = NEXT_INSN (insn))
{
rtx body;
if (GET_CODE (insn) == CODE_LABEL)
{
/* Forget all the register values at a code label. We don't
try to do anything clever around jumps. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
reg_values[i] = 0;
continue;
}
#ifdef NON_SAVING_SETJMP
if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
{
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
reg_values[i] = 0;
continue;
}
#endif
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
continue;
/* If this is a call instruction, forget anything stored in a
call clobbered register, or, if this is not a const call, in
memory. */
if (GET_CODE (insn) == CALL_INSN)
{
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (call_used_regs[i])
reload_cse_invalidate_regno (i, VOIDmode, 1);
if (! CONST_CALL_P (insn))
reload_cse_invalidate_mem (callmem);
}
body = PATTERN (insn);
if (GET_CODE (body) == SET)
{
int count = 0;
if (reload_cse_noop_set_p (body, insn))
{
/* If this sets the return value of the function, we must keep
a USE around, in case this is in a different basic block
than the final USE. Otherwise, we could loose important
register lifeness information on SMALL_REGISTER_CLASSES
machines, where return registers might be used as spills:
subsequent passes assume that spill registers are dead at
the end of a basic block. */
if (REG_FUNCTION_VALUE_P (SET_DEST (body)))
{
pop_obstacks ();
PATTERN (insn) = gen_rtx_USE (VOIDmode, SET_DEST (body));
INSN_CODE (insn) = -1;
REG_NOTES (insn) = NULL_RTX;
push_obstacks (&reload_obstack, &reload_obstack);
}
else
{
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
}
/* We're done with this insn. */
continue;
}
/* It's not a no-op, but we can try to simplify it. */
count += reload_cse_simplify_set (body, insn);
if (count > 0)
apply_change_group ();
else
reload_cse_simplify_operands (insn);
reload_cse_record_set (body, body);
}
else if (GET_CODE (body) == PARALLEL)
{
int count = 0;
rtx value = NULL_RTX;
/* If every action in a PARALLEL is a noop, we can delete
the entire PARALLEL. */
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
{
rtx part = XVECEXP (body, 0, i);
if (GET_CODE (part) == SET)
{
if (! reload_cse_noop_set_p (part, insn))
break;
if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
{
if (value)
break;
value = SET_DEST (part);
}
}
else if (GET_CODE (part) != CLOBBER)
break;
}
if (i < 0)
{
if (value)
{
pop_obstacks ();
PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
INSN_CODE (insn) = -1;
REG_NOTES (insn) = NULL_RTX;
push_obstacks (&reload_obstack, &reload_obstack);
}
else
{
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
}
/* We're done with this insn. */
continue;
}
/* It's not a no-op, but we can try to simplify it. */
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
if (GET_CODE (XVECEXP (body, 0, i)) == SET)
count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
if (count > 0)
apply_change_group ();
else
reload_cse_simplify_operands (insn);
/* Look through the PARALLEL and record the values being
set, if possible. Also handle any CLOBBERs. */
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
{
rtx x = XVECEXP (body, 0, i);
if (GET_CODE (x) == SET)
reload_cse_record_set (x, body);
else
note_stores (x, reload_cse_invalidate_rtx);
}
}
else
note_stores (body, reload_cse_invalidate_rtx);
#ifdef AUTO_INC_DEC
/* Clobber any registers which appear in REG_INC notes. We
could keep track of the changes to their values, but it is
unlikely to help. */
{
rtx x;
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
if (REG_NOTE_KIND (x) == REG_INC)
reload_cse_invalidate_rtx (XEXP (x, 0), NULL_RTX);
}
#endif
/* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
after we have processed the insn. */
if (GET_CODE (insn) == CALL_INSN)
{
rtx x;
for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
if (GET_CODE (XEXP (x, 0)) == CLOBBER)
reload_cse_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX);
}
}
/* Free all the temporary structures we created, and go back to the
regular obstacks. */
obstack_free (&reload_obstack, firstobj);
pop_obstacks ();
}
/* Call cse / combine like post-reload optimization phases.
FIRST is the first instruction. */
void
reload_cse_regs (first)
rtx first;
{
reload_cse_regs_1 (first);
reload_combine ();
reload_cse_move2add (first);
if (flag_expensive_optimizations)
reload_cse_regs_1 (first);
}
/* Return whether the values known for REGNO are equal to VAL. MODE
is the mode of the object that VAL is being copied to; this matters
if VAL is a CONST_INT. */
static int
reload_cse_regno_equal_p (regno, val, mode)
int regno;
rtx val;
enum machine_mode mode;
{
rtx x;
if (val == 0)
return 0;
for (x = reg_values[regno]; x; x = XEXP (x, 1))
if (XEXP (x, 0) != 0
&& rtx_equal_p (XEXP (x, 0), val)
&& (! flag_float_store || GET_CODE (XEXP (x, 0)) != MEM
|| GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT)
&& (GET_CODE (val) != CONST_INT
|| mode == GET_MODE (x)
|| (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
/* On a big endian machine if the value spans more than
one register then this register holds the high part of
it and we can't use it.
??? We should also compare with the high part of the
value. */
&& !(WORDS_BIG_ENDIAN
&& HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
GET_MODE_BITSIZE (GET_MODE (x))))))
return 1;
return 0;
}
/* See whether a single set is a noop. SET is the set instruction we
are should check, and INSN is the instruction from which it came. */
static int
reload_cse_noop_set_p (set, insn)
rtx set;
rtx insn;
{
rtx src, dest;
enum machine_mode dest_mode;
int dreg, sreg;
int ret;
src = SET_SRC (set);
dest = SET_DEST (set);
dest_mode = GET_MODE (dest);
if (side_effects_p (src))
return 0;
dreg = true_regnum (dest);
sreg = true_regnum (src);
/* Check for setting a register to itself. In this case, we don't
have to worry about REG_DEAD notes. */
if (dreg >= 0 && dreg == sreg)
return 1;
ret = 0;
if (dreg >= 0)
{
/* Check for setting a register to itself. */
if (dreg == sreg)
ret = 1;
/* Check for setting a register to a value which we already know
is in the register. */
else if (reload_cse_regno_equal_p (dreg, src, dest_mode))
ret = 1;
/* Check for setting a register DREG to another register SREG
where SREG is equal to a value which is already in DREG. */
else if (sreg >= 0)
{
rtx x;
for (x = reg_values[sreg]; x; x = XEXP (x, 1))
{
rtx tmp;
if (XEXP (x, 0) == 0)
continue;
if (dest_mode == GET_MODE (x))
tmp = XEXP (x, 0);
else if (GET_MODE_BITSIZE (dest_mode)
< GET_MODE_BITSIZE (GET_MODE (x)))
tmp = gen_lowpart_common (dest_mode, XEXP (x, 0));
else
continue;
if (tmp
&& reload_cse_regno_equal_p (dreg, tmp, dest_mode))
{
ret = 1;
break;
}
}
}
}
else if (GET_CODE (dest) == MEM)
{
/* Check for storing a register to memory when we know that the
register is equivalent to the memory location. */
if (sreg >= 0
&& reload_cse_regno_equal_p (sreg, dest, dest_mode)
&& ! side_effects_p (dest))
ret = 1;
}
return ret;
}
/* Try to simplify a single SET instruction. SET is the set pattern.
INSN is the instruction it came from.
This function only handles one case: if we set a register to a value
which is not a register, we try to find that value in some other register
and change the set into a register copy. */
static int
reload_cse_simplify_set (set, insn)
rtx set;
rtx insn;
{
int dreg;
rtx src;
enum machine_mode dest_mode;
enum reg_class dclass;
register int i;
dreg = true_regnum (SET_DEST (set));
if (dreg < 0)
return 0;
src = SET_SRC (set);
if (side_effects_p (src) || true_regnum (src) >= 0)
return 0;
dclass = REGNO_REG_CLASS (dreg);
/* If memory loads are cheaper than register copies, don't change them. */
if (GET_CODE (src) == MEM
&& MEMORY_MOVE_COST (GET_MODE (src), dclass, 1) < 2)
return 0;
/* If the constant is cheaper than a register, don't change it. */
if (CONSTANT_P (src)
&& rtx_cost (src, SET) < 2)
return 0;
dest_mode = GET_MODE (SET_DEST (set));
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (i != dreg
&& REGISTER_MOVE_COST (REGNO_REG_CLASS (i), dclass) == 2
&& reload_cse_regno_equal_p (i, src, dest_mode))
{
int validated;
/* Pop back to the real obstacks while changing the insn. */
pop_obstacks ();
validated = validate_change (insn, &SET_SRC (set),
gen_rtx_REG (dest_mode, i), 1);
/* Go back to the obstack we are using for temporary
storage. */
push_obstacks (&reload_obstack, &reload_obstack);
if (validated)
return 1;
}
}
return 0;
}
/* Try to replace operands in INSN with equivalent values that are already
in registers. This can be viewed as optional reloading.
For each non-register operand in the insn, see if any hard regs are
known to be equivalent to that operand. Record the alternatives which
can accept these hard registers. Among all alternatives, select the
ones which are better or equal to the one currently matching, where
"better" is in terms of '?' and '!' constraints. Among the remaining
alternatives, select the one which replaces most operands with
hard registers. */
static int
reload_cse_simplify_operands (insn)
rtx insn;
{
#ifdef REGISTER_CONSTRAINTS
int i,j;
char *constraints[MAX_RECOG_OPERANDS];
/* Vector recording how bad an alternative is. */
int *alternative_reject;
/* Vector recording how many registers can be introduced by choosing
this alternative. */
int *alternative_nregs;
/* Array of vectors recording, for each operand and each alternative,
which hard register to substitute, or -1 if the operand should be
left as it is. */
int *op_alt_regno[MAX_RECOG_OPERANDS];
/* Array of alternatives, sorted in order of decreasing desirability. */
int *alternative_order;
rtx reg = gen_rtx_REG (VOIDmode, -1);
extract_insn (insn);
if (recog_n_alternatives == 0 || recog_n_operands == 0)
return 0;
/* Figure out which alternative currently matches. */
if (! constrain_operands (1))
fatal_insn_not_found (insn);
alternative_reject = (int *) alloca (recog_n_alternatives * sizeof (int));
alternative_nregs = (int *) alloca (recog_n_alternatives * sizeof (int));
alternative_order = (int *) alloca (recog_n_alternatives * sizeof (int));
bzero ((char *)alternative_reject, recog_n_alternatives * sizeof (int));
bzero ((char *)alternative_nregs, recog_n_alternatives * sizeof (int));
for (i = 0; i < recog_n_operands; i++)
{
enum machine_mode mode;
int regno;
char *p;
op_alt_regno[i] = (int *) alloca (recog_n_alternatives * sizeof (int));
for (j = 0; j < recog_n_alternatives; j++)
op_alt_regno[i][j] = -1;
p = constraints[i] = recog_constraints[i];
mode = recog_operand_mode[i];
/* Add the reject values for each alternative given by the constraints
for this operand. */
j = 0;
while (*p != '\0')
{
char c = *p++;
if (c == ',')
j++;
else if (c == '?')
alternative_reject[j] += 3;
else if (c == '!')
alternative_reject[j] += 300;
}
/* We won't change operands which are already registers. We
also don't want to modify output operands. */
regno = true_regnum (recog_operand[i]);
if (regno >= 0
|| constraints[i][0] == '='
|| constraints[i][0] == '+')
continue;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
int class = (int) NO_REGS;
if (! reload_cse_regno_equal_p (regno, recog_operand[i], mode))
continue;
REGNO (reg) = regno;
PUT_MODE (reg, mode);
/* We found a register equal to this operand. Now look for all
alternatives that can accept this register and have not been
assigned a register they can use yet. */
j = 0;
p = constraints[i];
for (;;)
{
char c = *p++;
switch (c)
{
case '=': case '+': case '?':
case '#': case '&': case '!':
case '*': case '%':
case '0': case '1': case '2': case '3': case '4':
case 'm': case '<': case '>': case 'V': case 'o':
case 'E': case 'F': case 'G': case 'H':
case 's': case 'i': case 'n':
case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'O': case 'P':
#ifdef EXTRA_CONSTRAINT
case 'Q': case 'R': case 'S': case 'T': case 'U':
#endif
case 'p': case 'X':
/* These don't say anything we care about. */
break;
case 'g': case 'r':
class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
break;
default:
class
= reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
break;
case ',': case '\0':
/* See if REGNO fits this alternative, and set it up as the
replacement register if we don't have one for this
alternative yet and the operand being replaced is not
a cheap CONST_INT. */
if (op_alt_regno[i][j] == -1
&& reg_fits_class_p (reg, class, 0, mode)
&& (GET_CODE (recog_operand[i]) != CONST_INT
|| rtx_cost (recog_operand[i], SET) > rtx_cost (reg, SET)))
{
alternative_nregs[j]++;
op_alt_regno[i][j] = regno;
}
j++;
break;
}
if (c == '\0')
break;
}
}
}
/* Record all alternatives which are better or equal to the currently
matching one in the alternative_order array. */
for (i = j = 0; i < recog_n_alternatives; i++)
if (alternative_reject[i] <= alternative_reject[which_alternative])
alternative_order[j++] = i;
recog_n_alternatives = j;
/* Sort it. Given a small number of alternatives, a dumb algorithm
won't hurt too much. */
for (i = 0; i < recog_n_alternatives - 1; i++)
{
int best = i;
int best_reject = alternative_reject[alternative_order[i]];
int best_nregs = alternative_nregs[alternative_order[i]];
int tmp;
for (j = i + 1; j < recog_n_alternatives; j++)
{
int this_reject = alternative_reject[alternative_order[j]];
int this_nregs = alternative_nregs[alternative_order[j]];
if (this_reject < best_reject
|| (this_reject == best_reject && this_nregs < best_nregs))
{
best = j;
best_reject = this_reject;
best_nregs = this_nregs;
}
}
tmp = alternative_order[best];
alternative_order[best] = alternative_order[i];
alternative_order[i] = tmp;
}
/* Substitute the operands as determined by op_alt_regno for the best
alternative. */
j = alternative_order[0];
/* Pop back to the real obstacks while changing the insn. */
pop_obstacks ();
for (i = 0; i < recog_n_operands; i++)
{
enum machine_mode mode = recog_operand_mode[i];
if (op_alt_regno[i][j] == -1)
continue;
validate_change (insn, recog_operand_loc[i],
gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
}
for (i = recog_n_dups - 1; i >= 0; i--)
{
int op = recog_dup_num[i];
enum machine_mode mode = recog_operand_mode[op];
if (op_alt_regno[op][j] == -1)
continue;
validate_change (insn, recog_dup_loc[i],
gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
}
/* Go back to the obstack we are using for temporary
storage. */
push_obstacks (&reload_obstack, &reload_obstack);
return apply_change_group ();
#else
return 0;
#endif
}
/* These two variables are used to pass information from
reload_cse_record_set to reload_cse_check_clobber. */
static int reload_cse_check_clobbered;
static rtx reload_cse_check_src;
/* See if DEST overlaps with RELOAD_CSE_CHECK_SRC. If it does, set
RELOAD_CSE_CHECK_CLOBBERED. This is called via note_stores. The
second argument, which is passed by note_stores, is ignored. */
static void
reload_cse_check_clobber (dest, ignore)
rtx dest;
rtx ignore ATTRIBUTE_UNUSED;
{
if (reg_overlap_mentioned_p (dest, reload_cse_check_src))
reload_cse_check_clobbered = 1;
}
/* Record the result of a SET instruction. SET is the set pattern.
BODY is the pattern of the insn that it came from. */
static void
reload_cse_record_set (set, body)
rtx set;
rtx body;
{
rtx dest, src, x;
int dreg, sreg;
enum machine_mode dest_mode;
dest = SET_DEST (set);
src = SET_SRC (set);
dreg = true_regnum (dest);
sreg = true_regnum (src);
dest_mode = GET_MODE (dest);
/* Some machines don't define AUTO_INC_DEC, but they still use push
instructions. We need to catch that case here in order to
invalidate the stack pointer correctly. Note that invalidating
the stack pointer is different from invalidating DEST. */
x = dest;
while (GET_CODE (x) == SUBREG
|| GET_CODE (x) == ZERO_EXTRACT
|| GET_CODE (x) == SIGN_EXTRACT
|| GET_CODE (x) == STRICT_LOW_PART)
x = XEXP (x, 0);
if (push_operand (x, GET_MODE (x)))
{
reload_cse_invalidate_rtx (stack_pointer_rtx, NULL_RTX);
reload_cse_invalidate_rtx (dest, NULL_RTX);
return;
}
/* We can only handle an assignment to a register, or a store of a
register to a memory location. For other cases, we just clobber
the destination. We also have to just clobber if there are side
effects in SRC or DEST. */
if ((dreg < 0 && GET_CODE (dest) != MEM)
|| side_effects_p (src)
|| side_effects_p (dest))
{
reload_cse_invalidate_rtx (dest, NULL_RTX);
return;
}
#ifdef HAVE_cc0
/* We don't try to handle values involving CC, because it's a pain
to keep track of when they have to be invalidated. */
if (reg_mentioned_p (cc0_rtx, src)
|| reg_mentioned_p (cc0_rtx, dest))
{
reload_cse_invalidate_rtx (dest, NULL_RTX);
return;
}
#endif
/* If BODY is a PARALLEL, then we need to see whether the source of
SET is clobbered by some other instruction in the PARALLEL. */
if (GET_CODE (body) == PARALLEL)
{
int i;
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
{
rtx x;
x = XVECEXP (body, 0, i);
if (x == set)
continue;
reload_cse_check_clobbered = 0;
reload_cse_check_src = src;
note_stores (x, reload_cse_check_clobber);
if (reload_cse_check_clobbered)
{
reload_cse_invalidate_rtx (dest, NULL_RTX);
return;
}
}
}
if (dreg >= 0)
{
int i;
/* This is an assignment to a register. Update the value we
have stored for the register. */
if (sreg >= 0)
{
rtx x;
/* This is a copy from one register to another. Any values
which were valid for SREG are now valid for DREG. If the
mode changes, we use gen_lowpart_common to extract only
the part of the value that is copied. */
reg_values[dreg] = 0;
for (x = reg_values[sreg]; x; x = XEXP (x, 1))
{
rtx tmp;
if (XEXP (x, 0) == 0)
continue;
if (dest_mode == GET_MODE (XEXP (x, 0)))
tmp = XEXP (x, 0);
else if (GET_MODE_BITSIZE (dest_mode)
> GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
continue;
else
tmp = gen_lowpart_common (dest_mode, XEXP (x, 0));
if (tmp)
reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, tmp,
reg_values[dreg]);
}
}
else
reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, src, NULL_RTX);
/* We've changed DREG, so invalidate any values held by other
registers that depend upon it. */
reload_cse_invalidate_regno (dreg, dest_mode, 0);
/* If this assignment changes more than one hard register,
forget anything we know about the others. */
for (i = 1; i < HARD_REGNO_NREGS (dreg, dest_mode); i++)
reg_values[dreg + i] = 0;
}
else if (GET_CODE (dest) == MEM)
{
/* Invalidate conflicting memory locations. */
reload_cse_invalidate_mem (dest);
/* If we're storing a register to memory, add DEST to the list
in REG_VALUES. */
if (sreg >= 0 && ! side_effects_p (dest))
reg_values[sreg] = gen_rtx_EXPR_LIST (dest_mode, dest,
reg_values[sreg]);
}
else
{
/* We should have bailed out earlier. */
abort ();
}
}
/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
addressing now.
This code might also be useful when reload gave up on reg+reg addresssing
because of clashes between the return register and INDEX_REG_CLASS. */
/* The maximum number of uses of a register we can keep track of to
replace them with reg+reg addressing. */
#define RELOAD_COMBINE_MAX_USES 6
/* INSN is the insn where a register has ben used, and USEP points to the
location of the register within the rtl. */
struct reg_use { rtx insn, *usep; };
/* If the register is used in some unknown fashion, USE_INDEX is negative.
If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
indicates where it becomes live again.
Otherwise, USE_INDEX is the index of the last encountered use of the
register (which is first among these we have seen since we scan backwards),
OFFSET contains the constant offset that is added to the register in
all encountered uses, and USE_RUID indicates the first encountered, i.e.
last, of these uses. */
static struct
{
struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
int use_index;
rtx offset;
int store_ruid;
int use_ruid;
} reg_state[FIRST_PSEUDO_REGISTER];
/* Reverse linear uid. This is increased in reload_combine while scanning
the instructions from last to first. It is used to set last_label_ruid
and the store_ruid / use_ruid fields in reg_state. */
static int reload_combine_ruid;
static void
reload_combine ()
{
rtx insn, set;
int first_index_reg = 1, last_index_reg = 0;
int i;
int last_label_ruid;
/* If reg+reg can be used in offsetable memory adresses, the main chunk of
reload has already used it where appropriate, so there is no use in
trying to generate it now. */
if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
return;
/* To avoid wasting too much time later searching for an index register,
determine the minimum and maximum index register numbers. */
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
{
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i))
{
if (! last_index_reg)
last_index_reg = i;
first_index_reg = i;
}
}
/* If no index register is available, we can quit now. */
if (first_index_reg > last_index_reg)
return;
/* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
last_label_ruid = reload_combine_ruid = 0;
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
{
if (fixed_regs[i])
reg_state[i].use_index = -1;
else
{
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
reg_state[i].store_ruid = reload_combine_ruid;
}
}
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
{
rtx note;
/* We cannot do our optimization across labels. Invalidating all the use
information we have would be costly, so we just note where the label
is and then later disable any optimization that would cross it. */
if (GET_CODE (insn) == CODE_LABEL)
last_label_ruid = reload_combine_ruid;
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
continue;
reload_combine_ruid++;
/* Look for (set (REGX) (CONST_INT))
(set (REGX) (PLUS (REGX) (REGY)))
...
... (MEM (REGX)) ...
and convert it to
(set (REGZ) (CONST_INT))
...
... (MEM (PLUS (REGZ) (REGY)))... .
First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
and that we know all uses of REGX before it dies. */
set = single_set (insn);
if (set != NULL_RTX
&& GET_CODE (SET_DEST (set)) == REG
&& (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
GET_MODE (SET_DEST (set)))
== 1)
&& GET_CODE (SET_SRC (set)) == PLUS
&& GET_CODE (XEXP (SET_SRC (set), 1)) == REG
&& rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
&& last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
{
rtx reg = SET_DEST (set);
rtx plus = SET_SRC (set);
rtx base = XEXP (plus, 1);
rtx prev = prev_nonnote_insn (insn);
rtx prev_set = prev ? single_set (prev) : NULL_RTX;
int regno = REGNO (reg);
rtx const_reg;
rtx reg_sum = NULL_RTX;
/* Now, we need an index register.
We'll set index_reg to this index register, const_reg to the
register that is to be loaded with the constant
(denoted as REGZ in the substitution illustration above),
and reg_sum to the register-register that we want to use to
substitute uses of REG (typically in MEMs) with.
First check REG and BASE for being index registers;
we can use them even if they are not dead. */
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
|| TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
REGNO (base)))
{
const_reg = reg;
reg_sum = plus;
}
else
{
/* Otherwise, look for a free index register. Since we have
checked above that neiter REG nor BASE are index registers,
if we find anything at all, it will be different from these
two registers. */
for (i = first_index_reg; i <= last_index_reg; i++)
{
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
&& reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
&& reg_state[i].store_ruid <= reg_state[regno].use_ruid
&& HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
{
rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
const_reg = index_reg;
reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
break;
}
}
}
if (prev_set
&& GET_CODE (SET_SRC (prev_set)) == CONST_INT
&& rtx_equal_p (SET_DEST (prev_set), reg)
&& reg_state[regno].use_index >= 0
&& reg_sum)
{
int i;
/* Change destination register and - if necessary - the
constant value in PREV, the constant loading instruction. */
validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
if (reg_state[regno].offset != const0_rtx)
validate_change (prev,
&SET_SRC (prev_set),
GEN_INT (INTVAL (SET_SRC (prev_set))
+ INTVAL (reg_state[regno].offset)),
1);
/* Now for every use of REG that we have recorded, replace REG
with REG_SUM. */
for (i = reg_state[regno].use_index;
i < RELOAD_COMBINE_MAX_USES; i++)
validate_change (reg_state[regno].reg_use[i].insn,
reg_state[regno].reg_use[i].usep,
reg_sum, 1);
if (apply_change_group ())
{
rtx *np;
/* Delete the reg-reg addition. */
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
if (reg_state[regno].offset != const0_rtx)
{
/* Previous REG_EQUIV / REG_EQUAL notes for PREV
are now invalid. */
for (np = ®_NOTES (prev); *np; )
{
if (REG_NOTE_KIND (*np) == REG_EQUAL
|| REG_NOTE_KIND (*np) == REG_EQUIV)
*np = XEXP (*np, 1);
else
np = &XEXP (*np, 1);
}
}
reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
reg_state[REGNO (const_reg)].store_ruid = reload_combine_ruid;
continue;
}
}
}
note_stores (PATTERN (insn), reload_combine_note_store);
if (GET_CODE (insn) == CALL_INSN)
{
rtx link;
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
{
if (call_used_regs[i])
{
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
reg_state[i].store_ruid = reload_combine_ruid;
}
}
for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
link = XEXP (link, 1))
{
rtx use = XEXP (link, 0);
int regno = REGNO (XEXP (use, 0));
if (GET_CODE (use) == CLOBBER)
{
reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
reg_state[regno].store_ruid = reload_combine_ruid;
}
else
reg_state[regno].use_index = -1;
}
}
if (GET_CODE (insn) == JUMP_INSN)
{
/* Non-spill registers might be used at the call destination in
some unknown fashion, so we have to mark the unknown use. */
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
{
if (1)
reg_state[i].use_index = -1;
}
}
reload_combine_note_use (&PATTERN (insn), insn);
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
{
if (REG_NOTE_KIND (note) == REG_INC
&& GET_CODE (XEXP (note, 0)) == REG)
reg_state[REGNO (XEXP (note, 0))].use_index = -1;
}
}
}
/* Check if DST is a register or a subreg of a register; if it is,
update reg_state[regno].store_ruid and reg_state[regno].use_index
accordingly. Called via note_stores from reload_combine.
The second argument, SET, is ignored. */
static void
reload_combine_note_store (dst, set)
rtx dst, set ATTRIBUTE_UNUSED;
{
int regno = 0;
int i;
unsigned size = GET_MODE_SIZE (GET_MODE (dst));
if (GET_CODE (dst) == SUBREG)
{
regno = SUBREG_WORD (dst);
dst = SUBREG_REG (dst);
}
if (GET_CODE (dst) != REG)
return;
regno += REGNO (dst);
/* note_stores might have stripped a STRICT_LOW_PART, so we have to be
careful with registers / register parts that are not full words. */
if (size < (unsigned) UNITS_PER_WORD)
reg_state[regno].use_index = -1;
else
{
for (i = size / UNITS_PER_WORD - 1 + regno; i >= regno; i--)
{
reg_state[i].store_ruid = reload_combine_ruid;
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
}
}
}
/* XP points to a piece of rtl that has to be checked for any uses of
registers.
*XP is the pattern of INSN, or a part of it.
Called from reload_combine, and recursively by itself. */
static void
reload_combine_note_use (xp, insn)
rtx *xp, insn;
{
rtx x = *xp;
enum rtx_code code = x->code;
char *fmt;
int i, j;
rtx offset = const0_rtx; /* For the REG case below. */
switch (code)
{
case SET:
if (GET_CODE (SET_DEST (x)) == REG)
{
reload_combine_note_use (&SET_SRC (x), insn);
return;
}
break;
case CLOBBER:
if (GET_CODE (SET_DEST (x)) == REG)
return;
break;
case PLUS:
/* We are interested in (plus (reg) (const_int)) . */
if (GET_CODE (XEXP (x, 0)) != REG || GET_CODE (XEXP (x, 1)) != CONST_INT)
break;
offset = XEXP (x, 1);
x = XEXP (x, 0);
/* Fall through. */
case REG:
{
int regno = REGNO (x);
int use_index;
/* Some spurious USEs of pseudo registers might remain.
Just ignore them. */
if (regno >= FIRST_PSEUDO_REGISTER)
return;
/* If this register is already used in some unknown fashion, we
can't do anything.
If we decrement the index from zero to -1, we can't store more
uses, so this register becomes used in an unknown fashion. */
use_index = --reg_state[regno].use_index;
if (use_index < 0)
return;
if (use_index != RELOAD_COMBINE_MAX_USES - 1)
{
/* We have found another use for a register that is already
used later. Check if the offsets match; if not, mark the
register as used in an unknown fashion. */
if (! rtx_equal_p (offset, reg_state[regno].offset))
{
reg_state[regno].use_index = -1;
return;
}
}
else
{
/* This is the first use of this register we have seen since we
marked it as dead. */
reg_state[regno].offset = offset;
reg_state[regno].use_ruid = reload_combine_ruid;
}
reg_state[regno].reg_use[use_index].insn = insn;
reg_state[regno].reg_use[use_index].usep = xp;
return;
}
default:
break;
}
/* Recursively process the components of X. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
reload_combine_note_use (&XEXP (x, i), insn);
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
reload_combine_note_use (&XVECEXP (x, i, j), insn);
}
}
}
/* See if we can reduce the cost of a constant by replacing a move with
an add. */
/* We cannot do our optimization across labels. Invalidating all the
information about register contents we have would be costly, so we
use last_label_luid (local variable of reload_cse_move2add) to note
where the label is and then later disable any optimization that would
cross it.
reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
reg_set_luid[n] is larger than last_label_luid[n] . */
static int reg_set_luid[FIRST_PSEUDO_REGISTER];
/* reg_offset[n] has to be CONST_INT for it and reg_base_reg[n] /
reg_mode[n] to be valid.
If reg_offset[n] is a CONST_INT and reg_base_reg[n] is negative, register n
has been set to reg_offset[n] in mode reg_mode[n] .
If reg_offset[n] is a CONST_INT and reg_base_reg[n] is non-negative,
register n has been set to the sum of reg_offset[n] and register
reg_base_reg[n], calculated in mode reg_mode[n] . */
static rtx reg_offset[FIRST_PSEUDO_REGISTER];
static int reg_base_reg[FIRST_PSEUDO_REGISTER];
static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
/* move2add_luid is linearily increased while scanning the instructions
from first to last. It is used to set reg_set_luid in
reload_cse_move2add and move2add_note_store. */
static int move2add_luid;
static void
reload_cse_move2add (first)
rtx first;
{
int i;
rtx insn;
int last_label_luid;
for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
reg_set_luid[i] = 0;
last_label_luid = 0;
move2add_luid = 1;
for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
{
rtx pat, note;
if (GET_CODE (insn) == CODE_LABEL)
last_label_luid = move2add_luid;
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
continue;
pat = PATTERN (insn);
/* For simplicity, we only perform this optimization on
straightforward SETs. */
if (GET_CODE (pat) == SET
&& GET_CODE (SET_DEST (pat)) == REG)
{
rtx reg = SET_DEST (pat);
int regno = REGNO (reg);
rtx src = SET_SRC (pat);
/* Check if we have valid information on the contents of this
register in the mode of REG. */
/* ??? We don't know how zero / sign extension is handled, hence
we can't go from a narrower to a wider mode. */
if (reg_set_luid[regno] > last_label_luid
&& (GET_MODE_SIZE (GET_MODE (reg))
<= GET_MODE_SIZE (reg_mode[regno]))
&& GET_CODE (reg_offset[regno]) == CONST_INT)
{
/* Try to transform (set (REGX) (CONST_INT A))
...
(set (REGX) (CONST_INT B))
to
(set (REGX) (CONST_INT A))
...
(set (REGX) (plus (REGX) (CONST_INT B-A))) */
if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
{
int success = 0;
rtx new_src = GEN_INT (INTVAL (src)
- INTVAL (reg_offset[regno]));
/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
use (set (reg) (reg)) instead.
We don't delete this insn, nor do we convert it into a
note, to avoid losing register notes or the return
value flag. jump2 already knowns how to get rid of
no-op moves. */
if (new_src == const0_rtx)
success = validate_change (insn, &SET_SRC (pat), reg, 0);
else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
&& have_add2_insn (GET_MODE (reg)))
success = validate_change (insn, &PATTERN (insn),
gen_add2_insn (reg, new_src), 0);
reg_set_luid[regno] = move2add_luid;
reg_mode[regno] = GET_MODE (reg);
reg_offset[regno] = src;
continue;
}
/* Try to transform (set (REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT A)))
...
(set (REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT B)))
to
(REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT A)))
...
(set (REGX) (plus (REGX) (CONST_INT B-A))) */
else if (GET_CODE (src) == REG
&& reg_base_reg[regno] == REGNO (src)
&& reg_set_luid[regno] > reg_set_luid[REGNO (src)])
{
rtx next = next_nonnote_insn (insn);
rtx set;
if (next)
set = single_set (next);
if (next
&& set
&& SET_DEST (set) == reg
&& GET_CODE (SET_SRC (set)) == PLUS
&& XEXP (SET_SRC (set), 0) == reg
&& GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
{
rtx src3 = XEXP (SET_SRC (set), 1);
rtx new_src = GEN_INT (INTVAL (src3)
- INTVAL (reg_offset[regno]));
int success = 0;
if (new_src == const0_rtx)
/* See above why we create (set (reg) (reg)) here. */
success
= validate_change (next, &SET_SRC (set), reg, 0);
else if ((rtx_cost (new_src, PLUS)
< 2 + rtx_cost (src3, SET))
&& have_add2_insn (GET_MODE (reg)))
success
= validate_change (next, &PATTERN (next),
gen_add2_insn (reg, new_src), 0);
if (success)
{
/* INSN might be the first insn in a basic block
if the preceding insn is a conditional jump
or a possible-throwing call. */
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
}
insn = next;
reg_set_luid[regno] = move2add_luid;
reg_mode[regno] = GET_MODE (reg);
reg_offset[regno] = src3;
continue;
}
}
}
}
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
{
if (REG_NOTE_KIND (note) == REG_INC
&& GET_CODE (XEXP (note, 0)) == REG)
{
/* Indicate that this register has been recently written to,
but the exact contents are not available. */
int regno = REGNO (XEXP (note, 0));
if (regno < FIRST_PSEUDO_REGISTER)
{
reg_set_luid[regno] = move2add_luid;
reg_offset[regno] = note;
}
}
}
note_stores (PATTERN (insn), move2add_note_store);
/* If this is a CALL_INSN, all call used registers are stored with
unknown values. */
if (GET_CODE (insn) == CALL_INSN)
{
for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
{
if (call_used_regs[i])
{
reg_set_luid[i] = move2add_luid;
reg_offset[i] = insn; /* Invalidate contents. */
}
}
}
}
}
/* SET is a SET or CLOBBER that sets DST.
Update reg_set_luid, reg_offset and reg_base_reg accordingly.
Called from reload_cse_move2add via note_stores. */
static void
move2add_note_store (dst, set)
rtx dst, set;
{
int regno = 0;
int i;
enum machine_mode mode = GET_MODE (dst);
if (GET_CODE (dst) == SUBREG)
{
regno = SUBREG_WORD (dst);
dst = SUBREG_REG (dst);
}
if (GET_CODE (dst) != REG)
return;
regno += REGNO (dst);
if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET)
{
rtx src = SET_SRC (set);
reg_mode[regno] = mode;
switch (GET_CODE (src))
{
case PLUS:
{
rtx src0 = XEXP (src, 0);
if (GET_CODE (src0) == REG)
{
if (REGNO (src0) != regno
|| reg_offset[regno] != const0_rtx)
{
reg_base_reg[regno] = REGNO (src0);
reg_set_luid[regno] = move2add_luid;
}
reg_offset[regno] = XEXP (src, 1);
break;
}
reg_set_luid[regno] = move2add_luid;
reg_offset[regno] = set; /* Invalidate contents. */
break;
}
case REG:
reg_base_reg[regno] = REGNO (SET_SRC (set));
reg_offset[regno] = const0_rtx;
reg_set_luid[regno] = move2add_luid;
break;
default:
reg_base_reg[regno] = -1;
reg_offset[regno] = SET_SRC (set);
reg_set_luid[regno] = move2add_luid;
break;
}
}
else
{
for (i = regno + HARD_REGNO_NREGS (regno, mode) - 1; i >= regno; i--)
{
/* Indicate that this register has been recently written to,
but the exact contents are not available. */
reg_set_luid[i] = move2add_luid;
reg_offset[i] = dst;
}
}
}
|