1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
/* Branch prediction routines for the GNU compiler.
Copyright (C) 2000, 2001 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* References:
[1] "Branch Prediction for Free"
Ball and Larus; PLDI '93.
[2] "Static Branch Frequency and Program Profile Analysis"
Wu and Larus; MICRO-27.
[3] "Corpus-based Static Branch Prediction"
Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95.
*/
#include "config.h"
#include "system.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "insn-config.h"
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "function.h"
#include "except.h"
#include "toplev.h"
#include "recog.h"
#include "expr.h"
#include "predict.h"
/* Random guesstimation given names. */
#define PROB_NEVER (0)
#define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 10 - 1)
#define PROB_UNLIKELY (REG_BR_PROB_BASE * 4 / 10 - 1)
#define PROB_EVEN (REG_BR_PROB_BASE / 2)
#define PROB_LIKELY (REG_BR_PROB_BASE - PROB_UNLIKELY)
#define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
#define PROB_ALWAYS (REG_BR_PROB_BASE)
static void combine_predictions_for_insn PARAMS ((rtx, basic_block));
static void dump_prediction PARAMS ((enum br_predictor, int,
basic_block));
/* Information we hold about each branch predictor.
Filled using information from predict.def. */
struct predictor_info
{
const char *name; /* Name used in the debugging dumps. */
int hitrate; /* Expected hitrate used by
predict_insn_def call. */
};
#define DEF_PREDICTOR(ENUM, NAME, HITRATE) {NAME, HITRATE},
struct predictor_info predictor_info[] = {
#include "predict.def"
/* Upper bound on non-language-specific builtins. */
{NULL, 0}
};
#undef DEF_PREDICTOR
void
predict_insn (insn, predictor, probability)
rtx insn;
int probability;
enum br_predictor predictor;
{
if (!any_condjump_p (insn))
abort ();
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_BR_PRED,
gen_rtx_CONCAT (VOIDmode,
GEN_INT ((int) predictor),
GEN_INT ((int) probability)),
REG_NOTES (insn));
}
/* Predict insn by given predictor. */
void
predict_insn_def (insn, predictor, taken)
rtx insn;
enum br_predictor predictor;
enum prediction taken;
{
int probability = predictor_info[(int) predictor].hitrate;
if (taken != TAKEN)
probability = REG_BR_PROB_BASE - probability;
predict_insn (insn, predictor, probability);
}
/* Predict edge E with given probability if possible. */
void
predict_edge (e, predictor, probability)
edge e;
int probability;
enum br_predictor predictor;
{
rtx last_insn;
last_insn = e->src->end;
/* We can store the branch prediction information only about
conditional jumps. */
if (!any_condjump_p (last_insn))
return;
/* We always store probability of branching. */
if (e->flags & EDGE_FALLTHRU)
probability = REG_BR_PROB_BASE - probability;
predict_insn (last_insn, predictor, probability);
}
/* Predict edge E by given predictor if possible. */
void
predict_edge_def (e, predictor, taken)
edge e;
enum br_predictor predictor;
enum prediction taken;
{
int probability = predictor_info[(int) predictor].hitrate;
if (taken != TAKEN)
probability = REG_BR_PROB_BASE - probability;
predict_edge (e, predictor, probability);
}
/* Invert all branch predictions or probability notes in the INSN. This needs
to be done each time we invert the condition used by the jump. */
void
invert_br_probabilities (insn)
rtx insn;
{
rtx note = REG_NOTES (insn);
while (note)
{
if (REG_NOTE_KIND (note) == REG_BR_PROB)
XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
else if (REG_NOTE_KIND (note) == REG_BR_PRED)
XEXP (XEXP (note, 0), 1)
= GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
note = XEXP (note, 1);
}
}
/* Dump information about the branch prediction to the output file. */
static void
dump_prediction (predictor, probability, bb)
enum br_predictor predictor;
int probability;
basic_block bb;
{
edge e = bb->succ;
if (!rtl_dump_file)
return;
while (e->flags & EDGE_FALLTHRU)
e = e->succ_next;
fprintf (rtl_dump_file, " %s heuristics: %.1f%%",
predictor_info[predictor].name,
probability * 100.0 / REG_BR_PROB_BASE);
if (bb->count)
fprintf (rtl_dump_file, " exec %i hit %i (%.1f%%)",
bb->count, e->count, e->count * 100.0 / bb->count);
fprintf (rtl_dump_file, "\n");
}
/* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
note if not already present. Remove now useless REG_BR_PRED notes. */
static void
combine_predictions_for_insn (insn, bb)
rtx insn;
basic_block bb;
{
rtx prob_note = find_reg_note (insn, REG_BR_PROB, 0);
rtx *pnote = ®_NOTES (insn);
int best_probability = PROB_EVEN;
int best_predictor = END_PREDICTORS;
if (rtl_dump_file)
fprintf (rtl_dump_file, "Predictions for insn %i\n", INSN_UID (insn));
/* We implement "first match" heuristics and use probability guessed
by predictor with smallest index. In future we will use better
probability combination techniques. */
while (*pnote)
{
rtx *next_pnote = &XEXP (*pnote, 1);
if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
{
int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
dump_prediction (predictor, probability, bb);
if (best_predictor > predictor)
best_probability = probability, best_predictor = predictor;
*pnote = XEXP (*pnote, 1);
}
pnote = next_pnote;
}
dump_prediction (PRED_FIRST_MATCH, best_probability, bb);
if (!prob_note)
{
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_BR_PROB,
GEN_INT (best_probability), REG_NOTES (insn));
}
}
/* Statically estimate the probability that a branch will be taken.
??? In the next revision there will be a number of other predictors added
from the above references. Further, each heuristic will be factored out
into its own function for clarity (and to facilitate the combination of
predictions). */
void
estimate_probability (loops_info)
struct loops *loops_info;
{
sbitmap *dominators, *post_dominators;
int i;
dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
post_dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
calculate_dominance_info (NULL, dominators, 0);
calculate_dominance_info (NULL, post_dominators, 1);
/* Try to predict out blocks in a loop that are not part of a
natural loop. */
for (i = 0; i < loops_info->num; i++)
{
int j;
for (j = loops_info->array[i].first->index;
j <= loops_info->array[i].last->index;
++j)
{
if (TEST_BIT (loops_info->array[i].nodes, j))
{
int header_found = 0;
edge e;
/* Loop branch heruistics - predict as taken an edge back to
a loop's head. */
for (e = BASIC_BLOCK(j)->succ; e; e = e->succ_next)
if (e->dest == loops_info->array[i].header)
{
header_found = 1;
predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
}
/* Loop exit heruistics - predict as not taken an edge exiting
the loop if the conditinal has no loop header successors */
if (!header_found)
for (e = BASIC_BLOCK(j)->succ; e; e = e->succ_next)
if (e->dest->index <= 0
|| !TEST_BIT (loops_info->array[i].nodes, e->dest->index))
predict_edge_def (e, PRED_LOOP_EXIT, NOT_TAKEN);
}
}
}
/* Attempt to predict conditional jumps using a number of heuristics.
For each conditional jump, we try each heuristic in a fixed order.
If more than one heuristic applies to a particular branch, the first
is used as the prediction for the branch. */
for (i = 0; i < n_basic_blocks - 1; i++)
{
basic_block bb = BASIC_BLOCK (i);
rtx last_insn = bb->end;
rtx cond, earliest;
edge e;
/* If block has no sucessor, predict all possible paths to
it as improbable, as the block contains a call to a noreturn
function and thus can be executed only once. */
if (bb->succ == NULL)
{
int y;
for (y = 0; y < n_basic_blocks; y++)
if (!TEST_BIT (post_dominators[y], i))
{
for (e = BASIC_BLOCK (y)->succ; e; e = e->succ_next)
if (e->dest->index >= 0
&& TEST_BIT (post_dominators[e->dest->index], i))
predict_edge_def (e, PRED_NORETURN, NOT_TAKEN);
}
}
if (GET_CODE (last_insn) != JUMP_INSN
|| ! any_condjump_p (last_insn))
continue;
if (find_reg_note (last_insn, REG_BR_PROB, 0))
continue;
for (e = bb->succ; e; e = e->succ_next)
{
/* Predict edges to blocks that return immediately to be
improbable. These are usually used to signal error states. */
if (e->dest == EXIT_BLOCK_PTR
|| (e->dest->succ && !e->dest->succ->succ_next
&& e->dest->succ->dest == EXIT_BLOCK_PTR))
predict_edge_def (e, PRED_ERROR_RETURN, NOT_TAKEN);
/* Look for block we are guarding (ie we dominate it,
but it doesn't postdominate us). */
if (e->dest != EXIT_BLOCK_PTR
&& e->dest != bb
&& TEST_BIT (dominators[e->dest->index], e->src->index)
&& !TEST_BIT (post_dominators[e->src->index], e->dest->index))
{
rtx insn;
/* The call heuristic claims that a guarded function call
is improbable. This is because such calls are often used
to signal exceptional situations such as printing error
messages. */
for (insn = e->dest->head; insn != NEXT_INSN (e->dest->end);
insn = NEXT_INSN (insn))
if (GET_CODE (insn) == CALL_INSN
/* Constant and pure calls are hardly used to signalize
something exceptional. */
&& ! CONST_CALL_P (insn))
{
predict_edge_def (e, PRED_CALL, NOT_TAKEN);
break;
}
}
}
cond = get_condition (last_insn, &earliest);
if (! cond)
continue;
/* Try "pointer heuristic."
A comparison ptr == 0 is predicted as false.
Similarly, a comparison ptr1 == ptr2 is predicted as false. */
switch (GET_CODE (cond))
{
case EQ:
if (GET_CODE (XEXP (cond, 0)) == REG
&& REG_POINTER (XEXP (cond, 0))
&& (XEXP (cond, 1) == const0_rtx
|| (GET_CODE (XEXP (cond, 1)) == REG
&& REG_POINTER (XEXP (cond, 1)))))
predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
break;
case NE:
if (GET_CODE (XEXP (cond, 0)) == REG
&& REG_POINTER (XEXP (cond, 0))
&& (XEXP (cond, 1) == const0_rtx
|| (GET_CODE (XEXP (cond, 1)) == REG
&& REG_POINTER (XEXP (cond, 1)))))
predict_insn_def (last_insn, PRED_POINTER, TAKEN);
break;
default:
break;
}
/* Try "opcode heuristic."
EQ tests are usually false and NE tests are usually true. Also,
most quantities are positive, so we can make the appropriate guesses
about signed comparisons against zero. */
switch (GET_CODE (cond))
{
case CONST_INT:
/* Unconditional branch. */
predict_insn_def (last_insn, PRED_UNCONDITIONAL,
cond == const0_rtx ? NOT_TAKEN : TAKEN);
break;
case EQ:
case UNEQ:
predict_insn_def (last_insn, PRED_OPCODE, NOT_TAKEN);
break;
case NE:
case LTGT:
predict_insn_def (last_insn, PRED_OPCODE, TAKEN);
break;
case ORDERED:
predict_insn_def (last_insn, PRED_OPCODE, TAKEN);
break;
case UNORDERED:
predict_insn_def (last_insn, PRED_OPCODE, NOT_TAKEN);
break;
case LE:
case LT:
if (XEXP (cond, 1) == const0_rtx
|| (GET_CODE (XEXP (cond, 1)) == CONST_INT
&& INTVAL (XEXP (cond, 1)) == -1))
predict_insn_def (last_insn, PRED_OPCODE, NOT_TAKEN);
break;
case GE:
case GT:
if (XEXP (cond, 1) == const0_rtx
|| (GET_CODE (XEXP (cond, 1)) == CONST_INT
&& INTVAL (XEXP (cond, 1)) == -1))
predict_insn_def (last_insn, PRED_OPCODE, TAKEN);
break;
default:
break;
}
}
/* Attach the combined probability to each conditional jump. */
for (i = 0; i < n_basic_blocks - 1; i++)
{
rtx last_insn = BLOCK_END (i);
if (GET_CODE (last_insn) != JUMP_INSN
|| ! any_condjump_p (last_insn))
continue;
combine_predictions_for_insn (last_insn, BASIC_BLOCK (i));
}
sbitmap_vector_free (post_dominators);
sbitmap_vector_free (dominators);
}
/* __builtin_expect dropped tokens into the insn stream describing
expected values of registers. Generate branch probabilities
based off these values. */
void
expected_value_to_br_prob ()
{
rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
{
switch (GET_CODE (insn))
{
case NOTE:
/* Look for expected value notes. */
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
{
ev = NOTE_EXPECTED_VALUE (insn);
ev_reg = XEXP (ev, 0);
}
continue;
case CODE_LABEL:
/* Never propagate across labels. */
ev = NULL_RTX;
continue;
default:
/* Look for insns that clobber the EV register. */
if (ev && reg_set_p (ev_reg, insn))
ev = NULL_RTX;
continue;
case JUMP_INSN:
/* Look for simple conditional branches. If we havn't got an
expected value yet, no point going further. */
if (GET_CODE (insn) != JUMP_INSN || ev == NULL_RTX)
continue;
if (! any_condjump_p (insn))
continue;
break;
}
/* Collect the branch condition, hopefully relative to EV_REG. */
/* ??? At present we'll miss things like
(expected_value (eq r70 0))
(set r71 -1)
(set r80 (lt r70 r71))
(set pc (if_then_else (ne r80 0) ...))
as canonicalize_condition will render this to us as
(lt r70, r71)
Could use cselib to try and reduce this further. */
cond = XEXP (SET_SRC (PATTERN (insn)), 0);
cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg);
if (! cond
|| XEXP (cond, 0) != ev_reg
|| GET_CODE (XEXP (cond, 1)) != CONST_INT)
continue;
/* Substitute and simplify. Given that the expression we're
building involves two constants, we should wind up with either
true or false. */
cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
XEXP (ev, 1), XEXP (cond, 1));
cond = simplify_rtx (cond);
/* Turn the condition into a scaled branch probability. */
if (cond != const1_rtx && cond != const0_rtx)
abort ();
predict_insn_def (insn, PRED_BUILTIN_EXPECT,
cond == const1_rtx ? TAKEN : NOT_TAKEN);
}
}
|