1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
|
/* Find prime paths
Copyright (C) 2024-2025 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "obstack.h"
#include "sbitmap.h"
#include "vec.h"
#include "graphds.h"
#include "selftest.h"
namespace
{
/* Counter for the number of candidate paths to generate before giving up. It
is neater to use a global because it has to be checked deep in helper
functions, which may also suffer under path explosion. It is a heuristic
guaranteed to overshoot the number of actual paths (which is difficult to
estimate), and is intended to give up on (absurdly) large functions with
millions of paths, not be a high fidelity rejection mechanism. This is
essentially an exception. */
size_t approx_limit;
/* Reset the threshold to APPROX when a function is too complex and finding
paths should give up. */
void
limit_reset (size_t approx)
{
approx_limit = approx;
}
/* Record approximately APPROX new paths. Returns true if the limit is
exceeded and coverage should give up. */
bool
limit_checked_add (size_t approx)
{
approx_limit -= approx < approx_limit ? approx : approx_limit;
return approx_limit == 0;
};
/* Check if adding APPROX would exceed the path limit. This is necessary when
(pessimistically counted) trie insertions would exceed the limit and yields
a partial result, when the path count would drop below the limit again once
redundancies are eliminated. */
bool
limit_exceed_p (size_t approx)
{
return approx > approx_limit;
}
/* A silly RAII wrapper for struct graph. The prime_paths function has multiple
returns, and this helps reliably clean up. */
struct auto_graph
{
auto_graph (struct graph *graph) : ptr (graph) {}
auto_graph (const auto_graph &) = delete;
~auto_graph () { free_graph (ptr); }
operator struct graph* () { return ptr; }
struct graph* operator -> () { return ptr; }
graph *ptr;
};
/* A silly RAII wrapper for an sbitmap vector. The prime_paths function has
multiple returns, and this helps reliably clean up. */
struct auto_sbitmap_vector
{
auto_sbitmap_vector (sbitmap *s) : ptr (s) {}
auto_sbitmap_vector (const auto_sbitmap_vector &) = delete;
~auto_sbitmap_vector () { sbitmap_vector_free (ptr); }
operator sbitmap* () { return ptr; }
sbitmap* ptr;
};
/* A silly RAII wrpaper for automatically releasing a vec<vec<int>>. */
struct auto_vec_vec : vec<vec<int>>
{
~auto_vec_vec () { release_vec_vec (*this); }
};
/* A silly RAII wrpaper for automatically releasing a vec<vec<vec<int>>>. */
struct auto_vec_vec_vec : vec<vec<vec<int>>>
{
~auto_vec_vec_vec ()
{
for (vec<vec<int>> &v : *this)
release_vec_vec (v);
release ();
}
};
/* A trivial key/value pair for a short linear map type. */
struct xpair
{
int key;
unsigned val;
};
/* A node in a trie, optimized for mid-sized alphabets possibly larger than 256
but not much more. Finding the prime paths ends up creating a large amount
of these nodes so space and access costs matters a lot.
The node does not explicitly store its own key (CFG vertex ID/basic block
index), nor does it store pointers to its successors. Rather, it stores the
key+offset pairs for its successors the root trie object, and in a sense
behaves like near pointers. This makes the trie vertices small and
reloctable, and removes the need for pointer chasing when releasing the trie.
The union of near/far is essentially a short-vector optimization, switching
to a heap-allocated vector when necessary. This happens relatively rarely
(usually maxes out at 1-2%), and the vertices that have more than 2 sucessors
also tend to have more than 4. The root vertex tends to use the dynamic
vector because the subpaths are recorded as the successors of the root.
Conceptually, this is a small map from vertex-id -> index and the API is
modelled as such. The insert and search functions are unrolled by hand when
using the small vector. This has a noticable performance impact on insert in
particular, and is not too complex since we know we are limited to 2
elements.
Vertices are tagged with endofpath and inserted. If endofpath is set, the
path from the root to this vertex is a complete path. If inserted is set
then the vertex is a part of proper path (one given to insert) and not
generated as a suffix. For example:
insert ([2 4 6])
insert ([9 7 2 4 6])
insert ([2 4 6 8])
The inserted flags for [2 4 6] are not cleared, because otherwise [2 4 6 8]
would be dropped when only following inserted vertices. The endofpath flag
in [2 4 6] is cleared when the suffixes of [9 7 2 4 6] are inserted.
The node will be inserted into a vec, and should be trivial. Instances
should be value-initialized to zero-intialized state. */
struct trie_node
{
unsigned length () const
{ return !heaped ? len : far.length (); }
const xpair *begin () const
{ return !heaped ? near : far.begin (); }
const xpair *end () const
{ return !heaped ? (near + len) : far.end (); }
/* Get the ith successor. This is used for traversal and not lookup, and
should only be used by the iterator. */
const xpair &at (unsigned i) const
{ return !heaped ? near[i] : far[i]; }
const xpair *get (int key) const;
void put (int key, unsigned val);
unsigned near_lower_bound (int key) const;
/* Experimentally I found that using a union with 2 elements in the near array
to be faster than 4 or without the union (very slightly). A lot of trie
vertices will be created, and vast majority of vertices will have 1 or 2
successors (straight line or if-then), and the cost of size and copying
adds up. */
union
{
xpair near[2];
vec<xpair> far;
};
unsigned len : 8;
unsigned endofpath : 1;
unsigned inserted : 1;
unsigned heaped : 1;
};
/* Compare LHS.key < RHS.key, for use with vec.lower_bound. */
bool
xpair_less (const xpair& lhs, const xpair& rhs)
{
return lhs.key < rhs.key;
}
/* Compare LHS.key to RHS.key, for use with vec.bsearch. */
int
xpair_cmp (const void *lhs, const void *rhs)
{
return ((const xpair*)lhs)->key - ((const xpair*)rhs)->key;
}
/* Get a pointer to the element at KEY if it exists, otherwise NULL. */
const xpair*
trie_node::get (int key) const
{
if (!heaped)
{
if (len == 0) return NULL;
if (len >= 1 && key == near[0].key) return near + 0;
if (len >= 2 && key == near[1].key) return near + 1;
return NULL;
}
else
{
xpair kv;
kv.key = key;
return const_cast <vec<xpair>&> (far).bsearch (&kv, xpair_cmp);
}
}
/* Put ("emplace") VAL at KEY, extending the paths that pass through this
vertex. This function assumes that KEY is not already a successor, and does
not perform this check. get () should be called and checked for NULL putting
with this function. Put maintains the order of the successors. */
void
trie_node::put (int key, unsigned val)
{
xpair kv;
kv.key = key;
kv.val = val;
if (!heaped)
{
const unsigned i = near_lower_bound (key);
if (len < 2)
{
near[1] = near[0];
near[i] = kv;
len += 1;
}
else
{
/* This insert is the 3rd element, which does not fit in the embedded
storage, so we must create a vector and convert to a far node. */
vec<xpair> xs {};
xs.reserve (13);
xs.quick_grow (3);
gcc_checking_assert (i <= 2);
if (i == 0)
{
xs[0] = kv;
xs[1] = near[0];
xs[2] = near[1];
}
else if (i == 1)
{
xs[0] = near[0];
xs[1] = kv;
xs[2] = near[1];
}
else
{
xs[0] = near[0];
xs[1] = near[1];
xs[2] = kv;
}
far = xs;
heaped = 1;
}
}
else
{
const unsigned i = far.lower_bound (kv, xpair_less);
far.safe_insert (i, kv);
}
}
/* Get the index to the last element that compares less than KEY, similar to
vec.lower_bound. This assumes the near vector is active, and is for internal
use. */
unsigned
trie_node::near_lower_bound (int key) const
{
gcc_checking_assert (!heaped);
if (len == 0) return 0;
if (len >= 1 && key < near[0].key) return 0;
if (len >= 2 && key < near[1].key) return 1;
return len;
}
/* The trie is a major workhorse for this algorithm. It has two key properties
- set-like subpath elimination and sorted output.
Many evaluated paths will be non-prime, that is, a sequence of vertices that
is also fully embedded in a longer sequence of vertices. For example the
path [3 4 5 8] is a subpath of both [2 3 4 5 8] and [3 4 5 8 10]. The
insert_with_suffix function maintains this property so that inserting a
subpath into the trie is effectively a no-op, and inserting a superpath will
effectively remove (unmark) the subpath. Sometimes it can be guaranteed that
no redundant (subpaths) will be generated, in which case the insert function
can be used. The insert function is really only set insert, only becoming a
no-op for identical paths, which will be a lot faster.
Paths can be extracted with an iterator, which will output paths in
lexicographically sorted order. This is an important property because the
index of a path in the sorted set will be used by the coverage to record when
a path is taken and completed. The iterator has different behavior than the
standard C++ iterators, and to avoid mixups the interface is deliberately
different. The iterator has a (large) stack which is not cheap to copy, and
if the stack is shallow copied it would mean iterator copies have non-local
effects. */
struct trie
{
struct iter;
trie ();
trie (const trie &o);
trie (trie &&o);
~trie ();
bool insert (const vec<int>&);
bool insert (const array_slice<const int>);
bool hard_insert (const array_slice<const int>);
bool insert_with_suffix (const array_slice<const int>);
bool insert_suffix (const array_slice<const int>);
void merge (const trie&);
iter paths (vec<int>&) const;
iter paths (vec<int>&, int from) const;
vec<vec<int>> paths () const;
size_t size () const { return len; }
vec<trie_node> vertices;
size_t len;
/* An iterator for the paths of the trie. The iterator yields all paths in
lexicographical order. The iterator will be invalidated on any insertion
into the trie. The iterator should not be constructed directly, but
through the paths functions on the trie. It is essentially an explicit
stack depth-first traversal.
The iter fills a user-provided buffer which should only be read as a when
the iter is active. Whenever next returns true the buffer is filled with
the current path. Uses will generally look like this:
vec<int> path {};
auto iter = trie.paths (path);
while (iter.next ())
use_path (path);
*/
struct iter
{
iter (vec<int>&, const vec<trie_node>&);
iter (int first, vec<int>& path, const vec<trie_node> &vertices);
~iter ()
{ stack.release (); }
bool next ();
bool next (int);
bool next (bool);
/* This is the analog of the stack frame when implementing a recursive
depth-first path traversal and collecting paths to the leafs:
for (auto successor : vertex[ix])
{
path.push (successor.value);
collect (successor.ix, successor.begin, successor.end, path)
path.pop ();
}
Using size_t + 2x unsigned helped make the frame more compact and faster
than pointers. */
struct frame
{
/* The index of this frame's vertex, so that vertices[ix]. */
size_t ix;
/* The index of the current active successor of vertices[ix]. */
unsigned itr;
/* The end of vertices[ix] successors. When itr == end, vertex[ix] is
exhausted. */
unsigned end;
};
/* User provided buffer to fill with the paths. */
vec<int> &path;
/* Direct reference to the trie vertices vector. */
const vec<trie_node> &vertices;
/* The call stack. */
vec<frame> stack;
/* Yield flag. If this is true then next () is permitted to and return a
new value. If this is false, a value has already been yielded and next
must first reset the state before building the next value. */
bool yield = true;
iter (const iter& o) : path (o.path), vertices (o.vertices),
stack (o.stack.copy ()), yield (o.yield)
{
}
/* Delete the copy assignment as the iter stores references and would cause
bad bugs. It is not necessary for the iterator to work well. To support
these the references would need to be (explicit) pointers. */
iter& operator = (const iter& o) = delete;
};
};
/* Construct an iterator filling BUFFER. */
trie::iter
trie::paths (vec<int> &buffer) const
{
buffer.truncate (0);
return iter (buffer, vertices);
}
/* Construct an iterator filling BUFFER for paths starting at FROM. */
trie::iter
trie::paths (vec<int>& buffer, int from) const
{
buffer.truncate (0);
return iter (from, buffer, vertices);
}
/* Default construct a new trie. */
trie::trie () : vertices (vec<trie_node> {}), len (0)
{
vertices.safe_push (trie_node {});
vertices[0].inserted = true;
}
/* Copy construct a new trie. */
trie::trie (const trie &o) : vertices (o.vertices.copy ()), len (o.len)
{
}
/* Move construct a new trie. */
trie::trie (trie &&o) : vertices (o.vertices), len (o.len)
{
o.vertices = {};
o.len = 0;
}
/* Destroy a trie and release all the heaped resources. */
trie::~trie ()
{
for (trie_node &v : vertices)
if (v.heaped)
v.far.release ();
vertices.release ();
}
/* Insert PATH into the trie. */
bool
trie::insert (const vec<int>& path)
{
return insert (array_slice <const int> (path));
}
/* Insert the PATH into the trie. Duplicate entries will not be entered twice.
If PATH is a subpath of another path this will not be detected or if there is
a path previously inserted that is a subpath of PATH then this redundancy
will not be eliminated. For that behavior, call insert_with_suffix. */
bool
trie::insert (array_slice<const int> path)
{
size_t index = 0;
size_t partition = 0;
for (const int v : path)
{
trie_node ¤t = vertices[index];
current.inserted = true;
partition++;
const auto *xp = current.get (v);
if (xp)
{
index = xp->val;
}
else
{
/* A new vertex on this path has been created, which means the rest of
the path will also have to be created. Drain the path and create
the remaining vertices in a single operation. */
unsigned ix = vertices.length ();
current.put (v, ix);
current.endofpath = false;
array_slice<const int> tail (path.begin () + partition,
path.size () - partition);
vertices.safe_grow_cleared (1 + ix + tail.size ());
for (const int v : tail)
{
trie_node &last = vertices[ix];
ix += 1;
last.put (v, ix);
last.inserted = true;
}
vertices.last ().endofpath = true;
vertices.last ().inserted = true;
len += 1;
return true;
}
}
return false;
}
/* hard_insert is like insert, except it does not overwrite any endofpath flags,
and records the endofpath flag even when a superpath of PATH has been
inserted previously. This effectively disables subpath elimination. */
bool
trie::hard_insert (array_slice<const int> path)
{
size_t index = 0;
size_t partition = 0;
for (const int v : path)
{
trie_node ¤t = vertices[index];
current.inserted = true;
partition++;
const auto *xp = current.get (v);
if (xp)
{
index = xp->val;
}
else
{
unsigned ix = vertices.length ();
current.put (v, ix);
array_slice<const int> tail (path.begin () + partition,
path.size () - partition);
vertices.safe_grow_cleared (1 + ix + tail.size ());
for (const int v : tail)
{
trie_node &last = vertices[ix];
ix += 1;
last.put (v, ix);
last.inserted = true;
}
vertices.last ().endofpath = true;
vertices.last ().inserted = true;
len += 1;
return true;
}
}
vertices[index].endofpath = true;
return false;
}
/* Insert a suffixes of PATH. This is identical to insert except that it is
assumed that PATH is a subpath, and that the inserted path should clear the
inserted and endofpath flags. This function should only be called by
insert_with_suffix. */
bool
trie::insert_suffix (array_slice<const int> path)
{
size_t index = 0;
size_t partition = 0;
for (const int v : path)
{
trie_node ¤t = vertices[index];
current.endofpath = false;
partition++;
const auto *xp = current.get (v);
if (xp)
{
index = xp->val;
}
else
{
/* A new vertex on this path has been created, which means the rest of
the path will also have to be created. Drain the path and create
the remaining vertices in a single operation. */
unsigned ix = vertices.length ();
current.put (v, ix);
array_slice<const int> tail (path.begin () + partition,
path.size () - partition);
vertices.safe_grow_cleared (1 + ix + tail.size ());
for (const int v : tail)
{
vertices[ix].put (v, ix + 1);
ix += 1;
}
return true;
}
}
vertices[index].endofpath = false;
return false;
}
/* Insert the paths from OTHER into this trie. */
void
trie::merge (const trie& other)
{
auto_vec<int, 32> p {};
iter itr = other.paths (p);
while (itr.next ())
insert_with_suffix (p);
}
/* Insert PATH and all its subpaths into the trie. This function implements the
redundancy property of the trie - if an inserted path is either a subpath or
superpath of some other path then only the longest will keep its inserted
flag. */
bool
trie::insert_with_suffix (array_slice<const int> path)
{
bool inserted = insert (path);
path = array_slice<const int> (path.begin () + 1, path.size () - 1);
while (inserted && !path.empty ())
{
inserted = insert_suffix (path);
path = array_slice<const int> (path.begin () + 1, path.size () - 1);
}
return inserted;
}
/* Convert the paths of a trie to a vec-of-vec. */
vec<vec<int>>
trie::paths () const
{
vec<int> path {};
vec<vec<int>> all {};
auto iter = paths (path);
while (iter.next ())
all.safe_push (path.copy ());
return all;
}
/* Create an iterator over VERTICES with the caller-provided buffer PATH. */
trie::iter::iter (vec<int> &path, const vec<trie_node> &vertices) : path (path),
vertices (vertices), stack (vec<frame> {})
{
gcc_checking_assert (!vertices.is_empty ());
stack.reserve (13);
frame f;
f.ix = 0;
f.itr = 0;
f.end = vertices[0].length ();
stack.quick_push (f);
}
/* Create an iterator over VERTICES with the caller-provided buffer PATH for all
paths and subpaths (suffixes) starting in FROM. Note that FROM will not be
in the output buffer PATH, mainly because non-rooted paths are used when
splicing with paths that end in FROM. */
trie::iter::iter (int from, vec<int> &path, const vec<trie_node> &vertices) :
path (path), vertices (vertices), stack (vec<frame> {})
{
gcc_checking_assert (!vertices.is_empty ());
stack.reserve (13);
auto *xp = vertices[0].get (from);
if (!xp)
{
/* No paths start with FROM, so construct an iterator where next () always
returns false. */
frame f;
f.ix = 0;
f.itr = 0;
f.end = 0;
stack.safe_push (f);
return;
}
frame f;
f.ix = xp->val;
f.itr = 0;
f.end = vertices[f.ix].length ();
stack.safe_push (f);
}
/* Find the next complete prime path in the trie and write it to the caller's
buffer. Returns true if a path is written and false if the iterator is
exhausted, in which case no path is written and the contents of the buffer is
garbage. */
bool
trie::iter::next ()
{
while (true)
{
frame &top = stack.last ();
const trie_node &vertex = vertices[top.ix];
if (vertex.endofpath && yield
&& (top.itr != top.end || vertex.length () == 0))
{
yield = false;
return true;
}
yield = true;
if (top.itr != top.end)
{
const xpair succ = vertex.at (top.itr);
const trie_node &next = vertices[succ.val];
top.itr++;
if (!next.inserted)
continue;
frame f {};
f.ix = succ.val;
f.itr = 0;
f.end = next.length ();
path.safe_push (succ.key);
stack.safe_push (f);
}
else
{
stack.pop ();
if (stack.is_empty ())
return false;
path.pop ();
}
}
}
/* Find the next path in the trie that would continue (but does not include)
LIMIT. If the trie contains the paths [2 4 6 8 9] [2 4 6 8 10] and [2 4 5
8], iter.next (8) would yield [2 4 6] and [2 4 5]. Returns true if a path is
written and false if the iterator is exhausted, in which case no path is
written and the contents of the buffer is garbage. */
bool
trie::iter::next (int limit)
{
while (true)
{
frame &top = stack.last ();
const trie_node &vertex = vertices[top.ix];
if (yield && top.itr != top.end)
{
const xpair succ = vertex.at (top.itr);
const trie_node &next = vertices[succ.val];
const int key = succ.key;
const int val = succ.val;
top.itr++;
if (!next.inserted)
continue;
if (key == limit)
{
if (path.is_empty ())
continue;
yield = false;
return true;
}
frame f {};
f.ix = val;
f.itr = 0;
f.end = next.length ();
path.safe_push (key);
stack.safe_push (f);
}
else
{
yield = true;
stack.pop ();
if (stack.is_empty ())
return false;
path.pop ();
}
}
}
/* Find the next path in among all paths including subpaths/suffixes. This is
mainly useful in combination with trie.paths (from) for finding the paths
that go through some vertex. */
bool
trie::iter::next (bool)
{
while (true)
{
frame &top = stack.last ();
const trie_node &vertex = vertices[top.ix];
if (yield && vertex.length () == 0)
{
yield = false;
return true;
}
yield = true;
if (top.itr != top.end)
{
const xpair succ = vertex.at (top.itr);
const trie_node &next = vertices[succ.val];
top.itr++;
frame f {};
f.ix = succ.val;
f.itr = 0;
f.end = next.length ();
path.safe_push (succ.key);
stack.safe_push (f);
}
else
{
stack.pop ();
if (stack.is_empty ())
return false;
path.pop ();
}
}
}
/* Return the index of NEEDLE in HAYSTACK, or (size_t)-1 if not found. */
template <typename T>
size_t
index_of (T needle, const vec <T> &haystack)
{
size_t len = haystack.length ();
for (size_t i = 0; i != len; ++i)
if (haystack[i] == needle)
return i;
return (size_t)-1;
}
/* Check if there is an edge in GRAPH from SRC to DST. */
bool
edge_p (const struct graph *graph, int src, int dest)
{
for (struct graph_edge *e = graph->vertices[src].succ; e; e = e->succ_next)
if (e->dest == dest)
return true;
return false;
}
/* Check if PATH is a cycle starting (and ending) with V. */
bool
cycle_p (const vec<int>& path, int v)
{
return path[0] == v && path[path.length ()-1] == v;
}
/* Find the SCC entry-exit paths, the simple paths from ENTRY to EXIT, and add
them to OUT. PRIME_PATHS is the prime paths of the SCC. Paths are hard
inserted into OUT, which disables subpath eliminiation and essentially makes
OUT a compact set. This is important to not eliminate paths from ENTRY to
EXIT which are traversed by other ENTRY/EXIT pairs. Duplicated entries are
removed. */
void
scc_entry_exit_paths (const vec<vec<int>> &internal_pp, int entry, int exit,
trie &out)
{
if (entry == exit)
{
out.hard_insert (array_slice <const int> (&entry, 1));
return;
}
for (const vec<int> &path : internal_pp)
{
const size_t Ven = index_of (entry, path);
const size_t Vex = index_of (exit, path);
if (Ven == (size_t)-1 || Vex == (size_t)-1 || Vex <= Ven)
continue;
const size_t len = (Vex + 1) - Ven;
array_slice <const int> p (path.begin () + Ven, len);
out.hard_insert (p);
}
}
/* Find the SCC exit paths, the simple paths that starts in a non-entry vertex
in the SCC and ends in EXIT and are not a cycles. INTERNAL_PP are the
internal prime paths for the SCC with EXIT as an exit vertex.
Fazli claims the path must not be a subpath of another exit path in the SCC,
but this is only half true: see gcov-29.c/pathcov005a. Subpaths must survive
if they end in a different exit vertex than the superpath, so the hard_insert
is important. */
void
scc_exit_paths (const vec<vec<int>> &prime_paths, int exit, trie &out)
{
trie trie;
for (const vec<int> &path : prime_paths)
{
const size_t Vex = index_of (exit, path);
if (Vex == (size_t)-1 || cycle_p (path, exit))
continue;
array_slice <const int> p (path.begin (), Vex + 1);
trie.insert_with_suffix (p);
}
auto_vec<int> path {};
auto iter = trie.paths (path);
while (iter.next ())
out.hard_insert (path);
}
/* Find the SCC entry paths, the simple paths that start in the entry vertex
ENTRY and are not cycles. INTERNAL_PP are the internal prime paths for the
SCC with ENTRY as an entry vertex. The paths are inserted into OUT. */
void
scc_entry_paths (const vec<vec<int>> &internal_pp, int entry, trie &trie)
{
for (const vec<int> &path : internal_pp)
{
const size_t Ven = index_of (entry, path);
if (Ven == (size_t)-1 || cycle_p (path, entry))
continue;
array_slice <const int> p (path.begin () + Ven, path.length () - Ven);
trie.insert (p);
}
}
/* Worker for cfg_complete_prime_paths. ITR is the current id for the current
path. END is end of the path so that when ITR == END, the walk is completed.
EDGES is the matrix of edges where EDGES[src][dst] is set if there is an edge
from src to dest. PATH is the vertices that make up this walk so far. TRIE
is the output trie where paths are inserted. SCC_ENEX_PATHS are the
entry-exit paths found by the scc_entry_exit_paths function. */
void
cfg_complete_prime_paths1 (const int *itr, const int *end,
const sbitmap *edges,
const vec<vec<vec<int>>> &scc_enex_paths,
vec<int> &path, trie &trie)
{
if (itr == end)
{
trie.insert_with_suffix (path);
return;
}
const unsigned pathlen = path.length ();
const sbitmap succs = edges[path.last ()];
for (const vec<int> &enex : scc_enex_paths[*itr])
{
if (!bitmap_bit_p (succs, enex[0]))
continue;
path.safe_splice (enex);
cfg_complete_prime_paths1 (itr + 1, end, edges, scc_enex_paths,
path, trie);
path.truncate (pathlen);
if (limit_exceed_p (trie.size ()))
return;
}
}
/* Find the complete prime paths of the CFG, the prime paths that start in the
entry vertex and end in the exit vertex. */
trie
cfg_complete_prime_paths (const sbitmap *edges,
const vec<trie> &scc_entry_exit_paths,
const trie &ccfg_prime_paths)
{
trie trie;
auto_vec<int, 16> path {};
auto_vec<int, 16> cfgpp {};
auto_vec_vec_vec scc_enex {};
scc_enex.reserve (scc_entry_exit_paths.length ());
for (size_t i = 0; i != scc_entry_exit_paths.length (); ++i)
{
scc_enex.quick_push (vec<vec<int>> {});
auto iter = scc_entry_exit_paths[i].paths (path);
while (iter.next ())
scc_enex[i].safe_push (path.copy ());
}
auto iter = ccfg_prime_paths.paths (cfgpp);
while (!limit_exceed_p (trie.size ()) && iter.next ())
for (const vec<int> &enex : scc_enex[cfgpp[0]])
{
path.truncate (0);
path.safe_splice (enex);
cfg_complete_prime_paths1 (cfgpp.begin () + 1, cfgpp.end (), edges,
scc_enex, path, trie);
if (limit_exceed_p (trie.size ()))
return trie;
}
return trie;
}
/* Find the SCC exit prime paths, the prime paths that start from a strongly
connected component and end in the end vertex. SCCS is a vector where
SCCS[i] = SCC (vertex_i) so that if vertex[2].component == 5 then SCCS[2] ==
5. SCC_EXIT_PATHS is the output of scc_exit_paths (). COMPLETE_PRIME_PATHS
is the output of cfg_complete_prime_paths ().
This function can suffer under path explosion and will terminate early if
the number of inserts in COMPLETE_PRIME_PATHS exceeds approx_limit. */
trie
scc_exit_prime_paths (const struct graph *cfg, const trie &scc_exit_paths,
const trie &complete_prime_paths)
{
trie trie;
auto_vec<int, 8> path {};
auto_vec<int, 8> r {};
auto_vec<int, 8> q {};
auto exiter = scc_exit_paths.paths (q);
while (exiter.next ())
{
const int Vex = q.last ();
auto iter = complete_prime_paths.paths (r, Vex);
while (iter.next (true))
{
/* There could be multiple Vex in the SCC. Even if scc_exit_paths
did not kill the subpaths, this trie probably would. It can be
assumed that all vertices in q are in the same SCC.
This is an important note, as the Fazli and Afsharchi paper does
not properly capture this subtlety. */
const int p0 = Vex;
const int p1 = r[0];
if (cfg->vertices[p0].component == cfg->vertices[p1].component)
continue;
path.truncate (0);
path.reserve (q.length () + r.length ());
path.splice (q);
path.splice (r);
/* This can probably insert without subpath elimination because:
1. Conflicts are *really* rare (see patmatch in tree.c), but they
do happen.
2. The output of this function is "filtered" through another trie
anyway so the redundant paths generated here will be eliminated
in the consumers at a very low extra cost. */
trie.insert (path);
if (limit_exceed_p (trie.size ()))
return trie;
}
}
return trie;
}
/* Check if PATH in CFG enters the VERTEX's SCC through VERTEX. */
bool
enters_through_p (const struct graph *cfg, const vec<int> &path, int vertex)
{
gcc_checking_assert (!path.is_empty ());
const int last = path.address()[path.length ()-1];
if (cfg->vertices[last].component == cfg->vertices[vertex].component)
return false;
return edge_p (cfg, last, vertex);
};
/* Worker for scc_entry_prime_paths. CFG is the CFG for the function,
SCC_ENTRY_PATHS the accumulated scc_entry_paths for all the SCCs, PRIME_PATHS
is either the result of cfg_complete_prime_paths or exit_prime_paths, and OUT
the output trie.
This function can suffer under path explosion and will terminate early if
the number of inserts in OUT exceeds approx_limit. */
void
scc_entry_prime_paths1 (const struct graph *cfg, const trie &scc_entry_paths,
const trie &prime_paths, trie &out)
{
auto_vec<int, 8> p {};
auto_vec<int, 8> q {};
auto_vec<int, 8> path {};
auto itr = scc_entry_paths.paths (q);
while (itr.next ())
{
const int Ven = q[0];
/* TODO: This might benefit from a reversed trie lookup. */
auto xitr = prime_paths.paths (p);
while (xitr.next (Ven))
{
if (!enters_through_p (cfg, p, Ven))
continue;
path.truncate (0);
path.reserve (p.length () + q.length ());
path.splice (p);
path.splice (q);
out.insert_with_suffix (path);
if (limit_exceed_p (out.size ()))
return;
}
}
}
/* Find the entry prime paths - the prime paths that start in the root and end
in a strongly connected component. CFG is the CFG for this function,
SCC_ENTRY_PATHS the accumulated scc_entry_paths for all the SCCs,
COMPLETE_PRIME_PATHS the result of cfg_complete_prime_paths, and
EXIT_PRIME_PATHS result of exit_prime_paths.
This function can suffer under path explosion and will terminate early if
the return value grows beyond approx_limit. */
trie
scc_entry_prime_paths (const struct graph *cfg,
const trie &scc_entry_paths,
const trie &complete_prime_paths,
const trie &exit_prime_paths)
{
trie trie;
scc_entry_prime_paths1 (cfg, scc_entry_paths, complete_prime_paths, trie);
scc_entry_prime_paths1 (cfg, scc_entry_paths, exit_prime_paths, trie);
return trie;
}
/* Build a new control flow graph from the strongly connected components, so
that every node in the CCFG is a strongly connected component in the original
CFG. NSSC is the number of vertices in the new graph, and the return value
of graphds_ssc. */
struct graph*
build_ccfg (struct graph *cfg, int nscc)
{
struct graph *ccfg = new_graph (nscc);
for (int i = 0; i != cfg->n_vertices; ++i)
{
struct vertex v = cfg->vertices[i];
for (struct graph_edge *e = v.succ; e; e = e->succ_next)
{
int src = v.component;
int dest = cfg->vertices[e->dest].component;
if (src != dest && !edge_p (ccfg, src, dest))
add_edge (ccfg, src, dest);
}
}
return ccfg;
}
/* Create a new graph from CFG where the edges between strongly connected
components removed. */
struct graph*
disconnect_sccs (struct graph *cfg)
{
struct graph *ccfg = new_graph (cfg->n_vertices);
const struct vertex *vertices = cfg->vertices;
for (int i = 0; i != cfg->n_vertices; ++i)
{
ccfg->vertices[i].data = &cfg->vertices[i];
for (struct graph_edge *e = vertices[i].succ; e; e = e->succ_next)
if (vertices[e->src].component == vertices[e->dest].component)
add_edge (ccfg, e->src, e->dest)->data = e;
}
return ccfg;
}
/* Check if vertex I in CFG is the entry vertex of a strongly connected
component. A vertex is an entry vertex if 1) there are no predecessors
(i.e. the root vertex is always an entry vertex) or 2) a predecessor belongs
to a different SCC. */
bool
scc_entry_vertex_p (struct graph *cfg, size_t i)
{
if (!cfg->vertices[i].pred)
return true;
const int scc = cfg->vertices[i].component;
for (struct graph_edge *e = cfg->vertices[i].pred; e; e = e->pred_next)
if (cfg->vertices[e->src].component != scc)
return true;
return false;
}
/* Check if vertex I in CFG is an exit vertex of a strongly connected component.
A vertex is an exit vertex if 1) there are no successors (i.e. the sink is
always an exit vertex) or 2) if a successor belongs to a different SCC. */
bool
scc_exit_vertex_p (struct graph *cfg, size_t i)
{
if (!cfg->vertices[i].succ)
return true;
const int scc = cfg->vertices[i].component;
for (struct graph_edge *e = cfg->vertices[i].succ; e; e = e->succ_next)
if (cfg->vertices[e->dest].component != scc)
return true;
return false;
}
/* Worker for simple_paths. Find all the simple paths in CFG starting at NODE
and insert into OUT. This is a DFS where the search stops when entering a
vertex already in SEEN. PATH is the sequence of ids for the vertices taken
from the from the root to NODE. When the number of inserts reaches LIMIT
the function aborts and returns so the caller can report that it is giving
up because the function is too complex.
This function can suffer under path explosion and will terminate early if
the number of inserts in OUT exceeds approx_limit. */
void
simple_paths1 (const struct graph *cfg, int node, sbitmap seen, vec<int> &path,
trie &out)
{
if (limit_exceed_p (out.size ()))
return;
if (!bitmap_set_bit (seen, node))
{
if (path[0] == node)
path.quick_push (node);
out.insert (path);
if (path[0] == node)
path.pop ();
return;
}
path.quick_push (node);
struct graph_edge *succs = cfg->vertices[node].succ;
if (!succs)
{
out.insert (path);
bitmap_clear_bit (seen, node);
path.pop ();
return;
}
for (struct graph_edge *e = succs; e; e = e->succ_next)
simple_paths1 (cfg, e->dest, seen, path, out);
bitmap_clear_bit (seen, node);
path.pop ();
}
/* Find all the simple paths in CFG starting at ROOT and insert into OUT. A
simple path is a sequence of vertices without any duplicated vertices (i.e.
no loops). SEEN should be an sbitmap of CFG->n_vertices size. PATH and
SEEN will be cleared entry and is for buffer reuse between calls. When the
number of inserts reaches LIMIT the function aborts and returns so the
caller can report that it is giving up because the function is too complex.
Note that there might be fewer prime paths than inserts, but if the number
of inserts alone is larger than LIMIT the function is very complex and would
take too long to compile in later stages.
This function can suffer under path explosion and will terminate early if
the number of inserts in OUT exceeds approx_limit. Since OUT is often
shared between calls it is ok to use in a loop, and only check the size of
OUT after the loop terminates. */
void
simple_paths (struct graph *cfg, int root, sbitmap seen, vec<int> &path,
trie &out)
{
bitmap_clear (seen);
path.reserve (cfg->n_vertices);
path.truncate (0);
simple_paths1 (cfg, root, seen, path, out);
}
/* Merge the tries T1, T2, T3, and set of paths VECS into the larges trie.
Returns a reference to the trie merged into. Merging tries and resolving
redundant paths is the slowest step (at least in the sense it works on the
largest input), and merging into a partial result reduces the work
accordingly. For large problems this is a massive improvement, which in the
worst cases (where all tries but one are empty or almost empty) speed up
30-40%. */
trie&
merge (trie &t1, trie &t2, trie &t3, vec<vec<vec<int>>> &vecs)
{
trie *dst = nullptr;
const size_t s1 = t1.size ();
const size_t s2 = t2.size ();
const size_t s3 = t3.size ();
if (s1 >= s2 && s1 >= s3)
{
dst = &t1;
t1.merge (t2);
t1.merge (t3);
}
else if (s2 >= s1 && s2 >= s3)
{
dst = &t2;
t2.merge (t1);
t2.merge (t3);
}
else
{
dst = &t3;
t3.merge (t1);
t3.merge (t2);
}
gcc_checking_assert (dst);
for (const vec<vec<int>> &v2 : vecs)
for (const vec<int> &v1 : v2)
dst->insert_with_suffix (v1);
return *dst;
}
/* Store the edges of CFG in a matrix of bitmaps so that bit_p (edges[src],
dest) is true if there is an edge from src to dest. This is faster and more
convenient than walking the linked list of successors in hot loops. The
vector will have N bitmaps of N bits where N is the number of vertices in
CFG. */
sbitmap*
edge_matrix (const struct graph *cfg)
{
sbitmap *edges = sbitmap_vector_alloc (cfg->n_vertices, cfg->n_vertices);
bitmap_vector_clear (edges, cfg->n_vertices);
for (int i = 0; i != cfg->n_vertices; ++i)
for (graph_edge *e = cfg->vertices[i].succ; e; e = e->succ_next)
bitmap_set_bit (edges[e->src], e->dest);
return edges;
}
} // namespace
/* Find the prime paths for CFG. The search gives up after approximate
PATHLIMIT probable paths have been generated to address path explosions.
The PATHLIMIT flag is typically controlled by -fpath-coverage-limit. This
function is a part of -fpath-coverage and will also be called from gcov.
The paths are returned in lexicographical order based on node (basic block)
ID. If the path limit was exceeded, an empty vector is returned.
A simple path is a path where all vertices are unique, except possibly the
first and last. A prime path is a maximal-length simple path which is not a
part of any other simple path. Prime paths strike a good balance between
coverage thoroughness, loops (requiring them to be taken and skipped), and
number of paths.
The algorithm is based on Fazli & Afsharchi's "A Time and Space-Efficient
Compositional Method for Prime and Test Paths Generation" (2019), combined
with a suffix trie for removing duplicate or redundant paths. An auxillary
graph of the strongly connected components (SCCs) is built. Then, the prime
paths of the SCCs composes the prime paths of each SCC with the prime paths
of this auxillary graph. This can drastically cut the number of redundant
paths generated compared to a naive algorithm.
This does not work for all graphs. Some structures, e.g. when most of the
graph is inside a single SCC, cause the algorithm to degenerate to a naive
one. The same happens for functions with many SCCs that are either
singletons or very small. Those cases will be slower with respect to the
number of paths, but still fast enough if the path limit is kept reasonably
low (a few hundred thousand). */
vec<vec<int>>
prime_paths (struct graph *cfg, size_t pathlimit)
{
const int nscc = graphds_scc (cfg, NULL);
auto_graph disconnected (disconnect_sccs (cfg));
auto_graph ccfg (build_ccfg (cfg, nscc));
auto_sbitmap_vector edges (edge_matrix (cfg));
auto_sbitmap seen (cfg->n_vertices);
auto_vec<int, 8> pathbuf {};
limit_reset (pathlimit);
/* Store an SCC-ID -> vertices mapping to quickly find the vertices that
make up a strongly connected component. */
auto_vec_vec sccs {};
sccs.safe_grow_cleared (ccfg->n_vertices);
for (int i = 0; i != cfg->n_vertices; ++i)
sccs[cfg->vertices[i].component].safe_push (i);
auto_vec_vec_vec scc_internal_pp {};
scc_internal_pp.safe_grow_cleared (nscc);
for (int i = 0; i != nscc; ++i)
{
trie internal_pp;
for (int V : sccs[i])
simple_paths (disconnected, V, seen, pathbuf, internal_pp);
if (limit_exceed_p (internal_pp.size ()))
return {};
scc_internal_pp[i] = internal_pp.paths ();
if (limit_checked_add (scc_internal_pp[i].length ()))
return {};
}
auto_vec<trie, 8> scc_enex_paths (nscc);
scc_enex_paths.safe_grow_cleared (nscc);
trie scc_en_paths;
trie scc_ex_paths;
for (int i = 0; i != ccfg->n_vertices; ++i)
{
for (int Ven : sccs[i])
{
if (!scc_entry_vertex_p (cfg, Ven))
continue;
for (int Vex : sccs[i])
{
if (!scc_exit_vertex_p (cfg, Vex))
continue;
scc_entry_exit_paths (scc_internal_pp[i], Ven, Vex,
scc_enex_paths[i]);
}
}
}
for (int i = 0; i != cfg->n_vertices; ++i)
{
const int scc = cfg->vertices[i].component;
if (scc_entry_vertex_p (cfg, i))
scc_entry_paths (scc_internal_pp[scc], i, scc_en_paths);
if (scc_exit_vertex_p (cfg, i))
scc_exit_paths (scc_internal_pp[scc], i, scc_ex_paths);
}
/* In the presence of abnormal edges (like longjmp) it is possible to have
multiple "entry points" in function -- build ccfg prime paths starting at
any vertex without predecessor. For most graphs this will only be the
ENTRY_BLOCK. */
trie ccfg_prime_paths;
for (int i = 0; i != ccfg->n_vertices; ++i)
if (!ccfg->vertices[i].pred)
simple_paths (ccfg, i, seen, pathbuf, ccfg_prime_paths);
if (limit_exceed_p (ccfg_prime_paths.size ()))
return {};
trie complete_prime_paths = cfg_complete_prime_paths (edges, scc_enex_paths,
ccfg_prime_paths);
if (limit_checked_add (complete_prime_paths.size ()))
return {};
trie exit_prime_paths = scc_exit_prime_paths (cfg, scc_ex_paths,
complete_prime_paths);
if (limit_checked_add (exit_prime_paths.size ()))
return {};
trie entry_prime_paths = scc_entry_prime_paths (cfg, scc_en_paths,
complete_prime_paths,
exit_prime_paths);
if (limit_checked_add (entry_prime_paths.size ()))
return {};
trie &merged = merge (complete_prime_paths, entry_prime_paths,
exit_prime_paths, scc_internal_pp);
if (merged.size () > pathlimit)
return {};
return merged.paths ();
}
#if CHECKING_P
namespace selftest
{
/* Check if the trie contains PATH. */
static bool
contains (const trie &trie, array_slice<const int> path)
{
size_t index = 0;
for (int id : path)
{
const trie_node ¤t = trie.vertices[index];
if (!current.inserted)
return false;
const auto *xp = current.get (id);
if (!xp)
return false;
index = xp->val;
}
return trie.vertices[index].inserted && trie.vertices[index].endofpath;
}
static bool
equal_p (array_slice<const int> lhs, array_slice<const int> rhs)
{
if (lhs.size () != rhs.size ())
return false;
size_t length = lhs.size ();
for (size_t i = 0; i != length; ++i)
if (lhs[i] != rhs[i])
return false;
return true;
}
static bool
any_equal_p (const array_slice<const int> &needle,
const vec<vec<int>> &haystack)
{
for (const vec<int> &x : haystack)
if (equal_p (needle, array_slice <const int> (x)))
return true;
return false;
}
static size_t
count (const trie &trie)
{
size_t n = 0;
auto_vec<int> path {};
auto iter = trie.paths (path);
while (iter.next ())
n += 1;
return n;
}
static vec<vec<int>>
simple_paths (struct graph *cfg, trie &trie, int root = 0)
{
auto_sbitmap seen (cfg->n_vertices);
auto_vec<int> path;
simple_paths (cfg, root, seen, path, trie);
return trie.paths ();
}
/* Create a CFG that roughly corresponds to this program:
int binary_search(int a[], int len, int from, int to, int key)
{
int low = from;
int high = to - 1;
while (low <= high)
{
int mid = (low + high) >> 1;
long midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -1;
}
This program would emit a CFG very similar to the CFG used by Fazli &
Afsharchi (2019). The selftest cases are built from the partial paths used
in that paper. */
static struct graph*
binary_search_cfg ()
{
struct graph *g = new_graph (11);
add_edge (g, 0, 1);
add_edge (g, 1, 2);
add_edge (g, 2, 3);
add_edge (g, 2, 4);
add_edge (g, 3, 10);
add_edge (g, 4, 5);
add_edge (g, 4, 6);
add_edge (g, 5, 7);
add_edge (g, 6, 8);
add_edge (g, 6, 9);
add_edge (g, 7, 2);
add_edge (g, 8, 10);
add_edge (g, 9, 7);
graphds_scc (g, NULL);
return g;
}
/* Test a full run of the algorithm against a known graph (binary-search). */
static void
test_prime_paths ()
{
auto_graph g (binary_search_cfg ());
vec<vec<int>> paths = prime_paths (g, 100);
const int p01[] = { 0, 1, 2, 3, 10 };
const int p02[] = { 0, 1, 2, 4, 6, 8, 10 };
const int p03[] = { 5, 7, 2, 4, 6, 9 };
const int p04[] = { 4, 6, 9, 7, 2, 4 };
const int p05[] = { 2, 4, 6, 9, 7, 2 };
const int p06[] = { 6, 9, 7, 2, 4, 6 };
const int p07[] = { 9, 7, 2, 4, 6, 9 };
const int p08[] = { 7, 2, 4, 6, 9, 7 };
const int p09[] = { 6, 9, 7, 2, 4, 5 };
const int p10[] = { 4, 5, 7, 2, 4 };
const int p11[] = { 2, 4, 5, 7, 2 };
const int p12[] = { 5, 7, 2, 4, 5 };
const int p13[] = { 7, 2, 4, 5, 7 };
const int p14[] = { 4, 6, 9, 7, 2, 3, 10 };
const int p15[] = { 5, 7, 2, 4, 6, 8, 10 };
const int p16[] = { 9, 7, 2, 4, 6, 8, 10 };
const int p17[] = { 4, 5, 7, 2, 3, 10 };
const int p18[] = { 0, 1, 2, 4, 6, 9, 7 };
const int p19[] = { 0, 1, 2, 4, 5, 7 };
ASSERT_EQ (paths.length (), 19);
ASSERT_TRUE (any_equal_p (p01, paths));
ASSERT_TRUE (any_equal_p (p02, paths));
ASSERT_TRUE (any_equal_p (p03, paths));
ASSERT_TRUE (any_equal_p (p04, paths));
ASSERT_TRUE (any_equal_p (p05, paths));
ASSERT_TRUE (any_equal_p (p06, paths));
ASSERT_TRUE (any_equal_p (p07, paths));
ASSERT_TRUE (any_equal_p (p08, paths));
ASSERT_TRUE (any_equal_p (p09, paths));
ASSERT_TRUE (any_equal_p (p10, paths));
ASSERT_TRUE (any_equal_p (p11, paths));
ASSERT_TRUE (any_equal_p (p12, paths));
ASSERT_TRUE (any_equal_p (p13, paths));
ASSERT_TRUE (any_equal_p (p14, paths));
ASSERT_TRUE (any_equal_p (p15, paths));
ASSERT_TRUE (any_equal_p (p16, paths));
ASSERT_TRUE (any_equal_p (p17, paths));
ASSERT_TRUE (any_equal_p (p18, paths));
ASSERT_TRUE (any_equal_p (p19, paths));
release_vec_vec (paths);
}
/* The strongly connected component graph for binary_search looks like
this, using the vertex numbers from the original graph:
START
|
1
|
2 (SCC)
/ \
3 8
\ /
END
The components gets renumbered by graphds_scc, so the ccfg looks like
this. The actual numbers don't matter as long as the structure of the
graph is preserved, and this test is now sensitive to the numbering set
by graphds_scc. It does not have to be - if that function should reverse
the numbering this test must be updated.
5
|
4
|
3 (SCC)
/ \
2 1
\ /
0
*/
static void
test_build_ccfg ()
{
auto_graph cfg (binary_search_cfg ());
const int nscc = graphds_scc (cfg, NULL);
auto_graph ccfg (build_ccfg (cfg, nscc));
ASSERT_EQ (6, nscc);
ASSERT_TRUE (edge_p (ccfg, 5, 4));
ASSERT_TRUE (edge_p (ccfg, 4, 3));
ASSERT_TRUE (edge_p (ccfg, 3, 2));
ASSERT_TRUE (edge_p (ccfg, 3, 1));
ASSERT_TRUE (edge_p (ccfg, 2, 0));
ASSERT_TRUE (edge_p (ccfg, 1, 0));
}
/* This test checks some basic assumptions on finding the strongly connected
components and disconnecting the graph by removing all edges between SCCs.
Creating a single auxillary graph simplifies the bookkeeping. */
static void
test_split_components ()
{
auto_graph cfg (binary_search_cfg ());
int nscc = graphds_scc (cfg, NULL);
auto_graph ccfg (disconnect_sccs (cfg));
vec<vec<int>> entries {};
vec<vec<int>> exits {};
entries.safe_grow_cleared (nscc);
exits.safe_grow_cleared (nscc);
for (int i = 0; i != cfg->n_vertices; ++i)
{
if (scc_entry_vertex_p (cfg, i))
entries[cfg->vertices[i].component].safe_push (i);
if (scc_exit_vertex_p (cfg, i))
exits[cfg->vertices[i].component].safe_push (i);
}
const int p10[] = { 10 };
const int p08[] = { 8 };
const int p03[] = { 3 };
const int p02[] = { 2 };
const int p01[] = { 1 };
const int p00[] = { 0 };
const int p26[] = { 2, 6 };
ASSERT_EQ (entries.length (), 6);
ASSERT_TRUE (any_equal_p (p10, entries));
ASSERT_TRUE (any_equal_p (p08, entries));
ASSERT_TRUE (any_equal_p (p03, entries));
ASSERT_TRUE (any_equal_p (p02, entries));
ASSERT_TRUE (any_equal_p (p01, entries));
ASSERT_TRUE (any_equal_p (p00, entries));
ASSERT_EQ (exits.length (), 6);
ASSERT_TRUE (any_equal_p (p10, exits));
ASSERT_TRUE (any_equal_p (p08, exits));
ASSERT_TRUE (any_equal_p (p03, exits));
ASSERT_TRUE (any_equal_p (p26, exits));
ASSERT_TRUE (any_equal_p (p01, exits));
ASSERT_TRUE (any_equal_p (p00, exits));
/* The result of disconnect_sccs () disconnects the graph into its strongly
connected components. The subgraphs are either singletons (a single
vertex with no edges) or graphs with cycles. The SCC internal prime
paths can be found by running a DFS from every SCC vertex, terminating
on a duplicated vertex. This may create some redundant paths still,
which must be filtered out.
Singletons can either be detected and skipped (requires counting the
components) or filtered after. For this test case they are skipped
because other graph inconsistencies are easier to detect. */
/* Count and check singleton components. */
vec<int> scc_size {};
scc_size.safe_grow_cleared (nscc);
for (int i = 0; i != cfg->n_vertices; ++i)
scc_size[cfg->vertices[i].component]++;
ASSERT_EQ (nscc, 6);
ASSERT_EQ (scc_size[0], 1);
ASSERT_EQ (scc_size[1], 1);
ASSERT_EQ (scc_size[2], 1);
ASSERT_EQ (scc_size[3], 6);
ASSERT_EQ (scc_size[4], 1);
ASSERT_EQ (scc_size[5], 1);
/* Manually unroll the loop finding the simple paths starting at the
vertices in the SCCs. In this case there is only the one SCC. */
trie ccfg_paths;
simple_paths (ccfg, ccfg_paths, 2);
simple_paths (ccfg, ccfg_paths, 4);
simple_paths (ccfg, ccfg_paths, 5);
simple_paths (ccfg, ccfg_paths, 6);
simple_paths (ccfg, ccfg_paths, 7);
simple_paths (ccfg, ccfg_paths, 9);
/* Then in+out of trie. */
vec<vec<int>> xscc_internal_pp = ccfg_paths.paths ();
trie scc_internal_pp;
for (auto &p : xscc_internal_pp)
scc_internal_pp.insert_with_suffix (p);
const int pp01[] = { 5, 7, 2, 4, 6, 9 };
const int pp02[] = { 4, 5, 7, 2, 4 };
const int pp03[] = { 4, 6, 9, 7, 2, 4 };
const int pp04[] = { 2, 4, 5, 7, 2 };
const int pp05[] = { 2, 4, 6, 9, 7, 2 };
const int pp06[] = { 5, 7, 2, 4, 5 };
const int pp07[] = { 6, 9, 7, 2, 4, 6 };
const int pp08[] = { 7, 2, 4, 5, 7 };
const int pp09[] = { 9, 7, 2, 4, 6, 9 };
const int pp10[] = { 7, 2, 4, 6, 9, 7 };
const int pp11[] = { 6, 9, 7, 2, 4, 5 };
ASSERT_EQ (count (scc_internal_pp), 11);
ASSERT_TRUE (contains (scc_internal_pp, pp01));
ASSERT_TRUE (contains (scc_internal_pp, pp02));
ASSERT_TRUE (contains (scc_internal_pp, pp03));
ASSERT_TRUE (contains (scc_internal_pp, pp04));
ASSERT_TRUE (contains (scc_internal_pp, pp05));
ASSERT_TRUE (contains (scc_internal_pp, pp06));
ASSERT_TRUE (contains (scc_internal_pp, pp07));
ASSERT_TRUE (contains (scc_internal_pp, pp08));
ASSERT_TRUE (contains (scc_internal_pp, pp09));
ASSERT_TRUE (contains (scc_internal_pp, pp10));
ASSERT_TRUE (contains (scc_internal_pp, pp11));
}
/* The remaining tests deconstructs the algorithm and runs only a single phase
with good inputs at that point. This makes it easier to pinpoint where
things go wrong, and helps show in steps how the algorithm works and the
phases relate.
The phases and their inputs and outputs are bazed on Fazli & Afshsarchi. */
static void
test_scc_internal_prime_paths ()
{
/* This graph has only the SCC subgraph. The result of running prime-paths
on it should be the SCC internal prime paths of the full graph. */
auto_graph scc (new_graph (11));
add_edge (scc, 0, 2);
add_edge (scc, 2, 4);
add_edge (scc, 4, 5);
add_edge (scc, 4, 6);
add_edge (scc, 5, 7);
add_edge (scc, 6, 9);
add_edge (scc, 9, 7);
add_edge (scc, 7, 2);
vec<vec<int>> paths = prime_paths (scc, 100);
const int p01[] = { 5, 7, 2, 4, 6, 9 };
const int p02[] = { 4, 6, 9, 7, 2, 4 };
const int p03[] = { 2, 4, 6, 9, 7, 2 };
const int p04[] = { 6, 9, 7, 2, 4, 6 };
const int p05[] = { 9, 7, 2, 4, 6, 9 };
const int p06[] = { 7, 2, 4, 6, 9, 7 };
const int p07[] = { 6, 9, 7, 2, 4, 5 };
const int p08[] = { 4, 5, 7, 2, 4 };
const int p09[] = { 2, 4, 5, 7, 2 };
const int p10[] = { 5, 7, 2, 4, 5 };
const int p11[] = { 7, 2, 4, 5, 7 };
ASSERT_TRUE (any_equal_p (p01, paths));
ASSERT_TRUE (any_equal_p (p02, paths));
ASSERT_TRUE (any_equal_p (p03, paths));
ASSERT_TRUE (any_equal_p (p04, paths));
ASSERT_TRUE (any_equal_p (p05, paths));
ASSERT_TRUE (any_equal_p (p06, paths));
ASSERT_TRUE (any_equal_p (p07, paths));
ASSERT_TRUE (any_equal_p (p08, paths));
ASSERT_TRUE (any_equal_p (p09, paths));
ASSERT_TRUE (any_equal_p (p10, paths));
ASSERT_TRUE (any_equal_p (p11, paths));
release_vec_vec (paths);
}
/* Test the entry/exit path helpers for the strongly connected component in
binary_search. The SCC has one entry (2, the loop header) and two exits (2,
6, the loop exit and return). */
static void
test_scc_entry_exit_paths ()
{
auto_graph scc (new_graph (11));
add_edge (scc, 2, 4);
add_edge (scc, 4, 5);
add_edge (scc, 4, 6);
add_edge (scc, 5, 7);
add_edge (scc, 6, 9);
add_edge (scc, 9, 7);
add_edge (scc, 7, 2);
trie scc_internal_trie;
simple_paths (scc, scc_internal_trie, 2);
simple_paths (scc, scc_internal_trie, 4);
simple_paths (scc, scc_internal_trie, 5);
simple_paths (scc, scc_internal_trie, 6);
simple_paths (scc, scc_internal_trie, 7);
simple_paths (scc, scc_internal_trie, 9);
vec<vec<int>> scc_prime_paths = scc_internal_trie.paths ();
trie entry_exits {};
scc_entry_exit_paths (scc_prime_paths, 2, 2, entry_exits);
scc_entry_exit_paths (scc_prime_paths, 2, 6, entry_exits);
const int p01[] = { 2 };
const int p02[] = { 2, 4, 6 };
ASSERT_EQ (count (entry_exits), 2);
ASSERT_TRUE (contains (entry_exits, p01));
ASSERT_TRUE (contains (entry_exits, p02));
trie exits;
scc_exit_paths (scc_prime_paths, 2, exits);
scc_exit_paths (scc_prime_paths, 6, exits);
const int p03[] = { 4, 6, 9, 7, 2 };
const int p04[] = { 5, 7, 2, 4, 6 };
const int p05[] = { 9, 7, 2, 4, 6 };
const int p06[] = { 4, 5, 7, 2 };
ASSERT_EQ (count (exits), 4);
ASSERT_TRUE (contains (exits, p03));
ASSERT_TRUE (contains (exits, p04));
ASSERT_TRUE (contains (exits, p05));
ASSERT_TRUE (contains (exits, p06));
trie entries;
scc_entry_paths (scc_prime_paths, 2, entries);
const int p07[] = { 2, 4, 6, 9, 7 };
const int p08[] = { 2, 4, 5, 7 };
ASSERT_EQ (count (entries), 2);
ASSERT_TRUE (contains (entries, p07));
ASSERT_TRUE (contains (entries, p08));
release_vec_vec (scc_prime_paths);
}
static void
test_complete_prime_paths ()
{
const int ccfgpp0[] = { 0, 1, 2, 3, 5 };
const int ccfgpp1[] = { 0, 1, 2, 4, 5 };
trie ccfg_prime_paths {};
ccfg_prime_paths.insert (ccfgpp0);
ccfg_prime_paths.insert (ccfgpp1);
const int scc0[] = { 2 };
const int scc1[] = { 2, 4, 6 };
const int ccfg_single[] = { 0, 1, 3, 8, 10 };
auto_graph cfg (binary_search_cfg ());
auto_sbitmap_vector edges (sbitmap_vector_alloc (cfg->n_vertices,
cfg->n_vertices));
bitmap_vector_clear (edges, cfg->n_vertices);
for (int i = 0; i != cfg->n_vertices; ++i)
for (graph_edge *e = cfg->vertices[i].succ; e; e = e->succ_next)
bitmap_set_bit (edges[e->src], e->dest);
vec<trie> ccfg_paths {};
ccfg_paths.safe_grow_cleared (6);
ccfg_paths[0].insert (array_slice <const int> (ccfg_single + 0, 1));
ccfg_paths[1].insert (array_slice <const int> (ccfg_single + 1, 1));
ccfg_paths[3].insert (array_slice <const int> (ccfg_single + 2, 1));
ccfg_paths[4].insert (array_slice <const int> (ccfg_single + 3, 1));
ccfg_paths[5].insert (array_slice <const int> (ccfg_single + 4, 1));
/* The paths for the SCC would need to be updated in ccfg pre pass. This
feels like a clumsy interface and should maybe be disconnected from the
struct graph. */
ccfg_paths[2].hard_insert (scc0);
ccfg_paths[2].hard_insert (scc1);
trie cpp = cfg_complete_prime_paths (edges, ccfg_paths, ccfg_prime_paths);
const int p01[] = { 0, 1, 2, 3, 10 };
const int p02[] = { 0, 1, 2, 4, 6, 8, 10 };
ASSERT_EQ (count (cpp), 2);
ASSERT_TRUE (contains (cpp, p01));
ASSERT_TRUE (contains (cpp, p02));
}
static vec<int>
binary_search_scc_map ()
{
vec<int> sccs {};
sccs.safe_grow (11);
sccs[0] = 0;
sccs[1] = 1;
sccs[2] = 2;
sccs[3] = 3;
sccs[4] = 2;
sccs[5] = 2;
sccs[6] = 2;
sccs[7] = 2;
sccs[8] = 4;
sccs[9] = 2;
sccs[10] = 5;
return sccs;
}
static void
test_exit_prime_paths ()
{
const int cpp01[] = { 0, 1, 2, 3, 10 };
const int cpp02[] = { 0, 1, 2, 4, 6, 8, 10 };
trie complete_prime_paths {};
complete_prime_paths.insert_with_suffix (cpp01);
complete_prime_paths.insert_with_suffix (cpp02);
const int ep01[] = { 4, 6, 9, 7, 2 };
const int ep02[] = { 5, 7, 2, 4, 6 };
const int ep03[] = { 9, 7, 2, 4, 6 };
const int ep04[] = { 4, 5, 7, 2 };
trie exit_paths;
exit_paths.insert (ep01);
exit_paths.insert (ep02);
exit_paths.insert (ep03);
exit_paths.insert (ep04);
auto_graph cfg (binary_search_cfg ());
trie epp = scc_exit_prime_paths (cfg, exit_paths, complete_prime_paths);
const int pp01[] = { 4, 6, 9, 7, 2, 3, 10 };
const int pp02[] = { 5, 7, 2, 4, 6, 8, 10 };
const int pp03[] = { 9, 7, 2, 4, 6, 8, 10 };
const int pp04[] = { 4, 5, 7, 2, 3, 10 };
ASSERT_EQ (count (epp), 4);
ASSERT_TRUE (contains (epp, pp01));
ASSERT_TRUE (contains (epp, pp02));
ASSERT_TRUE (contains (epp, pp03));
ASSERT_TRUE (contains (epp, pp04));
}
static void
test_entry_prime_paths ()
{
auto_graph cfg (binary_search_cfg ());
static int sccep01[] = { 2, 4, 6, 9, 7 };
static int sccep02[] = { 2, 4, 5, 7 };
trie scc_entry_paths;
scc_entry_paths.insert (sccep01);
scc_entry_paths.insert (sccep02);
const int cpp01[] = { 0, 1, 2, 3, 10 };
const int cpp02[] = { 0, 1, 2, 4, 6, 8, 10 };
trie complete_prime_paths {};
complete_prime_paths.insert (cpp01);
complete_prime_paths.insert (cpp02);
const int ep01[] = { 4, 6, 9, 7, 2, 3, 10 };
const int ep02[] = { 5, 7, 2, 4, 6, 8, 10 };
const int ep03[] = { 9, 7, 2, 4, 6, 8, 10 };
const int ep04[] = { 4, 5, 7, 2, 3, 10 };
trie exit_prime_paths {};
exit_prime_paths.insert (ep01);
exit_prime_paths.insert (ep02);
exit_prime_paths.insert (ep03);
exit_prime_paths.insert (ep04);
vec<int> sccs = binary_search_scc_map ();
trie epp = scc_entry_prime_paths (cfg, scc_entry_paths,
complete_prime_paths,
exit_prime_paths);
/* The 0 (start node) does not show up in the Fazli & Afsharchi paper and
kinda, but has no real impact on the result. The prime-paths functions
do not care about these vertices, but the path-coverage instrumentation
filters out the ENTRY/EXIT blocks from all the paths. */
const int pp01[] = { 0, 1, 2, 4, 6, 9, 7 };
const int pp02[] = { 0, 1, 2, 4, 5, 7 };
ASSERT_EQ (count (epp), 2);
ASSERT_TRUE (contains (epp, pp01));
ASSERT_TRUE (contains (epp, pp02));
}
/* A straight-line graph with one vertex should yield a single path of length 1
with just the non-exit non-entry node in it. */
void
test_singleton_path ()
{
auto_graph cfg (new_graph (3));
add_edge (cfg, 0, 2);
add_edge (cfg, 2, 1);
vec<vec<int>> paths = prime_paths (cfg, 100);
ASSERT_EQ (paths.length (), 1);
ASSERT_EQ (paths[0].length (), 3);
ASSERT_EQ (paths[0][0], 0);
ASSERT_EQ (paths[0][1], 2);
ASSERT_EQ (paths[0][2], 1);
release_vec_vec (paths);
}
void
path_coverage_cc_tests ()
{
limit_reset (250000);
test_prime_paths ();
test_build_ccfg ();
test_split_components ();
test_scc_internal_prime_paths ();
test_scc_entry_exit_paths ();
test_complete_prime_paths ();
test_exit_prime_paths ();
test_entry_prime_paths ();
test_singleton_path ();
}
} // namespace selftest
#endif /* #if CHECKING_P */
|