aboutsummaryrefslogtreecommitdiff
path: root/gcc/recog.c
blob: 745d62881d27d6cd144d5ed0096fd4e6be26d151 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
/* Subroutines used by or related to instruction recognition.
   Copyright (C) 1987, 88, 91, 92, 93, 1994 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


#include "config.h"
#include "rtl.h"
#include <stdio.h>
#include "insn-config.h"
#include "insn-attr.h"
#include "insn-flags.h"
#include "insn-codes.h"
#include "recog.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"

#ifndef STACK_PUSH_CODE
#ifdef STACK_GROWS_DOWNWARD
#define STACK_PUSH_CODE PRE_DEC
#else
#define STACK_PUSH_CODE PRE_INC
#endif
#endif

/* Import from final.c: */
extern rtx alter_subreg ();

int strict_memory_address_p ();
int memory_address_p ();

/* Nonzero means allow operands to be volatile.
   This should be 0 if you are generating rtl, such as if you are calling
   the functions in optabs.c and expmed.c (most of the time).
   This should be 1 if all valid insns need to be recognized,
   such as in regclass.c and final.c and reload.c.

   init_recog and init_recog_no_volatile are responsible for setting this.  */

int volatile_ok;

/* On return from `constrain_operands', indicate which alternative
   was satisfied.  */

int which_alternative;

/* Nonzero after end of reload pass.
   Set to 1 or 0 by toplev.c.
   Controls the significance of (SUBREG (MEM)).  */

int reload_completed;

/* Initialize data used by the function `recog'.
   This must be called once in the compilation of a function
   before any insn recognition may be done in the function.  */

void
init_recog_no_volatile ()
{
  volatile_ok = 0;
}

void
init_recog ()
{
  volatile_ok = 1;
}

/* Try recognizing the instruction INSN,
   and return the code number that results.
   Remember the code so that repeated calls do not
   need to spend the time for actual rerecognition.

   This function is the normal interface to instruction recognition.
   The automatically-generated function `recog' is normally called
   through this one.  (The only exception is in combine.c.)  */

int
recog_memoized (insn)
     rtx insn;
{
  if (INSN_CODE (insn) < 0)
    INSN_CODE (insn) = recog (PATTERN (insn), insn, NULL_PTR);
  return INSN_CODE (insn);
}

/* Check that X is an insn-body for an `asm' with operands
   and that the operands mentioned in it are legitimate.  */

int
check_asm_operands (x)
     rtx x;
{
  int noperands = asm_noperands (x);
  rtx *operands;
  int i;

  if (noperands < 0)
    return 0;
  if (noperands == 0)
    return 1;

  operands = (rtx *) alloca (noperands * sizeof (rtx));
  decode_asm_operands (x, operands, NULL_PTR, NULL_PTR, NULL_PTR);

  for (i = 0; i < noperands; i++)
    if (!general_operand (operands[i], VOIDmode))
      return 0;

  return 1;
}

/* Static data for the next two routines.

   The maximum number of changes supported is defined as the maximum
   number of operands times 5.  This allows for repeated substitutions
   inside complex indexed address, or, alternatively, changes in up
   to 5 insns.  */

#define MAX_CHANGE_LOCS	(MAX_RECOG_OPERANDS * 5)

static rtx change_objects[MAX_CHANGE_LOCS];
static int change_old_codes[MAX_CHANGE_LOCS];
static rtx *change_locs[MAX_CHANGE_LOCS];
static rtx change_olds[MAX_CHANGE_LOCS];

static int num_changes = 0;

/* Validate a proposed change to OBJECT.  LOC is the location in the rtl for
   at which NEW will be placed.  If OBJECT is zero, no validation is done,
   the change is simply made.

   Two types of objects are supported:  If OBJECT is a MEM, memory_address_p
   will be called with the address and mode as parameters.  If OBJECT is
   an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
   the change in place.

   IN_GROUP is non-zero if this is part of a group of changes that must be
   performed as a group.  In that case, the changes will be stored.  The
   function `apply_change_group' will validate and apply the changes.

   If IN_GROUP is zero, this is a single change.  Try to recognize the insn
   or validate the memory reference with the change applied.  If the result
   is not valid for the machine, suppress the change and return zero.
   Otherwise, perform the change and return 1.  */

int
validate_change (object, loc, new, in_group)
    rtx object;
    rtx *loc;
    rtx new;
    int in_group;
{
  rtx old = *loc;

  if (old == new || rtx_equal_p (old, new))
    return 1;

  if (num_changes >= MAX_CHANGE_LOCS
      || (in_group == 0 && num_changes != 0))
    abort ();

  *loc = new;

  /* Save the information describing this change.  */
  change_objects[num_changes] = object;
  change_locs[num_changes] = loc;
  change_olds[num_changes] = old;

  if (object && GET_CODE (object) != MEM)
    {
      /* Set INSN_CODE to force rerecognition of insn.  Save old code in
	 case invalid.  */
      change_old_codes[num_changes] = INSN_CODE (object);
      INSN_CODE (object) = -1;
    }

  num_changes++;

  /* If we are making a group of changes, return 1.  Otherwise, validate the
     change group we made.  */

  if (in_group)
    return 1;
  else
    return apply_change_group ();
}

/* Apply a group of changes previously issued with `validate_change'.
   Return 1 if all changes are valid, zero otherwise.  */

int
apply_change_group ()
{
  int i;

  /* The changes have been applied and all INSN_CODEs have been reset to force
     rerecognition.

     The changes are valid if we aren't given an object, or if we are
     given a MEM and it still is a valid address, or if this is in insn
     and it is recognized.  In the latter case, if reload has completed,
     we also require that the operands meet the constraints for
     the insn.  We do not allow modifying an ASM_OPERANDS after reload
     has completed because verifying the constraints is too difficult.  */

  for (i = 0; i < num_changes; i++)
    {
      rtx object = change_objects[i];

      if (object == 0)
	continue;

      if (GET_CODE (object) == MEM)
	{
	  if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
	    break;
	}
      else if ((recog_memoized (object) < 0
		&& (asm_noperands (PATTERN (object)) < 0
		    || ! check_asm_operands (PATTERN (object))
		    || reload_completed))
	       || (reload_completed
		   && (insn_extract (object),
		       ! constrain_operands (INSN_CODE (object), 1))))
	{
	  rtx pat = PATTERN (object);

	  /* Perhaps we couldn't recognize the insn because there were
	     extra CLOBBERs at the end.  If so, try to re-recognize
	     without the last CLOBBER (later iterations will cause each of
	     them to be eliminated, in turn).  But don't do this if we
	     have an ASM_OPERAND.  */
	  if (GET_CODE (pat) == PARALLEL
	      && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
	      && asm_noperands (PATTERN (object)) < 0)
	    {
	       rtx newpat;

	       if (XVECLEN (pat, 0) == 2)
		 newpat = XVECEXP (pat, 0, 0);
	       else
		 {
		   int j;

		   newpat = gen_rtx (PARALLEL, VOIDmode, 
				     gen_rtvec (XVECLEN (pat, 0) - 1));
		   for (j = 0; j < XVECLEN (newpat, 0); j++)
		     XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
		 }

	       /* Add a new change to this group to replace the pattern
		  with this new pattern.  Then consider this change
		  as having succeeded.  The change we added will
		  cause the entire call to fail if things remain invalid.

		  Note that this can lose if a later change than the one
		  we are processing specified &XVECEXP (PATTERN (object), 0, X)
		  but this shouldn't occur.  */

	       validate_change (object, &PATTERN (object), newpat, 1);
	     }
	  else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
	    /* If this insn is a CLOBBER or USE, it is always valid, but is
	       never recognized.  */
	    continue;
	  else
	    break;
	}
    }

  if (i == num_changes)
    {
      num_changes = 0;
      return 1;
    }
  else
    {
      cancel_changes (0);
      return 0;
    }
}

/* Return the number of changes so far in the current group.   */

int
num_validated_changes ()
{
  return num_changes;
}

/* Retract the changes numbered NUM and up.  */

void
cancel_changes (num)
     int num;
{
  int i;

  /* Back out all the changes.  Do this in the opposite order in which
     they were made.  */
  for (i = num_changes - 1; i >= num; i--)
    {
      *change_locs[i] = change_olds[i];
      if (change_objects[i] && GET_CODE (change_objects[i]) != MEM)
	INSN_CODE (change_objects[i]) = change_old_codes[i];
    }
  num_changes = num;
}

/* Replace every occurrence of FROM in X with TO.  Mark each change with
   validate_change passing OBJECT.  */

static void
validate_replace_rtx_1 (loc, from, to, object)
     rtx *loc;
     rtx from, to, object;
{
  register int i, j;
  register char *fmt;
  register rtx x = *loc;
  enum rtx_code code = GET_CODE (x);

  /* X matches FROM if it is the same rtx or they are both referring to the
     same register in the same mode.  Avoid calling rtx_equal_p unless the
     operands look similar.  */

  if (x == from
      || (GET_CODE (x) == REG && GET_CODE (from) == REG
	  && GET_MODE (x) == GET_MODE (from)
	  && REGNO (x) == REGNO (from))
      || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
	  && rtx_equal_p (x, from)))
    {
      validate_change (object, loc, to, 1);
      return;
    }

  /* For commutative or comparison operations, try replacing each argument
     separately and seeing if we made any changes.  If so, put a constant
     argument last.*/
  if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
    {
      int prev_changes = num_changes;

      validate_replace_rtx_1 (&XEXP (x, 0), from, to, object);
      validate_replace_rtx_1 (&XEXP (x, 1), from, to, object);
      if (prev_changes != num_changes && CONSTANT_P (XEXP (x, 0)))
	{
	  validate_change (object, loc,
			   gen_rtx (GET_RTX_CLASS (code) == 'c' ? code
				    : swap_condition (code),
				    GET_MODE (x), XEXP (x, 1), XEXP (x, 0)),
			   1);
	  x = *loc;
	  code = GET_CODE (x);
	}
    }

  switch (code)
    {
    case PLUS:
      /* If we have have a PLUS whose second operand is now a CONST_INT, use
	 plus_constant to try to simplify it.  */
      if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
	validate_change (object, loc, 
			 plus_constant (XEXP (x, 0), INTVAL (XEXP (x, 1))), 1);
      return;
      
    case ZERO_EXTEND:
    case SIGN_EXTEND:
      /* In these cases, the operation to be performed depends on the mode
	 of the operand.  If we are replacing the operand with a VOIDmode
	 constant, we lose the information.  So try to simplify the operation
	 in that case.  If it fails, substitute in something that we know
	 won't be recognized.  */
      if (GET_MODE (to) == VOIDmode
	  && (XEXP (x, 0) == from
	      || (GET_CODE (XEXP (x, 0)) == REG && GET_CODE (from) == REG
		  && GET_MODE (XEXP (x, 0)) == GET_MODE (from)
		  && REGNO (XEXP (x, 0)) == REGNO (from))))
	{
	  rtx new = simplify_unary_operation (code, GET_MODE (x), to,
					      GET_MODE (from));
	  if (new == 0)
	    new = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);

	  validate_change (object, loc, new, 1);
	  return;
	}
      break;
	
    case SUBREG:
      /* If we have a SUBREG of a register that we are replacing and we are
	 replacing it with a MEM, make a new MEM and try replacing the
	 SUBREG with it.  Don't do this if the MEM has a mode-dependent address
	 or if we would be widening it.  */

      if (SUBREG_REG (x) == from
	  && GET_CODE (from) == REG
	  && GET_CODE (to) == MEM
	  && ! mode_dependent_address_p (XEXP (to, 0))
	  && ! MEM_VOLATILE_P (to)
	  && GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (GET_MODE (to)))
	{
	  int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
	  enum machine_mode mode = GET_MODE (x);
	  rtx new;

	  if (BYTES_BIG_ENDIAN)
	    offset += (MIN (UNITS_PER_WORD,
			    GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
		       - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));

	  new = gen_rtx (MEM, mode, plus_constant (XEXP (to, 0), offset));
	  MEM_VOLATILE_P (new) = MEM_VOLATILE_P (to);
	  RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (to);
	  MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (to);
	  validate_change (object, loc, new, 1);
	  return;
	}
      break;

    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      /* If we are replacing a register with memory, try to change the memory
	 to be the mode required for memory in extract operations (this isn't
	 likely to be an insertion operation; if it was, nothing bad will
	 happen, we might just fail in some cases).  */

      if (XEXP (x, 0) == from && GET_CODE (from) == REG && GET_CODE (to) == MEM
	  && GET_CODE (XEXP (x, 1)) == CONST_INT
	  && GET_CODE (XEXP (x, 2)) == CONST_INT
	  && ! mode_dependent_address_p (XEXP (to, 0))
	  && ! MEM_VOLATILE_P (to))
	{
	  enum machine_mode wanted_mode = VOIDmode;
	  enum machine_mode is_mode = GET_MODE (to);
	  int width = INTVAL (XEXP (x, 1));
	  int pos = INTVAL (XEXP (x, 2));

#ifdef HAVE_extzv
	  if (code == ZERO_EXTRACT)
	    wanted_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
#endif
#ifdef HAVE_extv
	  if (code == SIGN_EXTRACT)
	    wanted_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
#endif

	  /* If we have a narrower mode, we can do something.  */
	  if (wanted_mode != VOIDmode
	      && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
	    {
	      int offset = pos / BITS_PER_UNIT;
	      rtx newmem;

		  /* If the bytes and bits are counted differently, we
		     must adjust the offset.  */
	      if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
		offset = (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode)
			  - offset);

	      pos %= GET_MODE_BITSIZE (wanted_mode);

	      newmem = gen_rtx (MEM, wanted_mode,
				plus_constant (XEXP (to, 0), offset));
	      RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (to);
	      MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (to);
	      MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (to);

	      validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
	      validate_change (object, &XEXP (x, 0), newmem, 1);
	    }
	}

      break;
    }
      
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
    }
}

/* Try replacing every occurrence of FROM in INSN with TO.  After all
   changes have been made, validate by seeing if INSN is still valid.  */

int
validate_replace_rtx (from, to, insn)
     rtx from, to, insn;
{
  validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
  return apply_change_group ();
}

#ifdef HAVE_cc0
/* Return 1 if the insn using CC0 set by INSN does not contain
   any ordered tests applied to the condition codes.
   EQ and NE tests do not count.  */

int
next_insn_tests_no_inequality (insn)
     rtx insn;
{
  register rtx next = next_cc0_user (insn);

  /* If there is no next insn, we have to take the conservative choice.  */
  if (next == 0)
    return 0;

  return ((GET_CODE (next) == JUMP_INSN
	   || GET_CODE (next) == INSN
	   || GET_CODE (next) == CALL_INSN)
	  && ! inequality_comparisons_p (PATTERN (next)));
}

#if 0  /* This is useless since the insn that sets the cc's
	  must be followed immediately by the use of them.  */
/* Return 1 if the CC value set up by INSN is not used.  */

int
next_insns_test_no_inequality (insn)
     rtx insn;
{
  register rtx next = NEXT_INSN (insn);

  for (; next != 0; next = NEXT_INSN (next))
    {
      if (GET_CODE (next) == CODE_LABEL
	  || GET_CODE (next) == BARRIER)
	return 1;
      if (GET_CODE (next) == NOTE)
	continue;
      if (inequality_comparisons_p (PATTERN (next)))
	return 0;
      if (sets_cc0_p (PATTERN (next)) == 1)
	return 1;
      if (! reg_mentioned_p (cc0_rtx, PATTERN (next)))
	return 1;
    }
  return 1;
}
#endif
#endif

/* This is used by find_single_use to locate an rtx that contains exactly one
   use of DEST, which is typically either a REG or CC0.  It returns a
   pointer to the innermost rtx expression containing DEST.  Appearances of
   DEST that are being used to totally replace it are not counted.  */

static rtx *
find_single_use_1 (dest, loc)
     rtx dest;
     rtx *loc;
{
  rtx x = *loc;
  enum rtx_code code = GET_CODE (x);
  rtx *result = 0;
  rtx *this_result;
  int i;
  char *fmt;

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_DOUBLE:
    case CLOBBER:
      return 0;

    case SET:
      /* If the destination is anything other than CC0, PC, a REG or a SUBREG
	 of a REG that occupies all of the REG, the insn uses DEST if
	 it is mentioned in the destination or the source.  Otherwise, we
	 need just check the source.  */
      if (GET_CODE (SET_DEST (x)) != CC0
	  && GET_CODE (SET_DEST (x)) != PC
	  && GET_CODE (SET_DEST (x)) != REG
	  && ! (GET_CODE (SET_DEST (x)) == SUBREG
		&& GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
		&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
		      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
		    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
			 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
	break;

      return find_single_use_1 (dest, &SET_SRC (x));

    case MEM:
    case SUBREG:
      return find_single_use_1 (dest, &XEXP (x, 0));
    }

  /* If it wasn't one of the common cases above, check each expression and
     vector of this code.  Look for a unique usage of DEST.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  if (dest == XEXP (x, i)
	      || (GET_CODE (dest) == REG && GET_CODE (XEXP (x, i)) == REG
		  && REGNO (dest) == REGNO (XEXP (x, i))))
	    this_result = loc;
	  else
	    this_result = find_single_use_1 (dest, &XEXP (x, i));

	  if (result == 0)
	    result = this_result;
	  else if (this_result)
	    /* Duplicate usage.  */
	    return 0;
	}
      else if (fmt[i] == 'E')
	{
	  int j;

	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    {
	      if (XVECEXP (x, i, j) == dest
		  || (GET_CODE (dest) == REG
		      && GET_CODE (XVECEXP (x, i, j)) == REG
		      && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
		this_result = loc;
	      else
		this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));

	      if (result == 0)
		result = this_result;
	      else if (this_result)
		return 0;
	    }
	}
    }

  return result;
}

/* See if DEST, produced in INSN, is used only a single time in the
   sequel.  If so, return a pointer to the innermost rtx expression in which
   it is used.

   If PLOC is non-zero, *PLOC is set to the insn containing the single use.

   This routine will return usually zero either before flow is called (because
   there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
   note can't be trusted).

   If DEST is cc0_rtx, we look only at the next insn.  In that case, we don't
   care about REG_DEAD notes or LOG_LINKS.

   Otherwise, we find the single use by finding an insn that has a
   LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST.  If DEST is
   only referenced once in that insn, we know that it must be the first
   and last insn referencing DEST.  */

rtx *
find_single_use (dest, insn, ploc)
     rtx dest;
     rtx insn;
     rtx *ploc;
{
  rtx next;
  rtx *result;
  rtx link;

#ifdef HAVE_cc0
  if (dest == cc0_rtx)
    {
      next = NEXT_INSN (insn);
      if (next == 0
	  || (GET_CODE (next) != INSN && GET_CODE (next) != JUMP_INSN))
	return 0;

      result = find_single_use_1 (dest, &PATTERN (next));
      if (result && ploc)
	*ploc = next;
      return result;
    }
#endif

  if (reload_completed || reload_in_progress || GET_CODE (dest) != REG)
    return 0;

  for (next = next_nonnote_insn (insn);
       next != 0 && GET_CODE (next) != CODE_LABEL;
       next = next_nonnote_insn (next))
    if (GET_RTX_CLASS (GET_CODE (next)) == 'i' && dead_or_set_p (next, dest))
      {
	for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
	  if (XEXP (link, 0) == insn)
	    break;

	if (link)
	  {
	    result = find_single_use_1 (dest, &PATTERN (next));
	    if (ploc)
	      *ploc = next;
	    return result;
	  }
      }

  return 0;
}

/* Return 1 if OP is a valid general operand for machine mode MODE.
   This is either a register reference, a memory reference,
   or a constant.  In the case of a memory reference, the address
   is checked for general validity for the target machine.

   Register and memory references must have mode MODE in order to be valid,
   but some constants have no machine mode and are valid for any mode.

   If MODE is VOIDmode, OP is checked for validity for whatever mode
   it has.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.

   For an explanation of this function's behavior for registers of
   class NO_REGS, see the comment for `register_operand'.  */

int
general_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  register enum rtx_code code = GET_CODE (op);
  int mode_altering_drug = 0;

  if (mode == VOIDmode)
    mode = GET_MODE (op);

  /* Don't accept CONST_INT or anything similar
     if the caller wants something floating.  */
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
    return 0;

  if (CONSTANT_P (op))
    return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode)
#ifdef LEGITIMATE_PIC_OPERAND_P
	    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
#endif
	    && LEGITIMATE_CONSTANT_P (op));

  /* Except for certain constants with VOIDmode, already checked for,
     OP's mode must match MODE if MODE specifies a mode.  */

  if (GET_MODE (op) != mode)
    return 0;

  if (code == SUBREG)
    {
#ifdef INSN_SCHEDULING
      /* On machines that have insn scheduling, we want all memory
	 reference to be explicit, so outlaw paradoxical SUBREGs.  */
      if (GET_CODE (SUBREG_REG (op)) == MEM
	  && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
	return 0;
#endif

      op = SUBREG_REG (op);
      code = GET_CODE (op);
#if 0
      /* No longer needed, since (SUBREG (MEM...))
	 will load the MEM into a reload reg in the MEM's own mode.  */
      mode_altering_drug = 1;
#endif
    }

  if (code == REG)
    /* A register whose class is NO_REGS is not a general operand.  */
    return (REGNO (op) >= FIRST_PSEUDO_REGISTER
	    || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);

  if (code == MEM)
    {
      register rtx y = XEXP (op, 0);
      if (! volatile_ok && MEM_VOLATILE_P (op))
	return 0;
      /* Use the mem's mode, since it will be reloaded thus.  */
      mode = GET_MODE (op);
      GO_IF_LEGITIMATE_ADDRESS (mode, y, win);
    }
  return 0;

 win:
  if (mode_altering_drug)
    return ! mode_dependent_address_p (XEXP (op, 0));
  return 1;
}

/* Return 1 if OP is a valid memory address for a memory reference
   of mode MODE.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
address_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return memory_address_p (mode, op);
}

/* Return 1 if OP is a register reference of mode MODE.
   If MODE is VOIDmode, accept a register in any mode.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.

   As a special exception, registers whose class is NO_REGS are
   not accepted by `register_operand'.  The reason for this change
   is to allow the representation of special architecture artifacts
   (such as a condition code register) without extending the rtl
   definitions.  Since registers of class NO_REGS cannot be used
   as registers in any case where register classes are examined,
   it is most consistent to keep this function from accepting them.  */

int
register_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  if (GET_MODE (op) != mode && mode != VOIDmode)
    return 0;

  if (GET_CODE (op) == SUBREG)
    {
      /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
	 because it is guaranteed to be reloaded into one.
	 Just make sure the MEM is valid in itself.
	 (Ideally, (SUBREG (MEM)...) should not exist after reload,
	 but currently it does result from (SUBREG (REG)...) where the
	 reg went on the stack.)  */
      if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
	return general_operand (op, mode);

#ifdef CLASS_CANNOT_CHANGE_SIZE
      if (GET_CODE (SUBREG_REG (op)) == REG
	  && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER
	  && TEST_HARD_REG_BIT (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
				REGNO (SUBREG_REG (op)))
	  && (GET_MODE_SIZE (mode)
	      != GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))))
	return 0;
#endif

      op = SUBREG_REG (op);
    }

  /* We don't consider registers whose class is NO_REGS
     to be a register operand.  */
  return (GET_CODE (op) == REG
	  && (REGNO (op) >= FIRST_PSEUDO_REGISTER
	      || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
}

/* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
   or a hard register.  */

int
scratch_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (GET_MODE (op) == mode
	  && (GET_CODE (op) == SCRATCH
	      || (GET_CODE (op) == REG
		  && REGNO (op) < FIRST_PSEUDO_REGISTER)));
}

/* Return 1 if OP is a valid immediate operand for mode MODE.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
immediate_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  /* Don't accept CONST_INT or anything similar
     if the caller wants something floating.  */
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
    return 0;

  return (CONSTANT_P (op)
	  && (GET_MODE (op) == mode || mode == VOIDmode
	      || GET_MODE (op) == VOIDmode)
#ifdef LEGITIMATE_PIC_OPERAND_P
	  && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
#endif
	  && LEGITIMATE_CONSTANT_P (op));
}

/* Returns 1 if OP is an operand that is a CONST_INT.  */

int
const_int_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return GET_CODE (op) == CONST_INT;
}

/* Returns 1 if OP is an operand that is a constant integer or constant
   floating-point number.  */

int
const_double_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  /* Don't accept CONST_INT or anything similar
     if the caller wants something floating.  */
  if (GET_MODE (op) == VOIDmode && mode != VOIDmode
      && GET_MODE_CLASS (mode) != MODE_INT
      && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
    return 0;

  return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
	  && (mode == VOIDmode || GET_MODE (op) == mode
	      || GET_MODE (op) == VOIDmode));
}

/* Return 1 if OP is a general operand that is not an immediate operand.  */

int
nonimmediate_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (general_operand (op, mode) && ! CONSTANT_P (op));
}

/* Return 1 if OP is a register reference or immediate value of mode MODE.  */

int
nonmemory_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  if (CONSTANT_P (op))
    {
      /* Don't accept CONST_INT or anything similar
	 if the caller wants something floating.  */
      if (GET_MODE (op) == VOIDmode && mode != VOIDmode
	  && GET_MODE_CLASS (mode) != MODE_INT
	  && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
	return 0;

      return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode)
#ifdef LEGITIMATE_PIC_OPERAND_P
	      && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
#endif
	      && LEGITIMATE_CONSTANT_P (op));
    }

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return 0;

  if (GET_CODE (op) == SUBREG)
    {
      /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
	 because it is guaranteed to be reloaded into one.
	 Just make sure the MEM is valid in itself.
	 (Ideally, (SUBREG (MEM)...) should not exist after reload,
	 but currently it does result from (SUBREG (REG)...) where the
	 reg went on the stack.)  */
      if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
	return general_operand (op, mode);
      op = SUBREG_REG (op);
    }

  /* We don't consider registers whose class is NO_REGS
     to be a register operand.  */
  return (GET_CODE (op) == REG
	  && (REGNO (op) >= FIRST_PSEUDO_REGISTER
	      || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
}

/* Return 1 if OP is a valid operand that stands for pushing a
   value of mode MODE onto the stack.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
push_operand (op, mode)
     rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) != MEM)
    return 0;

  if (GET_MODE (op) != mode)
    return 0;

  op = XEXP (op, 0);

  if (GET_CODE (op) != STACK_PUSH_CODE)
    return 0;

  return XEXP (op, 0) == stack_pointer_rtx;
}

/* Return 1 if ADDR is a valid memory address for mode MODE.  */

int
memory_address_p (mode, addr)
     enum machine_mode mode;
     register rtx addr;
{
  GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
  return 0;

 win:
  return 1;
}

/* Return 1 if OP is a valid memory reference with mode MODE,
   including a valid address.

   The main use of this function is as a predicate in match_operand
   expressions in the machine description.  */

int
memory_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  rtx inner;

  if (! reload_completed)
    /* Note that no SUBREG is a memory operand before end of reload pass,
       because (SUBREG (MEM...)) forces reloading into a register.  */
    return GET_CODE (op) == MEM && general_operand (op, mode);

  if (mode != VOIDmode && GET_MODE (op) != mode)
    return 0;

  inner = op;
  if (GET_CODE (inner) == SUBREG)
    inner = SUBREG_REG (inner);

  return (GET_CODE (inner) == MEM && general_operand (op, mode));
}

/* Return 1 if OP is a valid indirect memory reference with mode MODE;
   that is, a memory reference whose address is a general_operand.  */

int
indirect_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  /* Before reload, a SUBREG isn't in memory (see memory_operand, above).  */
  if (! reload_completed
      && GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == MEM)
    {
      register int offset = SUBREG_WORD (op) * UNITS_PER_WORD;
      rtx inner = SUBREG_REG (op);

      if (BYTES_BIG_ENDIAN)
	offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (op)))
		   - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (inner))));

      if (mode != VOIDmode && GET_MODE (op) != mode)
	return 0;

      /* The only way that we can have a general_operand as the resulting
	 address is if OFFSET is zero and the address already is an operand
	 or if the address is (plus Y (const_int -OFFSET)) and Y is an
	 operand.  */

      return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
	      || (GET_CODE (XEXP (inner, 0)) == PLUS
		  && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
		  && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
		  && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
    }

  return (GET_CODE (op) == MEM
	  && memory_operand (op, mode)
	  && general_operand (XEXP (op, 0), Pmode));
}

/* Return 1 if this is a comparison operator.  This allows the use of
   MATCH_OPERATOR to recognize all the branch insns.  */

int
comparison_operator (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  return ((mode == VOIDmode || GET_MODE (op) == mode)
	  && GET_RTX_CLASS (GET_CODE (op)) == '<');
}

/* If BODY is an insn body that uses ASM_OPERANDS,
   return the number of operands (both input and output) in the insn.
   Otherwise return -1.  */

int
asm_noperands (body)
     rtx body;
{
  if (GET_CODE (body) == ASM_OPERANDS)
    /* No output operands: return number of input operands.  */
    return ASM_OPERANDS_INPUT_LENGTH (body);
  if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
    /* Single output operand: BODY is (set OUTPUT (asm_operands ...)).  */
    return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
  else if (GET_CODE (body) == PARALLEL
	   && GET_CODE (XVECEXP (body, 0, 0)) == SET
	   && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
    {
      /* Multiple output operands, or 1 output plus some clobbers:
	 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...].  */
      int i;
      int n_sets;

      /* Count backwards through CLOBBERs to determine number of SETs.  */
      for (i = XVECLEN (body, 0); i > 0; i--)
	{
	  if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
	    break;
	  if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
	    return -1;
	}

      /* N_SETS is now number of output operands.  */
      n_sets = i;

      /* Verify that all the SETs we have
	 came from a single original asm_operands insn
	 (so that invalid combinations are blocked).  */
      for (i = 0; i < n_sets; i++)
	{
	  rtx elt = XVECEXP (body, 0, i);
	  if (GET_CODE (elt) != SET)
	    return -1;
	  if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
	    return -1;
	  /* If these ASM_OPERANDS rtx's came from different original insns
	     then they aren't allowed together.  */
	  if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
	      != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
	    return -1;
	}
      return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
	      + n_sets);
    }
  else if (GET_CODE (body) == PARALLEL
	   && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
    {
      /* 0 outputs, but some clobbers:
	 body is [(asm_operands ...) (clobber (reg ...))...].  */
      int i;

      /* Make sure all the other parallel things really are clobbers.  */
      for (i = XVECLEN (body, 0) - 1; i > 0; i--)
	if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
	  return -1;

      return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
    }
  else
    return -1;
}

/* Assuming BODY is an insn body that uses ASM_OPERANDS,
   copy its operands (both input and output) into the vector OPERANDS,
   the locations of the operands within the insn into the vector OPERAND_LOCS,
   and the constraints for the operands into CONSTRAINTS.
   Write the modes of the operands into MODES.
   Return the assembler-template.

   If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
   we don't store that info.  */

char *
decode_asm_operands (body, operands, operand_locs, constraints, modes)
     rtx body;
     rtx *operands;
     rtx **operand_locs;
     char **constraints;
     enum machine_mode *modes;
{
  register int i;
  int noperands;
  char *template = 0;

  if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
    {
      rtx asmop = SET_SRC (body);
      /* Single output operand: BODY is (set OUTPUT (asm_operands ....)).  */

      noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;

      for (i = 1; i < noperands; i++)
	{
	  if (operand_locs)
	    operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
	  if (operands)
	    operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
	  if (constraints)
	    constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
	  if (modes)
	    modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
	}

      /* The output is in the SET.
	 Its constraint is in the ASM_OPERANDS itself.  */
      if (operands)
	operands[0] = SET_DEST (body);
      if (operand_locs)
	operand_locs[0] = &SET_DEST (body);
      if (constraints)
	constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
      if (modes)
	modes[0] = GET_MODE (SET_DEST (body));
      template = ASM_OPERANDS_TEMPLATE (asmop);
    }
  else if (GET_CODE (body) == ASM_OPERANDS)
    {
      rtx asmop = body;
      /* No output operands: BODY is (asm_operands ....).  */

      noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);

      /* The input operands are found in the 1st element vector.  */
      /* Constraints for inputs are in the 2nd element vector.  */
      for (i = 0; i < noperands; i++)
	{
	  if (operand_locs)
	    operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
	  if (operands)
	    operands[i] = ASM_OPERANDS_INPUT (asmop, i);
	  if (constraints)
	    constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
	  if (modes)
	    modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
	}
      template = ASM_OPERANDS_TEMPLATE (asmop);
    }
  else if (GET_CODE (body) == PARALLEL
	   && GET_CODE (XVECEXP (body, 0, 0)) == SET)
    {
      rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
      int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs.  */
      int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
      int nout = 0;		/* Does not include CLOBBERs.  */

      /* At least one output, plus some CLOBBERs.  */

      /* The outputs are in the SETs.
	 Their constraints are in the ASM_OPERANDS itself.  */
      for (i = 0; i < nparallel; i++)
	{
	  if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
	    break;		/* Past last SET */
	  
	  if (operands)
	    operands[i] = SET_DEST (XVECEXP (body, 0, i));
	  if (operand_locs)
	    operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
	  if (constraints)
	    constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
	  if (modes)
	    modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
	  nout++;
	}

      for (i = 0; i < nin; i++)
	{
	  if (operand_locs)
	    operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
	  if (operands)
	    operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
	  if (constraints)
	    constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
	  if (modes)
	    modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
	}

      template = ASM_OPERANDS_TEMPLATE (asmop);
    }
  else if (GET_CODE (body) == PARALLEL
	   && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
    {
      /* No outputs, but some CLOBBERs.  */

      rtx asmop = XVECEXP (body, 0, 0);
      int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);

      for (i = 0; i < nin; i++)
	{
	  if (operand_locs)
	    operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
	  if (operands)
	    operands[i] = ASM_OPERANDS_INPUT (asmop, i);
	  if (constraints)
	    constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
	  if (modes)
	    modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
	}

      template = ASM_OPERANDS_TEMPLATE (asmop);
    }

  return template;
}

/* Given an rtx *P, if it is a sum containing an integer constant term,
   return the location (type rtx *) of the pointer to that constant term.
   Otherwise, return a null pointer.  */

static rtx *
find_constant_term_loc (p)
     rtx *p;
{
  register rtx *tem;
  register enum rtx_code code = GET_CODE (*p);

  /* If *P IS such a constant term, P is its location.  */

  if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
      || code == CONST)
    return p;

  /* Otherwise, if not a sum, it has no constant term.  */

  if (GET_CODE (*p) != PLUS)
    return 0;

  /* If one of the summands is constant, return its location.  */

  if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
      && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
    return p;

  /* Otherwise, check each summand for containing a constant term.  */

  if (XEXP (*p, 0) != 0)
    {
      tem = find_constant_term_loc (&XEXP (*p, 0));
      if (tem != 0)
	return tem;
    }

  if (XEXP (*p, 1) != 0)
    {
      tem = find_constant_term_loc (&XEXP (*p, 1));
      if (tem != 0)
	return tem;
    }

  return 0;
}

/* Return 1 if OP is a memory reference
   whose address contains no side effects
   and remains valid after the addition
   of a positive integer less than the
   size of the object being referenced.

   We assume that the original address is valid and do not check it.

   This uses strict_memory_address_p as a subroutine, so
   don't use it before reload.  */

int
offsettable_memref_p (op)
     rtx op;
{
  return ((GET_CODE (op) == MEM)
	  && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
}

/* Similar, but don't require a strictly valid mem ref:
   consider pseudo-regs valid as index or base regs.  */

int
offsettable_nonstrict_memref_p (op)
     rtx op;
{
  return ((GET_CODE (op) == MEM)
	  && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
}

/* Return 1 if Y is a memory address which contains no side effects
   and would remain valid after the addition of a positive integer
   less than the size of that mode.

   We assume that the original address is valid and do not check it.
   We do check that it is valid for narrower modes.

   If STRICTP is nonzero, we require a strictly valid address,
   for the sake of use in reload.c.  */

int
offsettable_address_p (strictp, mode, y)
     int strictp;
     enum machine_mode mode;
     register rtx y;
{
  register enum rtx_code ycode = GET_CODE (y);
  register rtx z;
  rtx y1 = y;
  rtx *y2;
  int (*addressp) () = (strictp ? strict_memory_address_p : memory_address_p);

  if (CONSTANT_ADDRESS_P (y))
    return 1;

  /* Adjusting an offsettable address involves changing to a narrower mode.
     Make sure that's OK.  */

  if (mode_dependent_address_p (y))
    return 0;

  /* If the expression contains a constant term,
     see if it remains valid when max possible offset is added.  */

  if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
    {
      int good;

      y1 = *y2;
      *y2 = plus_constant (*y2, GET_MODE_SIZE (mode) - 1);
      /* Use QImode because an odd displacement may be automatically invalid
	 for any wider mode.  But it should be valid for a single byte.  */
      good = (*addressp) (QImode, y);

      /* In any case, restore old contents of memory.  */
      *y2 = y1;
      return good;
    }

  if (ycode == PRE_DEC || ycode == PRE_INC
      || ycode == POST_DEC || ycode == POST_INC)
    return 0;

  /* The offset added here is chosen as the maximum offset that
     any instruction could need to add when operating on something
     of the specified mode.  We assume that if Y and Y+c are
     valid addresses then so is Y+d for all 0<d<c.  */

  z = plus_constant_for_output (y, GET_MODE_SIZE (mode) - 1);

  /* Use QImode because an odd displacement may be automatically invalid
     for any wider mode.  But it should be valid for a single byte.  */
  return (*addressp) (QImode, z);
}

/* Return 1 if ADDR is an address-expression whose effect depends
   on the mode of the memory reference it is used in.

   Autoincrement addressing is a typical example of mode-dependence
   because the amount of the increment depends on the mode.  */

int
mode_dependent_address_p (addr)
     rtx addr;
{
  GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
  return 0;
 win:
  return 1;
}

/* Return 1 if OP is a general operand
   other than a memory ref with a mode dependent address.  */

int
mode_independent_operand (op, mode)
     enum machine_mode mode;
     rtx op;
{
  rtx addr;

  if (! general_operand (op, mode))
    return 0;

  if (GET_CODE (op) != MEM)
    return 1;

  addr = XEXP (op, 0);
  GO_IF_MODE_DEPENDENT_ADDRESS (addr, lose);
  return 1;
 lose:
  return 0;
}

/* Given an operand OP that is a valid memory reference
   which satisfies offsettable_memref_p,
   return a new memory reference whose address has been adjusted by OFFSET.
   OFFSET should be positive and less than the size of the object referenced.
*/

rtx
adj_offsettable_operand (op, offset)
     rtx op;
     int offset;
{
  register enum rtx_code code = GET_CODE (op);

  if (code == MEM) 
    {
      register rtx y = XEXP (op, 0);
      register rtx new;

      if (CONSTANT_ADDRESS_P (y))
	{
	  new = gen_rtx (MEM, GET_MODE (op), plus_constant_for_output (y, offset));
	  RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (op);
	  return new;
	}

      if (GET_CODE (y) == PLUS)
	{
	  rtx z = y;
	  register rtx *const_loc;

	  op = copy_rtx (op);
	  z = XEXP (op, 0);
	  const_loc = find_constant_term_loc (&z);
	  if (const_loc)
	    {
	      *const_loc = plus_constant_for_output (*const_loc, offset);
	      return op;
	    }
	}

      new = gen_rtx (MEM, GET_MODE (op), plus_constant_for_output (y, offset));
      RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (op);
      return new;
    }
  abort ();
}

#ifdef REGISTER_CONSTRAINTS

/* Check the operands of an insn (found in recog_operands)
   against the insn's operand constraints (found via INSN_CODE_NUM)
   and return 1 if they are valid.

   WHICH_ALTERNATIVE is set to a number which indicates which
   alternative of constraints was matched: 0 for the first alternative,
   1 for the next, etc.

   In addition, when two operands are match
   and it happens that the output operand is (reg) while the
   input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
   make the output operand look like the input.
   This is because the output operand is the one the template will print.

   This is used in final, just before printing the assembler code and by
   the routines that determine an insn's attribute.

   If STRICT is a positive non-zero value, it means that we have been
   called after reload has been completed.  In that case, we must
   do all checks strictly.  If it is zero, it means that we have been called
   before reload has completed.  In that case, we first try to see if we can
   find an alternative that matches strictly.  If not, we try again, this
   time assuming that reload will fix up the insn.  This provides a "best
   guess" for the alternative and is used to compute attributes of insns prior
   to reload.  A negative value of STRICT is used for this internal call.  */

struct funny_match
{
  int this, other;
};

int
constrain_operands (insn_code_num, strict)
     int insn_code_num;
     int strict;
{
  char *constraints[MAX_RECOG_OPERANDS];
  int matching_operands[MAX_RECOG_OPERANDS];
  enum op_type {OP_IN, OP_OUT, OP_INOUT} op_types[MAX_RECOG_OPERANDS];
  int earlyclobber[MAX_RECOG_OPERANDS];
  register int c;
  int noperands = insn_n_operands[insn_code_num];

  struct funny_match funny_match[MAX_RECOG_OPERANDS];
  int funny_match_index;
  int nalternatives = insn_n_alternatives[insn_code_num];

  if (noperands == 0 || nalternatives == 0)
    return 1;

  for (c = 0; c < noperands; c++)
    {
      constraints[c] = insn_operand_constraint[insn_code_num][c];
      matching_operands[c] = -1;
      op_types[c] = OP_IN;
    }

  which_alternative = 0;

  while (which_alternative < nalternatives)
    {
      register int opno;
      int lose = 0;
      funny_match_index = 0;

      for (opno = 0; opno < noperands; opno++)
	{
	  register rtx op = recog_operand[opno];
	  enum machine_mode mode = GET_MODE (op);
	  register char *p = constraints[opno];
	  int offset = 0;
	  int win = 0;
	  int val;

	  earlyclobber[opno] = 0;

	  if (GET_CODE (op) == SUBREG)
	    {
	      if (GET_CODE (SUBREG_REG (op)) == REG
		  && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
		offset = SUBREG_WORD (op);
	      op = SUBREG_REG (op);
	    }

	  /* An empty constraint or empty alternative
	     allows anything which matched the pattern.  */
	  if (*p == 0 || *p == ',')
	    win = 1;

	  while (*p && (c = *p++) != ',')
	    switch (c)
	      {
	      case '?':
	      case '!':
	      case '*':
	      case '%':
		break;

	      case '#':
		/* Ignore rest of this alternative as far as
		   constraint checking is concerned.  */
		while (*p && *p != ',')
		  p++;
		break;

	      case '=':
		op_types[opno] = OP_OUT;
		break;

	      case '+':
		op_types[opno] = OP_INOUT;
		break;

	      case '&':
		earlyclobber[opno] = 1;
		break;

	      case '0':
	      case '1':
	      case '2':
	      case '3':
	      case '4':
		/* This operand must be the same as a previous one.
		   This kind of constraint is used for instructions such
		   as add when they take only two operands.

		   Note that the lower-numbered operand is passed first.

		   If we are not testing strictly, assume that this constraint
		   will be satisfied.  */
		if (strict < 0)
		  val = 1;
		else
		  val = operands_match_p (recog_operand[c - '0'],
					  recog_operand[opno]);

		matching_operands[opno] = c - '0';
		matching_operands[c - '0'] = opno;

		if (val != 0)
		  win = 1;
		/* If output is *x and input is *--x,
		   arrange later to change the output to *--x as well,
		   since the output op is the one that will be printed.  */
		if (val == 2 && strict > 0)
		  {
		    funny_match[funny_match_index].this = opno;
		    funny_match[funny_match_index++].other = c - '0';
		  }
		break;

	      case 'p':
		/* p is used for address_operands.  When we are called by
		   gen_reload, no one will have checked that the address is
		   strictly valid, i.e., that all pseudos requiring hard regs
		   have gotten them.  */
		if (strict <= 0
		    || (strict_memory_address_p
			(insn_operand_mode[insn_code_num][opno], op)))
		  win = 1;
		break;

		/* No need to check general_operand again;
		   it was done in insn-recog.c.  */
	      case 'g':
		/* Anything goes unless it is a REG and really has a hard reg
		   but the hard reg is not in the class GENERAL_REGS.  */
		if (strict < 0
		    || GENERAL_REGS == ALL_REGS
		    || GET_CODE (op) != REG
		    || (reload_in_progress
			&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
		    || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
		  win = 1;
		break;

	      case 'r':
		if (strict < 0
		    || (strict == 0
			&& GET_CODE (op) == REG
			&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
		    || (strict == 0 && GET_CODE (op) == SCRATCH)
		    || (GET_CODE (op) == REG
			&& ((GENERAL_REGS == ALL_REGS
			     && REGNO (op) < FIRST_PSEUDO_REGISTER)
			    || reg_fits_class_p (op, GENERAL_REGS,
						 offset, mode))))
		  win = 1;
		break;

	      case 'X':
		/* This is used for a MATCH_SCRATCH in the cases when we
		   don't actually need anything.  So anything goes any time. */
		win = 1;
		break;

	      case 'm':
		if (GET_CODE (op) == MEM
		    /* Before reload, accept what reload can turn into mem.  */
		    || (strict < 0 && CONSTANT_P (op))
		    /* During reload, accept a pseudo  */
		    || (reload_in_progress && GET_CODE (op) == REG
			&& REGNO (op) >= FIRST_PSEUDO_REGISTER))
		  win = 1;
		break;

	      case '<':
		if (GET_CODE (op) == MEM
		    && (GET_CODE (XEXP (op, 0)) == PRE_DEC
			|| GET_CODE (XEXP (op, 0)) == POST_DEC))
		  win = 1;
		break;

	      case '>':
		if (GET_CODE (op) == MEM
		    && (GET_CODE (XEXP (op, 0)) == PRE_INC
			|| GET_CODE (XEXP (op, 0)) == POST_INC))
		  win = 1;
		break;

	      case 'E':
#ifndef REAL_ARITHMETIC
		/* Match any CONST_DOUBLE, but only if
		   we can examine the bits of it reliably.  */
		if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
		     || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
		    && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
		  break;
#endif
		if (GET_CODE (op) == CONST_DOUBLE)
		  win = 1;
		break;

	      case 'F':
		if (GET_CODE (op) == CONST_DOUBLE)
		  win = 1;
		break;

	      case 'G':
	      case 'H':
		if (GET_CODE (op) == CONST_DOUBLE
		    && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
		  win = 1;
		break;

	      case 's':
		if (GET_CODE (op) == CONST_INT
		    || (GET_CODE (op) == CONST_DOUBLE
			&& GET_MODE (op) == VOIDmode))
		  break;
	      case 'i':
		if (CONSTANT_P (op))
		  win = 1;
		break;

	      case 'n':
		if (GET_CODE (op) == CONST_INT
		    || (GET_CODE (op) == CONST_DOUBLE
			&& GET_MODE (op) == VOIDmode))
		  win = 1;
		break;

	      case 'I':
	      case 'J':
	      case 'K':
	      case 'L':
	      case 'M':
	      case 'N':
	      case 'O':
	      case 'P':
		if (GET_CODE (op) == CONST_INT
		    && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
		  win = 1;
		break;

#ifdef EXTRA_CONSTRAINT
              case 'Q':
              case 'R':
              case 'S':
              case 'T':
              case 'U':
		if (EXTRA_CONSTRAINT (op, c))
		  win = 1;
		break;
#endif

	      case 'V':
		if (GET_CODE (op) == MEM
		    && ! offsettable_memref_p (op))
		  win = 1;
		break;

	      case 'o':
		if ((strict > 0 && offsettable_memref_p (op))
		    || (strict == 0 && offsettable_nonstrict_memref_p (op))
		    /* Before reload, accept what reload can handle.  */
		    || (strict < 0
			&& (CONSTANT_P (op) || GET_CODE (op) == MEM))
		    /* During reload, accept a pseudo  */
		    || (reload_in_progress && GET_CODE (op) == REG
			&& REGNO (op) >= FIRST_PSEUDO_REGISTER))
		  win = 1;
		break;

	      default:
		if (strict < 0
		    || (strict == 0
			&& GET_CODE (op) == REG
			&& REGNO (op) >= FIRST_PSEUDO_REGISTER)
		    || (strict == 0 && GET_CODE (op) == SCRATCH)
		    || (GET_CODE (op) == REG
			&& reg_fits_class_p (op, REG_CLASS_FROM_LETTER (c),
					     offset, mode)))
		  win = 1;
	      }

	  constraints[opno] = p;
	  /* If this operand did not win somehow,
	     this alternative loses.  */
	  if (! win)
	    lose = 1;
	}
      /* This alternative won; the operands are ok.
	 Change whichever operands this alternative says to change.  */
      if (! lose)
	{
	  int opno, eopno;

	  /* See if any earlyclobber operand conflicts with some other
	     operand.  */

	  if (strict > 0)
	    for (eopno = 0; eopno < noperands; eopno++)
	      /* Ignore earlyclobber operands now in memory,
		 because we would often report failure when we have
		 two memory operands, one of which was formerly a REG.  */
	      if (earlyclobber[eopno]
		  && GET_CODE (recog_operand[eopno]) == REG)
		for (opno = 0; opno < noperands; opno++)
		  if ((GET_CODE (recog_operand[opno]) == MEM
		       || op_types[opno] != OP_OUT)
		      && opno != eopno
		      /* Ignore things like match_operator operands. */
		      && *constraints[opno] != 0
		      && ! (matching_operands[opno] == eopno
			    && rtx_equal_p (recog_operand[opno],
					    recog_operand[eopno]))
		      && ! safe_from_earlyclobber (recog_operand[opno],
						   recog_operand[eopno]))
		    lose = 1;

	  if (! lose)
	    {
	      while (--funny_match_index >= 0)
		{
		  recog_operand[funny_match[funny_match_index].other]
		    = recog_operand[funny_match[funny_match_index].this];
		}

	      return 1;
	    }
	}

      which_alternative++;
    }

  /* If we are about to reject this, but we are not to test strictly,
     try a very loose test.  Only return failure if it fails also.  */
  if (strict == 0)
    return constrain_operands (insn_code_num, -1);
  else
    return 0;
}

/* Return 1 iff OPERAND (assumed to be a REG rtx)
   is a hard reg in class CLASS when its regno is offsetted by OFFSET
   and changed to mode MODE.
   If REG occupies multiple hard regs, all of them must be in CLASS.  */

int
reg_fits_class_p (operand, class, offset, mode)
     rtx operand;
     register enum reg_class class;
     int offset;
     enum machine_mode mode;
{
  register int regno = REGNO (operand);
  if (regno < FIRST_PSEUDO_REGISTER
      && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
			    regno + offset))
    {
      register int sr;
      regno += offset;
      for (sr = HARD_REGNO_NREGS (regno, mode) - 1;
	   sr > 0; sr--)
	if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
				 regno + sr))
	  break;
      return sr == 0;
    }

  return 0;
}

#endif /* REGISTER_CONSTRAINTS */