aboutsummaryrefslogtreecommitdiff
path: root/gcc/profile-count.h
blob: a6fc051d7f6a2e4cb725294f1acbaa3d085c6596 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
/* Profile counter container type.
   Copyright (C) 2017-2024 Free Software Foundation, Inc.
   Contributed by Jan Hubicka

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef GCC_PROFILE_COUNT_H
#define GCC_PROFILE_COUNT_H

struct function;
struct profile_count;
class sreal;

/* Quality of the profile count.  Because gengtype does not support enums
   inside of classes, this is in global namespace.  */
enum profile_quality {
  /* Uninitialized value.  */
  UNINITIALIZED_PROFILE,

  /* Profile is based on static branch prediction heuristics and may
     or may not match reality.  It is local to function and cannot be compared
     inter-procedurally.  Never used by probabilities (they are always local).
   */
  GUESSED_LOCAL,

  /* Profile was read by feedback and was 0, we used local heuristics to guess
     better.  This is the case of functions not run in profile feedback.
     Never used by probabilities.  */
  GUESSED_GLOBAL0,

  /* Same as GUESSED_GLOBAL0 but global count is adjusted 0.  */
  GUESSED_GLOBAL0_ADJUSTED,

  /* Profile is based on static branch prediction heuristics.  It may or may
     not reflect the reality but it can be compared interprocedurally
     (for example, we inlined function w/o profile feedback into function
      with feedback and propagated from that).
     Never used by probabilities.  */
  GUESSED,

  /* Profile was determined by autofdo.  */
  AFDO,

  /* Profile was originally based on feedback but it was adjusted
     by code duplicating optimization.  It may not precisely reflect the
     particular code path.  */
  ADJUSTED,

  /* Profile was read from profile feedback or determined by accurate static
     method.  */
  PRECISE
};

extern const char *profile_quality_as_string (enum profile_quality);
extern bool parse_profile_quality (const char *value,
				   profile_quality *quality);

/* The base value for branch probability notes and edge probabilities.  */
#define REG_BR_PROB_BASE  10000

#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))

bool slow_safe_scale_64bit (uint64_t a, uint64_t b, uint64_t c, uint64_t *res);

/* Compute RES=(a*b + c/2)/c capping and return false if overflow happened.  */

inline bool
safe_scale_64bit (uint64_t a, uint64_t b, uint64_t c, uint64_t *res)
{
#if (GCC_VERSION >= 5000)
  uint64_t tmp;
  if (!__builtin_mul_overflow (a, b, &tmp)
      && !__builtin_add_overflow (tmp, c/2, &tmp))
    {
      *res = tmp / c;
      return true;
    }
  if (c == 1)
    {
      *res = (uint64_t) -1;
      return false;
    }
#else
  if (a < ((uint64_t)1 << 31)
      && b < ((uint64_t)1 << 31)
      && c < ((uint64_t)1 << 31))
    {
      *res = (a * b + (c / 2)) / c;
      return true;
    }
#endif
  return slow_safe_scale_64bit (a, b, c, res);
}

/* Data type to hold probabilities.  It implements fixed point arithmetics
   with capping so probability is always in range [0,1] and scaling requiring
   values greater than 1 needs to be represented otherwise.

   In addition to actual value the quality of profile is tracked and propagated
   through all operations.  Special value UNINITIALIZED_PROFILE is used for probabilities
   that has not been determined yet (for example because of
   -fno-guess-branch-probability)

   Typically probabilities are derived from profile feedback (via
   probability_in_gcov_type), autoFDO or guessed statically and then propagated
   thorough the compilation.

   Named probabilities are available:
     - never           (0 probability)
     - guessed_never
     - very_unlikely   (1/2000 probability)
     - unlikely        (1/5 probability)
     - even            (1/2 probability)
     - likely          (4/5 probability)
     - very_likely     (1999/2000 probability)
     - guessed_always
     - always

   Named probabilities except for never/always are assumed to be statically
   guessed and thus not necessarily accurate.  The difference between never
   and guessed_never is that the first one should be used only in case that
   well behaving program will very likely not execute the "never" path.
   For example if the path is going to abort () call or it exception handling.

   Always and guessed_always probabilities are symmetric.

   For legacy code we support conversion to/from REG_BR_PROB_BASE based fixpoint
   integer arithmetics. Once the code is converted to branch probabilities,
   these conversions will probably go away because they are lossy.
*/

class GTY((user)) profile_probability
{
  static const int n_bits = 29;
  /* We can technically use ((uint32_t) 1 << (n_bits - 1)) - 2 but that
     will lead to harder multiplication sequences.  */
  static const uint32_t max_probability = (uint32_t) 1 << (n_bits - 2);
  static const uint32_t uninitialized_probability
		 = ((uint32_t) 1 << (n_bits - 1)) - 1;

  uint32_t m_val : 29;
  enum profile_quality m_quality : 3;

  friend struct profile_count;
public:
  profile_probability (): m_val (uninitialized_probability),
    m_quality (GUESSED)
  {}

  profile_probability (uint32_t val, profile_quality quality):
    m_val (val), m_quality (quality)
  {}

  /* Named probabilities.  */
  static profile_probability never ()
    {
      profile_probability ret;
      ret.m_val = 0;
      ret.m_quality = PRECISE;
      return ret;
    }

  static profile_probability guessed_never ()
    {
      profile_probability ret;
      ret.m_val = 0;
      ret.m_quality = GUESSED;
      return ret;
    }

  static profile_probability very_unlikely ()
    {
      /* Be consistent with PROB_VERY_UNLIKELY in predict.h.  */
      profile_probability r = guessed_always () / 2000;
      r.m_val--;
      return r;
    }

  static profile_probability unlikely ()
    {
      /* Be consistent with PROB_VERY_LIKELY in predict.h.  */
      profile_probability r = guessed_always () / 5;
      r.m_val--;
      return r;
    }

  static profile_probability even ()
    {
      return guessed_always () / 2;
    }

  static profile_probability very_likely ()
    {
      return always () - very_unlikely ();
    }

  static profile_probability likely ()
    {
      return always () - unlikely ();
    }
  /* Return true when value is not zero and can be used for scaling.   */
  bool nonzero_p () const
    {
      return initialized_p () && m_val != 0;
    }

  static profile_probability guessed_always ()
    {
      profile_probability ret;
      ret.m_val = max_probability;
      ret.m_quality = GUESSED;
      return ret;
    }

  static profile_probability always ()
    {
      profile_probability ret;
      ret.m_val = max_probability;
      ret.m_quality = PRECISE;
      return ret;
    }

  /* Probabilities which has not been initialized. Either because
     initialization did not happen yet or because profile is unknown.  */
  static profile_probability uninitialized ()
    {
      profile_probability c;
      c.m_val = uninitialized_probability;
      c.m_quality = GUESSED;
      return c;
    }

  /* Return true if value has been initialized.  */
  bool initialized_p () const
    {
      return m_val != uninitialized_probability;
    }

  /* Return true if value can be trusted.  */
  bool reliable_p () const
    {
      return m_quality >= ADJUSTED;
    }

  /* Conversion from and to REG_BR_PROB_BASE integer fixpoint arithmetics.
     this is mostly to support legacy code and should go away.  */
  static profile_probability from_reg_br_prob_base (int v)
    {
      profile_probability ret;
      gcc_checking_assert (v >= 0 && v <= REG_BR_PROB_BASE);
      ret.m_val = RDIV (v * (uint64_t) max_probability, REG_BR_PROB_BASE);
      ret.m_quality = GUESSED;
      return ret;
    }

  /* Return THIS with quality set to ADJUSTED.  */
  profile_probability adjusted () const
    {
      profile_probability ret = *this;
      if (!initialized_p ())
	return *this;
      ret.m_quality = ADJUSTED;
      return ret;
    }

  int to_reg_br_prob_base () const
    {
      gcc_checking_assert (initialized_p ());
      return RDIV (m_val * (uint64_t) REG_BR_PROB_BASE, max_probability);
    }

  /* Conversion to and from RTL representation of profile probabilities.  */
  static profile_probability from_reg_br_prob_note (int v)
    {
      profile_probability ret;
      ret.m_val = ((unsigned int)v) / 8;
      ret.m_quality = (enum profile_quality)(v & 7);
      return ret;
    }

  int to_reg_br_prob_note () const
    {
      gcc_checking_assert (initialized_p ());
      int ret = m_val * 8 + m_quality;
      gcc_checking_assert (from_reg_br_prob_note (ret) == *this);
      return ret;
    }

  /* Return VAL1/VAL2.  */
  static profile_probability probability_in_gcov_type
				 (gcov_type val1, gcov_type val2)
    {
      profile_probability ret;
      gcc_checking_assert (val1 >= 0 && val2 > 0);
      if (val1 > val2)
	ret.m_val = max_probability;
      else
	{
	  uint64_t tmp;
	  safe_scale_64bit (val1, max_probability, val2, &tmp);
	  gcc_checking_assert (tmp <= max_probability);
	  ret.m_val = tmp;
	}
      ret.m_quality = PRECISE;
      return ret;
    }

  /* Basic operations.  */
  bool operator== (const profile_probability &other) const
    {
      return m_val == other.m_val && m_quality == other.m_quality;
    }

  profile_probability operator+ (const profile_probability &other) const
    {
      if (other == never ())
	return *this;
      if (*this == never ())
	return other;
      if (!initialized_p () || !other.initialized_p ())
	return uninitialized ();

      profile_probability ret;
      ret.m_val = MIN ((uint32_t)(m_val + other.m_val), max_probability);
      ret.m_quality = MIN (m_quality, other.m_quality);
      return ret;
    }

  profile_probability &operator+= (const profile_probability &other)
    {
      if (other == never ())
	return *this;
      if (*this == never ())
	{
	  *this = other;
	  return *this;
	}
      if (!initialized_p () || !other.initialized_p ())
	return *this = uninitialized ();
      else
	{
	  m_val = MIN ((uint32_t)(m_val + other.m_val), max_probability);
	  m_quality = MIN (m_quality, other.m_quality);
	}
      return *this;
    }

  profile_probability operator- (const profile_probability &other) const
    {
      if (*this == never ()
	  || other == never ())
	return *this;
      if (!initialized_p () || !other.initialized_p ())
	return uninitialized ();
      profile_probability ret;
      ret.m_val = m_val >= other.m_val ? m_val - other.m_val : 0;
      ret.m_quality = MIN (m_quality, other.m_quality);
      return ret;
    }

  profile_probability &operator-= (const profile_probability &other)
    {
      if (*this == never ()
	  || other == never ())
	return *this;
      if (!initialized_p () || !other.initialized_p ())
	return *this = uninitialized ();
      else
	{
	  m_val = m_val >= other.m_val ? m_val - other.m_val : 0;
	  m_quality = MIN (m_quality, other.m_quality);
	}
      return *this;
    }

  profile_probability operator* (const profile_probability &other) const
    {
      if (*this == never ()
	  || other == never ())
	return never ();
      if (!initialized_p () || !other.initialized_p ())
	return uninitialized ();
      profile_probability ret;
      ret.m_val = RDIV ((uint64_t)m_val * other.m_val, max_probability);
      ret.m_quality = MIN (MIN (m_quality, other.m_quality), ADJUSTED);
      return ret;
    }

  profile_probability &operator*= (const profile_probability &other)
    {
      if (*this == never ()
	  || other == never ())
	return *this = never ();
      if (!initialized_p () || !other.initialized_p ())
	return *this = uninitialized ();
      else
	{
	  m_val = RDIV ((uint64_t)m_val * other.m_val, max_probability);
	  m_quality = MIN (MIN (m_quality, other.m_quality), ADJUSTED);
	}
      return *this;
    }

  profile_probability operator/ (const profile_probability &other) const
    {
      if (*this == never ())
	return never ();
      if (!initialized_p () || !other.initialized_p ())
	return uninitialized ();
      profile_probability ret;
      /* If we get probability above 1, mark it as unreliable and return 1. */
      if (m_val >= other.m_val)
	{
	  ret.m_val = max_probability;
          ret.m_quality = MIN (MIN (m_quality, other.m_quality),
			       GUESSED);
	  return ret;
	}
      else if (!m_val)
	ret.m_val = 0;
      else
	{
	  gcc_checking_assert (other.m_val);
	  ret.m_val = MIN (RDIV ((uint64_t)m_val * max_probability,
				 other.m_val),
			   max_probability);
	}
      ret.m_quality = MIN (MIN (m_quality, other.m_quality), ADJUSTED);
      return ret;
    }

  profile_probability &operator/= (const profile_probability &other)
    {
      if (*this == never ())
	return *this = never ();
      if (!initialized_p () || !other.initialized_p ())
	return *this = uninitialized ();
      else
	{
          /* If we get probability above 1, mark it as unreliable
	     and return 1. */
	  if (m_val > other.m_val)
	    {
	      m_val = max_probability;
              m_quality = MIN (MIN (m_quality, other.m_quality),
			       GUESSED);
	      return *this;
	    }
	  else if (!m_val)
	    ;
	  else
	    {
	      gcc_checking_assert (other.m_val);
	      m_val = MIN (RDIV ((uint64_t)m_val * max_probability,
				 other.m_val),
			   max_probability);
	    }
	  m_quality = MIN (MIN (m_quality, other.m_quality), ADJUSTED);
	}
      return *this;
    }

  /* Split *THIS (ORIG) probability into 2 probabilities, such that
     the returned one (FIRST) is *THIS * CPROB and *THIS is
     adjusted (SECOND) so that FIRST + FIRST.invert () * SECOND
     == ORIG.  This is useful e.g. when splitting a conditional
     branch like:
     if (cond)
       goto lab; // ORIG probability
     into
     if (cond1)
       goto lab; // FIRST = ORIG * CPROB probability
     if (cond2)
       goto lab; // SECOND probability
     such that the overall probability of jumping to lab remains
     the same.  CPROB gives the relative probability between the
     branches.  */
  profile_probability split (const profile_probability &cprob)
    {
      profile_probability ret = *this * cprob;
      /* The following is equivalent to:
         *this = cprob.invert () * *this / ret.invert ();
	 Avoid scaling when overall outcome is supposed to be always.
	 Without knowing that one is inverse of other, the result would be
	 conservative.  */
      if (!(*this == always ()))
        *this = (*this - ret) / ret.invert ();
      return ret;
    }

  gcov_type apply (gcov_type val) const
    {
      if (*this == uninitialized ())
	return val / 2;
      return RDIV (val * m_val, max_probability);
    }

  /* Return 1-*THIS.  */
  profile_probability invert () const
    {
      return always() - *this;
    }

  /* Return THIS with quality dropped to GUESSED.  */
  profile_probability guessed () const
    {
      profile_probability ret = *this;
      ret.m_quality = GUESSED;
      return ret;
    }

  /* Return THIS with quality dropped to AFDO.  */
  profile_probability afdo () const
    {
      profile_probability ret = *this;
      ret.m_quality = AFDO;
      return ret;
    }

  /* Return *THIS * NUM / DEN.  */
  profile_probability apply_scale (int64_t num, int64_t den) const
    {
      if (*this == never ())
	return *this;
      if (!initialized_p ())
	return uninitialized ();
      profile_probability ret;
      uint64_t tmp;
      safe_scale_64bit (m_val, num, den, &tmp);
      ret.m_val = MIN (tmp, max_probability);
      ret.m_quality = MIN (m_quality, ADJUSTED);
      return ret;
    }

  /* Return *THIS * NUM / DEN.  */
  profile_probability apply_scale (profile_probability num,
				   profile_probability den) const
    {
      if (*this == never ())
	return *this;
      if (num == never ())
	return num;
      if (!initialized_p () || !num.initialized_p () || !den.initialized_p ())
	return uninitialized ();
      if (num == den)
	return *this;
      gcc_checking_assert (den.m_val);

      profile_probability ret;
      uint64_t val;
      safe_scale_64bit (m_val, num.m_val, den.m_val, &val);
      ret.m_val = MIN (val, max_probability);
      ret.m_quality = MIN (MIN (MIN (m_quality, ADJUSTED),
				     num.m_quality), den.m_quality);
      return ret;
    }

  /* Return true when the probability of edge is reliable.

     The profile guessing code is good at predicting branch outcome (i.e.
     taken/not taken), that is predicted right slightly over 75% of time.
     It is however notoriously poor on predicting the probability itself.
     In general the profile appear a lot flatter (with probabilities closer
     to 50%) than the reality so it is bad idea to use it to drive optimization
     such as those disabling dynamic branch prediction for well predictable
     branches.

     There are two exceptions - edges leading to noreturn edges and edges
     predicted by number of iterations heuristics are predicted well.  This macro
     should be able to distinguish those, but at the moment it simply check for
     noreturn heuristic that is only one giving probability over 99% or bellow
     1%.  In future we might want to propagate reliability information across the
     CFG if we find this information useful on multiple places.   */
  bool probably_reliable_p () const
    {
      if (m_quality >= ADJUSTED)
	return true;
      if (!initialized_p ())
	return false;
      return m_val < max_probability / 100
	     || m_val > max_probability - max_probability / 100;
    }

  /* Return false if profile_probability is bogus.  */
  bool verify () const
    {
      gcc_checking_assert (m_quality != UNINITIALIZED_PROFILE);
      if (m_val == uninitialized_probability)
	return m_quality == GUESSED;
      else if (m_quality < GUESSED)
	return false;
      return m_val <= max_probability;
    }

  /* Comparisons are three-state and conservative.  False is returned if
     the inequality cannot be decided.  */
  bool operator< (const profile_probability &other) const
    {
      return initialized_p () && other.initialized_p () && m_val < other.m_val;
    }

  bool operator> (const profile_probability &other) const
    {
      return initialized_p () && other.initialized_p () && m_val > other.m_val;
    }

  bool operator<= (const profile_probability &other) const
    {
      return initialized_p () && other.initialized_p () && m_val <= other.m_val;
    }

  bool operator>= (const profile_probability &other) const
    {
      return initialized_p () && other.initialized_p () && m_val >= other.m_val;
    }

  profile_probability operator* (int64_t num) const
    {
      return apply_scale (num, 1);
    }

  profile_probability operator*= (int64_t num)
    {
      *this = apply_scale (num, 1);
      return *this;
    }

  profile_probability operator/ (int64_t den) const
    {
      return apply_scale (1, den);
    }

  profile_probability operator/= (int64_t den)
    {
      *this = apply_scale (1, den);
      return *this;
    }

  /* Compute n-th power.  */
  profile_probability pow (int) const;

  /* Compute sware root.  */
  profile_probability sqrt () const;

  /* Get the value of the count.  */
  uint32_t value () const { return m_val; }

  /* Get the quality of the count.  */
  enum profile_quality quality () const { return m_quality; }

  /* Output THIS to F.  */
  void dump (FILE *f) const;

  /* Output THIS to BUFFER.  */
  void dump (char *buffer) const;

  /* Print THIS to stderr.  */
  void debug () const;

  /* Return true if THIS is known to differ significantly from OTHER.  */
  bool differs_from_p (profile_probability other) const;

  /* Return if difference is greater than 50%.  */
  bool differs_lot_from_p (profile_probability other) const;

  /* COUNT1 times event happens with *THIS probability, COUNT2 times OTHER
     happens with COUNT2 probability. Return probability that either *THIS or
     OTHER happens.  */
  profile_probability combine_with_count (profile_count count1,
					  profile_probability other,
					  profile_count count2) const;

  /* Return probability as sreal.  */
  sreal to_sreal () const;
  /* LTO streaming support.  */
  static profile_probability stream_in (class lto_input_block *);
  void stream_out (struct output_block *);
  void stream_out (struct lto_output_stream *);
};

/* Main data type to hold profile counters in GCC. Profile counts originate
   either from profile feedback, static profile estimation or both.  We do not
   perform whole program profile propagation and thus profile estimation
   counters are often local to function, while counters from profile feedback
   (or special cases of profile estimation) can be used inter-procedurally.

   There are 3 basic types
     1) local counters which are result of intra-procedural static profile
        estimation.
     2) ipa counters which are result of profile feedback or special case
        of static profile estimation (such as in function main).
     3) counters which counts as 0 inter-procedurally (because given function
        was never run in train feedback) but they hold local static profile
        estimate.

   Counters of type 1 and 3 cannot be mixed with counters of different type
   within operation (because whole function should use one type of counter)
   with exception that global zero mix in most operations where outcome is
   well defined.

   To take local counter and use it inter-procedurally use ipa member function
   which strips information irrelevant at the inter-procedural level.

   Counters are 61bit integers representing number of executions during the
   train run or normalized frequency within the function.

   As the profile is maintained during the compilation, many adjustments are
   made.  Not all transformations can be made precisely, most importantly
   when code is being duplicated.  It also may happen that part of CFG has
   profile counts known while other do not - for example when LTO optimizing
   partly profiled program or when profile was lost due to COMDAT merging.

   For this reason profile_count tracks more information than
   just unsigned integer and it is also ready for profile mismatches.
   The API of this data type represent operations that are natural
   on profile counts - sum, difference and operation with scales and
   probabilities.  All operations are safe by never getting negative counts
   and they do end up in uninitialized scale if any of the parameters is
   uninitialized.

   All comparisons that are three state and handling of probabilities.  Thus
   a < b is not equal to !(a >= b).

   The following pre-defined counts are available:

   profile_count::zero ()  for code that is known to execute zero times at
      runtime (this can be detected statically i.e. for paths leading to
      abort ();
   profile_count::one () for code that is known to execute once (such as
      main () function
   profile_count::uninitialized ()  for unknown execution count.

 */

struct GTY(()) profile_count
{
public:
  /* Use 62bit to hold basic block counters.  Should be at least
     64bit.  Although a counter cannot be negative, we use a signed
     type to hold various extra stages.  */

  static const int n_bits = 61;
  static const uint64_t max_count = ((uint64_t) 1 << n_bits) - 2;
private:
  static const uint64_t uninitialized_count = ((uint64_t) 1 << n_bits) - 1;

#if defined (__arm__) && (__GNUC__ >= 6 && __GNUC__ <= 8)
  /* Work-around for PR88469.  A bug in the gcc-6/7/8 PCS layout code
     incorrectly detects the alignment of a structure where the only
     64-bit aligned object is a bit-field.  We force the alignment of
     the entire field to mitigate this.  */
#define UINT64_BIT_FIELD_ALIGN __attribute__ ((aligned(8)))
#else
#define UINT64_BIT_FIELD_ALIGN
#endif
  uint64_t UINT64_BIT_FIELD_ALIGN m_val : n_bits;
#undef UINT64_BIT_FIELD_ALIGN
  enum profile_quality m_quality : 3;
public:

  /* Return true if both values can meaningfully appear in single function
     body.  We have either all counters in function local or global, otherwise
     operations between them are not really defined well.  */
  bool compatible_p (const profile_count other) const
    {
      if (!initialized_p () || !other.initialized_p ())
	return true;
      if (*this == zero ()
	  || other == zero ())
	return true;
      /* Do not allow nonzero global profile together with local guesses
	 that are globally0.  */
      if (ipa ().nonzero_p ()
	  && !(other.ipa () == other))
	return false;
      if (other.ipa ().nonzero_p ()
	  && !(ipa () == *this))
	return false;

      return ipa_p () == other.ipa_p ();
    }

  /* Used for counters which are expected to be never executed.  */
  static profile_count zero ()
    {
      return from_gcov_type (0);
    }

  static profile_count adjusted_zero ()
    {
      profile_count c;
      c.m_val = 0;
      c.m_quality = ADJUSTED;
      return c;
    }

  static profile_count guessed_zero ()
    {
      profile_count c;
      c.m_val = 0;
      c.m_quality = GUESSED;
      return c;
    }

  static profile_count one ()
    {
      return from_gcov_type (1);
    }

  /* Value of counters which has not been initialized. Either because
     initialization did not happen yet or because profile is unknown.  */
  static profile_count uninitialized ()
    {
      profile_count c;
      c.m_val = uninitialized_count;
      c.m_quality = GUESSED_LOCAL;
      return c;
    }

  /* Conversion to gcov_type is lossy.  */
  gcov_type to_gcov_type () const
    {
      gcc_checking_assert (initialized_p ());
      return m_val;
    }

  /* Return true if value has been initialized.  */
  bool initialized_p () const
    {
      return m_val != uninitialized_count;
    }

  /* Return true if value can be trusted.  */
  bool reliable_p () const
    {
      return m_quality >= ADJUSTED;
    }

  /* Return true if value can be operated inter-procedurally.  */
  bool ipa_p () const
    {
      return !initialized_p () || m_quality >= GUESSED_GLOBAL0;
    }

  /* Return true if quality of profile is precise.  */
  bool precise_p () const
    {
      return m_quality == PRECISE;
    }

  /* Get the value of the count.  */
  uint64_t value () const { return m_val; }

  /* Get the quality of the count.  */
  enum profile_quality quality () const { return m_quality; }

  /* When merging basic blocks, the two different profile counts are unified.
     Return true if this can be done without losing info about profile.
     The only case we care about here is when first BB contains something
     that makes it terminate in a way not visible in CFG.  */
  bool ok_for_merging (profile_count other) const
    {
      if (m_quality < ADJUSTED
	  || other.m_quality < ADJUSTED)
	return true;
      return !(other < *this);
    }

  /* When merging two BBs with different counts, pick common count that looks
     most representative.  */
  profile_count merge (profile_count other) const
    {
      if (*this == other || !other.initialized_p ()
	  || m_quality > other.m_quality)
	return *this;
      if (other.m_quality > m_quality
	  || other > *this)
	return other;
      return *this;
    }

  /* Basic operations.  */
  bool operator== (const profile_count &other) const
    {
      return m_val == other.m_val && m_quality == other.m_quality;
    }

  profile_count operator+ (const profile_count &other) const
    {
      if (other == zero ())
	return *this;
      if (*this == zero ())
	return other;
      if (!initialized_p () || !other.initialized_p ())
	return uninitialized ();

      profile_count ret;
      gcc_checking_assert (compatible_p (other));
      uint64_t ret_val = m_val + other.m_val;
      ret.m_val = MIN (ret_val, max_count);
      ret.m_quality = MIN (m_quality, other.m_quality);
      return ret;
    }

  profile_count &operator+= (const profile_count &other)
    {
      if (other == zero ())
	return *this;
      if (*this == zero ())
	{
	  *this = other;
	  return *this;
	}
      if (!initialized_p () || !other.initialized_p ())
	return *this = uninitialized ();
      else
	{
          gcc_checking_assert (compatible_p (other));
	  uint64_t ret_val = m_val + other.m_val;
	  m_val = MIN (ret_val, max_count);
	  m_quality = MIN (m_quality, other.m_quality);
	}
      return *this;
    }

  profile_count operator- (const profile_count &other) const
    {
      if (*this == zero () || other == zero ())
	return *this;
      if (!initialized_p () || !other.initialized_p ())
	return uninitialized ();
      gcc_checking_assert (compatible_p (other));
      profile_count ret;
      ret.m_val = m_val >= other.m_val ? m_val - other.m_val : 0;
      ret.m_quality = MIN (m_quality, other.m_quality);
      return ret;
    }

  profile_count &operator-= (const profile_count &other)
    {
      if (*this == zero () || other == zero ())
	return *this;
      if (!initialized_p () || !other.initialized_p ())
	return *this = uninitialized ();
      else
	{
          gcc_checking_assert (compatible_p (other));
	  m_val = m_val >= other.m_val ? m_val - other.m_val : 0;
	  m_quality = MIN (m_quality, other.m_quality);
	}
      return *this;
    }

  /* Return false if profile_count is bogus.  */
  bool verify () const
    {
      gcc_checking_assert (m_quality != UNINITIALIZED_PROFILE);
      return m_val != uninitialized_count || m_quality == GUESSED_LOCAL;
    }

  /* Comparisons are three-state and conservative.  False is returned if
     the inequality cannot be decided.  */
  bool operator< (const profile_count &other) const
    {
      if (!initialized_p () || !other.initialized_p ())
	return false;
      if (*this == zero ())
	return !(other == zero ());
      if (other == zero ())
	return false;
      gcc_checking_assert (compatible_p (other));
      return m_val < other.m_val;
    }

  bool operator> (const profile_count &other) const
    {
      if (!initialized_p () || !other.initialized_p ())
	return false;
      if (*this  == zero ())
	return false;
      if (other == zero ())
	return !(*this == zero ());
      gcc_checking_assert (compatible_p (other));
      return initialized_p () && other.initialized_p () && m_val > other.m_val;
    }

  bool operator< (const gcov_type other) const
    {
      gcc_checking_assert (ipa_p ());
      gcc_checking_assert (other >= 0);
      return ipa ().initialized_p () && ipa ().m_val < (uint64_t) other;
    }

  bool operator> (const gcov_type other) const
    {
      gcc_checking_assert (ipa_p ());
      gcc_checking_assert (other >= 0);
      return ipa ().initialized_p () && ipa ().m_val > (uint64_t) other;
    }

  bool operator<= (const profile_count &other) const
    {
      if (!initialized_p () || !other.initialized_p ())
	return false;
      if (*this == zero ())
	return true;
      if (other == zero ())
	return (*this == zero ());
      gcc_checking_assert (compatible_p (other));
      return m_val <= other.m_val;
    }

  bool operator>= (const profile_count &other) const
    {
      if (!initialized_p () || !other.initialized_p ())
	return false;
      if (other == zero ())
	return true;
      if (*this == zero ())
	return (other == zero ());
      gcc_checking_assert (compatible_p (other));
      return m_val >= other.m_val;
    }

  bool operator<= (const gcov_type other) const
    {
      gcc_checking_assert (ipa_p ());
      gcc_checking_assert (other >= 0);
      return ipa ().initialized_p () && ipa ().m_val <= (uint64_t) other;
    }

  bool operator>= (const gcov_type other) const
    {
      gcc_checking_assert (ipa_p ());
      gcc_checking_assert (other >= 0);
      return ipa ().initialized_p () && ipa ().m_val >= (uint64_t) other;
    }

  profile_count operator* (int64_t num) const
    {
      return apply_scale (num, 1);
    }

  profile_count operator*= (int64_t num)
    {
      *this = apply_scale (num, 1);
      return *this;
    }

  profile_count operator/ (int64_t den) const
    {
      return apply_scale (1, den);
    }

  profile_count operator/= (int64_t den)
    {
      *this = apply_scale (1, den);
      return *this;
    }

  /* Return true when value is not zero and can be used for scaling.
     This is different from *this > 0 because that requires counter to
     be IPA.  */
  bool nonzero_p () const
    {
      return initialized_p () && m_val != 0;
    }

  /* Make counter forcibly nonzero.  */
  profile_count force_nonzero () const
    {
      if (!initialized_p ())
	return *this;
      profile_count ret = *this;
      if (ret.m_val == 0)
	{
	  ret.m_val = 1;
          ret.m_quality = MIN (m_quality, ADJUSTED);
	}
      return ret;
    }

  profile_count max (profile_count other) const
    {
      profile_count val = *this;

      /* Always prefer nonzero IPA counts over local counts.  */
      if (ipa ().nonzero_p () || other.ipa ().nonzero_p ())
	{
	  val = ipa ();
	  other = other.ipa ();
	}
      if (!initialized_p ())
	return other;
      if (!other.initialized_p ())
	return *this;
      if (*this == zero ())
	return other;
      if (other == zero ())
	return *this;
      gcc_checking_assert (compatible_p (other));
      if (val.m_val < other.m_val || (m_val == other.m_val
				      && val.m_quality < other.m_quality))
	return other;
      return *this;
    }

  /* PROB is a probability in scale 0...REG_BR_PROB_BASE.  Scale counter
     accordingly.  */
  profile_count apply_probability (int prob) const
    {
      gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
      if (m_val == 0)
	return *this;
      if (!initialized_p ())
	return uninitialized ();
      profile_count ret;
      uint64_t tmp;
      safe_scale_64bit (m_val, prob, REG_BR_PROB_BASE, &tmp);
      ret.m_val = tmp;
      ret.m_quality = MIN (m_quality, ADJUSTED);
      return ret;
    }

  /* Scale counter according to PROB.  */
  profile_count apply_probability (profile_probability prob) const
    {
      if (*this == zero () || prob == profile_probability::always ())
	return *this;
      if (prob == profile_probability::never ())
	return zero ();
      if (!initialized_p () || !prob.initialized_p ())
	return uninitialized ();
      profile_count ret;
      uint64_t tmp;
      safe_scale_64bit (m_val, prob.m_val, profile_probability::max_probability,
			&tmp);
      ret.m_val = tmp;
      ret.m_quality = MIN (m_quality, prob.m_quality);
      return ret;
    }

  /* Return *THIS * NUM / DEN.  */
  profile_count apply_scale (int64_t num, int64_t den) const
    {
      if (m_val == 0)
	return *this;
      if (!initialized_p ())
	return uninitialized ();
      profile_count ret;
      uint64_t tmp;

      gcc_checking_assert (num >= 0 && den > 0);
      safe_scale_64bit (m_val, num, den, &tmp);
      ret.m_val = MIN (tmp, max_count);
      ret.m_quality = MIN (m_quality, ADJUSTED);
      return ret;
    }

  profile_count apply_scale (profile_count num, profile_count den) const
    {
      if (*this == zero ())
	return *this;
      if (num == zero ())
	return num;
      if (!initialized_p () || !num.initialized_p () || !den.initialized_p ())
	return uninitialized ();
      if (num == den)
	return *this;
      gcc_checking_assert (den.m_val);

      profile_count ret;
      uint64_t val;
      safe_scale_64bit (m_val, num.m_val, den.m_val, &val);
      ret.m_val = MIN (val, max_count);
      ret.m_quality = MIN (MIN (MIN (m_quality, ADJUSTED),
			        num.m_quality), den.m_quality);
      /* Be sure that ret is not local if num is global.
	 Also ensure that ret is not global0 when num is global.  */
      if (num.ipa_p ())
	ret.m_quality = MAX (ret.m_quality,
			     num == num.ipa () ? GUESSED : num.m_quality);
      return ret;
    }

  /* Return THIS with quality dropped to GUESSED_LOCAL.  */
  profile_count guessed_local () const
    {
      profile_count ret = *this;
      if (!initialized_p ())
	return *this;
      ret.m_quality = GUESSED_LOCAL;
      return ret;
    }

  /* We know that profile is globally 0 but keep local profile if present.  */
  profile_count global0 () const
    {
      profile_count ret = *this;
      if (!initialized_p ())
	return *this;
      ret.m_quality = GUESSED_GLOBAL0;
      return ret;
    }

  /* We know that profile is globally adjusted 0 but keep local profile
     if present.  */
  profile_count global0adjusted () const
    {
      profile_count ret = *this;
      if (!initialized_p ())
	return *this;
      ret.m_quality = GUESSED_GLOBAL0_ADJUSTED;
      return ret;
    }

  /* Return THIS with quality dropped to GUESSED.  */
  profile_count guessed () const
    {
      profile_count ret = *this;
      ret.m_quality = MIN (ret.m_quality, GUESSED);
      return ret;
    }

  /* Return variant of profile count which is always safe to compare
     across functions.  */
  profile_count ipa () const
    {
      if (m_quality > GUESSED_GLOBAL0_ADJUSTED)
	return *this;
      if (m_quality == GUESSED_GLOBAL0)
	return zero ();
      if (m_quality == GUESSED_GLOBAL0_ADJUSTED)
	return adjusted_zero ();
      return uninitialized ();
    }

  /* Return THIS with quality dropped to AFDO.  */
  profile_count afdo () const
    {
      profile_count ret = *this;
      ret.m_quality = AFDO;
      return ret;
    }

  /* Return probability of event with counter THIS within event with counter
     OVERALL.  */
  profile_probability probability_in (const profile_count overall) const
    {
      if (*this == zero ()
	  && !(overall == zero ()))
	return profile_probability::never ();
      if (!initialized_p () || !overall.initialized_p ()
	  || !overall.m_val)
	return profile_probability::uninitialized ();
      if (*this == overall && m_quality == PRECISE)
	return profile_probability::always ();
      profile_probability ret;
      gcc_checking_assert (compatible_p (overall));

      if (overall.m_val < m_val)
	{
	  ret.m_val = profile_probability::max_probability;
	  ret.m_quality = GUESSED;
	  return ret;
	}
      else
	ret.m_val = RDIV (m_val * profile_probability::max_probability,
			  overall.m_val);
      ret.m_quality = MIN (MAX (MIN (m_quality, overall.m_quality),
				GUESSED), ADJUSTED);
      return ret;
    }

  /* Return true if profile count is very large, so we risk overflows
     with loop transformations.  */
  bool
  very_large_p ()
  {
    if (!initialized_p ())
      return false;
    return m_val > max_count / 65536;
  }

  int to_frequency (struct function *fun) const;
  int to_cgraph_frequency (profile_count entry_bb_count) const;
  sreal to_sreal_scale (profile_count in, bool *known = NULL) const;

  /* Output THIS to F.  */
  void dump (FILE *f, struct function *fun = NULL) const;

  /* Print THIS to stderr.  */
  void debug () const;

  /* Return true if THIS is known to differ significantly from OTHER.  */
  bool differs_from_p (profile_count other) const;

  /* We want to scale profile across function boundary from NUM to DEN.
     Take care of the side case when NUM and DEN are zeros of incompatible
     kinds.  */
  static void adjust_for_ipa_scaling (profile_count *num, profile_count *den);

  /* THIS is a count of bb which is known to be executed IPA times.
     Combine this information into bb counter.  This means returning IPA
     if it is nonzero, not changing anything if IPA is uninitialized
     and if IPA is zero, turning THIS into corresponding local profile with
     global0.  */
  profile_count combine_with_ipa_count (profile_count ipa);

  /* Same as combine_with_ipa_count but inside function with count IPA2.  */
  profile_count combine_with_ipa_count_within
		 (profile_count ipa, profile_count ipa2);

  /* The profiling runtime uses gcov_type, which is usually 64bit integer.
     Conversions back and forth are used to read the coverage and get it
     into internal representation.  */
  static profile_count from_gcov_type (gcov_type v,
				       profile_quality quality = PRECISE);

  /* LTO streaming support.  */
  static profile_count stream_in (class lto_input_block *);
  void stream_out (struct output_block *);
  void stream_out (struct lto_output_stream *);
};
#endif