aboutsummaryrefslogtreecommitdiff
path: root/gcc/regclass.c
blob: 256d92bcc9ee84699f00941fdadba16bc7365063 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
/* Compute register class preferences for pseudo-registers.
   Copyright (C) 1987, 88, 91-97, 1998 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


/* This file contains two passes of the compiler: reg_scan and reg_class.
   It also defines some tables of information about the hardware registers
   and a function init_reg_sets to initialize the tables.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "basic-block.h"
#include "regs.h"
#include "insn-config.h"
#include "recog.h"
#include "reload.h"
#include "real.h"
#include "toplev.h"
#include "output.h"

#ifndef REGISTER_MOVE_COST
#define REGISTER_MOVE_COST(x, y) 2
#endif

/* If we have auto-increment or auto-decrement and we can have secondary
   reloads, we are not allowed to use classes requiring secondary
   reloads for pseudos auto-incremented since reload can't handle it.  */

#ifdef AUTO_INC_DEC
#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
#define FORBIDDEN_INC_DEC_CLASSES
#endif
#endif

/* Register tables used by many passes.  */

/* Indexed by hard register number, contains 1 for registers
   that are fixed use (stack pointer, pc, frame pointer, etc.).
   These are the registers that cannot be used to allocate
   a pseudo reg whose life does not cross calls.  */

char fixed_regs[FIRST_PSEUDO_REGISTER];

/* Same info as a HARD_REG_SET.  */

HARD_REG_SET fixed_reg_set;

/* Data for initializing the above.  */

static char initial_fixed_regs[] = FIXED_REGISTERS;

/* Indexed by hard register number, contains 1 for registers
   that are fixed use or are clobbered by function calls.
   These are the registers that cannot be used to allocate
   a pseudo reg whose life crosses calls.  */

char call_used_regs[FIRST_PSEUDO_REGISTER];

/* Same info as a HARD_REG_SET.  */

HARD_REG_SET call_used_reg_set;

/* HARD_REG_SET of registers we want to avoid caller saving.  */
HARD_REG_SET losing_caller_save_reg_set;

/* Data for initializing the above.  */

static char initial_call_used_regs[] = CALL_USED_REGISTERS;
  
/* Indexed by hard register number, contains 1 for registers that are
   fixed use -- i.e. in fixed_regs -- or a function value return register
   or STRUCT_VALUE_REGNUM or STATIC_CHAIN_REGNUM.  These are the
   registers that cannot hold quantities across calls even if we are
   willing to save and restore them.  */

char call_fixed_regs[FIRST_PSEUDO_REGISTER];

/* The same info as a HARD_REG_SET.  */

HARD_REG_SET call_fixed_reg_set;

/* Number of non-fixed registers.  */

int n_non_fixed_regs;

/* Indexed by hard register number, contains 1 for registers
   that are being used for global register decls.
   These must be exempt from ordinary flow analysis
   and are also considered fixed.  */

char global_regs[FIRST_PSEUDO_REGISTER];
  
/* Table of register numbers in the order in which to try to use them.  */
#ifdef REG_ALLOC_ORDER
int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
#endif

/* For each reg class, a HARD_REG_SET saying which registers are in it.  */

HARD_REG_SET reg_class_contents[N_REG_CLASSES];

/* The same information, but as an array of unsigned ints.  We copy from
   these unsigned ints to the table above.  We do this so the tm.h files
   do not have to be aware of the wordsize for machines with <= 64 regs.  */

#define N_REG_INTS  \
  ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)

static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS] 
  = REG_CLASS_CONTENTS;

/* For each reg class, number of regs it contains.  */

int reg_class_size[N_REG_CLASSES];

/* For each reg class, table listing all the containing classes.  */

enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];

/* For each reg class, table listing all the classes contained in it.  */

enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];

/* For each pair of reg classes,
   a largest reg class contained in their union.  */

enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];

/* For each pair of reg classes,
   the smallest reg class containing their union.  */

enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];

/* Array containing all of the register names */

char *reg_names[] = REGISTER_NAMES;

/* For each hard register, the widest mode object that it can contain.
   This will be a MODE_INT mode if the register can hold integers.  Otherwise
   it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
   register.  */

enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];

/* Maximum cost of moving from a register in one class to a register in
   another class.  Based on REGISTER_MOVE_COST.  */

static int move_cost[N_REG_CLASSES][N_REG_CLASSES];

/* Similar, but here we don't have to move if the first index is a subset
   of the second so in that case the cost is zero.  */

static int may_move_cost[N_REG_CLASSES][N_REG_CLASSES];

#ifdef FORBIDDEN_INC_DEC_CLASSES

/* These are the classes that regs which are auto-incremented or decremented
   cannot be put in.  */

static int forbidden_inc_dec_class[N_REG_CLASSES];

/* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
   context.  */

static char *in_inc_dec;

#endif /* FORBIDDEN_INC_DEC_CLASSES */

#ifdef HAVE_SECONDARY_RELOADS

/* Sample MEM values for use by memory_move_secondary_cost.  */

static rtx top_of_stack[MAX_MACHINE_MODE];

#endif /* HAVE_SECONDARY_RELOADS */

/* Linked list of reg_info structures allocated for reg_n_info array.
   Grouping all of the allocated structures together in one lump
   means only one call to bzero to clear them, rather than n smaller
   calls.  */
struct reg_info_data {
  struct reg_info_data *next;	/* next set of reg_info structures */
  size_t min_index;		/* minimum index # */
  size_t max_index;		/* maximum index # */
  char used_p;			/* non-zero if this has been used previously */
  reg_info data[1];		/* beginning of the reg_info data */
};

static struct reg_info_data *reg_info_head;


/* Function called only once to initialize the above data on reg usage.
   Once this is done, various switches may override.  */

void
init_reg_sets ()
{
  register int i, j;

  /* First copy the register information from the initial int form into
     the regsets.  */

  for (i = 0; i < N_REG_CLASSES; i++)
    {
      CLEAR_HARD_REG_SET (reg_class_contents[i]);

      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
	if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
	    & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
	  SET_HARD_REG_BIT (reg_class_contents[i], j);
    }

  bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
  bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
  bzero (global_regs, sizeof global_regs);

  /* Compute number of hard regs in each class.  */

  bzero ((char *) reg_class_size, sizeof reg_class_size);
  for (i = 0; i < N_REG_CLASSES; i++)
    for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
      if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
	reg_class_size[i]++;

  /* Initialize the table of subunions.
     reg_class_subunion[I][J] gets the largest-numbered reg-class
     that is contained in the union of classes I and J.  */

  for (i = 0; i < N_REG_CLASSES; i++)
    {
      for (j = 0; j < N_REG_CLASSES; j++)
	{
#ifdef HARD_REG_SET
	  register		/* Declare it register if it's a scalar.  */
#endif
	    HARD_REG_SET c;
	  register int k;

	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
	  for (k = 0; k < N_REG_CLASSES; k++)
	    {
	      GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
				     subclass1);
	      continue;

	    subclass1:
	      /* keep the largest subclass */		/* SPEE 900308 */
	      GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
				     reg_class_contents[(int) reg_class_subunion[i][j]],
				     subclass2);
	      reg_class_subunion[i][j] = (enum reg_class) k;
	    subclass2:
	      ;
	    }
	}
    }

  /* Initialize the table of superunions.
     reg_class_superunion[I][J] gets the smallest-numbered reg-class
     containing the union of classes I and J.  */

  for (i = 0; i < N_REG_CLASSES; i++)
    {
      for (j = 0; j < N_REG_CLASSES; j++)
	{
#ifdef HARD_REG_SET
	  register		/* Declare it register if it's a scalar.  */
#endif
	    HARD_REG_SET c;
	  register int k;

	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
	  for (k = 0; k < N_REG_CLASSES; k++)
	    GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);

	superclass:
	  reg_class_superunion[i][j] = (enum reg_class) k;
	}
    }

  /* Initialize the tables of subclasses and superclasses of each reg class.
     First clear the whole table, then add the elements as they are found.  */

  for (i = 0; i < N_REG_CLASSES; i++)
    {
      for (j = 0; j < N_REG_CLASSES; j++)
	{
	  reg_class_superclasses[i][j] = LIM_REG_CLASSES;
	  reg_class_subclasses[i][j] = LIM_REG_CLASSES;
	}
    }

  for (i = 0; i < N_REG_CLASSES; i++)
    {
      if (i == (int) NO_REGS)
	continue;

      for (j = i + 1; j < N_REG_CLASSES; j++)
	{
	  enum reg_class *p;

	  GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
				 subclass);
	  continue;
	subclass:
	  /* Reg class I is a subclass of J.
	     Add J to the table of superclasses of I.  */
	  p = &reg_class_superclasses[i][0];
	  while (*p != LIM_REG_CLASSES) p++;
	  *p = (enum reg_class) j;
	  /* Add I to the table of superclasses of J.  */
	  p = &reg_class_subclasses[j][0];
	  while (*p != LIM_REG_CLASSES) p++;
	  *p = (enum reg_class) i;
	}
    }

  /* Do any additional initialization regsets may need */
  INIT_ONCE_REG_SET ();
}

/* After switches have been processed, which perhaps alter
   `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs.  */

static void
init_reg_sets_1 ()
{
  register unsigned int i, j;

  /* This macro allows the fixed or call-used registers
     to depend on target flags.  */

#ifdef CONDITIONAL_REGISTER_USAGE
  CONDITIONAL_REGISTER_USAGE;
#endif

  /* Initialize "constant" tables.  */

  CLEAR_HARD_REG_SET (fixed_reg_set);
  CLEAR_HARD_REG_SET (call_used_reg_set);
  CLEAR_HARD_REG_SET (call_fixed_reg_set);

  bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);

  n_non_fixed_regs = 0;

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (fixed_regs[i])
	SET_HARD_REG_BIT (fixed_reg_set, i);
      else
	n_non_fixed_regs++;

      if (call_used_regs[i])
	SET_HARD_REG_BIT (call_used_reg_set, i);
      if (call_fixed_regs[i])
	SET_HARD_REG_BIT (call_fixed_reg_set, i);
      if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
	SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
    }

  /* Initialize the move cost table.  Find every subset of each class
     and take the maximum cost of moving any subset to any other.  */

  for (i = 0; i < N_REG_CLASSES; i++)
    for (j = 0; j < N_REG_CLASSES; j++)
      {
	int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
	enum reg_class *p1, *p2;

	for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
	  if (*p2 != i)
	    cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));

	for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
	  {
	    if (*p1 != j)
	      cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));

	    for (p2 = &reg_class_subclasses[j][0];
		 *p2 != LIM_REG_CLASSES; p2++)
	      if (*p1 != *p2)
		cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
	  }

	move_cost[i][j] = cost;

	if (reg_class_subset_p (i, j))
	  cost = 0;

	may_move_cost[i][j] = cost;
      }
}

/* Compute the table of register modes.
   These values are used to record death information for individual registers
   (as opposed to a multi-register mode).  */

static void
init_reg_modes ()
{
  register int i;

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      reg_raw_mode[i] = choose_hard_reg_mode (i, 1);

      /* If we couldn't find a valid mode, just use the previous mode.
         ??? One situation in which we need to do this is on the mips where
	 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2.  Ideally we'd like
	 to use DF mode for the even registers and VOIDmode for the odd
	 (for the cpu models where the odd ones are inaccessible).  */
      if (reg_raw_mode[i] == VOIDmode)
	reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
    }
}

/* Finish initializing the register sets and
   initialize the register modes.  */

void
init_regs ()
{
  /* This finishes what was started by init_reg_sets, but couldn't be done
     until after register usage was specified.  */
  init_reg_sets_1 ();

  init_reg_modes ();

#ifdef HAVE_SECONDARY_RELOADS
  {
    /* Make some fake stack-frame MEM references for use in
       memory_move_secondary_cost.  */
    int i;
    for (i = 0; i < MAX_MACHINE_MODE; i++)
      top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
  }
#endif
}

#ifdef HAVE_SECONDARY_RELOADS

/* Compute extra cost of moving registers to/from memory due to reloads.
   Only needed if secondary reloads are required for memory moves.  */

int
memory_move_secondary_cost (mode, class, in)
     enum machine_mode mode;
     enum reg_class class;
     int in;
{
  enum reg_class altclass;
  int partial_cost = 0;
  /* We need a memory reference to feed to SECONDARY... macros.  */
  rtx mem = top_of_stack[(int) mode];

  if (in)
    {
#ifdef SECONDARY_INPUT_RELOAD_CLASS
      altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
#else
      altclass = NO_REGS;
#endif
    }
  else
    {
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
      altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
#else
      altclass = NO_REGS;
#endif
    }

  if (altclass == NO_REGS)
    return 0;

  if (in)
    partial_cost = REGISTER_MOVE_COST (altclass, class);
  else
    partial_cost = REGISTER_MOVE_COST (class, altclass);

  if (class == altclass)
    /* This isn't simply a copy-to-temporary situation.  Can't guess
       what it is, so MEMORY_MOVE_COST really ought not to be calling
       here in that case.

       I'm tempted to put in an abort here, but returning this will
       probably only give poor estimates, which is what we would've
       had before this code anyways.  */
    return partial_cost;

  /* Check if the secondary reload register will also need a
     secondary reload.  */
  return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
}
#endif

/* Return a machine mode that is legitimate for hard reg REGNO and large
   enough to save nregs.  If we can't find one, return VOIDmode.  */

enum machine_mode
choose_hard_reg_mode (regno, nregs)
     int regno;
     int nregs;
{
  enum machine_mode found_mode = VOIDmode, mode;

  /* We first look for the largest integer mode that can be validly
     held in REGNO.  If none, we look for the largest floating-point mode.
     If we still didn't find a valid mode, try CCmode.  */

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    if (HARD_REGNO_NREGS (regno, mode) == nregs
	&& HARD_REGNO_MODE_OK (regno, mode))
      found_mode = mode;

  if (found_mode != VOIDmode)
    return found_mode;

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    if (HARD_REGNO_NREGS (regno, mode) == nregs
	&& HARD_REGNO_MODE_OK (regno, mode))
      found_mode = mode;

  if (found_mode != VOIDmode)
    return found_mode;

  if (HARD_REGNO_NREGS (regno, CCmode) == nregs
      && HARD_REGNO_MODE_OK (regno, CCmode))
    return CCmode;

  /* We can't find a mode valid for this register.  */
  return VOIDmode;
}

/* Specify the usage characteristics of the register named NAME.
   It should be a fixed register if FIXED and a
   call-used register if CALL_USED.  */

void
fix_register (name, fixed, call_used)
     char *name;
     int fixed, call_used;
{
  int i;

  /* Decode the name and update the primary form of
     the register info.  */

  if ((i = decode_reg_name (name)) >= 0)
    {
      fixed_regs[i] = fixed;
      call_used_regs[i] = call_used;
    }
  else
    {
      warning ("unknown register name: %s", name);
    }
}

/* Mark register number I as global.  */

void
globalize_reg (i)
     int i;
{
  if (global_regs[i])
    {
      warning ("register used for two global register variables");
      return;
    }

  if (call_used_regs[i] && ! fixed_regs[i])
    warning ("call-clobbered register used for global register variable");

  global_regs[i] = 1;

  /* If already fixed, nothing else to do.  */
  if (fixed_regs[i])
    return;

  fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
  n_non_fixed_regs--;

  SET_HARD_REG_BIT (fixed_reg_set, i);
  SET_HARD_REG_BIT (call_used_reg_set, i);
  SET_HARD_REG_BIT (call_fixed_reg_set, i);
}

/* Now the data and code for the `regclass' pass, which happens
   just before local-alloc.  */

/* The `costs' struct records the cost of using a hard register of each class
   and of using memory for each pseudo.  We use this data to set up
   register class preferences.  */

struct costs
{
  int cost[N_REG_CLASSES];
  int mem_cost;
};

/* Record the cost of each class for each pseudo.  */

static struct costs *costs;

/* Record the same data by operand number, accumulated for each alternative
   in an insn.  The contribution to a pseudo is that of the minimum-cost
   alternative.  */

static struct costs op_costs[MAX_RECOG_OPERANDS];

/* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
   This is available after `regclass' is run.  */

static char *prefclass;

/* altclass[R] is a register class that we should use for allocating
   pseudo number R if no register in the preferred class is available.
   If no register in this class is available, memory is preferred.

   It might appear to be more general to have a bitmask of classes here,
   but since it is recommended that there be a class corresponding to the
   union of most major pair of classes, that generality is not required. 

   This is available after `regclass' is run.  */

static char *altclass;

/* Allocated buffers for prefclass and altclass. */
static char *prefclass_buffer;
static char *altclass_buffer;

/* Record the depth of loops that we are in.  */

static int loop_depth;

/* Account for the fact that insns within a loop are executed very commonly,
   but don't keep doing this as loops go too deep.  */

static int loop_cost;

static void record_reg_classes	PROTO((int, int, rtx *, enum machine_mode *,
				       char **, rtx));
static int copy_cost		PROTO((rtx, enum machine_mode, 
				       enum reg_class, int));
static void record_address_regs	PROTO((rtx, enum reg_class, int));
#ifdef FORBIDDEN_INC_DEC_CLASSES
static int auto_inc_dec_reg_p	PROTO((rtx, enum machine_mode));
#endif
static void reg_scan_mark_refs	PROTO((rtx, rtx, int, int));

/* Return the reg_class in which pseudo reg number REGNO is best allocated.
   This function is sometimes called before the info has been computed.
   When that happens, just return GENERAL_REGS, which is innocuous.  */

enum reg_class
reg_preferred_class (regno)
     int regno;
{
  if (prefclass == 0)
    return GENERAL_REGS;
  return (enum reg_class) prefclass[regno];
}

enum reg_class
reg_alternate_class (regno)
     int regno;
{
  if (prefclass == 0)
    return ALL_REGS;

  return (enum reg_class) altclass[regno];
}

/* This prevents dump_flow_info from losing if called
   before regclass is run.  */

void
regclass_init ()
{
  prefclass = 0;
}

/* This is a pass of the compiler that scans all instructions
   and calculates the preferred class for each pseudo-register.
   This information can be accessed later by calling `reg_preferred_class'.
   This pass comes just before local register allocation.  */

void
regclass (f, nregs)
     rtx f;
     int nregs;
{
#ifdef REGISTER_CONSTRAINTS
  register rtx insn;
  register int i, j;
  struct costs init_cost;
  rtx set;
  int pass;

  init_recog ();

  costs = (struct costs *) alloca (nregs * sizeof (struct costs));

#ifdef FORBIDDEN_INC_DEC_CLASSES

  in_inc_dec = (char *) alloca (nregs);

  /* Initialize information about which register classes can be used for
     pseudos that are auto-incremented or auto-decremented.  It would
     seem better to put this in init_reg_sets, but we need to be able
     to allocate rtx, which we can't do that early.  */

  for (i = 0; i < N_REG_CLASSES; i++)
    {
      rtx r = gen_rtx_REG (VOIDmode, 0);
      enum machine_mode m;

      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
	if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
	  {
	    REGNO (r) = j;

	    for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
		 m = (enum machine_mode) ((int) m + 1))
	      if (HARD_REGNO_MODE_OK (j, m))
		{
		  PUT_MODE (r, m);

		  /* If a register is not directly suitable for an
		     auto-increment or decrement addressing mode and
		     requires secondary reloads, disallow its class from
		     being used in such addresses.  */

		  if ((0
#ifdef SECONDARY_RELOAD_CLASS
		       || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
			   != NO_REGS)
#else
#ifdef SECONDARY_INPUT_RELOAD_CLASS
		       || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
			   != NO_REGS)
#endif
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
		       || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
			   != NO_REGS)
#endif
#endif
		       )
		      && ! auto_inc_dec_reg_p (r, m))
		    forbidden_inc_dec_class[i] = 1;
		}
	  }
    }
#endif /* FORBIDDEN_INC_DEC_CLASSES */

  init_cost.mem_cost = 10000;
  for (i = 0; i < N_REG_CLASSES; i++)
    init_cost.cost[i] = 10000;

  /* Normally we scan the insns once and determine the best class to use for
     each register.  However, if -fexpensive_optimizations are on, we do so
     twice, the second time using the tentative best classes to guide the
     selection.  */

  for (pass = 0; pass <= flag_expensive_optimizations; pass++)
    {
      /* Zero out our accumulation of the cost of each class for each reg.  */

      bzero ((char *) costs, nregs * sizeof (struct costs));

#ifdef FORBIDDEN_INC_DEC_CLASSES
      bzero (in_inc_dec, nregs);
#endif

      loop_depth = 0, loop_cost = 1;

      /* Scan the instructions and record each time it would
	 save code to put a certain register in a certain class.  */

      for (insn = f; insn; insn = NEXT_INSN (insn))
	{
	  char *constraints[MAX_RECOG_OPERANDS];
	  enum machine_mode modes[MAX_RECOG_OPERANDS];
	  int nalternatives;
	  int noperands;

	  /* Show that an insn inside a loop is likely to be executed three
	     times more than insns outside a loop.  This is much more aggressive
	     than the assumptions made elsewhere and is being tried as an
	     experiment.  */

	  if (GET_CODE (insn) == NOTE
	      && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
	    loop_depth++, loop_cost = 1 << (2 * MIN (loop_depth, 5));
	  else if (GET_CODE (insn) == NOTE
		   && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
	    loop_depth--, loop_cost = 1 << (2 * MIN (loop_depth, 5));

	  else if ((GET_CODE (insn) == INSN
		    && GET_CODE (PATTERN (insn)) != USE
		    && GET_CODE (PATTERN (insn)) != CLOBBER
		    && GET_CODE (PATTERN (insn)) != ASM_INPUT)
		   || (GET_CODE (insn) == JUMP_INSN
		       && GET_CODE (PATTERN (insn)) != ADDR_VEC
		       && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
		   || GET_CODE (insn) == CALL_INSN)
	    {
	      if (GET_CODE (insn) == INSN
		  && (noperands = asm_noperands (PATTERN (insn))) >= 0)
		{
		  decode_asm_operands (PATTERN (insn), recog_operand, NULL_PTR,
				       constraints, modes);
		  nalternatives = (noperands == 0 ? 0
				   : n_occurrences (',', constraints[0]) + 1);
		}
	      else
		{
		  int insn_code_number = recog_memoized (insn);
		  rtx note;

		  set = single_set (insn);
		  insn_extract (insn);

		  nalternatives = insn_n_alternatives[insn_code_number];
		  noperands = insn_n_operands[insn_code_number];

		  /* If this insn loads a parameter from its stack slot, then
		     it represents a savings, rather than a cost, if the
		     parameter is stored in memory.  Record this fact.  */

		  if (set != 0 && GET_CODE (SET_DEST (set)) == REG
		      && GET_CODE (SET_SRC (set)) == MEM
		      && (note = find_reg_note (insn, REG_EQUIV,
						NULL_RTX)) != 0
		      && GET_CODE (XEXP (note, 0)) == MEM)
		    {
		      costs[REGNO (SET_DEST (set))].mem_cost
			-= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
					      GENERAL_REGS, 1)
			    * loop_cost);
		      record_address_regs (XEXP (SET_SRC (set), 0),
					   BASE_REG_CLASS, loop_cost * 2);
		      continue;
		    }
	      
		  /* Improve handling of two-address insns such as
		     (set X (ashift CONST Y)) where CONST must be made to
		     match X. Change it into two insns: (set X CONST)
		     (set X (ashift X Y)).  If we left this for reloading, it
		     would probably get three insns because X and Y might go
		     in the same place. This prevents X and Y from receiving
		     the same hard reg.

		     We can only do this if the modes of operands 0 and 1
		     (which might not be the same) are tieable and we only need
		     do this during our first pass.  */

		  if (pass == 0 && optimize
		      && noperands >= 3
		      && insn_operand_constraint[insn_code_number][1][0] == '0'
		      && insn_operand_constraint[insn_code_number][1][1] == 0
		      && CONSTANT_P (recog_operand[1])
		      && ! rtx_equal_p (recog_operand[0], recog_operand[1])
		      && ! rtx_equal_p (recog_operand[0], recog_operand[2])
		      && GET_CODE (recog_operand[0]) == REG
		      && MODES_TIEABLE_P (GET_MODE (recog_operand[0]),
					  insn_operand_mode[insn_code_number][1]))
		    {
		      rtx previnsn = prev_real_insn (insn);
		      rtx dest
			= gen_lowpart (insn_operand_mode[insn_code_number][1],
				       recog_operand[0]);
		      rtx newinsn
			= emit_insn_before (gen_move_insn (dest,
							   recog_operand[1]),
					    insn);

		      /* If this insn was the start of a basic block,
			 include the new insn in that block.
			 We need not check for code_label here;
			 while a basic block can start with a code_label,
			 INSN could not be at the beginning of that block.  */
		      if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
			{
			  int b;
			  for (b = 0; b < n_basic_blocks; b++)
			    if (insn == basic_block_head[b])
			      basic_block_head[b] = newinsn;
			}

		      /* This makes one more setting of new insns's dest.  */
		      REG_N_SETS (REGNO (recog_operand[0]))++;

		      *recog_operand_loc[1] = recog_operand[0];
		      for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
			if (recog_dup_num[i] == 1)
			  *recog_dup_loc[i] = recog_operand[0];

		      insn = PREV_INSN (newinsn);
		      continue;
		    }

		  for (i = 0; i < noperands; i++)
		    {
		      constraints[i]
			= insn_operand_constraint[insn_code_number][i];
		      modes[i] = insn_operand_mode[insn_code_number][i];
		    }
		}

	      /* If we get here, we are set up to record the costs of all the
		 operands for this insn.  Start by initializing the costs.
		 Then handle any address registers.  Finally record the desired
		 classes for any pseudos, doing it twice if some pair of
		 operands are commutative.  */
	     
	      for (i = 0; i < noperands; i++)
		{
		  op_costs[i] = init_cost;

		  if (GET_CODE (recog_operand[i]) == SUBREG)
		    recog_operand[i] = SUBREG_REG (recog_operand[i]);

		  if (GET_CODE (recog_operand[i]) == MEM)
		    record_address_regs (XEXP (recog_operand[i], 0),
					 BASE_REG_CLASS, loop_cost * 2);
		  else if (constraints[i][0] == 'p')
		    record_address_regs (recog_operand[i],
					 BASE_REG_CLASS, loop_cost * 2);
		}

	      /* Check for commutative in a separate loop so everything will
		 have been initialized.  We must do this even if one operand
		 is a constant--see addsi3 in m68k.md.  */
	      
	      for (i = 0; i < noperands - 1; i++)
		if (constraints[i][0] == '%')
		  {
		    char *xconstraints[MAX_RECOG_OPERANDS];
		    int j;

		    /* Handle commutative operands by swapping the constraints.
		       We assume the modes are the same.  */

		    for (j = 0; j < noperands; j++)
		      xconstraints[j] = constraints[j];

		    xconstraints[i] = constraints[i+1];
		    xconstraints[i+1] = constraints[i];
		    record_reg_classes (nalternatives, noperands,
					recog_operand, modes, xconstraints,
					insn);
		  }

	      record_reg_classes (nalternatives, noperands, recog_operand,
				  modes, constraints, insn);

	      /* Now add the cost for each operand to the total costs for
		 its register.  */

	      for (i = 0; i < noperands; i++)
		if (GET_CODE (recog_operand[i]) == REG
		    && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
		  {
		    int regno = REGNO (recog_operand[i]);
		    struct costs *p = &costs[regno], *q = &op_costs[i];

		    p->mem_cost += q->mem_cost * loop_cost;
		    for (j = 0; j < N_REG_CLASSES; j++)
		      p->cost[j] += q->cost[j] * loop_cost;
		  }
	    }
	}

      /* Now for each register look at how desirable each class is
	 and find which class is preferred.  Store that in
	 `prefclass[REGNO]'.  Record in `altclass[REGNO]' the largest register
	 class any of whose registers is better than memory.  */
    
      if (pass == 0)
	{
	  prefclass = prefclass_buffer;
	  altclass = altclass_buffer;
	}

      for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
	{
	  register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
	  enum reg_class best = ALL_REGS, alt = NO_REGS;
	  /* This is an enum reg_class, but we call it an int
	     to save lots of casts.  */
	  register int class;
	  register struct costs *p = &costs[i];

	  for (class = (int) ALL_REGS - 1; class > 0; class--)
	    {
	      /* Ignore classes that are too small for this operand or
		 invalid for a operand that was auto-incremented.  */
	      if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
		  > reg_class_size[class]
#ifdef FORBIDDEN_INC_DEC_CLASSES
		  || (in_inc_dec[i] && forbidden_inc_dec_class[class])
#endif
		  )
		;
	      else if (p->cost[class] < best_cost)
		{
		  best_cost = p->cost[class];
		  best = (enum reg_class) class;
		}
	      else if (p->cost[class] == best_cost)
		best = reg_class_subunion[(int)best][class];
	    }

	  /* Record the alternate register class; i.e., a class for which
	     every register in it is better than using memory.  If adding a
	     class would make a smaller class (i.e., no union of just those
	     classes exists), skip that class.  The major unions of classes
	     should be provided as a register class.  Don't do this if we
	     will be doing it again later.  */

	  if (pass == 1 || ! flag_expensive_optimizations)
	    for (class = 0; class < N_REG_CLASSES; class++)
	      if (p->cost[class] < p->mem_cost
		  && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
		      > reg_class_size[(int) alt])
#ifdef FORBIDDEN_INC_DEC_CLASSES
		  && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
#endif
		  )
		alt = reg_class_subunion[(int) alt][class];
	  
	  /* If we don't add any classes, nothing to try.  */
	  if (alt == best)
	    alt = NO_REGS;

	  /* We cast to (int) because (char) hits bugs in some compilers.  */
	  prefclass[i] = (int) best;
	  altclass[i] = (int) alt;
	}
    }
#endif /* REGISTER_CONSTRAINTS */
}

#ifdef REGISTER_CONSTRAINTS

/* Record the cost of using memory or registers of various classes for
   the operands in INSN.

   N_ALTS is the number of alternatives.

   N_OPS is the number of operands.

   OPS is an array of the operands.

   MODES are the modes of the operands, in case any are VOIDmode.

   CONSTRAINTS are the constraints to use for the operands.  This array
   is modified by this procedure.

   This procedure works alternative by alternative.  For each alternative
   we assume that we will be able to allocate all pseudos to their ideal
   register class and calculate the cost of using that alternative.  Then
   we compute for each operand that is a pseudo-register, the cost of 
   having the pseudo allocated to each register class and using it in that
   alternative.  To this cost is added the cost of the alternative.

   The cost of each class for this insn is its lowest cost among all the
   alternatives.  */

static void
record_reg_classes (n_alts, n_ops, ops, modes, constraints, insn)
     int n_alts;
     int n_ops;
     rtx *ops;
     enum machine_mode *modes;
     char **constraints;
     rtx insn;
{
  int alt;
  enum op_type {OP_READ, OP_WRITE, OP_READ_WRITE} op_types[MAX_RECOG_OPERANDS];
  int i, j;
  rtx set;

  /* By default, each operand is an input operand.  */

  for (i = 0; i < n_ops; i++)
    op_types[i] = OP_READ;

  /* Process each alternative, each time minimizing an operand's cost with
     the cost for each operand in that alternative.  */

  for (alt = 0; alt < n_alts; alt++)
    {
      struct costs this_op_costs[MAX_RECOG_OPERANDS];
      int alt_fail = 0;
      int alt_cost = 0;
      enum reg_class classes[MAX_RECOG_OPERANDS];
      int class;

      for (i = 0; i < n_ops; i++)
	{
	  char *p = constraints[i];
	  rtx op = ops[i];
	  enum machine_mode mode = modes[i];
	  int allows_mem = 0;
	  int win = 0;
	  char c;

	  /* If this operand has no constraints at all, we can conclude 
	     nothing about it since anything is valid.  */

	  if (*p == 0)
	    {
	      if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
		bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);

	      continue;
	    }

	  if (*p == '%')
	    p++;

	  /* If this alternative is only relevant when this operand
	     matches a previous operand, we do different things depending
	     on whether this operand is a pseudo-reg or not.  */

	  if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
	    {
	      j = p[0] - '0';
	      classes[i] = classes[j];

	      if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
		{
		  /* If this matches the other operand, we have no added
		     cost and we win.  */
		  if (rtx_equal_p (ops[j], op))
		    win = 1;

		  /* If we can put the other operand into a register, add to
		     the cost of this alternative the cost to copy this
		     operand to the register used for the other operand.  */

		  else if (classes[j] != NO_REGS)
		    alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
		}
	      else if (GET_CODE (ops[j]) != REG
		       || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
		{
		  /* This op is a pseudo but the one it matches is not.  */
		  
		  /* If we can't put the other operand into a register, this
		     alternative can't be used.  */

		  if (classes[j] == NO_REGS)
		    alt_fail = 1;

		  /* Otherwise, add to the cost of this alternative the cost
		     to copy the other operand to the register used for this
		     operand.  */

		  else
		    alt_cost += copy_cost (ops[j], mode, classes[j], 1);
		}
	      else
		{
		  /* The costs of this operand are the same as that of the
		     other operand.  However, if we cannot tie them, this
		     alternative needs to do a copy, which is one
		     instruction.  */

		  this_op_costs[i] = this_op_costs[j];
		  if (REGNO (ops[i]) != REGNO (ops[j])
		      && ! find_reg_note (insn, REG_DEAD, op))
		    alt_cost += 2;

		  /* This is in place of ordinary cost computation
		     for this operand, so skip to the end of the
		     alternative (should be just one character).  */
		  while (*p && *p++ != ',')
		    ;

		  constraints[i] = p;
		  continue;
		}
	    }

	  /* Scan all the constraint letters.  See if the operand matches
	     any of the constraints.  Collect the valid register classes
	     and see if this operand accepts memory.  */

	  classes[i] = NO_REGS;
	  while (*p && (c = *p++) != ',')
	    switch (c)
	      {
	      case '=':
		op_types[i] = OP_WRITE;
		break;

	      case '+':
		op_types[i] = OP_READ_WRITE;
		break;

	      case '*':
		/* Ignore the next letter for this pass.  */
		p++;
		break;

	      case '?':
		alt_cost += 2;
	      case '%':
	      case '!':  case '#':
	      case '&':
	      case '0':  case '1':  case '2':  case '3':  case '4':
	      case 'p':
		break;

	      case 'm':  case 'o':  case 'V':
		/* It doesn't seem worth distinguishing between offsettable
		   and non-offsettable addresses here.  */
		allows_mem = 1;
		if (GET_CODE (op) == MEM)
		  win = 1;
		break;

	      case '<':
		if (GET_CODE (op) == MEM
		    && (GET_CODE (XEXP (op, 0)) == PRE_DEC
			|| GET_CODE (XEXP (op, 0)) == POST_DEC))
		  win = 1;
		break;

	      case '>':
		if (GET_CODE (op) == MEM
		    && (GET_CODE (XEXP (op, 0)) == PRE_INC
			|| GET_CODE (XEXP (op, 0)) == POST_INC))
		  win = 1;
		break;

	      case 'E':
#ifndef REAL_ARITHMETIC
		/* Match any floating double constant, but only if
		   we can examine the bits of it reliably.  */
		if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
		     || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
		    && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
		  break;
#endif
		if (GET_CODE (op) == CONST_DOUBLE)
		  win = 1;
		break;

	      case 'F':
		if (GET_CODE (op) == CONST_DOUBLE)
		  win = 1;
		break;

	      case 'G':
	      case 'H':
		if (GET_CODE (op) == CONST_DOUBLE
		    && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
		  win = 1;
		break;

	      case 's':
		if (GET_CODE (op) == CONST_INT
		    || (GET_CODE (op) == CONST_DOUBLE
			&& GET_MODE (op) == VOIDmode))
		  break;
	      case 'i':
		if (CONSTANT_P (op)
#ifdef LEGITIMATE_PIC_OPERAND_P
		    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
#endif
		    )
		  win = 1;
		break;

	      case 'n':
		if (GET_CODE (op) == CONST_INT
		    || (GET_CODE (op) == CONST_DOUBLE
			&& GET_MODE (op) == VOIDmode))
		  win = 1;
		break;

	      case 'I':
	      case 'J':
	      case 'K':
	      case 'L':
	      case 'M':
	      case 'N':
	      case 'O':
	      case 'P':
		if (GET_CODE (op) == CONST_INT
		    && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
		  win = 1;
		break;

	      case 'X':
		win = 1;
		break;

#ifdef EXTRA_CONSTRAINT
              case 'Q':
              case 'R':
              case 'S':
              case 'T':
              case 'U':
		if (EXTRA_CONSTRAINT (op, c))
		  win = 1;
		break;
#endif

	      case 'g':
		if (GET_CODE (op) == MEM
		    || (CONSTANT_P (op)
#ifdef LEGITIMATE_PIC_OPERAND_P
			&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
#endif
			))
		  win = 1;
		allows_mem = 1;
	      case 'r':
		classes[i]
		  = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
		break;

	      default:
		classes[i]
		  = reg_class_subunion[(int) classes[i]]
		    [(int) REG_CLASS_FROM_LETTER (c)];
	      }

	  constraints[i] = p;

	  /* How we account for this operand now depends on whether it is  a
	     pseudo register or not.  If it is, we first check if any
	     register classes are valid.  If not, we ignore this alternative,
	     since we want to assume that all pseudos get allocated for
	     register preferencing.  If some register class is valid, compute
	     the costs of moving the pseudo into that class.  */

	  if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
	    {
	      if (classes[i] == NO_REGS)
		alt_fail = 1;
	      else
		{
		  struct costs *pp = &this_op_costs[i];

		  for (class = 0; class < N_REG_CLASSES; class++)
		    pp->cost[class] = may_move_cost[class][(int) classes[i]];

		  /* If the alternative actually allows memory, make things
		     a bit cheaper since we won't need an extra insn to
		     load it.  */

		  pp->mem_cost = (MEMORY_MOVE_COST (mode, classes[i], 1)
				  - allows_mem);

		  /* If we have assigned a class to this register in our
		     first pass, add a cost to this alternative corresponding
		     to what we would add if this register were not in the
		     appropriate class.  */

		  if (prefclass)
		    alt_cost
		      += may_move_cost[prefclass[REGNO (op)]][(int) classes[i]];
		}
	    }

	  /* Otherwise, if this alternative wins, either because we
	     have already determined that or if we have a hard register of
	     the proper class, there is no cost for this alternative.  */

	  else if (win
		   || (GET_CODE (op) == REG
		       && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
	    ;

	  /* If registers are valid, the cost of this alternative includes
	     copying the object to and/or from a register.  */

	  else if (classes[i] != NO_REGS)
	    {
	      if (op_types[i] != OP_WRITE)
		alt_cost += copy_cost (op, mode, classes[i], 1);

	      if (op_types[i] != OP_READ)
		alt_cost += copy_cost (op, mode, classes[i], 0);
	    }

	  /* The only other way this alternative can be used is if this is a
	     constant that could be placed into memory.  */

	  else if (CONSTANT_P (op) && allows_mem)
	    alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
	  else
	    alt_fail = 1;
	}

      if (alt_fail)
	continue;

      /* Finally, update the costs with the information we've calculated
	 about this alternative.  */

      for (i = 0; i < n_ops; i++)
	if (GET_CODE (ops[i]) == REG
	    && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
	  {
	    struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
	    int scale = 1 + (op_types[i] == OP_READ_WRITE);

	    pp->mem_cost = MIN (pp->mem_cost,
				(qq->mem_cost + alt_cost) * scale);

	    for (class = 0; class < N_REG_CLASSES; class++)
	      pp->cost[class] = MIN (pp->cost[class],
				     (qq->cost[class] + alt_cost) * scale);
	  }
    }

  /* If this insn is a single set copying operand 1 to operand 0
     and one is a pseudo with the other a hard reg that is in its
     own register class, set the cost of that register class to -1.  */

  if ((set = single_set (insn)) != 0
      && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
      && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG)
    for (i = 0; i <= 1; i++)
      if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
	{
	  int regno = REGNO (ops[!i]);
	  enum machine_mode mode = GET_MODE (ops[!i]);
	  int class;
	  int nr;

	  if (regno >= FIRST_PSEUDO_REGISTER && prefclass != 0
	      && (reg_class_size[prefclass[regno]]
		  == CLASS_MAX_NREGS (prefclass[regno], mode)))
	    op_costs[i].cost[prefclass[regno]] = -1;
	  else if (regno < FIRST_PSEUDO_REGISTER)
	    for (class = 0; class < N_REG_CLASSES; class++)
	      if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
		  && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
		{
		  if (reg_class_size[class] == 1)
		    op_costs[i].cost[class] = -1;
		  else
		    {
		      for (nr = 0; nr < HARD_REGNO_NREGS(regno, mode); nr++)
			{
			  if (!TEST_HARD_REG_BIT (reg_class_contents[class], regno + nr))
			    break;
			}

		      if (nr == HARD_REGNO_NREGS(regno,mode))
			op_costs[i].cost[class] = -1;
		    }
		}
	}
}

/* Compute the cost of loading X into (if TO_P is non-zero) or from (if
   TO_P is zero) a register of class CLASS in mode MODE.

   X must not be a pseudo.  */

static int
copy_cost (x, mode, class, to_p)
     rtx x;
     enum machine_mode mode;
     enum reg_class class;
     int to_p;
{
#ifdef HAVE_SECONDARY_RELOADS
  enum reg_class secondary_class = NO_REGS;
#endif

  /* If X is a SCRATCH, there is actually nothing to move since we are
     assuming optimal allocation.  */

  if (GET_CODE (x) == SCRATCH)
    return 0;

  /* Get the class we will actually use for a reload.  */
  class = PREFERRED_RELOAD_CLASS (x, class);

#ifdef HAVE_SECONDARY_RELOADS
  /* If we need a secondary reload (we assume here that we are using 
     the secondary reload as an intermediate, not a scratch register), the
     cost is that to load the input into the intermediate register, then
     to copy them.  We use a special value of TO_P to avoid recursion.  */

#ifdef SECONDARY_INPUT_RELOAD_CLASS
  if (to_p == 1)
    secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
#endif

#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
  if (! to_p)
    secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
#endif

  if (secondary_class != NO_REGS)
    return (move_cost[(int) secondary_class][(int) class]
	    + copy_cost (x, mode, secondary_class, 2));
#endif  /* HAVE_SECONDARY_RELOADS */

  /* For memory, use the memory move cost, for (hard) registers, use the
     cost to move between the register classes, and use 2 for everything
     else (constants).  */

  if (GET_CODE (x) == MEM || class == NO_REGS)
    return MEMORY_MOVE_COST (mode, class, to_p);

  else if (GET_CODE (x) == REG)
    return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];

  else
    /* If this is a constant, we may eventually want to call rtx_cost here.  */
    return 2;
}

/* Record the pseudo registers we must reload into hard registers
   in a subexpression of a memory address, X.

   CLASS is the class that the register needs to be in and is either
   BASE_REG_CLASS or INDEX_REG_CLASS.

   SCALE is twice the amount to multiply the cost by (it is twice so we
   can represent half-cost adjustments).  */

static void
record_address_regs (x, class, scale)
     rtx x;
     enum reg_class class;
     int scale;
{
  register enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case CC0:
    case PC:
    case SYMBOL_REF:
    case LABEL_REF:
      return;

    case PLUS:
      /* When we have an address that is a sum,
	 we must determine whether registers are "base" or "index" regs.
	 If there is a sum of two registers, we must choose one to be
	 the "base".  Luckily, we can use the REGNO_POINTER_FLAG
	 to make a good choice most of the time.  We only need to do this
	 on machines that can have two registers in an address and where
	 the base and index register classes are different.

	 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
	 that seems bogus since it should only be set when we are sure
	 the register is being used as a pointer.  */

      {
	rtx arg0 = XEXP (x, 0);
	rtx arg1 = XEXP (x, 1);
	register enum rtx_code code0 = GET_CODE (arg0);
	register enum rtx_code code1 = GET_CODE (arg1);

	/* Look inside subregs.  */
	if (code0 == SUBREG)
	  arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
	if (code1 == SUBREG)
	  arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);

	/* If this machine only allows one register per address, it must
	   be in the first operand.  */

	if (MAX_REGS_PER_ADDRESS == 1)
	  record_address_regs (arg0, class, scale);

	/* If index and base registers are the same on this machine, just
	   record registers in any non-constant operands.  We assume here,
	   as well as in the tests below, that all addresses are in 
	   canonical form.  */

	else if (INDEX_REG_CLASS == BASE_REG_CLASS)
	  {
	    record_address_regs (arg0, class, scale);
	    if (! CONSTANT_P (arg1))
	      record_address_regs (arg1, class, scale);
	  }

	/* If the second operand is a constant integer, it doesn't change
	   what class the first operand must be.  */

	else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
	  record_address_regs (arg0, class, scale);

	/* If the second operand is a symbolic constant, the first operand
	   must be an index register.  */

	else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
	  record_address_regs (arg0, INDEX_REG_CLASS, scale);

	/* If both operands are registers but one is already a hard register
	   of index or base class, give the other the class that the hard
	   register is not.  */

#ifdef REG_OK_FOR_BASE_P
	else if (code0 == REG && code1 == REG
		 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
		 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
	  record_address_regs (arg1,
			       REG_OK_FOR_BASE_P (arg0)
			       ? INDEX_REG_CLASS : BASE_REG_CLASS,
			       scale);
	else if (code0 == REG && code1 == REG
		 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
		 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
	  record_address_regs (arg0,
			       REG_OK_FOR_BASE_P (arg1)
			       ? INDEX_REG_CLASS : BASE_REG_CLASS,
			       scale);
#endif

	/* If one operand is known to be a pointer, it must be the base
	   with the other operand the index.  Likewise if the other operand
	   is a MULT.  */

	else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
		 || code1 == MULT)
	  {
	    record_address_regs (arg0, BASE_REG_CLASS, scale);
	    record_address_regs (arg1, INDEX_REG_CLASS, scale);
	  }
	else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
		 || code0 == MULT)
	  {
	    record_address_regs (arg0, INDEX_REG_CLASS, scale);
	    record_address_regs (arg1, BASE_REG_CLASS, scale);
	  }

	/* Otherwise, count equal chances that each might be a base
	   or index register.  This case should be rare.  */

	else
	  {
	    record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
	    record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
	    record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
	    record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
	  }
      }
      break;

    case POST_INC:
    case PRE_INC:
    case POST_DEC:
    case PRE_DEC:
      /* Double the importance of a pseudo register that is incremented
	 or decremented, since it would take two extra insns
	 if it ends up in the wrong place.  If the operand is a pseudo,
	 show it is being used in an INC_DEC context.  */

#ifdef FORBIDDEN_INC_DEC_CLASSES
      if (GET_CODE (XEXP (x, 0)) == REG
	  && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
	in_inc_dec[REGNO (XEXP (x, 0))] = 1;
#endif

      record_address_regs (XEXP (x, 0), class, 2 * scale);
      break;

    case REG:
      {
	register struct costs *pp = &costs[REGNO (x)];
	register int i;

	pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;

	for (i = 0; i < N_REG_CLASSES; i++)
	  pp->cost[i] += (may_move_cost[i][(int) class] * scale) / 2;
      }
      break;

    default:
      {
	register char *fmt = GET_RTX_FORMAT (code);
	register int i;
	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
	  if (fmt[i] == 'e')
	    record_address_regs (XEXP (x, i), class, scale);
      }
    }
}

#ifdef FORBIDDEN_INC_DEC_CLASSES

/* Return 1 if REG is valid as an auto-increment memory reference
   to an object of MODE.  */

static int
auto_inc_dec_reg_p (reg, mode)
     rtx reg;
     enum machine_mode mode;
{
#ifdef HAVE_POST_INCREMENT
  if (memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
    return 1;
#endif

#ifdef HAVE_POST_DECREMENT
  if (memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
    return 1;
#endif

#ifdef HAVE_PRE_INCREMENT
  if (memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
    return 1;
#endif

#ifdef HAVE_PRE_DECREMENT
  if (memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
    return 1;
#endif

  return 0;
}
#endif

#endif /* REGISTER_CONSTRAINTS */

/* Allocate enough space to hold NUM_REGS registers for the tables used for
   reg_scan and flow_analysis that are indexed by the register number.  If
   NEW_P is non zero, initialize all of the registers, otherwise only
   initialize the new registers allocated.  The same table is kept from
   function to function, only reallocating it when we need more room.  If
   RENUMBER_P is non zero, allocate the reg_renumber array also.  */

void
allocate_reg_info (num_regs, new_p, renumber_p)
     size_t num_regs;
     int new_p;
     int renumber_p;
{
  static size_t regno_allocated = 0;
  static short *renumber = (short *)0;
  int i;
  size_t size_info;
  size_t size_renumber;
  size_t min = (new_p) ? 0 : reg_n_max;
  struct reg_info_data *reg_data;
  struct reg_info_data *reg_next;

  /* Free up all storage allocated */
  if (num_regs < 0)
    {
      if (reg_n_info)
	{
	  VARRAY_FREE (reg_n_info);
	  for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
	    {
	      reg_next = reg_data->next;
	      free ((char *)reg_data);
	    }

	  free (prefclass_buffer);
	  free (altclass_buffer);
	  prefclass_buffer = (char *)0;
	  altclass_buffer = (char *)0;
	  reg_info_head = (struct reg_info_data *)0;
	  renumber = (short *)0;
	}
      regno_allocated = 0;
      reg_n_max = 0;
      return;
    }

  if (num_regs > regno_allocated)
    {
      size_t old_allocated = regno_allocated;

      regno_allocated = num_regs + (num_regs / 20);	/* add some slop space */
      size_renumber = regno_allocated * sizeof (short);

      if (!reg_n_info)
	{
	  VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
	  renumber = (short *) xmalloc (size_renumber);
	  prefclass_buffer = (char *) xmalloc (regno_allocated);
	  altclass_buffer = (char *) xmalloc (regno_allocated);
	}

      else
	{
	  VARRAY_GROW (reg_n_info, regno_allocated);

	  if (new_p)		/* if we're zapping everything, no need to realloc */
	    {
	      free ((char *)renumber);
	      free ((char *)prefclass_buffer);
	      free ((char *)altclass_buffer);
	      renumber = (short *) xmalloc (size_renumber);
	      prefclass_buffer = (char *) xmalloc (regno_allocated);
	      altclass_buffer = (char *) xmalloc (regno_allocated);
	    }

	  else
	    {
	      renumber = (short *) xrealloc ((char *)renumber, size_renumber);
	      prefclass_buffer = (char *) xrealloc ((char *)prefclass_buffer,
						    regno_allocated);

	      altclass_buffer = (char *) xrealloc ((char *)altclass_buffer,
						   regno_allocated);
	    }
	}

      size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
	+ sizeof (struct reg_info_data) - sizeof (reg_info);
      reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
      reg_data->min_index = old_allocated;
      reg_data->max_index = regno_allocated - 1;
      reg_data->next = reg_info_head;
      reg_info_head = reg_data;
    }

  reg_n_max = num_regs;
  if (min < num_regs)
    {
      /* Loop through each of the segments allocated for the actual
	 reg_info pages, and set up the pointers, zero the pages, etc.  */
      for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
	{
	  size_t min_index = reg_data->min_index;
	  size_t max_index = reg_data->max_index;

	  reg_next = reg_data->next;
	  if (min_index <= regno_allocated)
	    {
	      size_t max = max_index;
	      if (max > regno_allocated)
		max = regno_allocated;
	      if (!reg_data->used_p)	/* page just allocated with calloc */
		reg_data->used_p = 1;	/* no need to zero */
	      else
		bzero ((char *) &reg_data->data,
		       sizeof (reg_info) * (max - min_index + 1));

	      for (i = min_index; i <= max; i++)
		{
		  VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
		  REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
		  renumber[i] = -1;
		  prefclass_buffer[i] = (char) NO_REGS;
		  altclass_buffer[i] = (char) NO_REGS;
		}
	    }
	}
    }

  /* If {pref,alt}class have already been allocated, update the pointers to
     the newly realloced ones.  */
  if (prefclass)
    {
      prefclass = prefclass_buffer;
      altclass = altclass_buffer;
    }

  if (renumber_p)
    reg_renumber = renumber;

  /* Tell the regset code about the new number of registers */
  MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
}


/* This is the `regscan' pass of the compiler, run just before cse
   and again just before loop.

   It finds the first and last use of each pseudo-register
   and records them in the vectors regno_first_uid, regno_last_uid
   and counts the number of sets in the vector reg_n_sets.

   REPEAT is nonzero the second time this is called.  */

/* Maximum number of parallel sets and clobbers in any insn in this fn.
   Always at least 3, since the combiner could put that many together
   and we want this to remain correct for all the remaining passes.  */

int max_parallel;

void
reg_scan (f, nregs, repeat)
     rtx f;
     int nregs;
     int repeat;
{
  register rtx insn;

  allocate_reg_info (nregs, TRUE, FALSE);
  max_parallel = 3;

  for (insn = f; insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == INSN
	|| GET_CODE (insn) == CALL_INSN
	|| GET_CODE (insn) == JUMP_INSN)
      {
	if (GET_CODE (PATTERN (insn)) == PARALLEL
	    && XVECLEN (PATTERN (insn), 0) > max_parallel)
	  max_parallel = XVECLEN (PATTERN (insn), 0);
	reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);

	if (REG_NOTES (insn))
	  reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
      }
}

/* Update 'regscan' information by looking at the insns
   from FIRST to LAST.  Some new REGs have been created,
   and any REG with number greater than OLD_MAX_REGNO is
   such a REG.  We only update information for those.  */

void
reg_scan_update(first, last, old_max_regno)
     rtx first;
     rtx last;
     int old_max_regno;
{
  register rtx insn;

  allocate_reg_info (max_reg_num (), FALSE, FALSE);

  for (insn = first; insn != last; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == INSN
	|| GET_CODE (insn) == CALL_INSN
	|| GET_CODE (insn) == JUMP_INSN)
      {
	if (GET_CODE (PATTERN (insn)) == PARALLEL
	    && XVECLEN (PATTERN (insn), 0) > max_parallel)
	  max_parallel = XVECLEN (PATTERN (insn), 0);
	reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);

	if (REG_NOTES (insn))
	  reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
      }
}

/* X is the expression to scan.  INSN is the insn it appears in.
   NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
   We should only record information for REGs with numbers
   greater than or equal to MIN_REGNO.  */

static void
reg_scan_mark_refs (x, insn, note_flag, min_regno)
     rtx x;
     rtx insn;
     int note_flag;
     int min_regno;
{
  register enum rtx_code code = GET_CODE (x);
  register rtx dest;
  register rtx note;

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
    case CC0:
    case PC:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return;

    case REG:
      {
	register int regno = REGNO (x);

	if (regno >= min_regno)
	  {
	    REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
	    if (!note_flag)
	      REGNO_LAST_UID (regno) = INSN_UID (insn);
	    if (REGNO_FIRST_UID (regno) == 0)
	      REGNO_FIRST_UID (regno) = INSN_UID (insn);
	  }
      }
      break;

    case EXPR_LIST:
      if (XEXP (x, 0))
	reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
      if (XEXP (x, 1))
	reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
      break;

    case INSN_LIST:
      if (XEXP (x, 1))
	reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
      break;

    case SET:
      /* Count a set of the destination if it is a register.  */
      for (dest = SET_DEST (x);
	   GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
	   || GET_CODE (dest) == ZERO_EXTEND;
	   dest = XEXP (dest, 0))
	;

      if (GET_CODE (dest) == REG
	  && REGNO (dest) >= min_regno)
	REG_N_SETS (REGNO (dest))++;

      /* If this is setting a pseudo from another pseudo or the sum of a
	 pseudo and a constant integer and the other pseudo is known to be
	 a pointer, set the destination to be a pointer as well.

	 Likewise if it is setting the destination from an address or from a
	 value equivalent to an address or to the sum of an address and
	 something else.
		     
	 But don't do any of this if the pseudo corresponds to a user
	 variable since it should have already been set as a pointer based
	 on the type.  */

      if (GET_CODE (SET_DEST (x)) == REG
	  && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
	  && REGNO (SET_DEST (x)) >= min_regno
	  /* If the destination pseudo is set more than once, then other
	     sets might not be to a pointer value (consider access to a
	     union in two threads of control in the presense of global
	     optimizations).  So only set REGNO_POINTER_FLAG on the destination
	     pseudo if this is the only set of that pseudo.  */
	  && REG_N_SETS (REGNO (SET_DEST (x))) == 1
	  && ! REG_USERVAR_P (SET_DEST (x))
	  && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
	  && ((GET_CODE (SET_SRC (x)) == REG
	       && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
	      || ((GET_CODE (SET_SRC (x)) == PLUS
		   || GET_CODE (SET_SRC (x)) == LO_SUM)
		  && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
		  && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
		  && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
	      || GET_CODE (SET_SRC (x)) == CONST
	      || GET_CODE (SET_SRC (x)) == SYMBOL_REF
	      || GET_CODE (SET_SRC (x)) == LABEL_REF
	      || (GET_CODE (SET_SRC (x)) == HIGH
		  && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
		      || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
		      || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
	      || ((GET_CODE (SET_SRC (x)) == PLUS
		   || GET_CODE (SET_SRC (x)) == LO_SUM)
		  && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
		      || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
		      || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
	      || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
		  && (GET_CODE (XEXP (note, 0)) == CONST
		      || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
		      || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
	REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;

      /* ... fall through ...  */

    default:
      {
	register char *fmt = GET_RTX_FORMAT (code);
	register int i;
	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
	  {
	    if (fmt[i] == 'e')
	      reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
	    else if (fmt[i] == 'E' && XVEC (x, i) != 0)
	      {
		register int j;
		for (j = XVECLEN (x, i) - 1; j >= 0; j--)
		  reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
	      }
	  }
      }
    }
}

/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
   is also in C2.  */

int
reg_class_subset_p (c1, c2)
     register enum reg_class c1;
     register enum reg_class c2;
{
  if (c1 == c2) return 1;

  if (c2 == ALL_REGS)
  win:
    return 1;
  GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
			 reg_class_contents[(int)c2],
			 win);
  return 0;
}

/* Return nonzero if there is a register that is in both C1 and C2.  */

int
reg_classes_intersect_p (c1, c2)
     register enum reg_class c1;
     register enum reg_class c2;
{
#ifdef HARD_REG_SET
  register
#endif
    HARD_REG_SET c;

  if (c1 == c2) return 1;

  if (c1 == ALL_REGS || c2 == ALL_REGS)
    return 1;

  COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
  AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);

  GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
  return 1;

 lose:
  return 0;
}

/* Release any memory allocated by register sets.  */

void
regset_release_memory ()
{
  if (basic_block_live_at_start)
    {
      free_regset_vector (basic_block_live_at_start, n_basic_blocks);
      basic_block_live_at_start = 0;
    }

  FREE_REG_SET (regs_live_at_setjmp);
  bitmap_release_memory ();
}