aboutsummaryrefslogtreecommitdiff
path: root/gcc/profile.c
blob: 2c2680c5ff294f4fae290581ce8027fdee4e01f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
/* Calculate branch probabilities, and basic block execution counts.
   Copyright (C) 1990-2013 Free Software Foundation, Inc.
   Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
   based on some ideas from Dain Samples of UC Berkeley.
   Further mangling by Bob Manson, Cygnus Support.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Generate basic block profile instrumentation and auxiliary files.
   Profile generation is optimized, so that not all arcs in the basic
   block graph need instrumenting. First, the BB graph is closed with
   one entry (function start), and one exit (function exit).  Any
   ABNORMAL_EDGE cannot be instrumented (because there is no control
   path to place the code). We close the graph by inserting fake
   EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
   edges that do not go to the exit_block. We ignore such abnormal
   edges.  Naturally these fake edges are never directly traversed,
   and so *cannot* be directly instrumented.  Some other graph
   massaging is done. To optimize the instrumentation we generate the
   BB minimal span tree, only edges that are not on the span tree
   (plus the entry point) need instrumenting. From that information
   all other edge counts can be deduced.  By construction all fake
   edges must be on the spanning tree. We also attempt to place
   EDGE_CRITICAL edges on the spanning tree.

   The auxiliary files generated are <dumpbase>.gcno (at compile time)
   and <dumpbase>.gcda (at run time).  The format is
   described in full in gcov-io.h.  */

/* ??? Register allocation should use basic block execution counts to
   give preference to the most commonly executed blocks.  */

/* ??? Should calculate branch probabilities before instrumenting code, since
   then we can use arc counts to help decide which arcs to instrument.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "flags.h"
#include "regs.h"
#include "expr.h"
#include "function.h"
#include "basic-block.h"
#include "diagnostic-core.h"
#include "coverage.h"
#include "value-prof.h"
#include "tree.h"
#include "tree-flow.h"
#include "cfgloop.h"
#include "dumpfile.h"

#include "profile.h"

struct bb_info {
  unsigned int count_valid : 1;

  /* Number of successor and predecessor edges.  */
  gcov_type succ_count;
  gcov_type pred_count;
};

#define BB_INFO(b)  ((struct bb_info *) (b)->aux)


/* Counter summary from the last set of coverage counts read.  */

const struct gcov_ctr_summary *profile_info;

/* Number of data points in the working set summary array. Using 128
   provides information for at least every 1% increment of the total
   profile size. The last entry is hardwired to 99.9% of the total.  */
#define NUM_GCOV_WORKING_SETS 128

/* Counter working set information computed from the current counter
   summary. Not initialized unless profile_info summary is non-NULL.  */
static gcov_working_set_t gcov_working_sets[NUM_GCOV_WORKING_SETS];

/* Collect statistics on the performance of this pass for the entire source
   file.  */

static int total_num_blocks;
static int total_num_edges;
static int total_num_edges_ignored;
static int total_num_edges_instrumented;
static int total_num_blocks_created;
static int total_num_passes;
static int total_num_times_called;
static int total_hist_br_prob[20];
static int total_num_branches;

/* Forward declarations.  */
static void find_spanning_tree (struct edge_list *);

/* Add edge instrumentation code to the entire insn chain.

   F is the first insn of the chain.
   NUM_BLOCKS is the number of basic blocks found in F.  */

static unsigned
instrument_edges (struct edge_list *el)
{
  unsigned num_instr_edges = 0;
  int num_edges = NUM_EDGES (el);
  basic_block bb;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    {
      edge e;
      edge_iterator ei;

      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  struct edge_info *inf = EDGE_INFO (e);

	  if (!inf->ignore && !inf->on_tree)
	    {
	      gcc_assert (!(e->flags & EDGE_ABNORMAL));
	      if (dump_file)
		fprintf (dump_file, "Edge %d to %d instrumented%s\n",
			 e->src->index, e->dest->index,
			 EDGE_CRITICAL_P (e) ? " (and split)" : "");
	      gimple_gen_edge_profiler (num_instr_edges++, e);
	    }
	}
    }

  total_num_blocks_created += num_edges;
  if (dump_file)
    fprintf (dump_file, "%d edges instrumented\n", num_instr_edges);
  return num_instr_edges;
}

/* Add code to measure histograms for values in list VALUES.  */
static void
instrument_values (histogram_values values)
{
  unsigned i;

  /* Emit code to generate the histograms before the insns.  */

  for (i = 0; i < values.length (); i++)
    {
      histogram_value hist = values[i];
      unsigned t = COUNTER_FOR_HIST_TYPE (hist->type);

      if (!coverage_counter_alloc (t, hist->n_counters))
	continue;

      switch (hist->type)
	{
	case HIST_TYPE_INTERVAL:
	  gimple_gen_interval_profiler (hist, t, 0);
	  break;

	case HIST_TYPE_POW2:
	  gimple_gen_pow2_profiler (hist, t, 0);
	  break;

	case HIST_TYPE_SINGLE_VALUE:
	  gimple_gen_one_value_profiler (hist, t, 0);
	  break;

	case HIST_TYPE_CONST_DELTA:
	  gimple_gen_const_delta_profiler (hist, t, 0);
	  break;

 	case HIST_TYPE_INDIR_CALL:
 	  gimple_gen_ic_profiler (hist, t, 0);
  	  break;

	case HIST_TYPE_AVERAGE:
	  gimple_gen_average_profiler (hist, t, 0);
	  break;

	case HIST_TYPE_IOR:
	  gimple_gen_ior_profiler (hist, t, 0);
	  break;

	default:
	  gcc_unreachable ();
	}
    }
}


/* Compute the working set information from the counter histogram in
   the profile summary. This is an array of information corresponding to a
   range of percentages of the total execution count (sum_all), and includes
   the number of counters required to cover that working set percentage and
   the minimum counter value in that working set.  */

void
compute_working_sets (void)
{
  gcov_type working_set_cum_values[NUM_GCOV_WORKING_SETS];
  gcov_type ws_cum_hotness_incr;
  gcov_type cum, tmp_cum;
  const gcov_bucket_type *histo_bucket;
  unsigned ws_ix, c_num, count, pctinc, pct;
  int h_ix;
  gcov_working_set_t *ws_info;

  if (!profile_info)
    return;

  /* Compute the amount of sum_all that the cumulative hotness grows
     by in each successive working set entry, which depends on the
     number of working set entries.  */
  ws_cum_hotness_incr = profile_info->sum_all / NUM_GCOV_WORKING_SETS;

  /* Next fill in an array of the cumulative hotness values corresponding
     to each working set summary entry we are going to compute below.
     Skip 0% statistics, which can be extrapolated from the
     rest of the summary data.  */
  cum = ws_cum_hotness_incr;
  for (ws_ix = 0; ws_ix < NUM_GCOV_WORKING_SETS;
       ws_ix++, cum += ws_cum_hotness_incr)
    working_set_cum_values[ws_ix] = cum;
  /* The last summary entry is reserved for (roughly) 99.9% of the
     working set. Divide by 1024 so it becomes a shift, which gives
     almost exactly 99.9%.  */
  working_set_cum_values[NUM_GCOV_WORKING_SETS-1]
      = profile_info->sum_all - profile_info->sum_all/1024;

  /* Next, walk through the histogram in decending order of hotness
     and compute the statistics for the working set summary array.
     As histogram entries are accumulated, we check to see which
     working set entries have had their expected cum_value reached
     and fill them in, walking the working set entries in increasing
     size of cum_value.  */
  ws_ix = 0; /* The current entry into the working set array.  */
  cum = 0; /* The current accumulated counter sum.  */
  count = 0; /* The current accumulated count of block counters.  */
  for (h_ix = GCOV_HISTOGRAM_SIZE - 1;
       h_ix >= 0 && ws_ix < NUM_GCOV_WORKING_SETS; h_ix--)
    {
      histo_bucket = &profile_info->histogram[h_ix];

      /* If we haven't reached the required cumulative counter value for
         the current working set percentage, simply accumulate this histogram
         entry into the running sums and continue to the next histogram
         entry.  */
      if (cum + histo_bucket->cum_value < working_set_cum_values[ws_ix])
        {
          cum += histo_bucket->cum_value;
          count += histo_bucket->num_counters;
          continue;
        }

      /* If adding the current histogram entry's cumulative counter value
         causes us to exceed the current working set size, then estimate
         how many of this histogram entry's counter values are required to
         reach the working set size, and fill in working set entries
         as we reach their expected cumulative value.  */
      for (c_num = 0, tmp_cum = cum;
           c_num < histo_bucket->num_counters && ws_ix < NUM_GCOV_WORKING_SETS;
           c_num++)
        {
          count++;
          /* If we haven't reached the last histogram entry counter, add
             in the minimum value again. This will underestimate the
             cumulative sum so far, because many of the counter values in this
             entry may have been larger than the minimum. We could add in the
             average value every time, but that would require an expensive
             divide operation.  */
          if (c_num + 1 < histo_bucket->num_counters)
            tmp_cum += histo_bucket->min_value;
          /* If we have reached the last histogram entry counter, then add
             in the entire cumulative value.  */
          else
            tmp_cum = cum + histo_bucket->cum_value;

	  /* Next walk through successive working set entries and fill in
	     the statistics for any whose size we have reached by accumulating
	     this histogram counter.  */
	  while (ws_ix < NUM_GCOV_WORKING_SETS
		 && tmp_cum >= working_set_cum_values[ws_ix])
            {
              gcov_working_sets[ws_ix].num_counters = count;
              gcov_working_sets[ws_ix].min_counter
                  = histo_bucket->min_value;
              ws_ix++;
            }
        }
      /* Finally, update the running cumulative value since we were
         using a temporary above.  */
      cum += histo_bucket->cum_value;
    }
  gcc_assert (ws_ix == NUM_GCOV_WORKING_SETS);

  if (dump_file)
    {
      fprintf (dump_file, "Counter working sets:\n");
      /* Multiply the percentage by 100 to avoid float.  */
      pctinc = 100 * 100 / NUM_GCOV_WORKING_SETS;
      for (ws_ix = 0, pct = pctinc; ws_ix < NUM_GCOV_WORKING_SETS;
           ws_ix++, pct += pctinc)
        {
          if (ws_ix == NUM_GCOV_WORKING_SETS - 1)
            pct = 9990;
          ws_info = &gcov_working_sets[ws_ix];
          /* Print out the percentage using int arithmatic to avoid float.  */
          fprintf (dump_file, "\t\t%u.%02u%%: num counts=%u, min counter="
                   HOST_WIDEST_INT_PRINT_DEC "\n",
                   pct / 100, pct - (pct / 100 * 100),
                   ws_info->num_counters,
                   (HOST_WIDEST_INT)ws_info->min_counter);
        }
    }
}

/* Given a the desired percentage of the full profile (sum_all from the
   summary), multiplied by 10 to avoid float in PCT_TIMES_10, returns
   the corresponding working set information. If an exact match for
   the percentage isn't found, the closest value is used.  */

gcov_working_set_t *
find_working_set (unsigned pct_times_10)
{
  unsigned i;
  if (!profile_info)
    return NULL;
  gcc_assert (pct_times_10 <= 1000);
  if (pct_times_10 >= 999)
    return &gcov_working_sets[NUM_GCOV_WORKING_SETS - 1];
  i = pct_times_10 * NUM_GCOV_WORKING_SETS / 1000;
  if (!i)
    return &gcov_working_sets[0];
  return &gcov_working_sets[i - 1];
}

/* Computes hybrid profile for all matching entries in da_file.  
   
   CFG_CHECKSUM is the precomputed checksum for the CFG.  */

static gcov_type *
get_exec_counts (unsigned cfg_checksum, unsigned lineno_checksum)
{
  unsigned num_edges = 0;
  basic_block bb;
  gcov_type *counts;

  /* Count the edges to be (possibly) instrumented.  */
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    {
      edge e;
      edge_iterator ei;

      FOR_EACH_EDGE (e, ei, bb->succs)
	if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
	  num_edges++;
    }

  counts = get_coverage_counts (GCOV_COUNTER_ARCS, num_edges, cfg_checksum,
				lineno_checksum, &profile_info);
  if (!counts)
    return NULL;

  compute_working_sets();

  if (dump_file && profile_info)
    fprintf(dump_file, "Merged %u profiles with maximal count %u.\n",
	    profile_info->runs, (unsigned) profile_info->sum_max);

  return counts;
}


static bool
is_edge_inconsistent (vec<edge, va_gc> *edges)
{
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, edges)
    {
      if (!EDGE_INFO (e)->ignore)
        {
          if (e->count < 0
	      && (!(e->flags & EDGE_FAKE)
	          || !block_ends_with_call_p (e->src)))
	    {
	      if (dump_file)
		{
		  fprintf (dump_file,
		  	   "Edge %i->%i is inconsistent, count"HOST_WIDEST_INT_PRINT_DEC,
			   e->src->index, e->dest->index, e->count);
		  dump_bb (dump_file, e->src, 0, TDF_DETAILS);
		  dump_bb (dump_file, e->dest, 0, TDF_DETAILS);
		}
              return true;
	    }
        }
    }
  return false;
}

static void
correct_negative_edge_counts (void)
{
  basic_block bb;
  edge e;
  edge_iterator ei;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    {
      FOR_EACH_EDGE (e, ei, bb->succs)
        {
           if (e->count < 0)
             e->count = 0;
        }
    }
}

/* Check consistency.
   Return true if inconsistency is found.  */
static bool
is_inconsistent (void)
{
  basic_block bb;
  bool inconsistent = false;
  FOR_EACH_BB (bb)
    {
      inconsistent |= is_edge_inconsistent (bb->preds);
      if (!dump_file && inconsistent)
	return true;
      inconsistent |= is_edge_inconsistent (bb->succs);
      if (!dump_file && inconsistent)
	return true;
      if (bb->count < 0)
        {
	  if (dump_file)
	    {
	      fprintf (dump_file, "BB %i count is negative "
		       HOST_WIDEST_INT_PRINT_DEC,
		       bb->index,
		       bb->count);
	      dump_bb (dump_file, bb, 0, TDF_DETAILS);
	    }
	  inconsistent = true;
	}
      if (bb->count != sum_edge_counts (bb->preds))
        {
	  if (dump_file)
	    {
	      fprintf (dump_file, "BB %i count does not match sum of incoming edges "
		       HOST_WIDEST_INT_PRINT_DEC" should be " HOST_WIDEST_INT_PRINT_DEC,
		       bb->index,
		       bb->count,
		       sum_edge_counts (bb->preds));
	      dump_bb (dump_file, bb, 0, TDF_DETAILS);
	    }
	  inconsistent = true;
	}
      if (bb->count != sum_edge_counts (bb->succs) &&
          ! (find_edge (bb, EXIT_BLOCK_PTR) != NULL && block_ends_with_call_p (bb)))
	{
	  if (dump_file)
	    {
	      fprintf (dump_file, "BB %i count does not match sum of outgoing edges "
		       HOST_WIDEST_INT_PRINT_DEC" should be " HOST_WIDEST_INT_PRINT_DEC,
		       bb->index,
		       bb->count,
		       sum_edge_counts (bb->succs));
	      dump_bb (dump_file, bb, 0, TDF_DETAILS);
	    }
	  inconsistent = true;
	}
      if (!dump_file && inconsistent)
	return true;
    }

  return inconsistent;
}

/* Set each basic block count to the sum of its outgoing edge counts */
static void
set_bb_counts (void)
{
  basic_block bb;
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    {
      bb->count = sum_edge_counts (bb->succs);
      gcc_assert (bb->count >= 0);
    }
}

/* Reads profile data and returns total number of edge counts read */
static int
read_profile_edge_counts (gcov_type *exec_counts)
{
  basic_block bb;
  int num_edges = 0;
  int exec_counts_pos = 0;
  /* For each edge not on the spanning tree, set its execution count from
     the .da file.  */
  /* The first count in the .da file is the number of times that the function
     was entered.  This is the exec_count for block zero.  */

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    {
      edge e;
      edge_iterator ei;

      FOR_EACH_EDGE (e, ei, bb->succs)
	if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
	  {
	    num_edges++;
	    if (exec_counts)
	      {
		e->count = exec_counts[exec_counts_pos++];
		if (e->count > profile_info->sum_max)
		  {
		    if (flag_profile_correction)
		      {
			static bool informed = 0;
			if (!informed)
		          inform (input_location,
			          "corrupted profile info: edge count exceeds maximal count");
			informed = 1;
		      }
		    else
		      error ("corrupted profile info: edge from %i to %i exceeds maximal count",
			     bb->index, e->dest->index);
		  }
	      }
	    else
	      e->count = 0;

	    EDGE_INFO (e)->count_valid = 1;
	    BB_INFO (bb)->succ_count--;
	    BB_INFO (e->dest)->pred_count--;
	    if (dump_file)
	      {
		fprintf (dump_file, "\nRead edge from %i to %i, count:",
			 bb->index, e->dest->index);
		fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
			 (HOST_WIDEST_INT) e->count);
	      }
	  }
    }

    return num_edges;
}

#define OVERLAP_BASE 10000

/* Compare the static estimated profile to the actual profile, and
   return the "degree of overlap" measure between them.

   Degree of overlap is a number between 0 and OVERLAP_BASE. It is
   the sum of each basic block's minimum relative weights between
   two profiles. And overlap of OVERLAP_BASE means two profiles are
   identical.  */

static int
compute_frequency_overlap (void)
{
  gcov_type count_total = 0, freq_total = 0;
  int overlap = 0;
  basic_block bb;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    {
      count_total += bb->count;
      freq_total += bb->frequency;
    }

  if (count_total == 0 || freq_total == 0)
    return 0;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    overlap += MIN (bb->count * OVERLAP_BASE / count_total,
		    bb->frequency * OVERLAP_BASE / freq_total);

  return overlap;
}

/* Compute the branch probabilities for the various branches.
   Annotate them accordingly.  

   CFG_CHECKSUM is the precomputed checksum for the CFG.  */

static void
compute_branch_probabilities (unsigned cfg_checksum, unsigned lineno_checksum)
{
  basic_block bb;
  int i;
  int num_edges = 0;
  int changes;
  int passes;
  int hist_br_prob[20];
  int num_branches;
  gcov_type *exec_counts = get_exec_counts (cfg_checksum, lineno_checksum);
  int inconsistent = 0;

  /* Very simple sanity checks so we catch bugs in our profiling code.  */
  if (!profile_info)
    return;
  if (profile_info->run_max * profile_info->runs < profile_info->sum_max)
    {
      error ("corrupted profile info: run_max * runs < sum_max");
      exec_counts = NULL;
    }

  if (profile_info->sum_all < profile_info->sum_max)
    {
      error ("corrupted profile info: sum_all is smaller than sum_max");
      exec_counts = NULL;
    }

  /* Attach extra info block to each bb.  */
  alloc_aux_for_blocks (sizeof (struct bb_info));
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    {
      edge e;
      edge_iterator ei;

      FOR_EACH_EDGE (e, ei, bb->succs)
	if (!EDGE_INFO (e)->ignore)
	  BB_INFO (bb)->succ_count++;
      FOR_EACH_EDGE (e, ei, bb->preds)
	if (!EDGE_INFO (e)->ignore)
	  BB_INFO (bb)->pred_count++;
    }

  /* Avoid predicting entry on exit nodes.  */
  BB_INFO (EXIT_BLOCK_PTR)->succ_count = 2;
  BB_INFO (ENTRY_BLOCK_PTR)->pred_count = 2;

  num_edges = read_profile_edge_counts (exec_counts);

  if (dump_file)
    fprintf (dump_file, "\n%d edge counts read\n", num_edges);

  /* For every block in the file,
     - if every exit/entrance edge has a known count, then set the block count
     - if the block count is known, and every exit/entrance edge but one has
     a known execution count, then set the count of the remaining edge

     As edge counts are set, decrement the succ/pred count, but don't delete
     the edge, that way we can easily tell when all edges are known, or only
     one edge is unknown.  */

  /* The order that the basic blocks are iterated through is important.
     Since the code that finds spanning trees starts with block 0, low numbered
     edges are put on the spanning tree in preference to high numbered edges.
     Hence, most instrumented edges are at the end.  Graph solving works much
     faster if we propagate numbers from the end to the start.

     This takes an average of slightly more than 3 passes.  */

  changes = 1;
  passes = 0;
  while (changes)
    {
      passes++;
      changes = 0;
      FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
	{
	  struct bb_info *bi = BB_INFO (bb);
	  if (! bi->count_valid)
	    {
	      if (bi->succ_count == 0)
		{
		  edge e;
		  edge_iterator ei;
		  gcov_type total = 0;

		  FOR_EACH_EDGE (e, ei, bb->succs)
		    total += e->count;
		  bb->count = total;
		  bi->count_valid = 1;
		  changes = 1;
		}
	      else if (bi->pred_count == 0)
		{
		  edge e;
		  edge_iterator ei;
		  gcov_type total = 0;

		  FOR_EACH_EDGE (e, ei, bb->preds)
		    total += e->count;
		  bb->count = total;
		  bi->count_valid = 1;
		  changes = 1;
		}
	    }
	  if (bi->count_valid)
	    {
	      if (bi->succ_count == 1)
		{
		  edge e;
		  edge_iterator ei;
		  gcov_type total = 0;

		  /* One of the counts will be invalid, but it is zero,
		     so adding it in also doesn't hurt.  */
		  FOR_EACH_EDGE (e, ei, bb->succs)
		    total += e->count;

		  /* Search for the invalid edge, and set its count.  */
		  FOR_EACH_EDGE (e, ei, bb->succs)
		    if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
		      break;

		  /* Calculate count for remaining edge by conservation.  */
		  total = bb->count - total;

		  gcc_assert (e);
		  EDGE_INFO (e)->count_valid = 1;
		  e->count = total;
		  bi->succ_count--;

		  BB_INFO (e->dest)->pred_count--;
		  changes = 1;
		}
	      if (bi->pred_count == 1)
		{
		  edge e;
		  edge_iterator ei;
		  gcov_type total = 0;

		  /* One of the counts will be invalid, but it is zero,
		     so adding it in also doesn't hurt.  */
		  FOR_EACH_EDGE (e, ei, bb->preds)
		    total += e->count;

		  /* Search for the invalid edge, and set its count.  */
		  FOR_EACH_EDGE (e, ei, bb->preds)
		    if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
		      break;

		  /* Calculate count for remaining edge by conservation.  */
		  total = bb->count - total + e->count;

		  gcc_assert (e);
		  EDGE_INFO (e)->count_valid = 1;
		  e->count = total;
		  bi->pred_count--;

		  BB_INFO (e->src)->succ_count--;
		  changes = 1;
		}
	    }
	}
    }
  if (dump_file)
    {
      int overlap = compute_frequency_overlap ();
      gimple_dump_cfg (dump_file, dump_flags);
      fprintf (dump_file, "Static profile overlap: %d.%d%%\n",
	       overlap / (OVERLAP_BASE / 100),
	       overlap % (OVERLAP_BASE / 100));
    }

  total_num_passes += passes;
  if (dump_file)
    fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);

  /* If the graph has been correctly solved, every block will have a
     succ and pred count of zero.  */
  FOR_EACH_BB (bb)
    {
      gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count);
    }

  /* Check for inconsistent basic block counts */
  inconsistent = is_inconsistent ();

  if (inconsistent)
   {
     if (flag_profile_correction)
       {
         /* Inconsistency detected. Make it flow-consistent. */
         static int informed = 0;
         if (informed == 0)
           {
             informed = 1;
             inform (input_location, "correcting inconsistent profile data");
           }
         correct_negative_edge_counts ();
         /* Set bb counts to the sum of the outgoing edge counts */
         set_bb_counts ();
         if (dump_file)
           fprintf (dump_file, "\nCalling mcf_smooth_cfg\n");
         mcf_smooth_cfg ();
       }
     else
       error ("corrupted profile info: profile data is not flow-consistent");
   }

  /* For every edge, calculate its branch probability and add a reg_note
     to the branch insn to indicate this.  */

  for (i = 0; i < 20; i++)
    hist_br_prob[i] = 0;
  num_branches = 0;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    {
      edge e;
      edge_iterator ei;

      if (bb->count < 0)
	{
	  error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
		 bb->index, (int)bb->count);
	  bb->count = 0;
	}
      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  /* Function may return twice in the cased the called function is
	     setjmp or calls fork, but we can't represent this by extra
	     edge from the entry, since extra edge from the exit is
	     already present.  We get negative frequency from the entry
	     point.  */
	  if ((e->count < 0
	       && e->dest == EXIT_BLOCK_PTR)
	      || (e->count > bb->count
		  && e->dest != EXIT_BLOCK_PTR))
	    {
	      if (block_ends_with_call_p (bb))
		e->count = e->count < 0 ? 0 : bb->count;
	    }
	  if (e->count < 0 || e->count > bb->count)
	    {
	      error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
		     e->src->index, e->dest->index,
		     (int)e->count);
	      e->count = bb->count / 2;
	    }
	}
      if (bb->count)
	{
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    e->probability = (e->count * REG_BR_PROB_BASE + bb->count / 2) / bb->count;
	  if (bb->index >= NUM_FIXED_BLOCKS
	      && block_ends_with_condjump_p (bb)
	      && EDGE_COUNT (bb->succs) >= 2)
	    {
	      int prob;
	      edge e;
	      int index;

	      /* Find the branch edge.  It is possible that we do have fake
		 edges here.  */
	      FOR_EACH_EDGE (e, ei, bb->succs)
		if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU)))
		  break;

	      prob = e->probability;
	      index = prob * 20 / REG_BR_PROB_BASE;

	      if (index == 20)
		index = 19;
	      hist_br_prob[index]++;

	      num_branches++;
	    }
	}
      /* As a last resort, distribute the probabilities evenly.
	 Use simple heuristics that if there are normal edges,
	 give all abnormals frequency of 0, otherwise distribute the
	 frequency over abnormals (this is the case of noreturn
	 calls).  */
      else if (profile_status == PROFILE_ABSENT)
	{
	  int total = 0;

	  FOR_EACH_EDGE (e, ei, bb->succs)
	    if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
	      total ++;
	  if (total)
	    {
	      FOR_EACH_EDGE (e, ei, bb->succs)
		if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
		  e->probability = REG_BR_PROB_BASE / total;
		else
		  e->probability = 0;
	    }
	  else
	    {
	      total += EDGE_COUNT (bb->succs);
	      FOR_EACH_EDGE (e, ei, bb->succs)
		e->probability = REG_BR_PROB_BASE / total;
	    }
	  if (bb->index >= NUM_FIXED_BLOCKS
	      && block_ends_with_condjump_p (bb)
	      && EDGE_COUNT (bb->succs) >= 2)
	    num_branches++;
	}
    }
  counts_to_freqs ();
  profile_status = PROFILE_READ;
  compute_function_frequency ();

  if (dump_file)
    {
      fprintf (dump_file, "%d branches\n", num_branches);
      if (num_branches)
	for (i = 0; i < 10; i++)
	  fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
		   (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
		   5 * i, 5 * i + 5);

      total_num_branches += num_branches;
      for (i = 0; i < 20; i++)
	total_hist_br_prob[i] += hist_br_prob[i];

      fputc ('\n', dump_file);
      fputc ('\n', dump_file);
    }

  free_aux_for_blocks ();
}

/* Load value histograms values whose description is stored in VALUES array
   from .gcda file.  

   CFG_CHECKSUM is the precomputed checksum for the CFG.  */

static void
compute_value_histograms (histogram_values values, unsigned cfg_checksum,
                          unsigned lineno_checksum)
{
  unsigned i, j, t, any;
  unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
  gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
  gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
  gcov_type *aact_count;

  for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
    n_histogram_counters[t] = 0;

  for (i = 0; i < values.length (); i++)
    {
      histogram_value hist = values[i];
      n_histogram_counters[(int) hist->type] += hist->n_counters;
    }

  any = 0;
  for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
    {
      if (!n_histogram_counters[t])
	{
	  histogram_counts[t] = NULL;
	  continue;
	}

      histogram_counts[t] =
	get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
			     n_histogram_counters[t], cfg_checksum,
			     lineno_checksum, NULL);
      if (histogram_counts[t])
	any = 1;
      act_count[t] = histogram_counts[t];
    }
  if (!any)
    return;

  for (i = 0; i < values.length (); i++)
    {
      histogram_value hist = values[i];
      gimple stmt = hist->hvalue.stmt;

      t = (int) hist->type;

      aact_count = act_count[t];
      act_count[t] += hist->n_counters;

      gimple_add_histogram_value (cfun, stmt, hist);
      hist->hvalue.counters =  XNEWVEC (gcov_type, hist->n_counters);
      for (j = 0; j < hist->n_counters; j++)
	hist->hvalue.counters[j] = aact_count[j];
    }

  for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
    free (histogram_counts[t]);
}

/* When passed NULL as file_name, initialize.
   When passed something else, output the necessary commands to change
   line to LINE and offset to FILE_NAME.  */
static void
output_location (char const *file_name, int line,
		 gcov_position_t *offset, basic_block bb)
{
  static char const *prev_file_name;
  static int prev_line;
  bool name_differs, line_differs;

  if (!file_name)
    {
      prev_file_name = NULL;
      prev_line = -1;
      return;
    }

  name_differs = !prev_file_name || filename_cmp (file_name, prev_file_name);
  line_differs = prev_line != line;

  if (name_differs || line_differs)
    {
      if (!*offset)
	{
	  *offset = gcov_write_tag (GCOV_TAG_LINES);
	  gcov_write_unsigned (bb->index);
	  name_differs = line_differs=true;
	}

      /* If this is a new source file, then output the
	 file's name to the .bb file.  */
      if (name_differs)
	{
	  prev_file_name = file_name;
	  gcov_write_unsigned (0);
	  gcov_write_string (prev_file_name);
	}
      if (line_differs)
	{
	  gcov_write_unsigned (line);
	  prev_line = line;
	}
     }
}

/* Instrument and/or analyze program behavior based on program the CFG.

   This function creates a representation of the control flow graph (of
   the function being compiled) that is suitable for the instrumentation
   of edges and/or converting measured edge counts to counts on the
   complete CFG.

   When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
   the flow graph that are needed to reconstruct the dynamic behavior of the
   flow graph.  This data is written to the gcno file for gcov.

   When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
   information from the gcda file containing edge count information from
   previous executions of the function being compiled.  In this case, the
   control flow graph is annotated with actual execution counts by
   compute_branch_probabilities().

   Main entry point of this file.  */

void
branch_prob (void)
{
  basic_block bb;
  unsigned i;
  unsigned num_edges, ignored_edges;
  unsigned num_instrumented;
  struct edge_list *el;
  histogram_values values = histogram_values();
  unsigned cfg_checksum, lineno_checksum;

  total_num_times_called++;

  flow_call_edges_add (NULL);
  add_noreturn_fake_exit_edges ();

  /* We can't handle cyclic regions constructed using abnormal edges.
     To avoid these we replace every source of abnormal edge by a fake
     edge from entry node and every destination by fake edge to exit.
     This keeps graph acyclic and our calculation exact for all normal
     edges except for exit and entrance ones.

     We also add fake exit edges for each call and asm statement in the
     basic, since it may not return.  */

  FOR_EACH_BB (bb)
    {
      int need_exit_edge = 0, need_entry_edge = 0;
      int have_exit_edge = 0, have_entry_edge = 0;
      edge e;
      edge_iterator ei;

      /* Functions returning multiple times are not handled by extra edges.
         Instead we simply allow negative counts on edges from exit to the
         block past call and corresponding probabilities.  We can't go
         with the extra edges because that would result in flowgraph that
	 needs to have fake edges outside the spanning tree.  */

      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  gimple_stmt_iterator gsi;
	  gimple last = NULL;

	  /* It may happen that there are compiler generated statements
	     without a locus at all.  Go through the basic block from the
	     last to the first statement looking for a locus.  */
	  for (gsi = gsi_last_nondebug_bb (bb);
	       !gsi_end_p (gsi);
	       gsi_prev_nondebug (&gsi))
	    {
	      last = gsi_stmt (gsi);
	      if (gimple_has_location (last))
		break;
	    }

	  /* Edge with goto locus might get wrong coverage info unless
	     it is the only edge out of BB.
	     Don't do that when the locuses match, so
	     if (blah) goto something;
	     is not computed twice.  */
	  if (last
	      && gimple_has_location (last)
	      && LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
	      && !single_succ_p (bb)
	      && (LOCATION_FILE (e->goto_locus)
	          != LOCATION_FILE (gimple_location (last))
		  || (LOCATION_LINE (e->goto_locus)
		      != LOCATION_LINE (gimple_location (last)))))
	    {
	      basic_block new_bb = split_edge (e);
	      edge ne = single_succ_edge (new_bb);
	      ne->goto_locus = e->goto_locus;
	    }
	  if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
	       && e->dest != EXIT_BLOCK_PTR)
	    need_exit_edge = 1;
	  if (e->dest == EXIT_BLOCK_PTR)
	    have_exit_edge = 1;
	}
      FOR_EACH_EDGE (e, ei, bb->preds)
	{
	  if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
	       && e->src != ENTRY_BLOCK_PTR)
	    need_entry_edge = 1;
	  if (e->src == ENTRY_BLOCK_PTR)
	    have_entry_edge = 1;
	}

      if (need_exit_edge && !have_exit_edge)
	{
	  if (dump_file)
	    fprintf (dump_file, "Adding fake exit edge to bb %i\n",
		     bb->index);
	  make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
	}
      if (need_entry_edge && !have_entry_edge)
	{
	  if (dump_file)
	    fprintf (dump_file, "Adding fake entry edge to bb %i\n",
		     bb->index);
	  make_edge (ENTRY_BLOCK_PTR, bb, EDGE_FAKE);
	  /* Avoid bbs that have both fake entry edge and also some
	     exit edge.  One of those edges wouldn't be added to the
	     spanning tree, but we can't instrument any of them.  */
	  if (have_exit_edge || need_exit_edge)
	    {
	      gimple_stmt_iterator gsi;
	      gimple first;
	      tree fndecl;

	      gsi = gsi_after_labels (bb);
	      gcc_checking_assert (!gsi_end_p (gsi));
	      first = gsi_stmt (gsi);
	      if (is_gimple_debug (first))
		{
		  gsi_next_nondebug (&gsi);
		  gcc_checking_assert (!gsi_end_p (gsi));
		  first = gsi_stmt (gsi);
		}
	      /* Don't split the bbs containing __builtin_setjmp_receiver
		 or __builtin_setjmp_dispatcher calls.  These are very
		 special and don't expect anything to be inserted before
		 them.  */
	      if (!is_gimple_call (first)
		  || (fndecl = gimple_call_fndecl (first)) == NULL
		  || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL
		  || (DECL_FUNCTION_CODE (fndecl) != BUILT_IN_SETJMP_RECEIVER
		      && (DECL_FUNCTION_CODE (fndecl)
			  != BUILT_IN_SETJMP_DISPATCHER)))
		{
		  if (dump_file)
		    fprintf (dump_file, "Splitting bb %i after labels\n",
			     bb->index);
		  split_block_after_labels (bb);
		}
	    }
	}
    }

  el = create_edge_list ();
  num_edges = NUM_EDGES (el);
  alloc_aux_for_edges (sizeof (struct edge_info));

  /* The basic blocks are expected to be numbered sequentially.  */
  compact_blocks ();

  ignored_edges = 0;
  for (i = 0 ; i < num_edges ; i++)
    {
      edge e = INDEX_EDGE (el, i);
      e->count = 0;

      /* Mark edges we've replaced by fake edges above as ignored.  */
      if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
	  && e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR)
	{
	  EDGE_INFO (e)->ignore = 1;
	  ignored_edges++;
	}
    }

  /* Create spanning tree from basic block graph, mark each edge that is
     on the spanning tree.  We insert as many abnormal and critical edges
     as possible to minimize number of edge splits necessary.  */

  find_spanning_tree (el);

  /* Fake edges that are not on the tree will not be instrumented, so
     mark them ignored.  */
  for (num_instrumented = i = 0; i < num_edges; i++)
    {
      edge e = INDEX_EDGE (el, i);
      struct edge_info *inf = EDGE_INFO (e);

      if (inf->ignore || inf->on_tree)
	/*NOP*/;
      else if (e->flags & EDGE_FAKE)
	{
	  inf->ignore = 1;
	  ignored_edges++;
	}
      else
	num_instrumented++;
    }

  total_num_blocks += n_basic_blocks;
  if (dump_file)
    fprintf (dump_file, "%d basic blocks\n", n_basic_blocks);

  total_num_edges += num_edges;
  if (dump_file)
    fprintf (dump_file, "%d edges\n", num_edges);

  total_num_edges_ignored += ignored_edges;
  if (dump_file)
    fprintf (dump_file, "%d ignored edges\n", ignored_edges);

  total_num_edges_instrumented += num_instrumented;
  if (dump_file)
    fprintf (dump_file, "%d instrumentation edges\n", num_instrumented);

  /* Compute two different checksums. Note that we want to compute
     the checksum in only once place, since it depends on the shape
     of the control flow which can change during 
     various transformations.  */
  cfg_checksum = coverage_compute_cfg_checksum ();
  lineno_checksum = coverage_compute_lineno_checksum ();

  /* Write the data from which gcov can reconstruct the basic block
     graph and function line numbers (the gcno file).  */
  if (coverage_begin_function (lineno_checksum, cfg_checksum))
    {
      gcov_position_t offset;

      /* Basic block flags */
      offset = gcov_write_tag (GCOV_TAG_BLOCKS);
      for (i = 0; i != (unsigned) (n_basic_blocks); i++)
	gcov_write_unsigned (0);
      gcov_write_length (offset);

      /* Arcs */
      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
	{
	  edge e;
	  edge_iterator ei;

	  offset = gcov_write_tag (GCOV_TAG_ARCS);
	  gcov_write_unsigned (bb->index);

	  FOR_EACH_EDGE (e, ei, bb->succs)
	    {
	      struct edge_info *i = EDGE_INFO (e);
	      if (!i->ignore)
		{
		  unsigned flag_bits = 0;

		  if (i->on_tree)
		    flag_bits |= GCOV_ARC_ON_TREE;
		  if (e->flags & EDGE_FAKE)
		    flag_bits |= GCOV_ARC_FAKE;
		  if (e->flags & EDGE_FALLTHRU)
		    flag_bits |= GCOV_ARC_FALLTHROUGH;
		  /* On trees we don't have fallthru flags, but we can
		     recompute them from CFG shape.  */
		  if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
		      && e->src->next_bb == e->dest)
		    flag_bits |= GCOV_ARC_FALLTHROUGH;

		  gcov_write_unsigned (e->dest->index);
		  gcov_write_unsigned (flag_bits);
	        }
	    }

	  gcov_write_length (offset);
	}

      /* Line numbers.  */
      /* Initialize the output.  */
      output_location (NULL, 0, NULL, NULL);

      FOR_EACH_BB (bb)
	{
	  gimple_stmt_iterator gsi;
	  gcov_position_t offset = 0;

	  if (bb == ENTRY_BLOCK_PTR->next_bb)
	    {
	      expanded_location curr_location =
		expand_location (DECL_SOURCE_LOCATION (current_function_decl));
	      output_location (curr_location.file, curr_location.line,
			       &offset, bb);
	    }

	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	    {
	      gimple stmt = gsi_stmt (gsi);
	      if (gimple_has_location (stmt))
		output_location (gimple_filename (stmt), gimple_lineno (stmt),
				 &offset, bb);
	    }

	  /* Notice GOTO expressions eliminated while constructing the CFG.  */
	  if (single_succ_p (bb)
	      && LOCATION_LOCUS (single_succ_edge (bb)->goto_locus)
		 != UNKNOWN_LOCATION)
	    {
	      expanded_location curr_location
		= expand_location (single_succ_edge (bb)->goto_locus);
	      output_location (curr_location.file, curr_location.line,
			       &offset, bb);
	    }

	  if (offset)
	    {
	      /* A file of NULL indicates the end of run.  */
	      gcov_write_unsigned (0);
	      gcov_write_string (NULL);
	      gcov_write_length (offset);
	    }
	}
    }

  if (flag_profile_values)
    gimple_find_values_to_profile (&values);

  if (flag_branch_probabilities)
    {
      compute_branch_probabilities (cfg_checksum, lineno_checksum);
      if (flag_profile_values)
	compute_value_histograms (values, cfg_checksum, lineno_checksum);
    }

  remove_fake_edges ();

  /* For each edge not on the spanning tree, add counting code.  */
  if (profile_arc_flag
      && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
    {
      unsigned n_instrumented;

      gimple_init_edge_profiler ();

      n_instrumented = instrument_edges (el);

      gcc_assert (n_instrumented == num_instrumented);

      if (flag_profile_values)
	instrument_values (values);

      /* Commit changes done by instrumentation.  */
      gsi_commit_edge_inserts ();
    }

  free_aux_for_edges ();

  values.release ();
  free_edge_list (el);
  coverage_end_function (lineno_checksum, cfg_checksum);
}

/* Union find algorithm implementation for the basic blocks using
   aux fields.  */

static basic_block
find_group (basic_block bb)
{
  basic_block group = bb, bb1;

  while ((basic_block) group->aux != group)
    group = (basic_block) group->aux;

  /* Compress path.  */
  while ((basic_block) bb->aux != group)
    {
      bb1 = (basic_block) bb->aux;
      bb->aux = (void *) group;
      bb = bb1;
    }
  return group;
}

static void
union_groups (basic_block bb1, basic_block bb2)
{
  basic_block bb1g = find_group (bb1);
  basic_block bb2g = find_group (bb2);

  /* ??? I don't have a place for the rank field.  OK.  Lets go w/o it,
     this code is unlikely going to be performance problem anyway.  */
  gcc_assert (bb1g != bb2g);

  bb1g->aux = bb2g;
}

/* This function searches all of the edges in the program flow graph, and puts
   as many bad edges as possible onto the spanning tree.  Bad edges include
   abnormals edges, which can't be instrumented at the moment.  Since it is
   possible for fake edges to form a cycle, we will have to develop some
   better way in the future.  Also put critical edges to the tree, since they
   are more expensive to instrument.  */

static void
find_spanning_tree (struct edge_list *el)
{
  int i;
  int num_edges = NUM_EDGES (el);
  basic_block bb;

  /* We use aux field for standard union-find algorithm.  */
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    bb->aux = bb;

  /* Add fake edge exit to entry we can't instrument.  */
  union_groups (EXIT_BLOCK_PTR, ENTRY_BLOCK_PTR);

  /* First add all abnormal edges to the tree unless they form a cycle. Also
     add all edges to EXIT_BLOCK_PTR to avoid inserting profiling code behind
     setting return value from function.  */
  for (i = 0; i < num_edges; i++)
    {
      edge e = INDEX_EDGE (el, i);
      if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
	   || e->dest == EXIT_BLOCK_PTR)
	  && !EDGE_INFO (e)->ignore
	  && (find_group (e->src) != find_group (e->dest)))
	{
	  if (dump_file)
	    fprintf (dump_file, "Abnormal edge %d to %d put to tree\n",
		     e->src->index, e->dest->index);
	  EDGE_INFO (e)->on_tree = 1;
	  union_groups (e->src, e->dest);
	}
    }

  /* Now insert all critical edges to the tree unless they form a cycle.  */
  for (i = 0; i < num_edges; i++)
    {
      edge e = INDEX_EDGE (el, i);
      if (EDGE_CRITICAL_P (e) && !EDGE_INFO (e)->ignore
	  && find_group (e->src) != find_group (e->dest))
	{
	  if (dump_file)
	    fprintf (dump_file, "Critical edge %d to %d put to tree\n",
		     e->src->index, e->dest->index);
	  EDGE_INFO (e)->on_tree = 1;
	  union_groups (e->src, e->dest);
	}
    }

  /* And now the rest.  */
  for (i = 0; i < num_edges; i++)
    {
      edge e = INDEX_EDGE (el, i);
      if (!EDGE_INFO (e)->ignore
	  && find_group (e->src) != find_group (e->dest))
	{
	  if (dump_file)
	    fprintf (dump_file, "Normal edge %d to %d put to tree\n",
		     e->src->index, e->dest->index);
	  EDGE_INFO (e)->on_tree = 1;
	  union_groups (e->src, e->dest);
	}
    }

  clear_aux_for_blocks ();
}

/* Perform file-level initialization for branch-prob processing.  */

void
init_branch_prob (void)
{
  int i;

  total_num_blocks = 0;
  total_num_edges = 0;
  total_num_edges_ignored = 0;
  total_num_edges_instrumented = 0;
  total_num_blocks_created = 0;
  total_num_passes = 0;
  total_num_times_called = 0;
  total_num_branches = 0;
  for (i = 0; i < 20; i++)
    total_hist_br_prob[i] = 0;
}

/* Performs file-level cleanup after branch-prob processing
   is completed.  */

void
end_branch_prob (void)
{
  if (dump_file)
    {
      fprintf (dump_file, "\n");
      fprintf (dump_file, "Total number of blocks: %d\n",
	       total_num_blocks);
      fprintf (dump_file, "Total number of edges: %d\n", total_num_edges);
      fprintf (dump_file, "Total number of ignored edges: %d\n",
	       total_num_edges_ignored);
      fprintf (dump_file, "Total number of instrumented edges: %d\n",
	       total_num_edges_instrumented);
      fprintf (dump_file, "Total number of blocks created: %d\n",
	       total_num_blocks_created);
      fprintf (dump_file, "Total number of graph solution passes: %d\n",
	       total_num_passes);
      if (total_num_times_called != 0)
	fprintf (dump_file, "Average number of graph solution passes: %d\n",
		 (total_num_passes + (total_num_times_called  >> 1))
		 / total_num_times_called);
      fprintf (dump_file, "Total number of branches: %d\n",
	       total_num_branches);
      if (total_num_branches)
	{
	  int i;

	  for (i = 0; i < 10; i++)
	    fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
		     (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
		     / total_num_branches, 5*i, 5*i+5);
	}
    }
}