1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
|
/* Search an insn for pseudo regs that must be in hard regs and are not.
Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* This file contains subroutines used only from the file reload1.c.
It knows how to scan one insn for operands and values
that need to be copied into registers to make valid code.
It also finds other operands and values which are valid
but for which equivalent values in registers exist and
ought to be used instead.
Before processing the first insn of the function, call `init_reload'.
To scan an insn, call `find_reloads'. This does two things:
1. sets up tables describing which values must be reloaded
for this insn, and what kind of hard regs they must be reloaded into;
2. optionally record the locations where those values appear in
the data, so they can be replaced properly later.
This is done only if the second arg to `find_reloads' is nonzero.
The third arg to `find_reloads' specifies the number of levels
of indirect addressing supported by the machine. If it is zero,
indirect addressing is not valid. If it is one, (MEM (REG n))
is valid even if (REG n) did not get a hard register; if it is two,
(MEM (MEM (REG n))) is also valid even if (REG n) did not get a
hard register, and similarly for higher values.
Then you must choose the hard regs to reload those pseudo regs into,
and generate appropriate load insns before this insn and perhaps
also store insns after this insn. Set up the array `reload_reg_rtx'
to contain the REG rtx's for the registers you used. In some
cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
for certain reloads. Then that tells you which register to use,
so you do not need to allocate one. But you still do need to add extra
instructions to copy the value into and out of that register.
Finally you must call `subst_reloads' to substitute the reload reg rtx's
into the locations already recorded.
NOTE SIDE EFFECTS:
find_reloads can alter the operands of the instruction it is called on.
1. Two operands of any sort may be interchanged, if they are in a
commutative instruction.
This happens only if find_reloads thinks the instruction will compile
better that way.
2. Pseudo-registers that are equivalent to constants are replaced
with those constants if they are not in hard registers.
1 happens every time find_reloads is called.
2 happens only when REPLACE is 1, which is only when
actually doing the reloads, not when just counting them.
Using a reload register for several reloads in one insn:
When an insn has reloads, it is considered as having three parts:
the input reloads, the insn itself after reloading, and the output reloads.
Reloads of values used in memory addresses are often needed for only one part.
When this is so, reload_when_needed records which part needs the reload.
Two reloads for different parts of the insn can share the same reload
register.
When a reload is used for addresses in multiple parts, or when it is
an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
a register with any other reload. */
#define REG_OK_STRICT
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "tm_p.h"
#include "insn-config.h"
#include "insn-codes.h"
#include "recog.h"
#include "reload.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "output.h"
#include "function.h"
#include "expr.h"
#include "toplev.h"
#ifndef REGISTER_MOVE_COST
#define REGISTER_MOVE_COST(x, y) 2
#endif
#ifndef REGNO_MODE_OK_FOR_BASE_P
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
#endif
#ifndef REG_MODE_OK_FOR_BASE_P
#define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
#endif
/* All reloads of the current insn are recorded here. See reload.h for
comments. */
int n_reloads;
struct reload rld[MAX_RELOADS];
/* All the "earlyclobber" operands of the current insn
are recorded here. */
int n_earlyclobbers;
rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
int reload_n_operands;
/* Replacing reloads.
If `replace_reloads' is nonzero, then as each reload is recorded
an entry is made for it in the table `replacements'.
Then later `subst_reloads' can look through that table and
perform all the replacements needed. */
/* Nonzero means record the places to replace. */
static int replace_reloads;
/* Each replacement is recorded with a structure like this. */
struct replacement
{
rtx *where; /* Location to store in */
rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
a SUBREG; 0 otherwise. */
int what; /* which reload this is for */
enum machine_mode mode; /* mode it must have */
};
static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
/* Number of replacements currently recorded. */
static int n_replacements;
/* Used to track what is modified by an operand. */
struct decomposition
{
int reg_flag; /* Nonzero if referencing a register. */
int safe; /* Nonzero if this can't conflict with anything. */
rtx base; /* Base address for MEM. */
HOST_WIDE_INT start; /* Starting offset or register number. */
HOST_WIDE_INT end; /* Ending offset or register number. */
};
#ifdef SECONDARY_MEMORY_NEEDED
/* Save MEMs needed to copy from one class of registers to another. One MEM
is used per mode, but normally only one or two modes are ever used.
We keep two versions, before and after register elimination. The one
after register elimination is record separately for each operand. This
is done in case the address is not valid to be sure that we separately
reload each. */
static rtx secondary_memlocs[NUM_MACHINE_MODES];
static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
#endif
/* The instruction we are doing reloads for;
so we can test whether a register dies in it. */
static rtx this_insn;
/* Nonzero if this instruction is a user-specified asm with operands. */
static int this_insn_is_asm;
/* If hard_regs_live_known is nonzero,
we can tell which hard regs are currently live,
at least enough to succeed in choosing dummy reloads. */
static int hard_regs_live_known;
/* Indexed by hard reg number,
element is nonnegative if hard reg has been spilled.
This vector is passed to `find_reloads' as an argument
and is not changed here. */
static short *static_reload_reg_p;
/* Set to 1 in subst_reg_equivs if it changes anything. */
static int subst_reg_equivs_changed;
/* On return from push_reload, holds the reload-number for the OUT
operand, which can be different for that from the input operand. */
static int output_reloadnum;
/* Compare two RTX's. */
#define MATCHES(x, y) \
(x == y || (x != 0 && (GET_CODE (x) == REG \
? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
: rtx_equal_p (x, y) && ! side_effects_p (x))))
/* Indicates if two reloads purposes are for similar enough things that we
can merge their reloads. */
#define MERGABLE_RELOADS(when1, when2, op1, op2) \
((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
|| ((when1) == (when2) && (op1) == (op2)) \
|| ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
|| ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
&& (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
|| ((when1) == RELOAD_FOR_OTHER_ADDRESS \
&& (when2) == RELOAD_FOR_OTHER_ADDRESS))
/* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
#define MERGE_TO_OTHER(when1, when2, op1, op2) \
((when1) != (when2) \
|| ! ((op1) == (op2) \
|| (when1) == RELOAD_FOR_INPUT \
|| (when1) == RELOAD_FOR_OPERAND_ADDRESS \
|| (when1) == RELOAD_FOR_OTHER_ADDRESS))
/* If we are going to reload an address, compute the reload type to
use. */
#define ADDR_TYPE(type) \
((type) == RELOAD_FOR_INPUT_ADDRESS \
? RELOAD_FOR_INPADDR_ADDRESS \
: ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
? RELOAD_FOR_OUTADDR_ADDRESS \
: (type)))
#ifdef HAVE_SECONDARY_RELOADS
static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
enum machine_mode, enum reload_type,
enum insn_code *));
#endif
static enum reg_class find_valid_class PROTO((enum machine_mode, int));
static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
enum machine_mode, enum machine_mode,
int, int, int, enum reload_type));
static void push_replacement PROTO((rtx *, int, enum machine_mode));
static void combine_reloads PROTO((void));
static int find_reusable_reload PROTO((rtx *, rtx, enum reg_class,
enum reload_type, int, int));
static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
enum machine_mode, enum machine_mode,
enum reg_class, int, int));
static int earlyclobber_operand_p PROTO((rtx));
static int hard_reg_set_here_p PROTO((int, int, rtx));
static struct decomposition decompose PROTO((rtx));
static int immune_p PROTO((rtx, rtx, struct decomposition));
static int alternative_allows_memconst PROTO((const char *, int));
static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int, rtx));
static rtx make_memloc PROTO((rtx, int));
static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
int, enum reload_type, int, rtx));
static rtx subst_reg_equivs PROTO((rtx, rtx));
static rtx subst_indexed_address PROTO((rtx));
static int find_reloads_address_1 PROTO((enum machine_mode, rtx, int, rtx *,
int, enum reload_type,int, rtx));
static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
enum machine_mode, int,
enum reload_type, int));
static rtx find_reloads_subreg_address PROTO((rtx, int, int, enum reload_type,
int, rtx));
static int find_inc_amount PROTO((rtx, rtx));
static int loc_mentioned_in_p PROTO((rtx *, rtx));
extern void debug_reload_to_stream PROTO((FILE *));
extern void debug_reload PROTO((void));
#ifdef HAVE_SECONDARY_RELOADS
/* Determine if any secondary reloads are needed for loading (if IN_P is
non-zero) or storing (if IN_P is zero) X to or from a reload register of
register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
are needed, push them.
Return the reload number of the secondary reload we made, or -1 if
we didn't need one. *PICODE is set to the insn_code to use if we do
need a secondary reload. */
static int
push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
type, picode)
int in_p;
rtx x;
int opnum;
int optional;
enum reg_class reload_class;
enum machine_mode reload_mode;
enum reload_type type;
enum insn_code *picode;
{
enum reg_class class = NO_REGS;
enum machine_mode mode = reload_mode;
enum insn_code icode = CODE_FOR_nothing;
enum reg_class t_class = NO_REGS;
enum machine_mode t_mode = VOIDmode;
enum insn_code t_icode = CODE_FOR_nothing;
enum reload_type secondary_type;
int s_reload, t_reload = -1;
if (type == RELOAD_FOR_INPUT_ADDRESS
|| type == RELOAD_FOR_OUTPUT_ADDRESS
|| type == RELOAD_FOR_INPADDR_ADDRESS
|| type == RELOAD_FOR_OUTADDR_ADDRESS)
secondary_type = type;
else
secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
*picode = CODE_FOR_nothing;
/* If X is a paradoxical SUBREG, use the inner value to determine both the
mode and object being reloaded. */
if (GET_CODE (x) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (x))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
{
x = SUBREG_REG (x);
reload_mode = GET_MODE (x);
}
/* If X is a pseudo-register that has an equivalent MEM (actually, if it
is still a pseudo-register by now, it *must* have an equivalent MEM
but we don't want to assume that), use that equivalent when seeing if
a secondary reload is needed since whether or not a reload is needed
might be sensitive to the form of the MEM. */
if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
&& reg_equiv_mem[REGNO (x)] != 0)
x = reg_equiv_mem[REGNO (x)];
#ifdef SECONDARY_INPUT_RELOAD_CLASS
if (in_p)
class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
#endif
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
if (! in_p)
class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
#endif
/* If we don't need any secondary registers, done. */
if (class == NO_REGS)
return -1;
/* Get a possible insn to use. If the predicate doesn't accept X, don't
use the insn. */
icode = (in_p ? reload_in_optab[(int) reload_mode]
: reload_out_optab[(int) reload_mode]);
if (icode != CODE_FOR_nothing
&& insn_data[(int) icode].operand[in_p].predicate
&& (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
icode = CODE_FOR_nothing;
/* If we will be using an insn, see if it can directly handle the reload
register we will be using. If it can, the secondary reload is for a
scratch register. If it can't, we will use the secondary reload for
an intermediate register and require a tertiary reload for the scratch
register. */
if (icode != CODE_FOR_nothing)
{
/* If IN_P is non-zero, the reload register will be the output in
operand 0. If IN_P is zero, the reload register will be the input
in operand 1. Outputs should have an initial "=", which we must
skip. */
char insn_letter
= insn_data[(int) icode].operand[!in_p].constraint[in_p];
enum reg_class insn_class
= (insn_letter == 'r' ? GENERAL_REGS
: REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
if (insn_class == NO_REGS
|| (in_p
&& insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
/* The scratch register's constraint must start with "=&". */
|| insn_data[(int) icode].operand[2].constraint[0] != '='
|| insn_data[(int) icode].operand[2].constraint[1] != '&')
abort ();
if (reg_class_subset_p (reload_class, insn_class))
mode = insn_data[(int) icode].operand[2].mode;
else
{
char t_letter = insn_data[(int) icode].operand[2].constraint[2];
class = insn_class;
t_mode = insn_data[(int) icode].operand[2].mode;
t_class = (t_letter == 'r' ? GENERAL_REGS
: REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
t_icode = icode;
icode = CODE_FOR_nothing;
}
}
/* This case isn't valid, so fail. Reload is allowed to use the same
register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
in the case of a secondary register, we actually need two different
registers for correct code. We fail here to prevent the possibility of
silently generating incorrect code later.
The convention is that secondary input reloads are valid only if the
secondary_class is different from class. If you have such a case, you
can not use secondary reloads, you must work around the problem some
other way.
Allow this when MODE is not reload_mode and assume that the generated
code handles this case (it does on the Alpha, which is the only place
this currently happens). */
if (in_p && class == reload_class && mode == reload_mode)
abort ();
/* If we need a tertiary reload, see if we have one we can reuse or else
make a new one. */
if (t_class != NO_REGS)
{
for (t_reload = 0; t_reload < n_reloads; t_reload++)
if (rld[t_reload].secondary_p
&& (reg_class_subset_p (t_class, rld[t_reload].class)
|| reg_class_subset_p (rld[t_reload].class, t_class))
&& ((in_p && rld[t_reload].inmode == t_mode)
|| (! in_p && rld[t_reload].outmode == t_mode))
&& ((in_p && (rld[t_reload].secondary_in_icode
== CODE_FOR_nothing))
|| (! in_p &&(rld[t_reload].secondary_out_icode
== CODE_FOR_nothing)))
&& (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
&& MERGABLE_RELOADS (secondary_type,
rld[t_reload].when_needed,
opnum, rld[t_reload].opnum))
{
if (in_p)
rld[t_reload].inmode = t_mode;
if (! in_p)
rld[t_reload].outmode = t_mode;
if (reg_class_subset_p (t_class, rld[t_reload].class))
rld[t_reload].class = t_class;
rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
rld[t_reload].optional &= optional;
rld[t_reload].secondary_p = 1;
if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
opnum, rld[t_reload].opnum))
rld[t_reload].when_needed = RELOAD_OTHER;
}
if (t_reload == n_reloads)
{
/* We need to make a new tertiary reload for this register class. */
rld[t_reload].in = rld[t_reload].out = 0;
rld[t_reload].class = t_class;
rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
rld[t_reload].reg_rtx = 0;
rld[t_reload].optional = optional;
rld[t_reload].nongroup = 0;
rld[t_reload].inc = 0;
/* Maybe we could combine these, but it seems too tricky. */
rld[t_reload].nocombine = 1;
rld[t_reload].in_reg = 0;
rld[t_reload].out_reg = 0;
rld[t_reload].opnum = opnum;
rld[t_reload].when_needed = secondary_type;
rld[t_reload].secondary_in_reload = -1;
rld[t_reload].secondary_out_reload = -1;
rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
rld[t_reload].secondary_p = 1;
n_reloads++;
}
}
/* See if we can reuse an existing secondary reload. */
for (s_reload = 0; s_reload < n_reloads; s_reload++)
if (rld[s_reload].secondary_p
&& (reg_class_subset_p (class, rld[s_reload].class)
|| reg_class_subset_p (rld[s_reload].class, class))
&& ((in_p && rld[s_reload].inmode == mode)
|| (! in_p && rld[s_reload].outmode == mode))
&& ((in_p && rld[s_reload].secondary_in_reload == t_reload)
|| (! in_p && rld[s_reload].secondary_out_reload == t_reload))
&& ((in_p && rld[s_reload].secondary_in_icode == t_icode)
|| (! in_p && rld[s_reload].secondary_out_icode == t_icode))
&& (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
&& MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
opnum, rld[s_reload].opnum))
{
if (in_p)
rld[s_reload].inmode = mode;
if (! in_p)
rld[s_reload].outmode = mode;
if (reg_class_subset_p (class, rld[s_reload].class))
rld[s_reload].class = class;
rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
rld[s_reload].optional &= optional;
rld[s_reload].secondary_p = 1;
if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
opnum, rld[s_reload].opnum))
rld[s_reload].when_needed = RELOAD_OTHER;
}
if (s_reload == n_reloads)
{
#ifdef SECONDARY_MEMORY_NEEDED
/* If we need a memory location to copy between the two reload regs,
set it up now. Note that we do the input case before making
the reload and the output case after. This is due to the
way reloads are output. */
if (in_p && icode == CODE_FOR_nothing
&& SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
get_secondary_mem (x, reload_mode, opnum, type);
#endif
/* We need to make a new secondary reload for this register class. */
rld[s_reload].in = rld[s_reload].out = 0;
rld[s_reload].class = class;
rld[s_reload].inmode = in_p ? mode : VOIDmode;
rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
rld[s_reload].reg_rtx = 0;
rld[s_reload].optional = optional;
rld[s_reload].nongroup = 0;
rld[s_reload].inc = 0;
/* Maybe we could combine these, but it seems too tricky. */
rld[s_reload].nocombine = 1;
rld[s_reload].in_reg = 0;
rld[s_reload].out_reg = 0;
rld[s_reload].opnum = opnum;
rld[s_reload].when_needed = secondary_type;
rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
rld[s_reload].secondary_out_icode
= ! in_p ? t_icode : CODE_FOR_nothing;
rld[s_reload].secondary_p = 1;
n_reloads++;
#ifdef SECONDARY_MEMORY_NEEDED
if (! in_p && icode == CODE_FOR_nothing
&& SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
get_secondary_mem (x, mode, opnum, type);
#endif
}
*picode = icode;
return s_reload;
}
#endif /* HAVE_SECONDARY_RELOADS */
#ifdef SECONDARY_MEMORY_NEEDED
/* Return a memory location that will be used to copy X in mode MODE.
If we haven't already made a location for this mode in this insn,
call find_reloads_address on the location being returned. */
rtx
get_secondary_mem (x, mode, opnum, type)
rtx x ATTRIBUTE_UNUSED;
enum machine_mode mode;
int opnum;
enum reload_type type;
{
rtx loc;
int mem_valid;
/* By default, if MODE is narrower than a word, widen it to a word.
This is required because most machines that require these memory
locations do not support short load and stores from all registers
(e.g., FP registers). */
#ifdef SECONDARY_MEMORY_NEEDED_MODE
mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
#else
if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
#endif
/* If we already have made a MEM for this operand in MODE, return it. */
if (secondary_memlocs_elim[(int) mode][opnum] != 0)
return secondary_memlocs_elim[(int) mode][opnum];
/* If this is the first time we've tried to get a MEM for this mode,
allocate a new one. `something_changed' in reload will get set
by noticing that the frame size has changed. */
if (secondary_memlocs[(int) mode] == 0)
{
#ifdef SECONDARY_MEMORY_NEEDED_RTX
secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
#else
secondary_memlocs[(int) mode]
= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
#endif
}
/* Get a version of the address doing any eliminations needed. If that
didn't give us a new MEM, make a new one if it isn't valid. */
loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
if (! mem_valid && loc == secondary_memlocs[(int) mode])
loc = copy_rtx (loc);
/* The only time the call below will do anything is if the stack
offset is too large. In that case IND_LEVELS doesn't matter, so we
can just pass a zero. Adjust the type to be the address of the
corresponding object. If the address was valid, save the eliminated
address. If it wasn't valid, we need to make a reload each time, so
don't save it. */
if (! mem_valid)
{
type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
: type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
: RELOAD_OTHER);
find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
opnum, type, 0, 0);
}
secondary_memlocs_elim[(int) mode][opnum] = loc;
return loc;
}
/* Clear any secondary memory locations we've made. */
void
clear_secondary_mem ()
{
bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
}
#endif /* SECONDARY_MEMORY_NEEDED */
/* Find the largest class for which every register number plus N is valid in
M1 (if in range). Abort if no such class exists. */
static enum reg_class
find_valid_class (m1, n)
enum machine_mode m1;
int n;
{
int class;
int regno;
enum reg_class best_class = NO_REGS;
int best_size = 0;
for (class = 1; class < N_REG_CLASSES; class++)
{
int bad = 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
&& TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
&& ! HARD_REGNO_MODE_OK (regno + n, m1))
bad = 1;
if (! bad && reg_class_size[class] > best_size)
best_class = class, best_size = reg_class_size[class];
}
if (best_size == 0)
abort ();
return best_class;
}
/* Return the number of a previously made reload that can be combined with
a new one, or n_reloads if none of the existing reloads can be used.
OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
push_reload, they determine the kind of the new reload that we try to
combine. P_IN points to the corresponding value of IN, which can be
modified by this function.
DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
static int
find_reusable_reload (p_in, out, class, type, opnum, dont_share)
rtx *p_in, out;
enum reg_class class;
enum reload_type type;
int opnum, dont_share;
{
rtx in = *p_in;
int i;
/* We can't merge two reloads if the output of either one is
earlyclobbered. */
if (earlyclobber_operand_p (out))
return n_reloads;
/* We can use an existing reload if the class is right
and at least one of IN and OUT is a match
and the other is at worst neutral.
(A zero compared against anything is neutral.)
If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
for the same thing since that can cause us to need more reload registers
than we otherwise would. */
for (i = 0; i < n_reloads; i++)
if ((reg_class_subset_p (class, rld[i].class)
|| reg_class_subset_p (rld[i].class, class))
/* If the existing reload has a register, it must fit our class. */
&& (rld[i].reg_rtx == 0
|| TEST_HARD_REG_BIT (reg_class_contents[(int) class],
true_regnum (rld[i].reg_rtx)))
&& ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
&& (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
|| (out != 0 && MATCHES (rld[i].out, out)
&& (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
&& (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
&& MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
return i;
/* Reloading a plain reg for input can match a reload to postincrement
that reg, since the postincrement's value is the right value.
Likewise, it can match a preincrement reload, since we regard
the preincrementation as happening before any ref in this insn
to that register. */
for (i = 0; i < n_reloads; i++)
if ((reg_class_subset_p (class, rld[i].class)
|| reg_class_subset_p (rld[i].class, class))
/* If the existing reload has a register, it must fit our
class. */
&& (rld[i].reg_rtx == 0
|| TEST_HARD_REG_BIT (reg_class_contents[(int) class],
true_regnum (rld[i].reg_rtx)))
&& out == 0 && rld[i].out == 0 && rld[i].in != 0
&& ((GET_CODE (in) == REG
&& (GET_CODE (rld[i].in) == POST_INC
|| GET_CODE (rld[i].in) == POST_DEC
|| GET_CODE (rld[i].in) == PRE_INC
|| GET_CODE (rld[i].in) == PRE_DEC)
&& MATCHES (XEXP (rld[i].in, 0), in))
||
(GET_CODE (rld[i].in) == REG
&& (GET_CODE (in) == POST_INC
|| GET_CODE (in) == POST_DEC
|| GET_CODE (in) == PRE_INC
|| GET_CODE (in) == PRE_DEC)
&& MATCHES (XEXP (in, 0), rld[i].in)))
&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
&& (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
&& MERGABLE_RELOADS (type, rld[i].when_needed,
opnum, rld[i].opnum))
{
/* Make sure reload_in ultimately has the increment,
not the plain register. */
if (GET_CODE (in) == REG)
*p_in = rld[i].in;
return i;
}
return n_reloads;
}
/* Record one reload that needs to be performed.
IN is an rtx saying where the data are to be found before this instruction.
OUT says where they must be stored after the instruction.
(IN is zero for data not read, and OUT is zero for data not written.)
INLOC and OUTLOC point to the places in the instructions where
IN and OUT were found.
If IN and OUT are both non-zero, it means the same register must be used
to reload both IN and OUT.
CLASS is a register class required for the reloaded data.
INMODE is the machine mode that the instruction requires
for the reg that replaces IN and OUTMODE is likewise for OUT.
If IN is zero, then OUT's location and mode should be passed as
INLOC and INMODE.
STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
OPTIONAL nonzero means this reload does not need to be performed:
it can be discarded if that is more convenient.
OPNUM and TYPE say what the purpose of this reload is.
The return value is the reload-number for this reload.
If both IN and OUT are nonzero, in some rare cases we might
want to make two separate reloads. (Actually we never do this now.)
Therefore, the reload-number for OUT is stored in
output_reloadnum when we return; the return value applies to IN.
Usually (presently always), when IN and OUT are nonzero,
the two reload-numbers are equal, but the caller should be careful to
distinguish them. */
static int
push_reload (in, out, inloc, outloc, class,
inmode, outmode, strict_low, optional, opnum, type)
rtx in, out;
rtx *inloc, *outloc;
enum reg_class class;
enum machine_mode inmode, outmode;
int strict_low;
int optional;
int opnum;
enum reload_type type;
{
register int i;
int dont_share = 0;
int dont_remove_subreg = 0;
rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
int secondary_in_reload = -1, secondary_out_reload = -1;
enum insn_code secondary_in_icode = CODE_FOR_nothing;
enum insn_code secondary_out_icode = CODE_FOR_nothing;
/* INMODE and/or OUTMODE could be VOIDmode if no mode
has been specified for the operand. In that case,
use the operand's mode as the mode to reload. */
if (inmode == VOIDmode && in != 0)
inmode = GET_MODE (in);
if (outmode == VOIDmode && out != 0)
outmode = GET_MODE (out);
/* If IN is a pseudo register everywhere-equivalent to a constant, and
it is not in a hard register, reload straight from the constant,
since we want to get rid of such pseudo registers.
Often this is done earlier, but not always in find_reloads_address. */
if (in != 0 && GET_CODE (in) == REG)
{
register int regno = REGNO (in);
if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
&& reg_equiv_constant[regno] != 0)
in = reg_equiv_constant[regno];
}
/* Likewise for OUT. Of course, OUT will never be equivalent to
an actual constant, but it might be equivalent to a memory location
(in the case of a parameter). */
if (out != 0 && GET_CODE (out) == REG)
{
register int regno = REGNO (out);
if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
&& reg_equiv_constant[regno] != 0)
out = reg_equiv_constant[regno];
}
/* If we have a read-write operand with an address side-effect,
change either IN or OUT so the side-effect happens only once. */
if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
{
if (GET_CODE (XEXP (in, 0)) == POST_INC
|| GET_CODE (XEXP (in, 0)) == POST_DEC)
in = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
if (GET_CODE (XEXP (in, 0)) == PRE_INC
|| GET_CODE (XEXP (in, 0)) == PRE_DEC)
out = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
}
/* If we are reloading a (SUBREG constant ...), really reload just the
inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
a pseudo and hence will become a MEM) with M1 wider than M2 and the
register is a pseudo, also reload the inside expression.
For machines that extend byte loads, do this for any SUBREG of a pseudo
where both M1 and M2 are a word or smaller, M1 is wider than M2, and
M2 is an integral mode that gets extended when loaded.
Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
either M1 is not valid for R or M2 is wider than a word but we only
need one word to store an M2-sized quantity in R.
(However, if OUT is nonzero, we need to reload the reg *and*
the subreg, so do nothing here, and let following statement handle it.)
Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
we can't handle it here because CONST_INT does not indicate a mode.
Similarly, we must reload the inside expression if we have a
STRICT_LOW_PART (presumably, in == out in the cas).
Also reload the inner expression if it does not require a secondary
reload but the SUBREG does.
Finally, reload the inner expression if it is a register that is in
the class whose registers cannot be referenced in a different size
and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
cannot reload just the inside since we might end up with the wrong
register class. But if it is inside a STRICT_LOW_PART, we have
no choice, so we hope we do get the right register class there. */
if (in != 0 && GET_CODE (in) == SUBREG
&& (SUBREG_WORD (in) == 0 || strict_low)
#ifdef CLASS_CANNOT_CHANGE_SIZE
&& class != CLASS_CANNOT_CHANGE_SIZE
#endif
&& (CONSTANT_P (SUBREG_REG (in))
|| GET_CODE (SUBREG_REG (in)) == PLUS
|| strict_low
|| (((GET_CODE (SUBREG_REG (in)) == REG
&& REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
|| GET_CODE (SUBREG_REG (in)) == MEM)
&& ((GET_MODE_SIZE (inmode)
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
#ifdef LOAD_EXTEND_OP
|| (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
<= UNITS_PER_WORD)
&& (GET_MODE_SIZE (inmode)
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
&& INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
&& LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
#endif
#ifdef WORD_REGISTER_OPERATIONS
|| ((GET_MODE_SIZE (inmode)
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
&& ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
/ UNITS_PER_WORD)))
#endif
))
|| (GET_CODE (SUBREG_REG (in)) == REG
&& REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
/* The case where out is nonzero
is handled differently in the following statement. */
&& (out == 0 || SUBREG_WORD (in) == 0)
&& ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
> UNITS_PER_WORD)
&& ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
/ UNITS_PER_WORD)
!= HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
GET_MODE (SUBREG_REG (in)))))
|| ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
+ SUBREG_WORD (in)),
inmode)))
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|| (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
&& (SECONDARY_INPUT_RELOAD_CLASS (class,
GET_MODE (SUBREG_REG (in)),
SUBREG_REG (in))
== NO_REGS))
#endif
#ifdef CLASS_CANNOT_CHANGE_SIZE
|| (GET_CODE (SUBREG_REG (in)) == REG
&& REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
&& (TEST_HARD_REG_BIT
(reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
REGNO (SUBREG_REG (in))))
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
!= GET_MODE_SIZE (inmode)))
#endif
))
{
in_subreg_loc = inloc;
inloc = &SUBREG_REG (in);
in = *inloc;
#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
if (GET_CODE (in) == MEM)
/* This is supposed to happen only for paradoxical subregs made by
combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
abort ();
#endif
inmode = GET_MODE (in);
}
/* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
either M1 is not valid for R or M2 is wider than a word but we only
need one word to store an M2-sized quantity in R.
However, we must reload the inner reg *as well as* the subreg in
that case. */
/* Similar issue for (SUBREG constant ...) if it was not handled by the
code above. This can happen if SUBREG_WORD != 0. */
if (in != 0 && GET_CODE (in) == SUBREG
&& (CONSTANT_P (SUBREG_REG (in))
|| (GET_CODE (SUBREG_REG (in)) == REG
&& REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
&& (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in))
+ SUBREG_WORD (in),
inmode)
|| (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
> UNITS_PER_WORD)
&& ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
/ UNITS_PER_WORD)
!= HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
GET_MODE (SUBREG_REG (in)))))))))
{
/* This relies on the fact that emit_reload_insns outputs the
instructions for input reloads of type RELOAD_OTHER in the same
order as the reloads. Thus if the outer reload is also of type
RELOAD_OTHER, we are guaranteed that this inner reload will be
output before the outer reload. */
push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
find_valid_class (inmode, SUBREG_WORD (in)),
VOIDmode, VOIDmode, 0, 0, opnum, type);
dont_remove_subreg = 1;
}
/* Similarly for paradoxical and problematical SUBREGs on the output.
Note that there is no reason we need worry about the previous value
of SUBREG_REG (out); even if wider than out,
storing in a subreg is entitled to clobber it all
(except in the case of STRICT_LOW_PART,
and in that case the constraint should label it input-output.) */
if (out != 0 && GET_CODE (out) == SUBREG
&& (SUBREG_WORD (out) == 0 || strict_low)
#ifdef CLASS_CANNOT_CHANGE_SIZE
&& class != CLASS_CANNOT_CHANGE_SIZE
#endif
&& (CONSTANT_P (SUBREG_REG (out))
|| strict_low
|| (((GET_CODE (SUBREG_REG (out)) == REG
&& REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
|| GET_CODE (SUBREG_REG (out)) == MEM)
&& ((GET_MODE_SIZE (outmode)
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
#ifdef WORD_REGISTER_OPERATIONS
|| ((GET_MODE_SIZE (outmode)
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
&& ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
/ UNITS_PER_WORD)))
#endif
))
|| (GET_CODE (SUBREG_REG (out)) == REG
&& REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
&& ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
> UNITS_PER_WORD)
&& ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
/ UNITS_PER_WORD)
!= HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
GET_MODE (SUBREG_REG (out)))))
|| ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
+ SUBREG_WORD (out)),
outmode)))
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
|| (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
&& (SECONDARY_OUTPUT_RELOAD_CLASS (class,
GET_MODE (SUBREG_REG (out)),
SUBREG_REG (out))
== NO_REGS))
#endif
#ifdef CLASS_CANNOT_CHANGE_SIZE
|| (GET_CODE (SUBREG_REG (out)) == REG
&& REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
&& (TEST_HARD_REG_BIT
(reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
REGNO (SUBREG_REG (out))))
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
!= GET_MODE_SIZE (outmode)))
#endif
))
{
out_subreg_loc = outloc;
outloc = &SUBREG_REG (out);
out = *outloc;
#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
if (GET_CODE (out) == MEM
&& GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
abort ();
#endif
outmode = GET_MODE (out);
}
/* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
either M1 is not valid for R or M2 is wider than a word but we only
need one word to store an M2-sized quantity in R.
However, we must reload the inner reg *as well as* the subreg in
that case. In this case, the inner reg is an in-out reload. */
if (out != 0 && GET_CODE (out) == SUBREG
&& GET_CODE (SUBREG_REG (out)) == REG
&& REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
&& (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
outmode)
|| (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
> UNITS_PER_WORD)
&& ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
/ UNITS_PER_WORD)
!= HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
GET_MODE (SUBREG_REG (out)))))))
{
/* This relies on the fact that emit_reload_insns outputs the
instructions for output reloads of type RELOAD_OTHER in reverse
order of the reloads. Thus if the outer reload is also of type
RELOAD_OTHER, we are guaranteed that this inner reload will be
output after the outer reload. */
dont_remove_subreg = 1;
push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
&SUBREG_REG (out),
find_valid_class (outmode, SUBREG_WORD (out)),
VOIDmode, VOIDmode, 0, 0,
opnum, RELOAD_OTHER);
}
/* If IN appears in OUT, we can't share any input-only reload for IN. */
if (in != 0 && out != 0 && GET_CODE (out) == MEM
&& (GET_CODE (in) == REG || GET_CODE (in) == MEM)
&& reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
dont_share = 1;
/* If IN is a SUBREG of a hard register, make a new REG. This
simplifies some of the cases below. */
if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
&& REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
&& ! dont_remove_subreg)
in = gen_rtx_REG (GET_MODE (in),
REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
/* Similarly for OUT. */
if (out != 0 && GET_CODE (out) == SUBREG
&& GET_CODE (SUBREG_REG (out)) == REG
&& REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
&& ! dont_remove_subreg)
out = gen_rtx_REG (GET_MODE (out),
REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
/* Narrow down the class of register wanted if that is
desirable on this machine for efficiency. */
if (in != 0)
class = PREFERRED_RELOAD_CLASS (in, class);
/* Output reloads may need analogous treatment, different in detail. */
#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
if (out != 0)
class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
#endif
/* Make sure we use a class that can handle the actual pseudo
inside any subreg. For example, on the 386, QImode regs
can appear within SImode subregs. Although GENERAL_REGS
can handle SImode, QImode needs a smaller class. */
#ifdef LIMIT_RELOAD_CLASS
if (in_subreg_loc)
class = LIMIT_RELOAD_CLASS (inmode, class);
else if (in != 0 && GET_CODE (in) == SUBREG)
class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
if (out_subreg_loc)
class = LIMIT_RELOAD_CLASS (outmode, class);
if (out != 0 && GET_CODE (out) == SUBREG)
class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
#endif
/* Verify that this class is at least possible for the mode that
is specified. */
if (this_insn_is_asm)
{
enum machine_mode mode;
if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
mode = inmode;
else
mode = outmode;
if (mode == VOIDmode)
{
error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
mode = word_mode;
if (in != 0)
inmode = word_mode;
if (out != 0)
outmode = word_mode;
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (HARD_REGNO_MODE_OK (i, mode)
&& TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
{
int nregs = HARD_REGNO_NREGS (i, mode);
int j;
for (j = 1; j < nregs; j++)
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
break;
if (j == nregs)
break;
}
if (i == FIRST_PSEUDO_REGISTER)
{
error_for_asm (this_insn, "impossible register constraint in `asm'");
class = ALL_REGS;
}
}
/* Optional output reloads are always OK even if we have no register class,
since the function of these reloads is only to have spill_reg_store etc.
set, so that the storing insn can be deleted later. */
if (class == NO_REGS
&& (optional == 0 || type != RELOAD_FOR_OUTPUT))
abort ();
i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
if (i == n_reloads)
{
/* See if we need a secondary reload register to move between CLASS
and IN or CLASS and OUT. Get the icode and push any required reloads
needed for each of them if so. */
#ifdef SECONDARY_INPUT_RELOAD_CLASS
if (in != 0)
secondary_in_reload
= push_secondary_reload (1, in, opnum, optional, class, inmode, type,
&secondary_in_icode);
#endif
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
if (out != 0 && GET_CODE (out) != SCRATCH)
secondary_out_reload
= push_secondary_reload (0, out, opnum, optional, class, outmode,
type, &secondary_out_icode);
#endif
/* We found no existing reload suitable for re-use.
So add an additional reload. */
#ifdef SECONDARY_MEMORY_NEEDED
/* If a memory location is needed for the copy, make one. */
if (in != 0 && GET_CODE (in) == REG
&& REGNO (in) < FIRST_PSEUDO_REGISTER
&& SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
class, inmode))
get_secondary_mem (in, inmode, opnum, type);
#endif
i = n_reloads;
rld[i].in = in;
rld[i].out = out;
rld[i].class = class;
rld[i].inmode = inmode;
rld[i].outmode = outmode;
rld[i].reg_rtx = 0;
rld[i].optional = optional;
rld[i].nongroup = 0;
rld[i].inc = 0;
rld[i].nocombine = 0;
rld[i].in_reg = inloc ? *inloc : 0;
rld[i].out_reg = outloc ? *outloc : 0;
rld[i].opnum = opnum;
rld[i].when_needed = type;
rld[i].secondary_in_reload = secondary_in_reload;
rld[i].secondary_out_reload = secondary_out_reload;
rld[i].secondary_in_icode = secondary_in_icode;
rld[i].secondary_out_icode = secondary_out_icode;
rld[i].secondary_p = 0;
n_reloads++;
#ifdef SECONDARY_MEMORY_NEEDED
if (out != 0 && GET_CODE (out) == REG
&& REGNO (out) < FIRST_PSEUDO_REGISTER
&& SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
outmode))
get_secondary_mem (out, outmode, opnum, type);
#endif
}
else
{
/* We are reusing an existing reload,
but we may have additional information for it.
For example, we may now have both IN and OUT
while the old one may have just one of them. */
/* The modes can be different. If they are, we want to reload in
the larger mode, so that the value is valid for both modes. */
if (inmode != VOIDmode
&& GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
rld[i].inmode = inmode;
if (outmode != VOIDmode
&& GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
rld[i].outmode = outmode;
if (in != 0)
{
rtx in_reg = inloc ? *inloc : 0;
/* If we merge reloads for two distinct rtl expressions that
are identical in content, there might be duplicate address
reloads. Remove the extra set now, so that if we later find
that we can inherit this reload, we can get rid of the
address reloads altogether.
Do not do this if both reloads are optional since the result
would be an optional reload which could potentially leave
unresolved address replacements.
It is not sufficient to call transfer_replacements since
choose_reload_regs will remove the replacements for address
reloads of inherited reloads which results in the same
problem. */
if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
&& ! (rld[i].optional && optional))
{
/* We must keep the address reload with the lower operand
number alive. */
if (opnum > rld[i].opnum)
{
remove_address_replacements (in);
in = rld[i].in;
in_reg = rld[i].in_reg;
}
else
remove_address_replacements (rld[i].in);
}
rld[i].in = in;
rld[i].in_reg = in_reg;
}
if (out != 0)
{
rld[i].out = out;
rld[i].out_reg = outloc ? *outloc : 0;
}
if (reg_class_subset_p (class, rld[i].class))
rld[i].class = class;
rld[i].optional &= optional;
if (MERGE_TO_OTHER (type, rld[i].when_needed,
opnum, rld[i].opnum))
rld[i].when_needed = RELOAD_OTHER;
rld[i].opnum = MIN (rld[i].opnum, opnum);
}
/* If the ostensible rtx being reload differs from the rtx found
in the location to substitute, this reload is not safe to combine
because we cannot reliably tell whether it appears in the insn. */
if (in != 0 && in != *inloc)
rld[i].nocombine = 1;
#if 0
/* This was replaced by changes in find_reloads_address_1 and the new
function inc_for_reload, which go with a new meaning of reload_inc. */
/* If this is an IN/OUT reload in an insn that sets the CC,
it must be for an autoincrement. It doesn't work to store
the incremented value after the insn because that would clobber the CC.
So we must do the increment of the value reloaded from,
increment it, store it back, then decrement again. */
if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
{
out = 0;
rld[i].out = 0;
rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
/* If we did not find a nonzero amount-to-increment-by,
that contradicts the belief that IN is being incremented
in an address in this insn. */
if (rld[i].inc == 0)
abort ();
}
#endif
/* If we will replace IN and OUT with the reload-reg,
record where they are located so that substitution need
not do a tree walk. */
if (replace_reloads)
{
if (inloc != 0)
{
register struct replacement *r = &replacements[n_replacements++];
r->what = i;
r->subreg_loc = in_subreg_loc;
r->where = inloc;
r->mode = inmode;
}
if (outloc != 0 && outloc != inloc)
{
register struct replacement *r = &replacements[n_replacements++];
r->what = i;
r->where = outloc;
r->subreg_loc = out_subreg_loc;
r->mode = outmode;
}
}
/* If this reload is just being introduced and it has both
an incoming quantity and an outgoing quantity that are
supposed to be made to match, see if either one of the two
can serve as the place to reload into.
If one of them is acceptable, set rld[i].reg_rtx
to that one. */
if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
{
rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
inmode, outmode,
rld[i].class, i,
earlyclobber_operand_p (out));
/* If the outgoing register already contains the same value
as the incoming one, we can dispense with loading it.
The easiest way to tell the caller that is to give a phony
value for the incoming operand (same as outgoing one). */
if (rld[i].reg_rtx == out
&& (GET_CODE (in) == REG || CONSTANT_P (in))
&& 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
static_reload_reg_p, i, inmode))
rld[i].in = out;
}
/* If this is an input reload and the operand contains a register that
dies in this insn and is used nowhere else, see if it is the right class
to be used for this reload. Use it if so. (This occurs most commonly
in the case of paradoxical SUBREGs and in-out reloads). We cannot do
this if it is also an output reload that mentions the register unless
the output is a SUBREG that clobbers an entire register.
Note that the operand might be one of the spill regs, if it is a
pseudo reg and we are in a block where spilling has not taken place.
But if there is no spilling in this block, that is OK.
An explicitly used hard reg cannot be a spill reg. */
if (rld[i].reg_rtx == 0 && in != 0)
{
rtx note;
int regno;
for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_DEAD
&& GET_CODE (XEXP (note, 0)) == REG
&& (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
&& reg_mentioned_p (XEXP (note, 0), in)
&& ! refers_to_regno_for_reload_p (regno,
(regno
+ HARD_REGNO_NREGS (regno,
inmode)),
PATTERN (this_insn), inloc)
/* If this is also an output reload, IN cannot be used as
the reload register if it is set in this insn unless IN
is also OUT. */
&& (out == 0 || in == out
|| ! hard_reg_set_here_p (regno,
(regno
+ HARD_REGNO_NREGS (regno,
inmode)),
PATTERN (this_insn)))
/* ??? Why is this code so different from the previous?
Is there any simple coherent way to describe the two together?
What's going on here. */
&& (in != out
|| (GET_CODE (in) == SUBREG
&& (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
/ UNITS_PER_WORD)
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
/* Make sure the operand fits in the reg that dies. */
&& GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
&& HARD_REGNO_MODE_OK (regno, inmode)
&& GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
&& HARD_REGNO_MODE_OK (regno, outmode)
&& TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
&& !fixed_regs[regno])
{
rld[i].reg_rtx = gen_rtx_REG (inmode, regno);
break;
}
}
if (out)
output_reloadnum = i;
return i;
}
/* Record an additional place we must replace a value
for which we have already recorded a reload.
RELOADNUM is the value returned by push_reload
when the reload was recorded.
This is used in insn patterns that use match_dup. */
static void
push_replacement (loc, reloadnum, mode)
rtx *loc;
int reloadnum;
enum machine_mode mode;
{
if (replace_reloads)
{
register struct replacement *r = &replacements[n_replacements++];
r->what = reloadnum;
r->where = loc;
r->subreg_loc = 0;
r->mode = mode;
}
}
/* Transfer all replacements that used to be in reload FROM to be in
reload TO. */
void
transfer_replacements (to, from)
int to, from;
{
int i;
for (i = 0; i < n_replacements; i++)
if (replacements[i].what == from)
replacements[i].what = to;
}
/* IN_RTX is the value loaded by a reload that we now decided to inherit,
or a subpart of it. If we have any replacements registered for IN_RTX,
cancel the reloads that were supposed to load them.
Return non-zero if we canceled any reloads. */
int
remove_address_replacements (in_rtx)
rtx in_rtx;
{
int i, j;
char reload_flags[MAX_RELOADS];
int something_changed = 0;
bzero (reload_flags, sizeof reload_flags);
for (i = 0, j = 0; i < n_replacements; i++)
{
if (loc_mentioned_in_p (replacements[i].where, in_rtx))
reload_flags[replacements[i].what] |= 1;
else
{
replacements[j++] = replacements[i];
reload_flags[replacements[i].what] |= 2;
}
}
/* Note that the following store must be done before the recursive calls. */
n_replacements = j;
for (i = n_reloads - 1; i >= 0; i--)
{
if (reload_flags[i] == 1)
{
deallocate_reload_reg (i);
remove_address_replacements (rld[i].in);
rld[i].in = 0;
something_changed = 1;
}
}
return something_changed;
}
/* Return non-zero if IN contains a piece of rtl that has the address LOC */
static int
loc_mentioned_in_p (loc, in)
rtx *loc, in;
{
enum rtx_code code = GET_CODE (in);
const char *fmt = GET_RTX_FORMAT (code);
int i, j;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (loc == &in->fld[i].rtx)
return 1;
if (fmt[i] == 'e')
{
if (loc_mentioned_in_p (loc, XEXP (in, i)))
return 1;
}
else if (fmt[i] == 'E')
for (j = XVECLEN (in, i) - 1; i >= 0; i--)
if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
return 1;
}
return 0;
}
/* If there is only one output reload, and it is not for an earlyclobber
operand, try to combine it with a (logically unrelated) input reload
to reduce the number of reload registers needed.
This is safe if the input reload does not appear in
the value being output-reloaded, because this implies
it is not needed any more once the original insn completes.
If that doesn't work, see we can use any of the registers that
die in this insn as a reload register. We can if it is of the right
class and does not appear in the value being output-reloaded. */
static void
combine_reloads ()
{
int i;
int output_reload = -1;
int secondary_out = -1;
rtx note;
/* Find the output reload; return unless there is exactly one
and that one is mandatory. */
for (i = 0; i < n_reloads; i++)
if (rld[i].out != 0)
{
if (output_reload >= 0)
return;
output_reload = i;
}
if (output_reload < 0 || rld[output_reload].optional)
return;
/* An input-output reload isn't combinable. */
if (rld[output_reload].in != 0)
return;
/* If this reload is for an earlyclobber operand, we can't do anything. */
if (earlyclobber_operand_p (rld[output_reload].out))
return;
/* Check each input reload; can we combine it? */
for (i = 0; i < n_reloads; i++)
if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
/* Life span of this reload must not extend past main insn. */
&& rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
&& rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
&& rld[i].when_needed != RELOAD_OTHER
&& (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
== CLASS_MAX_NREGS (rld[output_reload].class,
rld[output_reload].outmode))
&& rld[i].inc == 0
&& rld[i].reg_rtx == 0
#ifdef SECONDARY_MEMORY_NEEDED
/* Don't combine two reloads with different secondary
memory locations. */
&& (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
|| secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
|| rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
#endif
&& (SMALL_REGISTER_CLASSES
? (rld[i].class == rld[output_reload].class)
: (reg_class_subset_p (rld[i].class,
rld[output_reload].class)
|| reg_class_subset_p (rld[output_reload].class,
rld[i].class)))
&& (MATCHES (rld[i].in, rld[output_reload].out)
/* Args reversed because the first arg seems to be
the one that we imagine being modified
while the second is the one that might be affected. */
|| (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
rld[i].in)
/* However, if the input is a register that appears inside
the output, then we also can't share.
Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
If the same reload reg is used for both reg 69 and the
result to be stored in memory, then that result
will clobber the address of the memory ref. */
&& ! (GET_CODE (rld[i].in) == REG
&& reg_overlap_mentioned_for_reload_p (rld[i].in,
rld[output_reload].out))))
&& (reg_class_size[(int) rld[i].class]
|| SMALL_REGISTER_CLASSES)
/* We will allow making things slightly worse by combining an
input and an output, but no worse than that. */
&& (rld[i].when_needed == RELOAD_FOR_INPUT
|| rld[i].when_needed == RELOAD_FOR_OUTPUT))
{
int j;
/* We have found a reload to combine with! */
rld[i].out = rld[output_reload].out;
rld[i].out_reg = rld[output_reload].out_reg;
rld[i].outmode = rld[output_reload].outmode;
/* Mark the old output reload as inoperative. */
rld[output_reload].out = 0;
/* The combined reload is needed for the entire insn. */
rld[i].when_needed = RELOAD_OTHER;
/* If the output reload had a secondary reload, copy it. */
if (rld[output_reload].secondary_out_reload != -1)
{
rld[i].secondary_out_reload
= rld[output_reload].secondary_out_reload;
rld[i].secondary_out_icode
= rld[output_reload].secondary_out_icode;
}
#ifdef SECONDARY_MEMORY_NEEDED
/* Copy any secondary MEM. */
if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
= secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
#endif
/* If required, minimize the register class. */
if (reg_class_subset_p (rld[output_reload].class,
rld[i].class))
rld[i].class = rld[output_reload].class;
/* Transfer all replacements from the old reload to the combined. */
for (j = 0; j < n_replacements; j++)
if (replacements[j].what == output_reload)
replacements[j].what = i;
return;
}
/* If this insn has only one operand that is modified or written (assumed
to be the first), it must be the one corresponding to this reload. It
is safe to use anything that dies in this insn for that output provided
that it does not occur in the output (we already know it isn't an
earlyclobber. If this is an asm insn, give up. */
if (INSN_CODE (this_insn) == -1)
return;
for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
|| insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
return;
/* See if some hard register that dies in this insn and is not used in
the output is the right class. Only works if the register we pick
up can fully hold our output reload. */
for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_DEAD
&& GET_CODE (XEXP (note, 0)) == REG
&& ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
rld[output_reload].out)
&& REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
&& HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
&& TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
REGNO (XEXP (note, 0)))
&& (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
<= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
/* Ensure that a secondary or tertiary reload for this output
won't want this register. */
&& ((secondary_out = rld[output_reload].secondary_out_reload) == -1
|| (! (TEST_HARD_REG_BIT
(reg_class_contents[(int) rld[secondary_out].class],
REGNO (XEXP (note, 0))))
&& ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
|| ! (TEST_HARD_REG_BIT
(reg_class_contents[(int) rld[secondary_out].class],
REGNO (XEXP (note, 0)))))))
&& ! fixed_regs[REGNO (XEXP (note, 0))])
{
rld[output_reload].reg_rtx
= gen_rtx_REG (rld[output_reload].outmode,
REGNO (XEXP (note, 0)));
return;
}
}
/* Try to find a reload register for an in-out reload (expressions IN and OUT).
See if one of IN and OUT is a register that may be used;
this is desirable since a spill-register won't be needed.
If so, return the register rtx that proves acceptable.
INLOC and OUTLOC are locations where IN and OUT appear in the insn.
CLASS is the register class required for the reload.
If FOR_REAL is >= 0, it is the number of the reload,
and in some cases when it can be discovered that OUT doesn't need
to be computed, clear out rld[FOR_REAL].out.
If FOR_REAL is -1, this should not be done, because this call
is just to see if a register can be found, not to find and install it.
EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
puts an additional constraint on being able to use IN for OUT since
IN must not appear elsewhere in the insn (it is assumed that IN itself
is safe from the earlyclobber). */
static rtx
find_dummy_reload (real_in, real_out, inloc, outloc,
inmode, outmode, class, for_real, earlyclobber)
rtx real_in, real_out;
rtx *inloc, *outloc;
enum machine_mode inmode, outmode;
enum reg_class class;
int for_real;
int earlyclobber;
{
rtx in = real_in;
rtx out = real_out;
int in_offset = 0;
int out_offset = 0;
rtx value = 0;
/* If operands exceed a word, we can't use either of them
unless they have the same size. */
if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
&& (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
|| GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
return 0;
/* Find the inside of any subregs. */
while (GET_CODE (out) == SUBREG)
{
out_offset = SUBREG_WORD (out);
out = SUBREG_REG (out);
}
while (GET_CODE (in) == SUBREG)
{
in_offset = SUBREG_WORD (in);
in = SUBREG_REG (in);
}
/* Narrow down the reg class, the same way push_reload will;
otherwise we might find a dummy now, but push_reload won't. */
class = PREFERRED_RELOAD_CLASS (in, class);
/* See if OUT will do. */
if (GET_CODE (out) == REG
&& REGNO (out) < FIRST_PSEUDO_REGISTER)
{
register int regno = REGNO (out) + out_offset;
int nwords = HARD_REGNO_NREGS (regno, outmode);
rtx saved_rtx;
/* When we consider whether the insn uses OUT,
ignore references within IN. They don't prevent us
from copying IN into OUT, because those refs would
move into the insn that reloads IN.
However, we only ignore IN in its role as this reload.
If the insn uses IN elsewhere and it contains OUT,
that counts. We can't be sure it's the "same" operand
so it might not go through this reload. */
saved_rtx = *inloc;
*inloc = const0_rtx;
if (regno < FIRST_PSEUDO_REGISTER
/* A fixed reg that can overlap other regs better not be used
for reloading in any way. */
#ifdef OVERLAPPING_REGNO_P
&& ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
#endif
&& ! refers_to_regno_for_reload_p (regno, regno + nwords,
PATTERN (this_insn), outloc))
{
int i;
for (i = 0; i < nwords; i++)
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
regno + i))
break;
if (i == nwords)
{
if (GET_CODE (real_out) == REG)
value = real_out;
else
value = gen_rtx_REG (outmode, regno);
}
}
*inloc = saved_rtx;
}
/* Consider using IN if OUT was not acceptable
or if OUT dies in this insn (like the quotient in a divmod insn).
We can't use IN unless it is dies in this insn,
which means we must know accurately which hard regs are live.
Also, the result can't go in IN if IN is used within OUT,
or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
if (hard_regs_live_known
&& GET_CODE (in) == REG
&& REGNO (in) < FIRST_PSEUDO_REGISTER
&& (value == 0
|| find_reg_note (this_insn, REG_UNUSED, real_out))
&& find_reg_note (this_insn, REG_DEAD, real_in)
&& !fixed_regs[REGNO (in)]
&& HARD_REGNO_MODE_OK (REGNO (in),
/* The only case where out and real_out might
have different modes is where real_out
is a subreg, and in that case, out
has a real mode. */
(GET_MODE (out) != VOIDmode
? GET_MODE (out) : outmode)))
{
register int regno = REGNO (in) + in_offset;
int nwords = HARD_REGNO_NREGS (regno, inmode);
if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
&& ! hard_reg_set_here_p (regno, regno + nwords,
PATTERN (this_insn))
&& (! earlyclobber
|| ! refers_to_regno_for_reload_p (regno, regno + nwords,
PATTERN (this_insn), inloc)))
{
int i;
for (i = 0; i < nwords; i++)
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
regno + i))
break;
if (i == nwords)
{
/* If we were going to use OUT as the reload reg
and changed our mind, it means OUT is a dummy that
dies here. So don't bother copying value to it. */
if (for_real >= 0 && value == real_out)
rld[for_real].out = 0;
if (GET_CODE (real_in) == REG)
value = real_in;
else
value = gen_rtx_REG (inmode, regno);
}
}
}
return value;
}
/* This page contains subroutines used mainly for determining
whether the IN or an OUT of a reload can serve as the
reload register. */
/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
static int
earlyclobber_operand_p (x)
rtx x;
{
int i;
for (i = 0; i < n_earlyclobbers; i++)
if (reload_earlyclobbers[i] == x)
return 1;
return 0;
}
/* Return 1 if expression X alters a hard reg in the range
from BEG_REGNO (inclusive) to END_REGNO (exclusive),
either explicitly or in the guise of a pseudo-reg allocated to REGNO.
X should be the body of an instruction. */
static int
hard_reg_set_here_p (beg_regno, end_regno, x)
register int beg_regno, end_regno;
rtx x;
{
if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
{
register rtx op0 = SET_DEST (x);
while (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
if (GET_CODE (op0) == REG)
{
register int r = REGNO (op0);
/* See if this reg overlaps range under consideration. */
if (r < end_regno
&& r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
return 1;
}
}
else if (GET_CODE (x) == PARALLEL)
{
register int i = XVECLEN (x, 0) - 1;
for (; i >= 0; i--)
if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
return 1;
}
return 0;
}
/* Return 1 if ADDR is a valid memory address for mode MODE,
and check that each pseudo reg has the proper kind of
hard reg. */
int
strict_memory_address_p (mode, addr)
enum machine_mode mode;
register rtx addr;
{
GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
return 0;
win:
return 1;
}
/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
if they are the same hard reg, and has special hacks for
autoincrement and autodecrement.
This is specifically intended for find_reloads to use
in determining whether two operands match.
X is the operand whose number is the lower of the two.
The value is 2 if Y contains a pre-increment that matches
a non-incrementing address in X. */
/* ??? To be completely correct, we should arrange to pass
for X the output operand and for Y the input operand.
For now, we assume that the output operand has the lower number
because that is natural in (SET output (... input ...)). */
int
operands_match_p (x, y)
register rtx x, y;
{
register int i;
register RTX_CODE code = GET_CODE (x);
register const char *fmt;
int success_2;
if (x == y)
return 1;
if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
&& (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
&& GET_CODE (SUBREG_REG (y)) == REG)))
{
register int j;
if (code == SUBREG)
{
i = REGNO (SUBREG_REG (x));
if (i >= FIRST_PSEUDO_REGISTER)
goto slow;
i += SUBREG_WORD (x);
}
else
i = REGNO (x);
if (GET_CODE (y) == SUBREG)
{
j = REGNO (SUBREG_REG (y));
if (j >= FIRST_PSEUDO_REGISTER)
goto slow;
j += SUBREG_WORD (y);
}
else
j = REGNO (y);
/* On a WORDS_BIG_ENDIAN machine, point to the last register of a
multiple hard register group, so that for example (reg:DI 0) and
(reg:SI 1) will be considered the same register. */
if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
&& i < FIRST_PSEUDO_REGISTER)
i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
&& j < FIRST_PSEUDO_REGISTER)
j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
return i == j;
}
/* If two operands must match, because they are really a single
operand of an assembler insn, then two postincrements are invalid
because the assembler insn would increment only once.
On the other hand, an postincrement matches ordinary indexing
if the postincrement is the output operand. */
if (code == POST_DEC || code == POST_INC)
return operands_match_p (XEXP (x, 0), y);
/* Two preincrements are invalid
because the assembler insn would increment only once.
On the other hand, an preincrement matches ordinary indexing
if the preincrement is the input operand.
In this case, return 2, since some callers need to do special
things when this happens. */
if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
slow:
/* Now we have disposed of all the cases
in which different rtx codes can match. */
if (code != GET_CODE (y))
return 0;
if (code == LABEL_REF)
return XEXP (x, 0) == XEXP (y, 0);
if (code == SYMBOL_REF)
return XSTR (x, 0) == XSTR (y, 0);
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
if (GET_MODE (x) != GET_MODE (y))
return 0;
/* Compare the elements. If any pair of corresponding elements
fail to match, return 0 for the whole things. */
success_2 = 0;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
int val, j;
switch (fmt[i])
{
case 'w':
if (XWINT (x, i) != XWINT (y, i))
return 0;
break;
case 'i':
if (XINT (x, i) != XINT (y, i))
return 0;
break;
case 'e':
val = operands_match_p (XEXP (x, i), XEXP (y, i));
if (val == 0)
return 0;
/* If any subexpression returns 2,
we should return 2 if we are successful. */
if (val == 2)
success_2 = 1;
break;
case '0':
break;
case 'E':
if (XVECLEN (x, i) != XVECLEN (y, i))
return 0;
for (j = XVECLEN (x, i) - 1; j >= 0; --j)
{
val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
if (val == 0)
return 0;
if (val == 2)
success_2 = 1;
}
break;
/* It is believed that rtx's at this level will never
contain anything but integers and other rtx's,
except for within LABEL_REFs and SYMBOL_REFs. */
default:
abort ();
}
}
return 1 + success_2;
}
/* Describe the range of registers or memory referenced by X.
If X is a register, set REG_FLAG and put the first register
number into START and the last plus one into END.
If X is a memory reference, put a base address into BASE
and a range of integer offsets into START and END.
If X is pushing on the stack, we can assume it causes no trouble,
so we set the SAFE field. */
static struct decomposition
decompose (x)
rtx x;
{
struct decomposition val;
int all_const = 0;
val.reg_flag = 0;
val.safe = 0;
val.base = 0;
if (GET_CODE (x) == MEM)
{
rtx base = NULL_RTX, offset = 0;
rtx addr = XEXP (x, 0);
if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
|| GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
{
val.base = XEXP (addr, 0);
val.start = - GET_MODE_SIZE (GET_MODE (x));
val.end = GET_MODE_SIZE (GET_MODE (x));
val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
return val;
}
if (GET_CODE (addr) == CONST)
{
addr = XEXP (addr, 0);
all_const = 1;
}
if (GET_CODE (addr) == PLUS)
{
if (CONSTANT_P (XEXP (addr, 0)))
{
base = XEXP (addr, 1);
offset = XEXP (addr, 0);
}
else if (CONSTANT_P (XEXP (addr, 1)))
{
base = XEXP (addr, 0);
offset = XEXP (addr, 1);
}
}
if (offset == 0)
{
base = addr;
offset = const0_rtx;
}
if (GET_CODE (offset) == CONST)
offset = XEXP (offset, 0);
if (GET_CODE (offset) == PLUS)
{
if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
{
base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
offset = XEXP (offset, 0);
}
else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
{
base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
offset = XEXP (offset, 1);
}
else
{
base = gen_rtx_PLUS (GET_MODE (base), base, offset);
offset = const0_rtx;
}
}
else if (GET_CODE (offset) != CONST_INT)
{
base = gen_rtx_PLUS (GET_MODE (base), base, offset);
offset = const0_rtx;
}
if (all_const && GET_CODE (base) == PLUS)
base = gen_rtx_CONST (GET_MODE (base), base);
if (GET_CODE (offset) != CONST_INT)
abort ();
val.start = INTVAL (offset);
val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
val.base = base;
return val;
}
else if (GET_CODE (x) == REG)
{
val.reg_flag = 1;
val.start = true_regnum (x);
if (val.start < 0)
{
/* A pseudo with no hard reg. */
val.start = REGNO (x);
val.end = val.start + 1;
}
else
/* A hard reg. */
val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
}
else if (GET_CODE (x) == SUBREG)
{
if (GET_CODE (SUBREG_REG (x)) != REG)
/* This could be more precise, but it's good enough. */
return decompose (SUBREG_REG (x));
val.reg_flag = 1;
val.start = true_regnum (x);
if (val.start < 0)
return decompose (SUBREG_REG (x));
else
/* A hard reg. */
val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
}
else if (CONSTANT_P (x)
/* This hasn't been assigned yet, so it can't conflict yet. */
|| GET_CODE (x) == SCRATCH)
val.safe = 1;
else
abort ();
return val;
}
/* Return 1 if altering Y will not modify the value of X.
Y is also described by YDATA, which should be decompose (Y). */
static int
immune_p (x, y, ydata)
rtx x, y;
struct decomposition ydata;
{
struct decomposition xdata;
if (ydata.reg_flag)
return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
if (ydata.safe)
return 1;
if (GET_CODE (y) != MEM)
abort ();
/* If Y is memory and X is not, Y can't affect X. */
if (GET_CODE (x) != MEM)
return 1;
xdata = decompose (x);
if (! rtx_equal_p (xdata.base, ydata.base))
{
/* If bases are distinct symbolic constants, there is no overlap. */
if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
return 1;
/* Constants and stack slots never overlap. */
if (CONSTANT_P (xdata.base)
&& (ydata.base == frame_pointer_rtx
|| ydata.base == hard_frame_pointer_rtx
|| ydata.base == stack_pointer_rtx))
return 1;
if (CONSTANT_P (ydata.base)
&& (xdata.base == frame_pointer_rtx
|| xdata.base == hard_frame_pointer_rtx
|| xdata.base == stack_pointer_rtx))
return 1;
/* If either base is variable, we don't know anything. */
return 0;
}
return (xdata.start >= ydata.end || ydata.start >= xdata.end);
}
/* Similar, but calls decompose. */
int
safe_from_earlyclobber (op, clobber)
rtx op, clobber;
{
struct decomposition early_data;
early_data = decompose (clobber);
return immune_p (op, clobber, early_data);
}
/* Main entry point of this file: search the body of INSN
for values that need reloading and record them with push_reload.
REPLACE nonzero means record also where the values occur
so that subst_reloads can be used.
IND_LEVELS says how many levels of indirection are supported by this
machine; a value of zero means that a memory reference is not a valid
memory address.
LIVE_KNOWN says we have valid information about which hard
regs are live at each point in the program; this is true when
we are called from global_alloc but false when stupid register
allocation has been done.
RELOAD_REG_P if nonzero is a vector indexed by hard reg number
which is nonnegative if the reg has been commandeered for reloading into.
It is copied into STATIC_RELOAD_REG_P and referenced from there
by various subroutines.
Return TRUE if some operands need to be changed, because of swapping
commutative operands, reg_equiv_address substitution, or whatever. */
int
find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
rtx insn;
int replace, ind_levels;
int live_known;
short *reload_reg_p;
{
register int insn_code_number;
register int i, j;
int noperands;
/* These start out as the constraints for the insn
and they are chewed up as we consider alternatives. */
char *constraints[MAX_RECOG_OPERANDS];
/* These are the preferred classes for an operand, or NO_REGS if it isn't
a register. */
enum reg_class preferred_class[MAX_RECOG_OPERANDS];
char pref_or_nothing[MAX_RECOG_OPERANDS];
/* Nonzero for a MEM operand whose entire address needs a reload. */
int address_reloaded[MAX_RECOG_OPERANDS];
/* Value of enum reload_type to use for operand. */
enum reload_type operand_type[MAX_RECOG_OPERANDS];
/* Value of enum reload_type to use within address of operand. */
enum reload_type address_type[MAX_RECOG_OPERANDS];
/* Save the usage of each operand. */
enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
int no_input_reloads = 0, no_output_reloads = 0;
int n_alternatives;
int this_alternative[MAX_RECOG_OPERANDS];
char this_alternative_win[MAX_RECOG_OPERANDS];
char this_alternative_offmemok[MAX_RECOG_OPERANDS];
char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
int this_alternative_matches[MAX_RECOG_OPERANDS];
int swapped;
int goal_alternative[MAX_RECOG_OPERANDS];
int this_alternative_number;
int goal_alternative_number;
int operand_reloadnum[MAX_RECOG_OPERANDS];
int goal_alternative_matches[MAX_RECOG_OPERANDS];
int goal_alternative_matched[MAX_RECOG_OPERANDS];
char goal_alternative_win[MAX_RECOG_OPERANDS];
char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
int goal_alternative_swapped;
int best;
int commutative;
int changed;
char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
rtx substed_operand[MAX_RECOG_OPERANDS];
rtx body = PATTERN (insn);
rtx set = single_set (insn);
int goal_earlyclobber, this_earlyclobber;
enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
int retval = 0;
this_insn = insn;
n_reloads = 0;
n_replacements = 0;
n_earlyclobbers = 0;
replace_reloads = replace;
hard_regs_live_known = live_known;
static_reload_reg_p = reload_reg_p;
/* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
neither are insns that SET cc0. Insns that use CC0 are not allowed
to have any input reloads. */
if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
no_output_reloads = 1;
#ifdef HAVE_cc0
if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
no_input_reloads = 1;
if (reg_set_p (cc0_rtx, PATTERN (insn)))
no_output_reloads = 1;
#endif
#ifdef SECONDARY_MEMORY_NEEDED
/* The eliminated forms of any secondary memory locations are per-insn, so
clear them out here. */
bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
#endif
/* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
is cheap to move between them. If it is not, there may not be an insn
to do the copy, so we may need a reload. */
if (GET_CODE (body) == SET
&& GET_CODE (SET_DEST (body)) == REG
&& REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
&& GET_CODE (SET_SRC (body)) == REG
&& REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
&& REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
return 0;
extract_insn (insn);
noperands = reload_n_operands = recog_data.n_operands;
n_alternatives = recog_data.n_alternatives;
/* Just return "no reloads" if insn has no operands with constraints. */
if (noperands == 0 || n_alternatives == 0)
return 0;
insn_code_number = INSN_CODE (insn);
this_insn_is_asm = insn_code_number < 0;
memcpy (operand_mode, recog_data.operand_mode,
noperands * sizeof (enum machine_mode));
memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
commutative = -1;
/* If we will need to know, later, whether some pair of operands
are the same, we must compare them now and save the result.
Reloading the base and index registers will clobber them
and afterward they will fail to match. */
for (i = 0; i < noperands; i++)
{
register char *p;
register int c;
substed_operand[i] = recog_data.operand[i];
p = constraints[i];
modified[i] = RELOAD_READ;
/* Scan this operand's constraint to see if it is an output operand,
an in-out operand, is commutative, or should match another. */
while ((c = *p++))
{
if (c == '=')
modified[i] = RELOAD_WRITE;
else if (c == '+')
modified[i] = RELOAD_READ_WRITE;
else if (c == '%')
{
/* The last operand should not be marked commutative. */
if (i == noperands - 1)
abort ();
commutative = i;
}
else if (c >= '0' && c <= '9')
{
c -= '0';
operands_match[c][i]
= operands_match_p (recog_data.operand[c],
recog_data.operand[i]);
/* An operand may not match itself. */
if (c == i)
abort ();
/* If C can be commuted with C+1, and C might need to match I,
then C+1 might also need to match I. */
if (commutative >= 0)
{
if (c == commutative || c == commutative + 1)
{
int other = c + (c == commutative ? 1 : -1);
operands_match[other][i]
= operands_match_p (recog_data.operand[other],
recog_data.operand[i]);
}
if (i == commutative || i == commutative + 1)
{
int other = i + (i == commutative ? 1 : -1);
operands_match[c][other]
= operands_match_p (recog_data.operand[c],
recog_data.operand[other]);
}
/* Note that C is supposed to be less than I.
No need to consider altering both C and I because in
that case we would alter one into the other. */
}
}
}
}
/* Examine each operand that is a memory reference or memory address
and reload parts of the addresses into index registers.
Also here any references to pseudo regs that didn't get hard regs
but are equivalent to constants get replaced in the insn itself
with those constants. Nobody will ever see them again.
Finally, set up the preferred classes of each operand. */
for (i = 0; i < noperands; i++)
{
register RTX_CODE code = GET_CODE (recog_data.operand[i]);
address_reloaded[i] = 0;
operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
: modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
: RELOAD_OTHER);
address_type[i]
= (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
: modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
: RELOAD_OTHER);
if (*constraints[i] == 0)
/* Ignore things like match_operator operands. */
;
else if (constraints[i][0] == 'p')
{
find_reloads_address (VOIDmode, NULL_PTR,
recog_data.operand[i],
recog_data.operand_loc[i],
i, operand_type[i], ind_levels, insn);
/* If we now have a simple operand where we used to have a
PLUS or MULT, re-recognize and try again. */
if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
|| GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
&& (GET_CODE (recog_data.operand[i]) == MULT
|| GET_CODE (recog_data.operand[i]) == PLUS))
{
INSN_CODE (insn) = -1;
retval = find_reloads (insn, replace, ind_levels, live_known,
reload_reg_p);
return retval;
}
recog_data.operand[i] = *recog_data.operand_loc[i];
substed_operand[i] = recog_data.operand[i];
}
else if (code == MEM)
{
address_reloaded[i]
= find_reloads_address (GET_MODE (recog_data.operand[i]),
recog_data.operand_loc[i],
XEXP (recog_data.operand[i], 0),
&XEXP (recog_data.operand[i], 0),
i, address_type[i], ind_levels, insn);
recog_data.operand[i] = *recog_data.operand_loc[i];
substed_operand[i] = recog_data.operand[i];
}
else if (code == SUBREG)
{
rtx reg = SUBREG_REG (recog_data.operand[i]);
rtx op
= find_reloads_toplev (recog_data.operand[i], i, address_type[i],
ind_levels,
set != 0
&& &SET_DEST (set) == recog_data.operand_loc[i],
insn);
/* If we made a MEM to load (a part of) the stackslot of a pseudo
that didn't get a hard register, emit a USE with a REG_EQUAL
note in front so that we might inherit a previous, possibly
wider reload. */
if (replace
&& GET_CODE (op) == MEM
&& GET_CODE (reg) == REG
&& (GET_MODE_SIZE (GET_MODE (reg))
>= GET_MODE_SIZE (GET_MODE (op))))
REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
= gen_rtx_EXPR_LIST (REG_EQUAL,
reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
substed_operand[i] = recog_data.operand[i] = op;
}
else if (code == PLUS || GET_RTX_CLASS (code) == '1')
/* We can get a PLUS as an "operand" as a result of register
elimination. See eliminate_regs and gen_reload. We handle
a unary operator by reloading the operand. */
substed_operand[i] = recog_data.operand[i]
= find_reloads_toplev (recog_data.operand[i], i, address_type[i],
ind_levels, 0, insn);
else if (code == REG)
{
/* This is equivalent to calling find_reloads_toplev.
The code is duplicated for speed.
When we find a pseudo always equivalent to a constant,
we replace it by the constant. We must be sure, however,
that we don't try to replace it in the insn in which it
is being set. */
register int regno = REGNO (recog_data.operand[i]);
if (reg_equiv_constant[regno] != 0
&& (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
{
/* Record the existing mode so that the check if constants are
allowed will work when operand_mode isn't specified. */
if (operand_mode[i] == VOIDmode)
operand_mode[i] = GET_MODE (recog_data.operand[i]);
substed_operand[i] = recog_data.operand[i]
= reg_equiv_constant[regno];
}
if (reg_equiv_memory_loc[regno] != 0
&& (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
/* We need not give a valid is_set_dest argument since the case
of a constant equivalence was checked above. */
substed_operand[i] = recog_data.operand[i]
= find_reloads_toplev (recog_data.operand[i], i, address_type[i],
ind_levels, 0, insn);
}
/* If the operand is still a register (we didn't replace it with an
equivalent), get the preferred class to reload it into. */
code = GET_CODE (recog_data.operand[i]);
preferred_class[i]
= ((code == REG && REGNO (recog_data.operand[i])
>= FIRST_PSEUDO_REGISTER)
? reg_preferred_class (REGNO (recog_data.operand[i]))
: NO_REGS);
pref_or_nothing[i]
= (code == REG
&& REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
&& reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
}
#ifdef HAVE_cc0
/* If we made any reloads for addresses, see if they violate a
"no input reloads" requirement for this insn. */
if (no_input_reloads)
for (i = 0; i < n_reloads; i++)
if (rld[i].in != 0)
abort ();
#endif
/* If this is simply a copy from operand 1 to operand 0, merge the
preferred classes for the operands. */
if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
&& recog_data.operand[1] == SET_SRC (set))
{
preferred_class[0] = preferred_class[1]
= reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
pref_or_nothing[0] |= pref_or_nothing[1];
pref_or_nothing[1] |= pref_or_nothing[0];
}
/* Now see what we need for pseudo-regs that didn't get hard regs
or got the wrong kind of hard reg. For this, we must consider
all the operands together against the register constraints. */
best = MAX_RECOG_OPERANDS * 2 + 600;
swapped = 0;
goal_alternative_swapped = 0;
try_swapped:
/* The constraints are made of several alternatives.
Each operand's constraint looks like foo,bar,... with commas
separating the alternatives. The first alternatives for all
operands go together, the second alternatives go together, etc.
First loop over alternatives. */
for (this_alternative_number = 0;
this_alternative_number < n_alternatives;
this_alternative_number++)
{
/* Loop over operands for one constraint alternative. */
/* LOSERS counts those that don't fit this alternative
and would require loading. */
int losers = 0;
/* BAD is set to 1 if it some operand can't fit this alternative
even after reloading. */
int bad = 0;
/* REJECT is a count of how undesirable this alternative says it is
if any reloading is required. If the alternative matches exactly
then REJECT is ignored, but otherwise it gets this much
counted against it in addition to the reloading needed. Each
? counts three times here since we want the disparaging caused by
a bad register class to only count 1/3 as much. */
int reject = 0;
this_earlyclobber = 0;
for (i = 0; i < noperands; i++)
{
register char *p = constraints[i];
register int win = 0;
/* 0 => this operand can be reloaded somehow for this alternative */
int badop = 1;
/* 0 => this operand can be reloaded if the alternative allows regs. */
int winreg = 0;
int c;
register rtx operand = recog_data.operand[i];
int offset = 0;
/* Nonzero means this is a MEM that must be reloaded into a reg
regardless of what the constraint says. */
int force_reload = 0;
int offmemok = 0;
/* Nonzero if a constant forced into memory would be OK for this
operand. */
int constmemok = 0;
int earlyclobber = 0;
/* If the predicate accepts a unary operator, it means that
we need to reload the operand, but do not do this for
match_operator and friends. */
if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
operand = XEXP (operand, 0);
/* If the operand is a SUBREG, extract
the REG or MEM (or maybe even a constant) within.
(Constants can occur as a result of reg_equiv_constant.) */
while (GET_CODE (operand) == SUBREG)
{
offset += SUBREG_WORD (operand);
operand = SUBREG_REG (operand);
/* Force reload if this is a constant or PLUS or if there may
be a problem accessing OPERAND in the outer mode. */
if (CONSTANT_P (operand)
|| GET_CODE (operand) == PLUS
/* We must force a reload of paradoxical SUBREGs
of a MEM because the alignment of the inner value
may not be enough to do the outer reference. On
big-endian machines, it may also reference outside
the object.
On machines that extend byte operations and we have a
SUBREG where both the inner and outer modes are no wider
than a word and the inner mode is narrower, is integral,
and gets extended when loaded from memory, combine.c has
made assumptions about the behavior of the machine in such
register access. If the data is, in fact, in memory we
must always load using the size assumed to be in the
register and let the insn do the different-sized
accesses.
This is doubly true if WORD_REGISTER_OPERATIONS. In
this case eliminate_regs has left non-paradoxical
subregs for push_reloads to see. Make sure it does
by forcing the reload.
??? When is it right at this stage to have a subreg
of a mem that is _not_ to be handled specialy? IMO
those should have been reduced to just a mem. */
|| ((GET_CODE (operand) == MEM
|| (GET_CODE (operand)== REG
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER))
#ifndef WORD_REGISTER_OPERATIONS
&& (((GET_MODE_BITSIZE (GET_MODE (operand))
< BIGGEST_ALIGNMENT)
&& (GET_MODE_SIZE (operand_mode[i])
> GET_MODE_SIZE (GET_MODE (operand))))
|| (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
#ifdef LOAD_EXTEND_OP
|| (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
&& (GET_MODE_SIZE (GET_MODE (operand))
<= UNITS_PER_WORD)
&& (GET_MODE_SIZE (operand_mode[i])
> GET_MODE_SIZE (GET_MODE (operand)))
&& INTEGRAL_MODE_P (GET_MODE (operand))
&& LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
#endif
)
#endif
)
/* Subreg of a hard reg which can't handle the subreg's mode
or which would handle that mode in the wrong number of
registers for subregging to work. */
|| (GET_CODE (operand) == REG
&& REGNO (operand) < FIRST_PSEUDO_REGISTER
&& ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
&& (GET_MODE_SIZE (GET_MODE (operand))
> UNITS_PER_WORD)
&& ((GET_MODE_SIZE (GET_MODE (operand))
/ UNITS_PER_WORD)
!= HARD_REGNO_NREGS (REGNO (operand),
GET_MODE (operand))))
|| ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
operand_mode[i]))))
force_reload = 1;
}
this_alternative[i] = (int) NO_REGS;
this_alternative_win[i] = 0;
this_alternative_offmemok[i] = 0;
this_alternative_earlyclobber[i] = 0;
this_alternative_matches[i] = -1;
/* An empty constraint or empty alternative
allows anything which matched the pattern. */
if (*p == 0 || *p == ',')
win = 1, badop = 0;
/* Scan this alternative's specs for this operand;
set WIN if the operand fits any letter in this alternative.
Otherwise, clear BADOP if this operand could
fit some letter after reloads,
or set WINREG if this operand could fit after reloads
provided the constraint allows some registers. */
while (*p && (c = *p++) != ',')
switch (c)
{
case '=': case '+': case '*':
break;
case '%':
/* The last operand should not be marked commutative. */
if (i != noperands - 1)
commutative = i;
break;
case '?':
reject += 6;
break;
case '!':
reject = 600;
break;
case '#':
/* Ignore rest of this alternative as far as
reloading is concerned. */
while (*p && *p != ',') p++;
break;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
c -= '0';
this_alternative_matches[i] = c;
/* We are supposed to match a previous operand.
If we do, we win if that one did.
If we do not, count both of the operands as losers.
(This is too conservative, since most of the time
only a single reload insn will be needed to make
the two operands win. As a result, this alternative
may be rejected when it is actually desirable.) */
if ((swapped && (c != commutative || i != commutative + 1))
/* If we are matching as if two operands were swapped,
also pretend that operands_match had been computed
with swapped.
But if I is the second of those and C is the first,
don't exchange them, because operands_match is valid
only on one side of its diagonal. */
? (operands_match
[(c == commutative || c == commutative + 1)
? 2*commutative + 1 - c : c]
[(i == commutative || i == commutative + 1)
? 2*commutative + 1 - i : i])
: operands_match[c][i])
{
/* If we are matching a non-offsettable address where an
offsettable address was expected, then we must reject
this combination, because we can't reload it. */
if (this_alternative_offmemok[c]
&& GET_CODE (recog_data.operand[c]) == MEM
&& this_alternative[c] == (int) NO_REGS
&& ! this_alternative_win[c])
bad = 1;
win = this_alternative_win[c];
}
else
{
/* Operands don't match. */
rtx value;
/* Retroactively mark the operand we had to match
as a loser, if it wasn't already. */
if (this_alternative_win[c])
losers++;
this_alternative_win[c] = 0;
if (this_alternative[c] == (int) NO_REGS)
bad = 1;
/* But count the pair only once in the total badness of
this alternative, if the pair can be a dummy reload. */
value
= find_dummy_reload (recog_data.operand[i],
recog_data.operand[c],
recog_data.operand_loc[i],
recog_data.operand_loc[c],
operand_mode[i], operand_mode[c],
this_alternative[c], -1,
this_alternative_earlyclobber[c]);
if (value != 0)
losers--;
}
/* This can be fixed with reloads if the operand
we are supposed to match can be fixed with reloads. */
badop = 0;
this_alternative[i] = this_alternative[c];
/* If we have to reload this operand and some previous
operand also had to match the same thing as this
operand, we don't know how to do that. So reject this
alternative. */
if (! win || force_reload)
for (j = 0; j < i; j++)
if (this_alternative_matches[j]
== this_alternative_matches[i])
badop = 1;
break;
case 'p':
/* All necessary reloads for an address_operand
were handled in find_reloads_address. */
this_alternative[i] = (int) BASE_REG_CLASS;
win = 1;
break;
case 'm':
if (force_reload)
break;
if (GET_CODE (operand) == MEM
|| (GET_CODE (operand) == REG
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (operand)] < 0))
win = 1;
if (CONSTANT_P (operand)
/* force_const_mem does not accept HIGH. */
&& GET_CODE (operand) != HIGH)
badop = 0;
constmemok = 1;
break;
case '<':
if (GET_CODE (operand) == MEM
&& ! address_reloaded[i]
&& (GET_CODE (XEXP (operand, 0)) == PRE_DEC
|| GET_CODE (XEXP (operand, 0)) == POST_DEC))
win = 1;
break;
case '>':
if (GET_CODE (operand) == MEM
&& ! address_reloaded[i]
&& (GET_CODE (XEXP (operand, 0)) == PRE_INC
|| GET_CODE (XEXP (operand, 0)) == POST_INC))
win = 1;
break;
/* Memory operand whose address is not offsettable. */
case 'V':
if (force_reload)
break;
if (GET_CODE (operand) == MEM
&& ! (ind_levels ? offsettable_memref_p (operand)
: offsettable_nonstrict_memref_p (operand))
/* Certain mem addresses will become offsettable
after they themselves are reloaded. This is important;
we don't want our own handling of unoffsettables
to override the handling of reg_equiv_address. */
&& !(GET_CODE (XEXP (operand, 0)) == REG
&& (ind_levels == 0
|| reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
win = 1;
break;
/* Memory operand whose address is offsettable. */
case 'o':
if (force_reload)
break;
if ((GET_CODE (operand) == MEM
/* If IND_LEVELS, find_reloads_address won't reload a
pseudo that didn't get a hard reg, so we have to
reject that case. */
&& ((ind_levels ? offsettable_memref_p (operand)
: offsettable_nonstrict_memref_p (operand))
/* A reloaded address is offsettable because it is now
just a simple register indirect. */
|| address_reloaded[i]))
|| (GET_CODE (operand) == REG
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (operand)] < 0
/* If reg_equiv_address is nonzero, we will be
loading it into a register; hence it will be
offsettable, but we cannot say that reg_equiv_mem
is offsettable without checking. */
&& ((reg_equiv_mem[REGNO (operand)] != 0
&& offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
|| (reg_equiv_address[REGNO (operand)] != 0))))
win = 1;
/* force_const_mem does not accept HIGH. */
if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
|| GET_CODE (operand) == MEM)
badop = 0;
constmemok = 1;
offmemok = 1;
break;
case '&':
/* Output operand that is stored before the need for the
input operands (and their index registers) is over. */
earlyclobber = 1, this_earlyclobber = 1;
break;
case 'E':
#ifndef REAL_ARITHMETIC
/* Match any floating double constant, but only if
we can examine the bits of it reliably. */
if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
|| HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
&& GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
break;
#endif
if (GET_CODE (operand) == CONST_DOUBLE)
win = 1;
break;
case 'F':
if (GET_CODE (operand) == CONST_DOUBLE)
win = 1;
break;
case 'G':
case 'H':
if (GET_CODE (operand) == CONST_DOUBLE
&& CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
win = 1;
break;
case 's':
if (GET_CODE (operand) == CONST_INT
|| (GET_CODE (operand) == CONST_DOUBLE
&& GET_MODE (operand) == VOIDmode))
break;
case 'i':
if (CONSTANT_P (operand)
#ifdef LEGITIMATE_PIC_OPERAND_P
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
#endif
)
win = 1;
break;
case 'n':
if (GET_CODE (operand) == CONST_INT
|| (GET_CODE (operand) == CONST_DOUBLE
&& GET_MODE (operand) == VOIDmode))
win = 1;
break;
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P':
if (GET_CODE (operand) == CONST_INT
&& CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
win = 1;
break;
case 'X':
win = 1;
break;
case 'g':
if (! force_reload
/* A PLUS is never a valid operand, but reload can make
it from a register when eliminating registers. */
&& GET_CODE (operand) != PLUS
/* A SCRATCH is not a valid operand. */
&& GET_CODE (operand) != SCRATCH
#ifdef LEGITIMATE_PIC_OPERAND_P
&& (! CONSTANT_P (operand)
|| ! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (operand))
#endif
&& (GENERAL_REGS == ALL_REGS
|| GET_CODE (operand) != REG
|| (REGNO (operand) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (operand)] < 0)))
win = 1;
/* Drop through into 'r' case */
case 'r':
this_alternative[i]
= (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
goto reg;
#ifdef EXTRA_CONSTRAINT
case 'Q':
case 'R':
case 'S':
case 'T':
case 'U':
if (EXTRA_CONSTRAINT (operand, c))
win = 1;
break;
#endif
default:
this_alternative[i]
= (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
reg:
if (GET_MODE (operand) == BLKmode)
break;
winreg = 1;
if (GET_CODE (operand) == REG
&& reg_fits_class_p (operand, this_alternative[i],
offset, GET_MODE (recog_data.operand[i])))
win = 1;
break;
}
constraints[i] = p;
/* If this operand could be handled with a reg,
and some reg is allowed, then this operand can be handled. */
if (winreg && this_alternative[i] != (int) NO_REGS)
badop = 0;
/* Record which operands fit this alternative. */
this_alternative_earlyclobber[i] = earlyclobber;
if (win && ! force_reload)
this_alternative_win[i] = 1;
else
{
int const_to_mem = 0;
this_alternative_offmemok[i] = offmemok;
losers++;
if (badop)
bad = 1;
/* Alternative loses if it has no regs for a reg operand. */
if (GET_CODE (operand) == REG
&& this_alternative[i] == (int) NO_REGS
&& this_alternative_matches[i] < 0)
bad = 1;
/* If this is a constant that is reloaded into the desired
class by copying it to memory first, count that as another
reload. This is consistent with other code and is
required to avoid choosing another alternative when
the constant is moved into memory by this function on
an early reload pass. Note that the test here is
precisely the same as in the code below that calls
force_const_mem. */
if (CONSTANT_P (operand)
/* force_const_mem does not accept HIGH. */
&& GET_CODE (operand) != HIGH
&& ((PREFERRED_RELOAD_CLASS (operand,
(enum reg_class) this_alternative[i])
== NO_REGS)
|| no_input_reloads)
&& operand_mode[i] != VOIDmode)
{
const_to_mem = 1;
if (this_alternative[i] != (int) NO_REGS)
losers++;
}
/* If we can't reload this value at all, reject this
alternative. Note that we could also lose due to
LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
here. */
if (! CONSTANT_P (operand)
&& (enum reg_class) this_alternative[i] != NO_REGS
&& (PREFERRED_RELOAD_CLASS (operand,
(enum reg_class) this_alternative[i])
== NO_REGS))
bad = 1;
/* Alternative loses if it requires a type of reload not
permitted for this insn. We can always reload SCRATCH
and objects with a REG_UNUSED note. */
else if (GET_CODE (operand) != SCRATCH
&& modified[i] != RELOAD_READ && no_output_reloads
&& ! find_reg_note (insn, REG_UNUSED, operand))
bad = 1;
else if (modified[i] != RELOAD_WRITE && no_input_reloads
&& ! const_to_mem)
bad = 1;
/* We prefer to reload pseudos over reloading other things,
since such reloads may be able to be eliminated later.
If we are reloading a SCRATCH, we won't be generating any
insns, just using a register, so it is also preferred.
So bump REJECT in other cases. Don't do this in the
case where we are forcing a constant into memory and
it will then win since we don't want to have a different
alternative match then. */
if (! (GET_CODE (operand) == REG
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER)
&& GET_CODE (operand) != SCRATCH
&& ! (const_to_mem && constmemok))
reject += 2;
/* Input reloads can be inherited more often than output
reloads can be removed, so penalize output reloads. */
if (operand_type[i] != RELOAD_FOR_INPUT
&& GET_CODE (operand) != SCRATCH)
reject++;
}
/* If this operand is a pseudo register that didn't get a hard
reg and this alternative accepts some register, see if the
class that we want is a subset of the preferred class for this
register. If not, but it intersects that class, use the
preferred class instead. If it does not intersect the preferred
class, show that usage of this alternative should be discouraged;
it will be discouraged more still if the register is `preferred
or nothing'. We do this because it increases the chance of
reusing our spill register in a later insn and avoiding a pair
of memory stores and loads.
Don't bother with this if this alternative will accept this
operand.
Don't do this for a multiword operand, since it is only a
small win and has the risk of requiring more spill registers,
which could cause a large loss.
Don't do this if the preferred class has only one register
because we might otherwise exhaust the class. */
if (! win && this_alternative[i] != (int) NO_REGS
&& GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
&& reg_class_size[(int) preferred_class[i]] > 1)
{
if (! reg_class_subset_p (this_alternative[i],
preferred_class[i]))
{
/* Since we don't have a way of forming the intersection,
we just do something special if the preferred class
is a subset of the class we have; that's the most
common case anyway. */
if (reg_class_subset_p (preferred_class[i],
this_alternative[i]))
this_alternative[i] = (int) preferred_class[i];
else
reject += (2 + 2 * pref_or_nothing[i]);
}
}
}
/* Now see if any output operands that are marked "earlyclobber"
in this alternative conflict with any input operands
or any memory addresses. */
for (i = 0; i < noperands; i++)
if (this_alternative_earlyclobber[i]
&& this_alternative_win[i])
{
struct decomposition early_data;
early_data = decompose (recog_data.operand[i]);
if (modified[i] == RELOAD_READ)
abort ();
if (this_alternative[i] == NO_REGS)
{
this_alternative_earlyclobber[i] = 0;
if (this_insn_is_asm)
error_for_asm (this_insn,
"`&' constraint used with no register class");
else
abort ();
}
for (j = 0; j < noperands; j++)
/* Is this an input operand or a memory ref? */
if ((GET_CODE (recog_data.operand[j]) == MEM
|| modified[j] != RELOAD_WRITE)
&& j != i
/* Ignore things like match_operator operands. */
&& *recog_data.constraints[j] != 0
/* Don't count an input operand that is constrained to match
the early clobber operand. */
&& ! (this_alternative_matches[j] == i
&& rtx_equal_p (recog_data.operand[i],
recog_data.operand[j]))
/* Is it altered by storing the earlyclobber operand? */
&& !immune_p (recog_data.operand[j], recog_data.operand[i],
early_data))
{
/* If the output is in a single-reg class,
it's costly to reload it, so reload the input instead. */
if (reg_class_size[this_alternative[i]] == 1
&& (GET_CODE (recog_data.operand[j]) == REG
|| GET_CODE (recog_data.operand[j]) == SUBREG))
{
losers++;
this_alternative_win[j] = 0;
}
else
break;
}
/* If an earlyclobber operand conflicts with something,
it must be reloaded, so request this and count the cost. */
if (j != noperands)
{
losers++;
this_alternative_win[i] = 0;
for (j = 0; j < noperands; j++)
if (this_alternative_matches[j] == i
&& this_alternative_win[j])
{
this_alternative_win[j] = 0;
losers++;
}
}
}
/* If one alternative accepts all the operands, no reload required,
choose that alternative; don't consider the remaining ones. */
if (losers == 0)
{
/* Unswap these so that they are never swapped at `finish'. */
if (commutative >= 0)
{
recog_data.operand[commutative] = substed_operand[commutative];
recog_data.operand[commutative + 1]
= substed_operand[commutative + 1];
}
for (i = 0; i < noperands; i++)
{
goal_alternative_win[i] = 1;
goal_alternative[i] = this_alternative[i];
goal_alternative_offmemok[i] = this_alternative_offmemok[i];
goal_alternative_matches[i] = this_alternative_matches[i];
goal_alternative_earlyclobber[i]
= this_alternative_earlyclobber[i];
}
goal_alternative_number = this_alternative_number;
goal_alternative_swapped = swapped;
goal_earlyclobber = this_earlyclobber;
goto finish;
}
/* REJECT, set by the ! and ? constraint characters and when a register
would be reloaded into a non-preferred class, discourages the use of
this alternative for a reload goal. REJECT is incremented by six
for each ? and two for each non-preferred class. */
losers = losers * 6 + reject;
/* If this alternative can be made to work by reloading,
and it needs less reloading than the others checked so far,
record it as the chosen goal for reloading. */
if (! bad && best > losers)
{
for (i = 0; i < noperands; i++)
{
goal_alternative[i] = this_alternative[i];
goal_alternative_win[i] = this_alternative_win[i];
goal_alternative_offmemok[i] = this_alternative_offmemok[i];
goal_alternative_matches[i] = this_alternative_matches[i];
goal_alternative_earlyclobber[i]
= this_alternative_earlyclobber[i];
}
goal_alternative_swapped = swapped;
best = losers;
goal_alternative_number = this_alternative_number;
goal_earlyclobber = this_earlyclobber;
}
}
/* If insn is commutative (it's safe to exchange a certain pair of operands)
then we need to try each alternative twice,
the second time matching those two operands
as if we had exchanged them.
To do this, really exchange them in operands.
If we have just tried the alternatives the second time,
return operands to normal and drop through. */
if (commutative >= 0)
{
swapped = !swapped;
if (swapped)
{
register enum reg_class tclass;
register int t;
recog_data.operand[commutative] = substed_operand[commutative + 1];
recog_data.operand[commutative + 1] = substed_operand[commutative];
tclass = preferred_class[commutative];
preferred_class[commutative] = preferred_class[commutative + 1];
preferred_class[commutative + 1] = tclass;
t = pref_or_nothing[commutative];
pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
pref_or_nothing[commutative + 1] = t;
memcpy (constraints, recog_data.constraints,
noperands * sizeof (char *));
goto try_swapped;
}
else
{
recog_data.operand[commutative] = substed_operand[commutative];
recog_data.operand[commutative + 1]
= substed_operand[commutative + 1];
}
}
/* The operands don't meet the constraints.
goal_alternative describes the alternative
that we could reach by reloading the fewest operands.
Reload so as to fit it. */
if (best == MAX_RECOG_OPERANDS * 2 + 600)
{
/* No alternative works with reloads?? */
if (insn_code_number >= 0)
fatal_insn ("Unable to generate reloads for:", insn);
error_for_asm (insn, "inconsistent operand constraints in an `asm'");
/* Avoid further trouble with this insn. */
PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
n_reloads = 0;
return 0;
}
/* Jump to `finish' from above if all operands are valid already.
In that case, goal_alternative_win is all 1. */
finish:
/* Right now, for any pair of operands I and J that are required to match,
with I < J,
goal_alternative_matches[J] is I.
Set up goal_alternative_matched as the inverse function:
goal_alternative_matched[I] = J. */
for (i = 0; i < noperands; i++)
goal_alternative_matched[i] = -1;
for (i = 0; i < noperands; i++)
if (! goal_alternative_win[i]
&& goal_alternative_matches[i] >= 0)
goal_alternative_matched[goal_alternative_matches[i]] = i;
/* If the best alternative is with operands 1 and 2 swapped,
consider them swapped before reporting the reloads. Update the
operand numbers of any reloads already pushed. */
if (goal_alternative_swapped)
{
register rtx tem;
tem = substed_operand[commutative];
substed_operand[commutative] = substed_operand[commutative + 1];
substed_operand[commutative + 1] = tem;
tem = recog_data.operand[commutative];
recog_data.operand[commutative] = recog_data.operand[commutative + 1];
recog_data.operand[commutative + 1] = tem;
tem = *recog_data.operand_loc[commutative];
*recog_data.operand_loc[commutative]
= *recog_data.operand_loc[commutative + 1];
*recog_data.operand_loc[commutative+1] = tem;
for (i = 0; i < n_reloads; i++)
{
if (rld[i].opnum == commutative)
rld[i].opnum = commutative + 1;
else if (rld[i].opnum == commutative + 1)
rld[i].opnum = commutative;
}
}
for (i = 0; i < noperands; i++)
{
operand_reloadnum[i] = -1;
/* If this is an earlyclobber operand, we need to widen the scope.
The reload must remain valid from the start of the insn being
reloaded until after the operand is stored into its destination.
We approximate this with RELOAD_OTHER even though we know that we
do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
One special case that is worth checking is when we have an
output that is earlyclobber but isn't used past the insn (typically
a SCRATCH). In this case, we only need have the reload live
through the insn itself, but not for any of our input or output
reloads.
But we must not accidentally narrow the scope of an existing
RELOAD_OTHER reload - leave these alone.
In any case, anything needed to address this operand can remain
however they were previously categorized. */
if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
operand_type[i]
= (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
? RELOAD_FOR_INSN : RELOAD_OTHER);
}
/* Any constants that aren't allowed and can't be reloaded
into registers are here changed into memory references. */
for (i = 0; i < noperands; i++)
if (! goal_alternative_win[i]
&& CONSTANT_P (recog_data.operand[i])
/* force_const_mem does not accept HIGH. */
&& GET_CODE (recog_data.operand[i]) != HIGH
&& ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
(enum reg_class) goal_alternative[i])
== NO_REGS)
|| no_input_reloads)
&& operand_mode[i] != VOIDmode)
{
substed_operand[i] = recog_data.operand[i]
= find_reloads_toplev (force_const_mem (operand_mode[i],
recog_data.operand[i]),
i, address_type[i], ind_levels, 0, insn);
if (alternative_allows_memconst (recog_data.constraints[i],
goal_alternative_number))
goal_alternative_win[i] = 1;
}
/* Record the values of the earlyclobber operands for the caller. */
if (goal_earlyclobber)
for (i = 0; i < noperands; i++)
if (goal_alternative_earlyclobber[i])
reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
/* Now record reloads for all the operands that need them. */
for (i = 0; i < noperands; i++)
if (! goal_alternative_win[i])
{
/* Operands that match previous ones have already been handled. */
if (goal_alternative_matches[i] >= 0)
;
/* Handle an operand with a nonoffsettable address
appearing where an offsettable address will do
by reloading the address into a base register.
??? We can also do this when the operand is a register and
reg_equiv_mem is not offsettable, but this is a bit tricky,
so we don't bother with it. It may not be worth doing. */
else if (goal_alternative_matched[i] == -1
&& goal_alternative_offmemok[i]
&& GET_CODE (recog_data.operand[i]) == MEM)
{
operand_reloadnum[i]
= push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
&XEXP (recog_data.operand[i], 0), NULL_PTR,
BASE_REG_CLASS,
GET_MODE (XEXP (recog_data.operand[i], 0)),
VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
rld[operand_reloadnum[i]].inc
= GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
/* If this operand is an output, we will have made any
reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
now we are treating part of the operand as an input, so
we must change these to RELOAD_FOR_INPUT_ADDRESS. */
if (modified[i] == RELOAD_WRITE)
{
for (j = 0; j < n_reloads; j++)
{
if (rld[j].opnum == i)
{
if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
else if (rld[j].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS)
rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
}
}
}
}
else if (goal_alternative_matched[i] == -1)
{
operand_reloadnum[i]
= push_reload ((modified[i] != RELOAD_WRITE
? recog_data.operand[i] : 0),
(modified[i] != RELOAD_READ
? recog_data.operand[i] : 0),
(modified[i] != RELOAD_WRITE
? recog_data.operand_loc[i] : 0),
(modified[i] != RELOAD_READ
? recog_data.operand_loc[i] : 0),
(enum reg_class) goal_alternative[i],
(modified[i] == RELOAD_WRITE
? VOIDmode : operand_mode[i]),
(modified[i] == RELOAD_READ
? VOIDmode : operand_mode[i]),
(insn_code_number < 0 ? 0
: insn_data[insn_code_number].operand[i].strict_low),
0, i, operand_type[i]);
}
/* In a matching pair of operands, one must be input only
and the other must be output only.
Pass the input operand as IN and the other as OUT. */
else if (modified[i] == RELOAD_READ
&& modified[goal_alternative_matched[i]] == RELOAD_WRITE)
{
operand_reloadnum[i]
= push_reload (recog_data.operand[i],
recog_data.operand[goal_alternative_matched[i]],
recog_data.operand_loc[i],
recog_data.operand_loc[goal_alternative_matched[i]],
(enum reg_class) goal_alternative[i],
operand_mode[i],
operand_mode[goal_alternative_matched[i]],
0, 0, i, RELOAD_OTHER);
operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
}
else if (modified[i] == RELOAD_WRITE
&& modified[goal_alternative_matched[i]] == RELOAD_READ)
{
operand_reloadnum[goal_alternative_matched[i]]
= push_reload (recog_data.operand[goal_alternative_matched[i]],
recog_data.operand[i],
recog_data.operand_loc[goal_alternative_matched[i]],
recog_data.operand_loc[i],
(enum reg_class) goal_alternative[i],
operand_mode[goal_alternative_matched[i]],
operand_mode[i],
0, 0, i, RELOAD_OTHER);
operand_reloadnum[i] = output_reloadnum;
}
else if (insn_code_number >= 0)
abort ();
else
{
error_for_asm (insn, "inconsistent operand constraints in an `asm'");
/* Avoid further trouble with this insn. */
PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
n_reloads = 0;
return 0;
}
}
else if (goal_alternative_matched[i] < 0
&& goal_alternative_matches[i] < 0
&& optimize)
{
/* For each non-matching operand that's a MEM or a pseudo-register
that didn't get a hard register, make an optional reload.
This may get done even if the insn needs no reloads otherwise. */
rtx operand = recog_data.operand[i];
while (GET_CODE (operand) == SUBREG)
operand = XEXP (operand, 0);
if ((GET_CODE (operand) == MEM
|| (GET_CODE (operand) == REG
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER))
/* If this is only for an output, the optional reload would not
actually cause us to use a register now, just note that
something is stored here. */
&& ((enum reg_class) goal_alternative[i] != NO_REGS
|| modified[i] == RELOAD_WRITE)
&& ! no_input_reloads
/* An optional output reload might allow to delete INSN later.
We mustn't make in-out reloads on insns that are not permitted
output reloads.
If this is an asm, we can't delete it; we must not even call
push_reload for an optional output reload in this case,
because we can't be sure that the constraint allows a register,
and push_reload verifies the constraints for asms. */
&& (modified[i] == RELOAD_READ
|| (! no_output_reloads && ! this_insn_is_asm)))
operand_reloadnum[i]
= push_reload ((modified[i] != RELOAD_WRITE
? recog_data.operand[i] : 0),
(modified[i] != RELOAD_READ
? recog_data.operand[i] : 0),
(modified[i] != RELOAD_WRITE
? recog_data.operand_loc[i] : 0),
(modified[i] != RELOAD_READ
? recog_data.operand_loc[i] : 0),
(enum reg_class) goal_alternative[i],
(modified[i] == RELOAD_WRITE
? VOIDmode : operand_mode[i]),
(modified[i] == RELOAD_READ
? VOIDmode : operand_mode[i]),
(insn_code_number < 0 ? 0
: insn_data[insn_code_number].operand[i].strict_low),
1, i, operand_type[i]);
/* If a memory reference remains (either as a MEM or a pseudo that
did not get a hard register), yet we can't make an optional
reload, check if this is actually a pseudo register reference;
we then need to emit a USE and/or a CLOBBER so that reload
inheritance will do the right thing. */
else if (replace
&& (GET_CODE (operand) == MEM
|| (GET_CODE (operand) == REG
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
&& reg_renumber [REGNO (operand)] < 0)))
{
operand = *recog_data.operand_loc[i];
while (GET_CODE (operand) == SUBREG)
operand = XEXP (operand, 0);
if (GET_CODE (operand) == REG)
{
if (modified[i] != RELOAD_WRITE)
emit_insn_before (gen_rtx_USE (VOIDmode, operand), insn);
if (modified[i] != RELOAD_READ)
emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
}
}
}
else if (goal_alternative_matches[i] >= 0
&& goal_alternative_win[goal_alternative_matches[i]]
&& modified[i] == RELOAD_READ
&& modified[goal_alternative_matches[i]] == RELOAD_WRITE
&& ! no_input_reloads && ! no_output_reloads
&& optimize)
{
/* Similarly, make an optional reload for a pair of matching
objects that are in MEM or a pseudo that didn't get a hard reg. */
rtx operand = recog_data.operand[i];
while (GET_CODE (operand) == SUBREG)
operand = XEXP (operand, 0);
if ((GET_CODE (operand) == MEM
|| (GET_CODE (operand) == REG
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER))
&& ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
!= NO_REGS))
operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
= push_reload (recog_data.operand[goal_alternative_matches[i]],
recog_data.operand[i],
recog_data.operand_loc[goal_alternative_matches[i]],
recog_data.operand_loc[i],
(enum reg_class) goal_alternative[goal_alternative_matches[i]],
operand_mode[goal_alternative_matches[i]],
operand_mode[i],
0, 1, goal_alternative_matches[i], RELOAD_OTHER);
}
/* Perform whatever substitutions on the operands we are supposed
to make due to commutativity or replacement of registers
with equivalent constants or memory slots. */
for (i = 0; i < noperands; i++)
{
/* We only do this on the last pass through reload, because it is
possible for some data (like reg_equiv_address) to be changed during
later passes. Moreover, we loose the opportunity to get a useful
reload_{in,out}_reg when we do these replacements. */
if (replace)
{
rtx substitution = substed_operand[i];
*recog_data.operand_loc[i] = substitution;
/* If we're replacing an operand with a LABEL_REF, we need
to make sure that there's a REG_LABEL note attached to
this instruction. */
if (GET_CODE (insn) != JUMP_INSN
&& GET_CODE (substitution) == LABEL_REF
&& !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
XEXP (substitution, 0),
REG_NOTES (insn));
}
else
retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
}
/* If this insn pattern contains any MATCH_DUP's, make sure that
they will be substituted if the operands they match are substituted.
Also do now any substitutions we already did on the operands.
Don't do this if we aren't making replacements because we might be
propagating things allocated by frame pointer elimination into places
it doesn't expect. */
if (insn_code_number >= 0 && replace)
for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
{
int opno = recog_data.dup_num[i];
*recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
if (operand_reloadnum[opno] >= 0)
push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
insn_data[insn_code_number].operand[opno].mode);
}
#if 0
/* This loses because reloading of prior insns can invalidate the equivalence
(or at least find_equiv_reg isn't smart enough to find it any more),
causing this insn to need more reload regs than it needed before.
It may be too late to make the reload regs available.
Now this optimization is done safely in choose_reload_regs. */
/* For each reload of a reg into some other class of reg,
search for an existing equivalent reg (same value now) in the right class.
We can use it as long as we don't need to change its contents. */
for (i = 0; i < n_reloads; i++)
if (rld[i].reg_rtx == 0
&& rld[i].in != 0
&& GET_CODE (rld[i].in) == REG
&& rld[i].out == 0)
{
rld[i].reg_rtx
= find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
static_reload_reg_p, 0, rld[i].inmode);
/* Prevent generation of insn to load the value
because the one we found already has the value. */
if (rld[i].reg_rtx)
rld[i].in = rld[i].reg_rtx;
}
#endif
/* Perhaps an output reload can be combined with another
to reduce needs by one. */
if (!goal_earlyclobber)
combine_reloads ();
/* If we have a pair of reloads for parts of an address, they are reloading
the same object, the operands themselves were not reloaded, and they
are for two operands that are supposed to match, merge the reloads and
change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
for (i = 0; i < n_reloads; i++)
{
int k;
for (j = i + 1; j < n_reloads; j++)
if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
|| rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
|| rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
&& (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
|| rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
|| rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
&& rtx_equal_p (rld[i].in, rld[j].in)
&& (operand_reloadnum[rld[i].opnum] < 0
|| rld[operand_reloadnum[rld[i].opnum]].optional)
&& (operand_reloadnum[rld[j].opnum] < 0
|| rld[operand_reloadnum[rld[j].opnum]].optional)
&& (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
|| (goal_alternative_matches[rld[j].opnum]
== rld[i].opnum)))
{
for (k = 0; k < n_replacements; k++)
if (replacements[k].what == j)
replacements[k].what = i;
if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
else
rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
rld[j].in = 0;
}
}
/* Scan all the reloads and update their type.
If a reload is for the address of an operand and we didn't reload
that operand, change the type. Similarly, change the operand number
of a reload when two operands match. If a reload is optional, treat it
as though the operand isn't reloaded.
??? This latter case is somewhat odd because if we do the optional
reload, it means the object is hanging around. Thus we need only
do the address reload if the optional reload was NOT done.
Change secondary reloads to be the address type of their operand, not
the normal type.
If an operand's reload is now RELOAD_OTHER, change any
RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
RELOAD_FOR_OTHER_ADDRESS. */
for (i = 0; i < n_reloads; i++)
{
if (rld[i].secondary_p
&& rld[i].when_needed == operand_type[rld[i].opnum])
rld[i].when_needed = address_type[rld[i].opnum];
if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
|| rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
|| rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
&& (operand_reloadnum[rld[i].opnum] < 0
|| rld[operand_reloadnum[rld[i].opnum]].optional))
{
/* If we have a secondary reload to go along with this reload,
change its type to RELOAD_FOR_OPADDR_ADDR. */
if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
|| rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
&& rld[i].secondary_in_reload != -1)
{
int secondary_in_reload = rld[i].secondary_in_reload;
rld[secondary_in_reload].when_needed
= RELOAD_FOR_OPADDR_ADDR;
/* If there's a tertiary reload we have to change it also. */
if (secondary_in_reload > 0
&& rld[secondary_in_reload].secondary_in_reload != -1)
rld[rld[secondary_in_reload].secondary_in_reload].when_needed
= RELOAD_FOR_OPADDR_ADDR;
}
if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
&& rld[i].secondary_out_reload != -1)
{
int secondary_out_reload = rld[i].secondary_out_reload;
rld[secondary_out_reload].when_needed
= RELOAD_FOR_OPADDR_ADDR;
/* If there's a tertiary reload we have to change it also. */
if (secondary_out_reload
&& rld[secondary_out_reload].secondary_out_reload != -1)
rld[rld[secondary_out_reload].secondary_out_reload].when_needed
= RELOAD_FOR_OPADDR_ADDR;
}
if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
else
rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
}
if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
|| rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
&& operand_reloadnum[rld[i].opnum] >= 0
&& (rld[operand_reloadnum[rld[i].opnum]].when_needed
== RELOAD_OTHER))
rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
if (goal_alternative_matches[rld[i].opnum] >= 0)
rld[i].opnum = goal_alternative_matches[rld[i].opnum];
}
/* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
This is complicated by the fact that a single operand can have more
than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
choose_reload_regs without affecting code quality, and cases that
actually fail are extremely rare, so it turns out to be better to fix
the problem here by not generating cases that choose_reload_regs will
fail for. */
/* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
a single operand.
We can reduce the register pressure by exploiting that a
RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
does not conflict with any of them, if it is only used for the first of
the RELOAD_FOR_X_ADDRESS reloads. */
{
int first_op_addr_num = -2;
int first_inpaddr_num[MAX_RECOG_OPERANDS];
int first_outpaddr_num[MAX_RECOG_OPERANDS];
int need_change= 0;
/* We use last_op_addr_reload and the contents of the above arrays
first as flags - -2 means no instance encountered, -1 means exactly
one instance encountered.
If more than one instance has been encountered, we store the reload
number of the first reload of the kind in question; reload numbers
are known to be non-negative. */
for (i = 0; i < noperands; i++)
first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
for (i = n_reloads - 1; i >= 0; i--)
{
switch (rld[i].when_needed)
{
case RELOAD_FOR_OPERAND_ADDRESS:
if (++first_op_addr_num >= 0)
{
first_op_addr_num = i;
need_change = 1;
}
break;
case RELOAD_FOR_INPUT_ADDRESS:
if (++first_inpaddr_num[rld[i].opnum] >= 0)
{
first_inpaddr_num[rld[i].opnum] = i;
need_change = 1;
}
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
if (++first_outpaddr_num[rld[i].opnum] >= 0)
{
first_outpaddr_num[rld[i].opnum] = i;
need_change = 1;
}
break;
default:
break;
}
}
if (need_change)
{
for (i = 0; i < n_reloads; i++)
{
int first_num, type;
switch (rld[i].when_needed)
{
case RELOAD_FOR_OPADDR_ADDR:
first_num = first_op_addr_num;
type = RELOAD_FOR_OPERAND_ADDRESS;
break;
case RELOAD_FOR_INPADDR_ADDRESS:
first_num = first_inpaddr_num[rld[i].opnum];
type = RELOAD_FOR_INPUT_ADDRESS;
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
first_num = first_outpaddr_num[rld[i].opnum];
type = RELOAD_FOR_OUTPUT_ADDRESS;
break;
default:
continue;
}
if (first_num < 0)
continue;
else if (i > first_num)
rld[i].when_needed = type;
else
{
/* Check if the only TYPE reload that uses reload I is
reload FIRST_NUM. */
for (j = n_reloads - 1; j > first_num; j--)
{
if (rld[j].when_needed == type
&& (rld[i].secondary_p
? rld[j].secondary_in_reload == i
: reg_mentioned_p (rld[i].in, rld[j].in)))
{
rld[i].when_needed = type;
break;
}
}
}
}
}
}
/* See if we have any reloads that are now allowed to be merged
because we've changed when the reload is needed to
RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
check for the most common cases. */
for (i = 0; i < n_reloads; i++)
if (rld[i].in != 0 && rld[i].out == 0
&& (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
|| rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
|| rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
for (j = 0; j < n_reloads; j++)
if (i != j && rld[j].in != 0 && rld[j].out == 0
&& rld[j].when_needed == rld[i].when_needed
&& MATCHES (rld[i].in, rld[j].in)
&& rld[i].class == rld[j].class
&& !rld[i].nocombine && !rld[j].nocombine
&& rld[i].reg_rtx == rld[j].reg_rtx)
{
rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
transfer_replacements (i, j);
rld[j].in = 0;
}
/* Set which reloads must use registers not used in any group. Start
with those that conflict with a group and then include ones that
conflict with ones that are already known to conflict with a group. */
changed = 0;
for (i = 0; i < n_reloads; i++)
{
enum machine_mode mode = rld[i].inmode;
enum reg_class class = rld[i].class;
int size;
if (GET_MODE_SIZE (rld[i].outmode) > GET_MODE_SIZE (mode))
mode = rld[i].outmode;
size = CLASS_MAX_NREGS (class, mode);
if (size == 1)
for (j = 0; j < n_reloads; j++)
if ((CLASS_MAX_NREGS (rld[j].class,
(GET_MODE_SIZE (rld[j].outmode)
> GET_MODE_SIZE (rld[j].inmode))
? rld[j].outmode : rld[j].inmode)
> 1)
&& !rld[j].optional
&& (rld[j].in != 0 || rld[j].out != 0
|| rld[j].secondary_p)
&& reloads_conflict (i, j)
&& reg_classes_intersect_p (class, rld[j].class))
{
rld[i].nongroup = 1;
changed = 1;
break;
}
}
while (changed)
{
changed = 0;
for (i = 0; i < n_reloads; i++)
{
enum machine_mode mode = rld[i].inmode;
enum reg_class class = rld[i].class;
int size;
if (GET_MODE_SIZE (rld[i].outmode) > GET_MODE_SIZE (mode))
mode = rld[i].outmode;
size = CLASS_MAX_NREGS (class, mode);
if (! rld[i].nongroup && size == 1)
for (j = 0; j < n_reloads; j++)
if (rld[j].nongroup
&& reloads_conflict (i, j)
&& reg_classes_intersect_p (class, rld[j].class))
{
rld[i].nongroup = 1;
changed = 1;
break;
}
}
}
return retval;
}
/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
accepts a memory operand with constant address. */
static int
alternative_allows_memconst (constraint, altnum)
const char *constraint;
int altnum;
{
register int c;
/* Skip alternatives before the one requested. */
while (altnum > 0)
{
while (*constraint++ != ',');
altnum--;
}
/* Scan the requested alternative for 'm' or 'o'.
If one of them is present, this alternative accepts memory constants. */
while ((c = *constraint++) && c != ',' && c != '#')
if (c == 'm' || c == 'o')
return 1;
return 0;
}
/* Scan X for memory references and scan the addresses for reloading.
Also checks for references to "constant" regs that we want to eliminate
and replaces them with the values they stand for.
We may alter X destructively if it contains a reference to such.
If X is just a constant reg, we return the equivalent value
instead of X.
IND_LEVELS says how many levels of indirect addressing this machine
supports.
OPNUM and TYPE identify the purpose of the reload.
IS_SET_DEST is true if X is the destination of a SET, which is not
appropriate to be replaced by a constant.
INSN, if nonzero, is the insn in which we do the reload. It is used
to determine if we may generate output reloads, and where to put USEs
for pseudos that we have to replace with stack slots. */
static rtx
find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn)
rtx x;
int opnum;
enum reload_type type;
int ind_levels;
int is_set_dest;
rtx insn;
{
register RTX_CODE code = GET_CODE (x);
register const char *fmt = GET_RTX_FORMAT (code);
register int i;
int copied;
if (code == REG)
{
/* This code is duplicated for speed in find_reloads. */
register int regno = REGNO (x);
if (reg_equiv_constant[regno] != 0 && !is_set_dest)
x = reg_equiv_constant[regno];
#if 0
/* This creates (subreg (mem...)) which would cause an unnecessary
reload of the mem. */
else if (reg_equiv_mem[regno] != 0)
x = reg_equiv_mem[regno];
#endif
else if (reg_equiv_memory_loc[regno]
&& (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
{
rtx mem = make_memloc (x, regno);
if (reg_equiv_address[regno]
|| ! rtx_equal_p (mem, reg_equiv_mem[regno]))
{
/* If this is not a toplevel operand, find_reloads doesn't see
this substitution. We have to emit a USE of the pseudo so
that delete_output_reload can see it. */
if (replace_reloads && recog_data.operand[opnum] != x)
emit_insn_before (gen_rtx_USE (VOIDmode, x), insn);
x = mem;
find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
opnum, type, ind_levels, insn);
}
}
return x;
}
if (code == MEM)
{
rtx tem = x;
find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
opnum, type, ind_levels, insn);
return tem;
}
if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
{
/* Check for SUBREG containing a REG that's equivalent to a constant.
If the constant has a known value, truncate it right now.
Similarly if we are extracting a single-word of a multi-word
constant. If the constant is symbolic, allow it to be substituted
normally. push_reload will strip the subreg later. If the
constant is VOIDmode, abort because we will lose the mode of
the register (this should never happen because one of the cases
above should handle it). */
register int regno = REGNO (SUBREG_REG (x));
rtx tem;
if (subreg_lowpart_p (x)
&& regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
&& reg_equiv_constant[regno] != 0
&& (tem = gen_lowpart_common (GET_MODE (x),
reg_equiv_constant[regno])) != 0)
return tem;
if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
&& regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
&& reg_equiv_constant[regno] != 0
&& (tem = operand_subword (reg_equiv_constant[regno],
SUBREG_WORD (x), 0,
GET_MODE (SUBREG_REG (x)))) != 0)
{
/* TEM is now a word sized constant for the bits from X that
we wanted. However, TEM may be the wrong representation.
Use gen_lowpart_common to convert a CONST_INT into a
CONST_DOUBLE and vice versa as needed according to by the mode
of the SUBREG. */
tem = gen_lowpart_common (GET_MODE (x), tem);
if (!tem)
abort ();
return tem;
}
/* If the SUBREG is wider than a word, the above test will fail.
For example, we might have a SImode SUBREG of a DImode SUBREG_REG
for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
a 32 bit target. We still can - and have to - handle this
for non-paradoxical subregs of CONST_INTs. */
if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
&& reg_equiv_constant[regno] != 0
&& GET_CODE (reg_equiv_constant[regno]) == CONST_INT
&& (GET_MODE_SIZE (GET_MODE (x))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
{
int shift = SUBREG_WORD (x) * BITS_PER_WORD;
if (WORDS_BIG_ENDIAN)
shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
- GET_MODE_BITSIZE (GET_MODE (x))
- shift);
/* Here we use the knowledge that CONST_INTs have a
HOST_WIDE_INT field. */
if (shift >= HOST_BITS_PER_WIDE_INT)
shift = HOST_BITS_PER_WIDE_INT - 1;
return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
}
if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
&& reg_equiv_constant[regno] != 0
&& GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
abort ();
/* If the subreg contains a reg that will be converted to a mem,
convert the subreg to a narrower memref now.
Otherwise, we would get (subreg (mem ...) ...),
which would force reload of the mem.
We also need to do this if there is an equivalent MEM that is
not offsettable. In that case, alter_subreg would produce an
invalid address on big-endian machines.
For machines that extend byte loads, we must not reload using
a wider mode if we have a paradoxical SUBREG. find_reloads will
force a reload in that case. So we should not do anything here. */
else if (regno >= FIRST_PSEUDO_REGISTER
#ifdef LOAD_EXTEND_OP
&& (GET_MODE_SIZE (GET_MODE (x))
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
#endif
&& (reg_equiv_address[regno] != 0
|| (reg_equiv_mem[regno] != 0
&& (! strict_memory_address_p (GET_MODE (x),
XEXP (reg_equiv_mem[regno], 0))
|| ! offsettable_memref_p (reg_equiv_mem[regno])
|| num_not_at_initial_offset))))
x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
insn);
}
for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
ind_levels, is_set_dest, insn);
/* If we have replaced a reg with it's equivalent memory loc -
that can still be handled here e.g. if it's in a paradoxical
subreg - we must make the change in a copy, rather than using
a destructive change. This way, find_reloads can still elect
not to do the change. */
if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
{
x = shallow_copy_rtx (x);
copied = 1;
}
XEXP (x, i) = new_part;
}
}
return x;
}
/* Return a mem ref for the memory equivalent of reg REGNO.
This mem ref is not shared with anything. */
static rtx
make_memloc (ad, regno)
rtx ad;
int regno;
{
/* We must rerun eliminate_regs, in case the elimination
offsets have changed. */
rtx tem
= XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
/* If TEM might contain a pseudo, we must copy it to avoid
modifying it when we do the substitution for the reload. */
if (rtx_varies_p (tem))
tem = copy_rtx (tem);
tem = gen_rtx_MEM (GET_MODE (ad), tem);
RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
return tem;
}
/* Record all reloads needed for handling memory address AD
which appears in *LOC in a memory reference to mode MODE
which itself is found in location *MEMREFLOC.
Note that we take shortcuts assuming that no multi-reg machine mode
occurs as part of an address.
OPNUM and TYPE specify the purpose of this reload.
IND_LEVELS says how many levels of indirect addressing this machine
supports.
INSN, if nonzero, is the insn in which we do the reload. It is used
to determine if we may generate output reloads, and where to put USEs
for pseudos that we have to replace with stack slots.
Value is nonzero if this address is reloaded or replaced as a whole.
This is interesting to the caller if the address is an autoincrement.
Note that there is no verification that the address will be valid after
this routine does its work. Instead, we rely on the fact that the address
was valid when reload started. So we need only undo things that reload
could have broken. These are wrong register types, pseudos not allocated
to a hard register, and frame pointer elimination. */
static int
find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
enum machine_mode mode;
rtx *memrefloc;
rtx ad;
rtx *loc;
int opnum;
enum reload_type type;
int ind_levels;
rtx insn;
{
register int regno;
int removed_and = 0;
rtx tem;
/* If the address is a register, see if it is a legitimate address and
reload if not. We first handle the cases where we need not reload
or where we must reload in a non-standard way. */
if (GET_CODE (ad) == REG)
{
regno = REGNO (ad);
if (reg_equiv_constant[regno] != 0
&& strict_memory_address_p (mode, reg_equiv_constant[regno]))
{
*loc = ad = reg_equiv_constant[regno];
return 0;
}
tem = reg_equiv_memory_loc[regno];
if (tem != 0)
{
if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
{
tem = make_memloc (ad, regno);
if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
{
find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
&XEXP (tem, 0), opnum, ADDR_TYPE (type),
ind_levels, insn);
}
/* We can avoid a reload if the register's equivalent memory
expression is valid as an indirect memory address.
But not all addresses are valid in a mem used as an indirect
address: only reg or reg+constant. */
if (ind_levels > 0
&& strict_memory_address_p (mode, tem)
&& (GET_CODE (XEXP (tem, 0)) == REG
|| (GET_CODE (XEXP (tem, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
&& CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
{
/* TEM is not the same as what we'll be replacing the
pseudo with after reload, put a USE in front of INSN
in the final reload pass. */
if (replace_reloads
&& num_not_at_initial_offset
&& ! rtx_equal_p (tem, reg_equiv_mem[regno]))
{
*loc = tem;
emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
/* This doesn't really count as replacing the address
as a whole, since it is still a memory access. */
}
return 0;
}
ad = tem;
}
}
/* The only remaining case where we can avoid a reload is if this is a
hard register that is valid as a base register and which is not the
subject of a CLOBBER in this insn. */
else if (regno < FIRST_PSEUDO_REGISTER
&& REGNO_MODE_OK_FOR_BASE_P (regno, mode)
&& ! regno_clobbered_p (regno, this_insn))
return 0;
/* If we do not have one of the cases above, we must do the reload. */
push_reload (ad, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
return 1;
}
if (strict_memory_address_p (mode, ad))
{
/* The address appears valid, so reloads are not needed.
But the address may contain an eliminable register.
This can happen because a machine with indirect addressing
may consider a pseudo register by itself a valid address even when
it has failed to get a hard reg.
So do a tree-walk to find and eliminate all such regs. */
/* But first quickly dispose of a common case. */
if (GET_CODE (ad) == PLUS
&& GET_CODE (XEXP (ad, 1)) == CONST_INT
&& GET_CODE (XEXP (ad, 0)) == REG
&& reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
return 0;
subst_reg_equivs_changed = 0;
*loc = subst_reg_equivs (ad, insn);
if (! subst_reg_equivs_changed)
return 0;
/* Check result for validity after substitution. */
if (strict_memory_address_p (mode, ad))
return 0;
}
#ifdef LEGITIMIZE_RELOAD_ADDRESS
do
{
if (memrefloc)
{
LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
ind_levels, win);
}
break;
win:
*memrefloc = copy_rtx (*memrefloc);
XEXP (*memrefloc, 0) = ad;
move_replacements (&ad, &XEXP (*memrefloc, 0));
return 1;
}
while (0);
#endif
/* The address is not valid. We have to figure out why. First see if
we have an outer AND and remove it if so. Then analyze what's inside. */
if (GET_CODE (ad) == AND)
{
removed_and = 1;
loc = &XEXP (ad, 0);
ad = *loc;
}
/* One possibility for why the address is invalid is that it is itself
a MEM. This can happen when the frame pointer is being eliminated, a
pseudo is not allocated to a hard register, and the offset between the
frame and stack pointers is not its initial value. In that case the
pseudo will have been replaced by a MEM referring to the
stack pointer. */
if (GET_CODE (ad) == MEM)
{
/* First ensure that the address in this MEM is valid. Then, unless
indirect addresses are valid, reload the MEM into a register. */
tem = ad;
find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
opnum, ADDR_TYPE (type),
ind_levels == 0 ? 0 : ind_levels - 1, insn);
/* If tem was changed, then we must create a new memory reference to
hold it and store it back into memrefloc. */
if (tem != ad && memrefloc)
{
*memrefloc = copy_rtx (*memrefloc);
copy_replacements (tem, XEXP (*memrefloc, 0));
loc = &XEXP (*memrefloc, 0);
if (removed_and)
loc = &XEXP (*loc, 0);
}
/* Check similar cases as for indirect addresses as above except
that we can allow pseudos and a MEM since they should have been
taken care of above. */
if (ind_levels == 0
|| (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
|| GET_CODE (XEXP (tem, 0)) == MEM
|| ! (GET_CODE (XEXP (tem, 0)) == REG
|| (GET_CODE (XEXP (tem, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
&& GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
{
/* Must use TEM here, not AD, since it is the one that will
have any subexpressions reloaded, if needed. */
push_reload (tem, NULL_RTX, loc, NULL_PTR,
BASE_REG_CLASS, GET_MODE (tem),
VOIDmode, 0,
0, opnum, type);
return ! removed_and;
}
else
return 0;
}
/* If we have address of a stack slot but it's not valid because the
displacement is too large, compute the sum in a register.
Handle all base registers here, not just fp/ap/sp, because on some
targets (namely SH) we can also get too large displacements from
big-endian corrections. */
else if (GET_CODE (ad) == PLUS
&& GET_CODE (XEXP (ad, 0)) == REG
&& REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
&& REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
&& GET_CODE (XEXP (ad, 1)) == CONST_INT)
{
/* Unshare the MEM rtx so we can safely alter it. */
if (memrefloc)
{
*memrefloc = copy_rtx (*memrefloc);
loc = &XEXP (*memrefloc, 0);
if (removed_and)
loc = &XEXP (*loc, 0);
}
if (double_reg_address_ok)
{
/* Unshare the sum as well. */
*loc = ad = copy_rtx (ad);
/* Reload the displacement into an index reg.
We assume the frame pointer or arg pointer is a base reg. */
find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
INDEX_REG_CLASS, GET_MODE (ad), opnum,
type, ind_levels);
return 0;
}
else
{
/* If the sum of two regs is not necessarily valid,
reload the sum into a base reg.
That will at least work. */
find_reloads_address_part (ad, loc, BASE_REG_CLASS,
Pmode, opnum, type, ind_levels);
}
return ! removed_and;
}
/* If we have an indexed stack slot, there are three possible reasons why
it might be invalid: The index might need to be reloaded, the address
might have been made by frame pointer elimination and hence have a
constant out of range, or both reasons might apply.
We can easily check for an index needing reload, but even if that is the
case, we might also have an invalid constant. To avoid making the
conservative assumption and requiring two reloads, we see if this address
is valid when not interpreted strictly. If it is, the only problem is
that the index needs a reload and find_reloads_address_1 will take care
of it.
There is still a case when we might generate an extra reload,
however. In certain cases eliminate_regs will return a MEM for a REG
(see the code there for details). In those cases, memory_address_p
applied to our address will return 0 so we will think that our offset
must be too large. But it might indeed be valid and the only problem
is that a MEM is present where a REG should be. This case should be
very rare and there doesn't seem to be any way to avoid it.
If we decide to do something here, it must be that
`double_reg_address_ok' is true and that this address rtl was made by
eliminate_regs. We generate a reload of the fp/sp/ap + constant and
rework the sum so that the reload register will be added to the index.
This is safe because we know the address isn't shared.
We check for fp/ap/sp as both the first and second operand of the
innermost PLUS. */
else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
&& GET_CODE (XEXP (ad, 0)) == PLUS
&& (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|| XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|| XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
#endif
|| XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
&& ! memory_address_p (mode, ad))
{
*loc = ad = gen_rtx_PLUS (GET_MODE (ad),
plus_constant (XEXP (XEXP (ad, 0), 0),
INTVAL (XEXP (ad, 1))),
XEXP (XEXP (ad, 0), 1));
find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
GET_MODE (ad), opnum, type, ind_levels);
find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
type, 0, insn);
return 0;
}
else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
&& GET_CODE (XEXP (ad, 0)) == PLUS
&& (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|| XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|| XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
#endif
|| XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
&& ! memory_address_p (mode, ad))
{
*loc = ad = gen_rtx_PLUS (GET_MODE (ad),
XEXP (XEXP (ad, 0), 0),
plus_constant (XEXP (XEXP (ad, 0), 1),
INTVAL (XEXP (ad, 1))));
find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1), BASE_REG_CLASS,
GET_MODE (ad), opnum, type, ind_levels);
find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
type, 0, insn);
return 0;
}
/* See if address becomes valid when an eliminable register
in a sum is replaced. */
tem = ad;
if (GET_CODE (ad) == PLUS)
tem = subst_indexed_address (ad);
if (tem != ad && strict_memory_address_p (mode, tem))
{
/* Ok, we win that way. Replace any additional eliminable
registers. */
subst_reg_equivs_changed = 0;
tem = subst_reg_equivs (tem, insn);
/* Make sure that didn't make the address invalid again. */
if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
{
*loc = tem;
return 0;
}
}
/* If constants aren't valid addresses, reload the constant address
into a register. */
if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
{
/* If AD is in address in the constant pool, the MEM rtx may be shared.
Unshare it so we can safely alter it. */
if (memrefloc && GET_CODE (ad) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (ad))
{
*memrefloc = copy_rtx (*memrefloc);
loc = &XEXP (*memrefloc, 0);
if (removed_and)
loc = &XEXP (*loc, 0);
}
find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
ind_levels);
return ! removed_and;
}
return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
insn);
}
/* Find all pseudo regs appearing in AD
that are eliminable in favor of equivalent values
and do not have hard regs; replace them by their equivalents.
INSN, if nonzero, is the insn in which we do the reload. We put USEs in
front of it for pseudos that we have to replace with stack slots. */
static rtx
subst_reg_equivs (ad, insn)
rtx ad;
rtx insn;
{
register RTX_CODE code = GET_CODE (ad);
register int i;
register const char *fmt;
switch (code)
{
case HIGH:
case CONST_INT:
case CONST:
case CONST_DOUBLE:
case SYMBOL_REF:
case LABEL_REF:
case PC:
case CC0:
return ad;
case REG:
{
register int regno = REGNO (ad);
if (reg_equiv_constant[regno] != 0)
{
subst_reg_equivs_changed = 1;
return reg_equiv_constant[regno];
}
if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
{
rtx mem = make_memloc (ad, regno);
if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
{
subst_reg_equivs_changed = 1;
emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
return mem;
}
}
}
return ad;
case PLUS:
/* Quickly dispose of a common case. */
if (XEXP (ad, 0) == frame_pointer_rtx
&& GET_CODE (XEXP (ad, 1)) == CONST_INT)
return ad;
break;
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
return ad;
}
/* Compute the sum of X and Y, making canonicalizations assumed in an
address, namely: sum constant integers, surround the sum of two
constants with a CONST, put the constant as the second operand, and
group the constant on the outermost sum.
This routine assumes both inputs are already in canonical form. */
rtx
form_sum (x, y)
rtx x, y;
{
rtx tem;
enum machine_mode mode = GET_MODE (x);
if (mode == VOIDmode)
mode = GET_MODE (y);
if (mode == VOIDmode)
mode = Pmode;
if (GET_CODE (x) == CONST_INT)
return plus_constant (y, INTVAL (x));
else if (GET_CODE (y) == CONST_INT)
return plus_constant (x, INTVAL (y));
else if (CONSTANT_P (x))
tem = x, x = y, y = tem;
if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
/* Note that if the operands of Y are specified in the opposite
order in the recursive calls below, infinite recursion will occur. */
if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
/* If both constant, encapsulate sum. Otherwise, just form sum. A
constant will have been placed second. */
if (CONSTANT_P (x) && CONSTANT_P (y))
{
if (GET_CODE (x) == CONST)
x = XEXP (x, 0);
if (GET_CODE (y) == CONST)
y = XEXP (y, 0);
return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
}
return gen_rtx_PLUS (mode, x, y);
}
/* If ADDR is a sum containing a pseudo register that should be
replaced with a constant (from reg_equiv_constant),
return the result of doing so, and also apply the associative
law so that the result is more likely to be a valid address.
(But it is not guaranteed to be one.)
Note that at most one register is replaced, even if more are
replaceable. Also, we try to put the result into a canonical form
so it is more likely to be a valid address.
In all other cases, return ADDR. */
static rtx
subst_indexed_address (addr)
rtx addr;
{
rtx op0 = 0, op1 = 0, op2 = 0;
rtx tem;
int regno;
if (GET_CODE (addr) == PLUS)
{
/* Try to find a register to replace. */
op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
if (GET_CODE (op0) == REG
&& (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[regno] < 0
&& reg_equiv_constant[regno] != 0)
op0 = reg_equiv_constant[regno];
else if (GET_CODE (op1) == REG
&& (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[regno] < 0
&& reg_equiv_constant[regno] != 0)
op1 = reg_equiv_constant[regno];
else if (GET_CODE (op0) == PLUS
&& (tem = subst_indexed_address (op0)) != op0)
op0 = tem;
else if (GET_CODE (op1) == PLUS
&& (tem = subst_indexed_address (op1)) != op1)
op1 = tem;
else
return addr;
/* Pick out up to three things to add. */
if (GET_CODE (op1) == PLUS)
op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
else if (GET_CODE (op0) == PLUS)
op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
/* Compute the sum. */
if (op2 != 0)
op1 = form_sum (op1, op2);
if (op1 != 0)
op0 = form_sum (op0, op1);
return op0;
}
return addr;
}
/* Record the pseudo registers we must reload into hard registers in a
subexpression of a would-be memory address, X referring to a value
in mode MODE. (This function is not called if the address we find
is strictly valid.)
CONTEXT = 1 means we are considering regs as index regs,
= 0 means we are considering them as base regs.
OPNUM and TYPE specify the purpose of any reloads made.
IND_LEVELS says how many levels of indirect addressing are
supported at this point in the address.
INSN, if nonzero, is the insn in which we do the reload. It is used
to determine if we may generate output reloads.
We return nonzero if X, as a whole, is reloaded or replaced. */
/* Note that we take shortcuts assuming that no multi-reg machine mode
occurs as part of an address.
Also, this is not fully machine-customizable; it works for machines
such as vaxes and 68000's and 32000's, but other possible machines
could have addressing modes that this does not handle right. */
static int
find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
enum machine_mode mode;
rtx x;
int context;
rtx *loc;
int opnum;
enum reload_type type;
int ind_levels;
rtx insn;
{
register RTX_CODE code = GET_CODE (x);
switch (code)
{
case PLUS:
{
register rtx orig_op0 = XEXP (x, 0);
register rtx orig_op1 = XEXP (x, 1);
register RTX_CODE code0 = GET_CODE (orig_op0);
register RTX_CODE code1 = GET_CODE (orig_op1);
register rtx op0 = orig_op0;
register rtx op1 = orig_op1;
if (GET_CODE (op0) == SUBREG)
{
op0 = SUBREG_REG (op0);
code0 = GET_CODE (op0);
if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
op0 = gen_rtx_REG (word_mode,
REGNO (op0) + SUBREG_WORD (orig_op0));
}
if (GET_CODE (op1) == SUBREG)
{
op1 = SUBREG_REG (op1);
code1 = GET_CODE (op1);
if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
op1 = gen_rtx_REG (GET_MODE (op1),
REGNO (op1) + SUBREG_WORD (orig_op1));
}
if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
|| code0 == ZERO_EXTEND || code1 == MEM)
{
find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
type, ind_levels, insn);
find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
type, ind_levels, insn);
}
else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
|| code1 == ZERO_EXTEND || code0 == MEM)
{
find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
type, ind_levels, insn);
find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
type, ind_levels, insn);
}
else if (code0 == CONST_INT || code0 == CONST
|| code0 == SYMBOL_REF || code0 == LABEL_REF)
find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
type, ind_levels, insn);
else if (code1 == CONST_INT || code1 == CONST
|| code1 == SYMBOL_REF || code1 == LABEL_REF)
find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
type, ind_levels, insn);
else if (code0 == REG && code1 == REG)
{
if (REG_OK_FOR_INDEX_P (op0)
&& REG_MODE_OK_FOR_BASE_P (op1, mode))
return 0;
else if (REG_OK_FOR_INDEX_P (op1)
&& REG_MODE_OK_FOR_BASE_P (op0, mode))
return 0;
else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
type, ind_levels, insn);
else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
type, ind_levels, insn);
else if (REG_OK_FOR_INDEX_P (op1))
find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
type, ind_levels, insn);
else if (REG_OK_FOR_INDEX_P (op0))
find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
type, ind_levels, insn);
else
{
find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
type, ind_levels, insn);
find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
type, ind_levels, insn);
}
}
else if (code0 == REG)
{
find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
type, ind_levels, insn);
find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
type, ind_levels, insn);
}
else if (code1 == REG)
{
find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
type, ind_levels, insn);
find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
type, ind_levels, insn);
}
}
return 0;
case POST_INC:
case POST_DEC:
case PRE_INC:
case PRE_DEC:
if (GET_CODE (XEXP (x, 0)) == REG)
{
register int regno = REGNO (XEXP (x, 0));
int value = 0;
rtx x_orig = x;
/* A register that is incremented cannot be constant! */
if (regno >= FIRST_PSEUDO_REGISTER
&& reg_equiv_constant[regno] != 0)
abort ();
/* Handle a register that is equivalent to a memory location
which cannot be addressed directly. */
if (reg_equiv_memory_loc[regno] != 0
&& (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
{
rtx tem = make_memloc (XEXP (x, 0), regno);
if (reg_equiv_address[regno]
|| ! rtx_equal_p (tem, reg_equiv_mem[regno]))
{
/* First reload the memory location's address.
We can't use ADDR_TYPE (type) here, because we need to
write back the value after reading it, hence we actually
need two registers. */
find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
&XEXP (tem, 0), opnum, type,
ind_levels, insn);
/* Put this inside a new increment-expression. */
x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
/* Proceed to reload that, as if it contained a register. */
}
}
/* If we have a hard register that is ok as an index,
don't make a reload. If an autoincrement of a nice register
isn't "valid", it must be that no autoincrement is "valid".
If that is true and something made an autoincrement anyway,
this must be a special context where one is allowed.
(For example, a "push" instruction.)
We can't improve this address, so leave it alone. */
/* Otherwise, reload the autoincrement into a suitable hard reg
and record how much to increment by. */
if (reg_renumber[regno] >= 0)
regno = reg_renumber[regno];
if ((regno >= FIRST_PSEUDO_REGISTER
|| !(context ? REGNO_OK_FOR_INDEX_P (regno)
: REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
{
#ifdef AUTO_INC_DEC
register rtx link;
#endif
int reloadnum;
/* If we can output the register afterwards, do so, this
saves the extra update.
We can do so if we have an INSN - i.e. no JUMP_INSN nor
CALL_INSN - and it does not set CC0.
But don't do this if we cannot directly address the
memory location, since this will make it harder to
reuse address reloads, and increases register pressure.
Also don't do this if we can probably update x directly. */
rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
? XEXP (x, 0)
: reg_equiv_mem[regno]);
int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
if (insn && GET_CODE (insn) == INSN && equiv
&& memory_operand (equiv, GET_MODE (equiv))
#ifdef HAVE_cc0
&& ! sets_cc0_p (PATTERN (insn))
#endif
&& ! (icode != CODE_FOR_nothing
&& ((*insn_data[icode].operand[0].predicate)
(equiv, Pmode))
&& ((*insn_data[icode].operand[1].predicate)
(equiv, Pmode))))
{
loc = &XEXP (x, 0);
x = XEXP (x, 0);
reloadnum
= push_reload (x, x, loc, loc,
(context ? INDEX_REG_CLASS : BASE_REG_CLASS),
GET_MODE (x), GET_MODE (x), 0, 0,
opnum, RELOAD_OTHER);
/* If we created a new MEM based on reg_equiv_mem[REGNO], then
LOC above is part of the new MEM, not the MEM in INSN.
We must also replace the address of the MEM in INSN. */
if (&XEXP (x_orig, 0) != loc)
push_replacement (&XEXP (x_orig, 0), reloadnum, VOIDmode);
}
else
{
reloadnum
= push_reload (x, NULL_RTX, loc, NULL_PTR,
(context ? INDEX_REG_CLASS : BASE_REG_CLASS),
GET_MODE (x), GET_MODE (x), 0, 0,
opnum, type);
rld[reloadnum].inc
= find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
value = 1;
}
#ifdef AUTO_INC_DEC
/* Update the REG_INC notes. */
for (link = REG_NOTES (this_insn);
link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_INC
&& REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
#endif
}
return value;
}
else if (GET_CODE (XEXP (x, 0)) == MEM)
{
/* This is probably the result of a substitution, by eliminate_regs,
of an equivalent address for a pseudo that was not allocated to a
hard register. Verify that the specified address is valid and
reload it into a register. */
/* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
register rtx link;
int reloadnum;
/* Since we know we are going to reload this item, don't decrement
for the indirection level.
Note that this is actually conservative: it would be slightly
more efficient to use the value of SPILL_INDIRECT_LEVELS from
reload1.c here. */
/* We can't use ADDR_TYPE (type) here, because we need to
write back the value after reading it, hence we actually
need two registers. */
find_reloads_address (GET_MODE (x), &XEXP (x, 0),
XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
opnum, type, ind_levels, insn);
reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
(context ? INDEX_REG_CLASS : BASE_REG_CLASS),
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
rld[reloadnum].inc
= find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
link = FIND_REG_INC_NOTE (this_insn, tem);
if (link != 0)
push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
return 1;
}
return 0;
case MEM:
/* This is probably the result of a substitution, by eliminate_regs, of
an equivalent address for a pseudo that was not allocated to a hard
register. Verify that the specified address is valid and reload it
into a register.
Since we know we are going to reload this item, don't decrement for
the indirection level.
Note that this is actually conservative: it would be slightly more
efficient to use the value of SPILL_INDIRECT_LEVELS from
reload1.c here. */
find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
opnum, ADDR_TYPE (type), ind_levels, insn);
push_reload (*loc, NULL_RTX, loc, NULL_PTR,
(context ? INDEX_REG_CLASS : BASE_REG_CLASS),
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
return 1;
case REG:
{
register int regno = REGNO (x);
if (reg_equiv_constant[regno] != 0)
{
find_reloads_address_part (reg_equiv_constant[regno], loc,
(context ? INDEX_REG_CLASS : BASE_REG_CLASS),
GET_MODE (x), opnum, type, ind_levels);
return 1;
}
#if 0 /* This might screw code in reload1.c to delete prior output-reload
that feeds this insn. */
if (reg_equiv_mem[regno] != 0)
{
push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
(context ? INDEX_REG_CLASS : BASE_REG_CLASS),
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
return 1;
}
#endif
if (reg_equiv_memory_loc[regno]
&& (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
{
rtx tem = make_memloc (x, regno);
if (reg_equiv_address[regno] != 0
|| ! rtx_equal_p (tem, reg_equiv_mem[regno]))
{
x = tem;
find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
&XEXP (x, 0), opnum, ADDR_TYPE (type),
ind_levels, insn);
}
}
if (reg_renumber[regno] >= 0)
regno = reg_renumber[regno];
if ((regno >= FIRST_PSEUDO_REGISTER
|| !(context ? REGNO_OK_FOR_INDEX_P (regno)
: REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
{
push_reload (x, NULL_RTX, loc, NULL_PTR,
(context ? INDEX_REG_CLASS : BASE_REG_CLASS),
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
return 1;
}
/* If a register appearing in an address is the subject of a CLOBBER
in this insn, reload it into some other register to be safe.
The CLOBBER is supposed to make the register unavailable
from before this insn to after it. */
if (regno_clobbered_p (regno, this_insn))
{
push_reload (x, NULL_RTX, loc, NULL_PTR,
(context ? INDEX_REG_CLASS : BASE_REG_CLASS),
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
return 1;
}
}
return 0;
case SUBREG:
if (GET_CODE (SUBREG_REG (x)) == REG)
{
/* If this is a SUBREG of a hard register and the resulting register
is of the wrong class, reload the whole SUBREG. This avoids
needless copies if SUBREG_REG is multi-word. */
if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
{
int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
: REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
{
push_reload (x, NULL_RTX, loc, NULL_PTR,
(context ? INDEX_REG_CLASS : BASE_REG_CLASS),
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
return 1;
}
}
/* If this is a SUBREG of a pseudo-register, and the pseudo-register
is larger than the class size, then reload the whole SUBREG. */
else
{
enum reg_class class = (context ? INDEX_REG_CLASS
: BASE_REG_CLASS);
if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
> reg_class_size[class])
{
x = find_reloads_subreg_address (x, 0, opnum, type,
ind_levels, insn);
push_reload (x, NULL_RTX, loc, NULL_PTR, class,
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
return 1;
}
}
}
break;
default:
break;
}
{
register const char *fmt = GET_RTX_FORMAT (code);
register int i;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
opnum, type, ind_levels, insn);
}
}
return 0;
}
/* X, which is found at *LOC, is a part of an address that needs to be
reloaded into a register of class CLASS. If X is a constant, or if
X is a PLUS that contains a constant, check that the constant is a
legitimate operand and that we are supposed to be able to load
it into the register.
If not, force the constant into memory and reload the MEM instead.
MODE is the mode to use, in case X is an integer constant.
OPNUM and TYPE describe the purpose of any reloads made.
IND_LEVELS says how many levels of indirect addressing this machine
supports. */
static void
find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
rtx x;
rtx *loc;
enum reg_class class;
enum machine_mode mode;
int opnum;
enum reload_type type;
int ind_levels;
{
if (CONSTANT_P (x)
&& (! LEGITIMATE_CONSTANT_P (x)
|| PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
{
rtx tem;
/* If this is a CONST_INT, it could have been created by a
plus_constant call in eliminate_regs, which means it may be
on the reload_obstack. reload_obstack will be freed later, so
we can't allow such RTL to be put in the constant pool. There
is code in force_const_mem to check for this case, but it doesn't
work because we have already popped off the reload_obstack, so
rtl_obstack == saveable_obstack is true at this point. */
if (GET_CODE (x) == CONST_INT)
tem = x = force_const_mem (mode, GEN_INT (INTVAL (x)));
else
tem = x = force_const_mem (mode, x);
find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
opnum, type, ind_levels, 0);
}
else if (GET_CODE (x) == PLUS
&& CONSTANT_P (XEXP (x, 1))
&& (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
|| PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
{
rtx tem;
/* See comment above. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
tem = force_const_mem (GET_MODE (x), GEN_INT (INTVAL (XEXP (x, 1))));
else
tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
opnum, type, ind_levels, 0);
}
push_reload (x, NULL_RTX, loc, NULL_PTR, class,
mode, VOIDmode, 0, 0, opnum, type);
}
/* X, a subreg of a pseudo, is a part of an address that needs to be
reloaded.
If the pseudo is equivalent to a memory location that cannot be directly
addressed, make the necessary address reloads.
If address reloads have been necessary, or if the address is changed
by register elimination, return the rtx of the memory location;
otherwise, return X.
If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
memory location.
OPNUM and TYPE identify the purpose of the reload.
IND_LEVELS says how many levels of indirect addressing are
supported at this point in the address.
INSN, if nonzero, is the insn in which we do the reload. It is used
to determine where to put USEs for pseudos that we have to replace with
stack slots. */
static rtx
find_reloads_subreg_address (x, force_replace, opnum, type,
ind_levels, insn)
rtx x;
int force_replace;
int opnum;
enum reload_type type;
int ind_levels;
rtx insn;
{
int regno = REGNO (SUBREG_REG (x));
if (reg_equiv_memory_loc[regno])
{
/* If the address is not directly addressable, or if the address is not
offsettable, then it must be replaced. */
if (! force_replace
&& (reg_equiv_address[regno]
|| ! offsettable_memref_p (reg_equiv_mem[regno])))
force_replace = 1;
if (force_replace || num_not_at_initial_offset)
{
rtx tem = make_memloc (SUBREG_REG (x), regno);
/* If the address changes because of register elimination, then
it must be replaced. */
if (force_replace
|| ! rtx_equal_p (tem, reg_equiv_mem[regno]))
{
int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
{
int size;
size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
offset += MIN (size, UNITS_PER_WORD);
size = GET_MODE_SIZE (GET_MODE (x));
offset -= MIN (size, UNITS_PER_WORD);
}
XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
PUT_MODE (tem, GET_MODE (x));
find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
&XEXP (tem, 0), opnum, ADDR_TYPE (type),
ind_levels, insn);
/* If this is not a toplevel operand, find_reloads doesn't see
this substitution. We have to emit a USE of the pseudo so
that delete_output_reload can see it. */
if (replace_reloads && recog_data.operand[opnum] != x)
emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn);
x = tem;
}
}
}
return x;
}
/* Substitute into the current INSN the registers into which we have reloaded
the things that need reloading. The array `replacements'
says contains the locations of all pointers that must be changed
and says what to replace them with.
Return the rtx that X translates into; usually X, but modified. */
void
subst_reloads ()
{
register int i;
for (i = 0; i < n_replacements; i++)
{
register struct replacement *r = &replacements[i];
register rtx reloadreg = rld[r->what].reg_rtx;
if (reloadreg)
{
/* Encapsulate RELOADREG so its machine mode matches what
used to be there. Note that gen_lowpart_common will
do the wrong thing if RELOADREG is multi-word. RELOADREG
will always be a REG here. */
if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
/* If we are putting this into a SUBREG and RELOADREG is a
SUBREG, we would be making nested SUBREGs, so we have to fix
this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
{
if (GET_MODE (*r->subreg_loc)
== GET_MODE (SUBREG_REG (reloadreg)))
*r->subreg_loc = SUBREG_REG (reloadreg);
else
{
*r->where = SUBREG_REG (reloadreg);
SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
}
}
else
*r->where = reloadreg;
}
/* If reload got no reg and isn't optional, something's wrong. */
else if (! rld[r->what].optional)
abort ();
}
}
/* Make a copy of any replacements being done into X and move those copies
to locations in Y, a copy of X. We only look at the highest level of
the RTL. */
void
copy_replacements (x, y)
rtx x;
rtx y;
{
int i, j;
enum rtx_code code = GET_CODE (x);
const char *fmt = GET_RTX_FORMAT (code);
struct replacement *r;
/* We can't support X being a SUBREG because we might then need to know its
location if something inside it was replaced. */
if (code == SUBREG)
abort ();
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
for (j = 0; j < n_replacements; j++)
{
if (replacements[j].subreg_loc == &XEXP (x, i))
{
r = &replacements[n_replacements++];
r->where = replacements[j].where;
r->subreg_loc = &XEXP (y, i);
r->what = replacements[j].what;
r->mode = replacements[j].mode;
}
else if (replacements[j].where == &XEXP (x, i))
{
r = &replacements[n_replacements++];
r->where = &XEXP (y, i);
r->subreg_loc = 0;
r->what = replacements[j].what;
r->mode = replacements[j].mode;
}
}
}
/* Change any replacements being done to *X to be done to *Y */
void
move_replacements (x, y)
rtx *x;
rtx *y;
{
int i;
for (i = 0; i < n_replacements; i++)
if (replacements[i].subreg_loc == x)
replacements[i].subreg_loc = y;
else if (replacements[i].where == x)
{
replacements[i].where = y;
replacements[i].subreg_loc = 0;
}
}
/* If LOC was scheduled to be replaced by something, return the replacement.
Otherwise, return *LOC. */
rtx
find_replacement (loc)
rtx *loc;
{
struct replacement *r;
for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
{
rtx reloadreg = rld[r->what].reg_rtx;
if (reloadreg && r->where == loc)
{
if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
return reloadreg;
}
else if (reloadreg && r->subreg_loc == loc)
{
/* RELOADREG must be either a REG or a SUBREG.
??? Is it actually still ever a SUBREG? If so, why? */
if (GET_CODE (reloadreg) == REG)
return gen_rtx_REG (GET_MODE (*loc),
REGNO (reloadreg) + SUBREG_WORD (*loc));
else if (GET_MODE (reloadreg) == GET_MODE (*loc))
return reloadreg;
else
return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
}
}
/* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
what's inside and make a new rtl if so. */
if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
|| GET_CODE (*loc) == MULT)
{
rtx x = find_replacement (&XEXP (*loc, 0));
rtx y = find_replacement (&XEXP (*loc, 1));
if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
}
return *loc;
}
/* Return nonzero if register in range [REGNO, ENDREGNO)
appears either explicitly or implicitly in X
other than being stored into (except for earlyclobber operands).
References contained within the substructure at LOC do not count.
LOC may be zero, meaning don't ignore anything.
This is similar to refers_to_regno_p in rtlanal.c except that we
look at equivalences for pseudos that didn't get hard registers. */
int
refers_to_regno_for_reload_p (regno, endregno, x, loc)
int regno, endregno;
rtx x;
rtx *loc;
{
register int i;
register RTX_CODE code;
register const char *fmt;
if (x == 0)
return 0;
repeat:
code = GET_CODE (x);
switch (code)
{
case REG:
i = REGNO (x);
/* If this is a pseudo, a hard register must not have been allocated.
X must therefore either be a constant or be in memory. */
if (i >= FIRST_PSEUDO_REGISTER)
{
if (reg_equiv_memory_loc[i])
return refers_to_regno_for_reload_p (regno, endregno,
reg_equiv_memory_loc[i],
NULL_PTR);
if (reg_equiv_constant[i])
return 0;
abort ();
}
return (endregno > i
&& regno < i + (i < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (i, GET_MODE (x))
: 1));
case SUBREG:
/* If this is a SUBREG of a hard reg, we can see exactly which
registers are being modified. Otherwise, handle normally. */
if (GET_CODE (SUBREG_REG (x)) == REG
&& REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
{
int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
int inner_endregno
= inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
return endregno > inner_regno && regno < inner_endregno;
}
break;
case CLOBBER:
case SET:
if (&SET_DEST (x) != loc
/* Note setting a SUBREG counts as referring to the REG it is in for
a pseudo but not for hard registers since we can
treat each word individually. */
&& ((GET_CODE (SET_DEST (x)) == SUBREG
&& loc != &SUBREG_REG (SET_DEST (x))
&& GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
&& REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
&& refers_to_regno_for_reload_p (regno, endregno,
SUBREG_REG (SET_DEST (x)),
loc))
/* If the output is an earlyclobber operand, this is
a conflict. */
|| ((GET_CODE (SET_DEST (x)) != REG
|| earlyclobber_operand_p (SET_DEST (x)))
&& refers_to_regno_for_reload_p (regno, endregno,
SET_DEST (x), loc))))
return 1;
if (code == CLOBBER || loc == &SET_SRC (x))
return 0;
x = SET_SRC (x);
goto repeat;
default:
break;
}
/* X does not match, so try its subexpressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e' && loc != &XEXP (x, i))
{
if (i == 0)
{
x = XEXP (x, 0);
goto repeat;
}
else
if (refers_to_regno_for_reload_p (regno, endregno,
XEXP (x, i), loc))
return 1;
}
else if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (x, i) - 1; j >=0; j--)
if (loc != &XVECEXP (x, i, j)
&& refers_to_regno_for_reload_p (regno, endregno,
XVECEXP (x, i, j), loc))
return 1;
}
}
return 0;
}
/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
we check if any register number in X conflicts with the relevant register
numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
contains a MEM (we don't bother checking for memory addresses that can't
conflict because we expect this to be a rare case.
This function is similar to reg_overlap_mention_p in rtlanal.c except
that we look at equivalences for pseudos that didn't get hard registers. */
int
reg_overlap_mentioned_for_reload_p (x, in)
rtx x, in;
{
int regno, endregno;
/* Overly conservative. */
if (GET_CODE (x) == STRICT_LOW_PART)
x = XEXP (x, 0);
/* If either argument is a constant, then modifying X can not affect IN. */
if (CONSTANT_P (x) || CONSTANT_P (in))
return 0;
else if (GET_CODE (x) == SUBREG)
{
regno = REGNO (SUBREG_REG (x));
if (regno < FIRST_PSEUDO_REGISTER)
regno += SUBREG_WORD (x);
}
else if (GET_CODE (x) == REG)
{
regno = REGNO (x);
/* If this is a pseudo, it must not have been assigned a hard register.
Therefore, it must either be in memory or be a constant. */
if (regno >= FIRST_PSEUDO_REGISTER)
{
if (reg_equiv_memory_loc[regno])
return refers_to_mem_for_reload_p (in);
else if (reg_equiv_constant[regno])
return 0;
abort ();
}
}
else if (GET_CODE (x) == MEM)
return refers_to_mem_for_reload_p (in);
else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
|| GET_CODE (x) == CC0)
return reg_mentioned_p (x, in);
else
abort ();
endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
}
/* Return nonzero if anything in X contains a MEM. Look also for pseudo
registers. */
int
refers_to_mem_for_reload_p (x)
rtx x;
{
const char *fmt;
int i;
if (GET_CODE (x) == MEM)
return 1;
if (GET_CODE (x) == REG)
return (REGNO (x) >= FIRST_PSEUDO_REGISTER
&& reg_equiv_memory_loc[REGNO (x)]);
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
if (fmt[i] == 'e'
&& (GET_CODE (XEXP (x, i)) == MEM
|| refers_to_mem_for_reload_p (XEXP (x, i))))
return 1;
return 0;
}
/* Check the insns before INSN to see if there is a suitable register
containing the same value as GOAL.
If OTHER is -1, look for a register in class CLASS.
Otherwise, just see if register number OTHER shares GOAL's value.
Return an rtx for the register found, or zero if none is found.
If RELOAD_REG_P is (short *)1,
we reject any hard reg that appears in reload_reg_rtx
because such a hard reg is also needed coming into this insn.
If RELOAD_REG_P is any other nonzero value,
it is a vector indexed by hard reg number
and we reject any hard reg whose element in the vector is nonnegative
as well as any that appears in reload_reg_rtx.
If GOAL is zero, then GOALREG is a register number; we look
for an equivalent for that register.
MODE is the machine mode of the value we want an equivalence for.
If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
This function is used by jump.c as well as in the reload pass.
If GOAL is the sum of the stack pointer and a constant, we treat it
as if it were a constant except that sp is required to be unchanging. */
rtx
find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
register rtx goal;
rtx insn;
enum reg_class class;
register int other;
short *reload_reg_p;
int goalreg;
enum machine_mode mode;
{
register rtx p = insn;
rtx goaltry, valtry, value, where;
register rtx pat;
register int regno = -1;
int valueno;
int goal_mem = 0;
int goal_const = 0;
int goal_mem_addr_varies = 0;
int need_stable_sp = 0;
int nregs;
int valuenregs;
if (goal == 0)
regno = goalreg;
else if (GET_CODE (goal) == REG)
regno = REGNO (goal);
else if (GET_CODE (goal) == MEM)
{
enum rtx_code code = GET_CODE (XEXP (goal, 0));
if (MEM_VOLATILE_P (goal))
return 0;
if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
return 0;
/* An address with side effects must be reexecuted. */
switch (code)
{
case POST_INC:
case PRE_INC:
case POST_DEC:
case PRE_DEC:
return 0;
default:
break;
}
goal_mem = 1;
}
else if (CONSTANT_P (goal))
goal_const = 1;
else if (GET_CODE (goal) == PLUS
&& XEXP (goal, 0) == stack_pointer_rtx
&& CONSTANT_P (XEXP (goal, 1)))
goal_const = need_stable_sp = 1;
else if (GET_CODE (goal) == PLUS
&& XEXP (goal, 0) == frame_pointer_rtx
&& CONSTANT_P (XEXP (goal, 1)))
goal_const = 1;
else
return 0;
/* On some machines, certain regs must always be rejected
because they don't behave the way ordinary registers do. */
#ifdef OVERLAPPING_REGNO_P
if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
&& OVERLAPPING_REGNO_P (regno))
return 0;
#endif
/* Scan insns back from INSN, looking for one that copies
a value into or out of GOAL.
Stop and give up if we reach a label. */
while (1)
{
p = PREV_INSN (p);
if (p == 0 || GET_CODE (p) == CODE_LABEL)
return 0;
if (GET_CODE (p) == INSN
/* If we don't want spill regs ... */
&& (! (reload_reg_p != 0
&& reload_reg_p != (short *) (HOST_WIDE_INT) 1)
/* ... then ignore insns introduced by reload; they aren't useful
and can cause results in reload_as_needed to be different
from what they were when calculating the need for spills.
If we notice an input-reload insn here, we will reject it below,
but it might hide a usable equivalent. That makes bad code.
It may even abort: perhaps no reg was spilled for this insn
because it was assumed we would find that equivalent. */
|| INSN_UID (p) < reload_first_uid))
{
rtx tem;
pat = single_set (p);
/* First check for something that sets some reg equal to GOAL. */
if (pat != 0
&& ((regno >= 0
&& true_regnum (SET_SRC (pat)) == regno
&& (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
||
(regno >= 0
&& true_regnum (SET_DEST (pat)) == regno
&& (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
||
(goal_const && rtx_equal_p (SET_SRC (pat), goal)
/* When looking for stack pointer + const,
make sure we don't use a stack adjust. */
&& !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
&& (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
|| (goal_mem
&& (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
&& rtx_renumbered_equal_p (goal, SET_SRC (pat)))
|| (goal_mem
&& (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
&& rtx_renumbered_equal_p (goal, SET_DEST (pat)))
/* If we are looking for a constant,
and something equivalent to that constant was copied
into a reg, we can use that reg. */
|| (goal_const && (tem = find_reg_note (p, REG_EQUIV,
NULL_RTX))
&& rtx_equal_p (XEXP (tem, 0), goal)
&& (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
|| (goal_const && (tem = find_reg_note (p, REG_EQUIV,
NULL_RTX))
&& GET_CODE (SET_DEST (pat)) == REG
&& GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
&& GET_CODE (goal) == CONST_INT
&& 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
VOIDmode))
&& rtx_equal_p (goal, goaltry)
&& (valtry = operand_subword (SET_DEST (pat), 0, 0,
VOIDmode))
&& (valueno = true_regnum (valtry)) >= 0)
|| (goal_const && (tem = find_reg_note (p, REG_EQUIV,
NULL_RTX))
&& GET_CODE (SET_DEST (pat)) == REG
&& GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
&& GET_CODE (goal) == CONST_INT
&& 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
VOIDmode))
&& rtx_equal_p (goal, goaltry)
&& (valtry
= operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
&& (valueno = true_regnum (valtry)) >= 0)))
if (other >= 0
? valueno == other
: ((unsigned) valueno < FIRST_PSEUDO_REGISTER
&& TEST_HARD_REG_BIT (reg_class_contents[(int) class],
valueno)))
{
value = valtry;
where = p;
break;
}
}
}
/* We found a previous insn copying GOAL into a suitable other reg VALUE
(or copying VALUE into GOAL, if GOAL is also a register).
Now verify that VALUE is really valid. */
/* VALUENO is the register number of VALUE; a hard register. */
/* Don't try to re-use something that is killed in this insn. We want
to be able to trust REG_UNUSED notes. */
if (find_reg_note (where, REG_UNUSED, value))
return 0;
/* If we propose to get the value from the stack pointer or if GOAL is
a MEM based on the stack pointer, we need a stable SP. */
if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
|| (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
goal)))
need_stable_sp = 1;
/* Reject VALUE if the copy-insn moved the wrong sort of datum. */
if (GET_MODE (value) != mode)
return 0;
/* Reject VALUE if it was loaded from GOAL
and is also a register that appears in the address of GOAL. */
if (goal_mem && value == SET_DEST (single_set (where))
&& refers_to_regno_for_reload_p (valueno,
(valueno
+ HARD_REGNO_NREGS (valueno, mode)),
goal, NULL_PTR))
return 0;
/* Reject registers that overlap GOAL. */
if (!goal_mem && !goal_const
&& regno + HARD_REGNO_NREGS (regno, mode) > valueno
&& regno < valueno + HARD_REGNO_NREGS (valueno, mode))
return 0;
/* Reject VALUE if it is one of the regs reserved for reloads.
Reload1 knows how to reuse them anyway, and it would get
confused if we allocated one without its knowledge.
(Now that insns introduced by reload are ignored above,
this case shouldn't happen, but I'm not positive.) */
if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
&& reload_reg_p[valueno] >= 0)
return 0;
/* On some machines, certain regs must always be rejected
because they don't behave the way ordinary registers do. */
#ifdef OVERLAPPING_REGNO_P
if (OVERLAPPING_REGNO_P (valueno))
return 0;
#endif
nregs = HARD_REGNO_NREGS (regno, mode);
valuenregs = HARD_REGNO_NREGS (valueno, mode);
/* Reject VALUE if it is a register being used for an input reload
even if it is not one of those reserved. */
if (reload_reg_p != 0)
{
int i;
for (i = 0; i < n_reloads; i++)
if (rld[i].reg_rtx != 0 && rld[i].in)
{
int regno1 = REGNO (rld[i].reg_rtx);
int nregs1 = HARD_REGNO_NREGS (regno1,
GET_MODE (rld[i].reg_rtx));
if (regno1 < valueno + valuenregs
&& regno1 + nregs1 > valueno)
return 0;
}
}
if (goal_mem)
/* We must treat frame pointer as varying here,
since it can vary--in a nonlocal goto as generated by expand_goto. */
goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
/* Now verify that the values of GOAL and VALUE remain unaltered
until INSN is reached. */
p = insn;
while (1)
{
p = PREV_INSN (p);
if (p == where)
return value;
/* Don't trust the conversion past a function call
if either of the two is in a call-clobbered register, or memory. */
if (GET_CODE (p) == CALL_INSN
&& ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
&& call_used_regs[regno])
||
(valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
&& call_used_regs[valueno])
||
goal_mem
|| need_stable_sp))
return 0;
#ifdef NON_SAVING_SETJMP
if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
&& NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
return 0;
#endif
#ifdef INSN_CLOBBERS_REGNO_P
if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
&& INSN_CLOBBERS_REGNO_P (p, valueno))
|| (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
&& INSN_CLOBBERS_REGNO_P (p, regno)))
return 0;
#endif
if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
{
pat = PATTERN (p);
/* Watch out for unspec_volatile, and volatile asms. */
if (volatile_insn_p (pat))
return 0;
/* If this insn P stores in either GOAL or VALUE, return 0.
If GOAL is a memory ref and this insn writes memory, return 0.
If GOAL is a memory ref and its address is not constant,
and this insn P changes a register used in GOAL, return 0. */
if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
{
register rtx dest = SET_DEST (pat);
while (GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == SIGN_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
if (GET_CODE (dest) == REG)
{
register int xregno = REGNO (dest);
int xnregs;
if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
else
xnregs = 1;
if (xregno < regno + nregs && xregno + xnregs > regno)
return 0;
if (xregno < valueno + valuenregs
&& xregno + xnregs > valueno)
return 0;
if (goal_mem_addr_varies
&& reg_overlap_mentioned_for_reload_p (dest, goal))
return 0;
if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
return 0;
}
else if (goal_mem && GET_CODE (dest) == MEM
&& ! push_operand (dest, GET_MODE (dest)))
return 0;
else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
&& reg_equiv_memory_loc[regno] != 0)
return 0;
else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
return 0;
}
else if (GET_CODE (pat) == PARALLEL)
{
register int i;
for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
{
register rtx v1 = XVECEXP (pat, 0, i);
if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
{
register rtx dest = SET_DEST (v1);
while (GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == SIGN_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
if (GET_CODE (dest) == REG)
{
register int xregno = REGNO (dest);
int xnregs;
if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
else
xnregs = 1;
if (xregno < regno + nregs
&& xregno + xnregs > regno)
return 0;
if (xregno < valueno + valuenregs
&& xregno + xnregs > valueno)
return 0;
if (goal_mem_addr_varies
&& reg_overlap_mentioned_for_reload_p (dest,
goal))
return 0;
if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
return 0;
}
else if (goal_mem && GET_CODE (dest) == MEM
&& ! push_operand (dest, GET_MODE (dest)))
return 0;
else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
&& reg_equiv_memory_loc[regno] != 0)
return 0;
else if (need_stable_sp
&& push_operand (dest, GET_MODE (dest)))
return 0;
}
}
}
if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
{
rtx link;
for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
link = XEXP (link, 1))
{
pat = XEXP (link, 0);
if (GET_CODE (pat) == CLOBBER)
{
register rtx dest = SET_DEST (pat);
while (GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == SIGN_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
if (GET_CODE (dest) == REG)
{
register int xregno = REGNO (dest);
int xnregs;
if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
else
xnregs = 1;
if (xregno < regno + nregs
&& xregno + xnregs > regno)
return 0;
if (xregno < valueno + valuenregs
&& xregno + xnregs > valueno)
return 0;
if (goal_mem_addr_varies
&& reg_overlap_mentioned_for_reload_p (dest,
goal))
return 0;
}
else if (goal_mem && GET_CODE (dest) == MEM
&& ! push_operand (dest, GET_MODE (dest)))
return 0;
else if (need_stable_sp
&& push_operand (dest, GET_MODE (dest)))
return 0;
}
}
}
#ifdef AUTO_INC_DEC
/* If this insn auto-increments or auto-decrements
either regno or valueno, return 0 now.
If GOAL is a memory ref and its address is not constant,
and this insn P increments a register used in GOAL, return 0. */
{
register rtx link;
for (link = REG_NOTES (p); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_INC
&& GET_CODE (XEXP (link, 0)) == REG)
{
register int incno = REGNO (XEXP (link, 0));
if (incno < regno + nregs && incno >= regno)
return 0;
if (incno < valueno + valuenregs && incno >= valueno)
return 0;
if (goal_mem_addr_varies
&& reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
goal))
return 0;
}
}
#endif
}
}
}
/* Find a place where INCED appears in an increment or decrement operator
within X, and return the amount INCED is incremented or decremented by.
The value is always positive. */
static int
find_inc_amount (x, inced)
rtx x, inced;
{
register enum rtx_code code = GET_CODE (x);
register const char *fmt;
register int i;
if (code == MEM)
{
register rtx addr = XEXP (x, 0);
if ((GET_CODE (addr) == PRE_DEC
|| GET_CODE (addr) == POST_DEC
|| GET_CODE (addr) == PRE_INC
|| GET_CODE (addr) == POST_INC)
&& XEXP (addr, 0) == inced)
return GET_MODE_SIZE (GET_MODE (x));
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
register int tem = find_inc_amount (XEXP (x, i), inced);
if (tem != 0)
return tem;
}
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
{
register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
if (tem != 0)
return tem;
}
}
}
return 0;
}
/* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
int
regno_clobbered_p (regno, insn)
int regno;
rtx insn;
{
if (GET_CODE (PATTERN (insn)) == CLOBBER
&& GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
return REGNO (XEXP (PATTERN (insn), 0)) == regno;
if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
int i = XVECLEN (PATTERN (insn), 0) - 1;
for (; i >= 0; i--)
{
rtx elt = XVECEXP (PATTERN (insn), 0, i);
if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
&& REGNO (XEXP (elt, 0)) == regno)
return 1;
}
}
return 0;
}
static const char *reload_when_needed_name[] =
{
"RELOAD_FOR_INPUT",
"RELOAD_FOR_OUTPUT",
"RELOAD_FOR_INSN",
"RELOAD_FOR_INPUT_ADDRESS",
"RELOAD_FOR_INPADDR_ADDRESS",
"RELOAD_FOR_OUTPUT_ADDRESS",
"RELOAD_FOR_OUTADDR_ADDRESS",
"RELOAD_FOR_OPERAND_ADDRESS",
"RELOAD_FOR_OPADDR_ADDR",
"RELOAD_OTHER",
"RELOAD_FOR_OTHER_ADDRESS"
};
static const char * const reg_class_names[] = REG_CLASS_NAMES;
/* These functions are used to print the variables set by 'find_reloads' */
void
debug_reload_to_stream (f)
FILE *f;
{
int r;
const char *prefix;
if (! f)
f = stderr;
for (r = 0; r < n_reloads; r++)
{
fprintf (f, "Reload %d: ", r);
if (rld[r].in != 0)
{
fprintf (f, "reload_in (%s) = ",
GET_MODE_NAME (rld[r].inmode));
print_inline_rtx (f, rld[r].in, 24);
fprintf (f, "\n\t");
}
if (rld[r].out != 0)
{
fprintf (f, "reload_out (%s) = ",
GET_MODE_NAME (rld[r].outmode));
print_inline_rtx (f, rld[r].out, 24);
fprintf (f, "\n\t");
}
fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
fprintf (f, "%s (opnum = %d)",
reload_when_needed_name[(int) rld[r].when_needed],
rld[r].opnum);
if (rld[r].optional)
fprintf (f, ", optional");
if (rld[r].nongroup)
fprintf (stderr, ", nongroup");
if (rld[r].inc != 0)
fprintf (f, ", inc by %d", rld[r].inc);
if (rld[r].nocombine)
fprintf (f, ", can't combine");
if (rld[r].secondary_p)
fprintf (f, ", secondary_reload_p");
if (rld[r].in_reg != 0)
{
fprintf (f, "\n\treload_in_reg: ");
print_inline_rtx (f, rld[r].in_reg, 24);
}
if (rld[r].out_reg != 0)
{
fprintf (f, "\n\treload_out_reg: ");
print_inline_rtx (f, rld[r].out_reg, 24);
}
if (rld[r].reg_rtx != 0)
{
fprintf (f, "\n\treload_reg_rtx: ");
print_inline_rtx (f, rld[r].reg_rtx, 24);
}
prefix = "\n\t";
if (rld[r].secondary_in_reload != -1)
{
fprintf (f, "%ssecondary_in_reload = %d",
prefix, rld[r].secondary_in_reload);
prefix = ", ";
}
if (rld[r].secondary_out_reload != -1)
fprintf (f, "%ssecondary_out_reload = %d\n",
prefix, rld[r].secondary_out_reload);
prefix = "\n\t";
if (rld[r].secondary_in_icode != CODE_FOR_nothing)
{
fprintf (stderr, "%ssecondary_in_icode = %s", prefix,
insn_data[rld[r].secondary_in_icode].name);
prefix = ", ";
}
if (rld[r].secondary_out_icode != CODE_FOR_nothing)
fprintf (stderr, "%ssecondary_out_icode = %s", prefix,
insn_data[rld[r].secondary_out_icode].name);
fprintf (f, "\n");
}
}
void
debug_reload ()
{
debug_reload_to_stream (stderr);
}
|