1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
|
/* Perform simple optimizations to clean up the result of reload.
Copyright (C) 1987-2017 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "predict.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cfgrtl.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "reload.h"
#include "cselib.h"
#include "tree-pass.h"
#include "dbgcnt.h"
static int reload_cse_noop_set_p (rtx);
static bool reload_cse_simplify (rtx_insn *, rtx);
static void reload_cse_regs_1 (void);
static int reload_cse_simplify_set (rtx, rtx_insn *);
static int reload_cse_simplify_operands (rtx_insn *, rtx);
static void reload_combine (void);
static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
static void reload_combine_note_store (rtx, const_rtx, void *);
static bool reload_cse_move2add (rtx_insn *);
static void move2add_note_store (rtx, const_rtx, void *);
/* Call cse / combine like post-reload optimization phases.
FIRST is the first instruction. */
static void
reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
{
bool moves_converted;
reload_cse_regs_1 ();
reload_combine ();
moves_converted = reload_cse_move2add (first);
if (flag_expensive_optimizations)
{
if (moves_converted)
reload_combine ();
reload_cse_regs_1 ();
}
}
/* See whether a single set SET is a noop. */
static int
reload_cse_noop_set_p (rtx set)
{
if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
return 0;
return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
}
/* Try to simplify INSN. Return true if the CFG may have changed. */
static bool
reload_cse_simplify (rtx_insn *insn, rtx testreg)
{
rtx body = PATTERN (insn);
basic_block insn_bb = BLOCK_FOR_INSN (insn);
unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
/* If NO_FUNCTION_CSE has been set by the target, then we should not try
to cse function calls. */
if (NO_FUNCTION_CSE && CALL_P (insn))
return false;
if (GET_CODE (body) == SET)
{
int count = 0;
/* Simplify even if we may think it is a no-op.
We may think a memory load of a value smaller than WORD_SIZE
is redundant because we haven't taken into account possible
implicit extension. reload_cse_simplify_set() will bring
this out, so it's safer to simplify before we delete. */
count += reload_cse_simplify_set (body, insn);
if (!count && reload_cse_noop_set_p (body))
{
if (check_for_inc_dec (insn))
delete_insn_and_edges (insn);
/* We're done with this insn. */
goto done;
}
if (count > 0)
apply_change_group ();
else
reload_cse_simplify_operands (insn, testreg);
}
else if (GET_CODE (body) == PARALLEL)
{
int i;
int count = 0;
rtx value = NULL_RTX;
/* Registers mentioned in the clobber list for an asm cannot be reused
within the body of the asm. Invalidate those registers now so that
we don't try to substitute values for them. */
if (asm_noperands (body) >= 0)
{
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
{
rtx part = XVECEXP (body, 0, i);
if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
cselib_invalidate_rtx (XEXP (part, 0));
}
}
/* If every action in a PARALLEL is a noop, we can delete
the entire PARALLEL. */
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
{
rtx part = XVECEXP (body, 0, i);
if (GET_CODE (part) == SET)
{
if (! reload_cse_noop_set_p (part))
break;
if (REG_P (SET_DEST (part))
&& REG_FUNCTION_VALUE_P (SET_DEST (part)))
{
if (value)
break;
value = SET_DEST (part);
}
}
else if (GET_CODE (part) != CLOBBER
&& GET_CODE (part) != USE)
break;
}
if (i < 0)
{
if (check_for_inc_dec (insn))
delete_insn_and_edges (insn);
/* We're done with this insn. */
goto done;
}
/* It's not a no-op, but we can try to simplify it. */
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
if (GET_CODE (XVECEXP (body, 0, i)) == SET)
count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
if (count > 0)
apply_change_group ();
else
reload_cse_simplify_operands (insn, testreg);
}
done:
return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
}
/* Do a very simple CSE pass over the hard registers.
This function detects no-op moves where we happened to assign two
different pseudo-registers to the same hard register, and then
copied one to the other. Reload will generate a useless
instruction copying a register to itself.
This function also detects cases where we load a value from memory
into two different registers, and (if memory is more expensive than
registers) changes it to simply copy the first register into the
second register.
Another optimization is performed that scans the operands of each
instruction to see whether the value is already available in a
hard register. It then replaces the operand with the hard register
if possible, much like an optional reload would. */
static void
reload_cse_regs_1 (void)
{
bool cfg_changed = false;
basic_block bb;
rtx_insn *insn;
rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
cselib_init (CSELIB_RECORD_MEMORY);
init_alias_analysis ();
FOR_EACH_BB_FN (bb, cfun)
FOR_BB_INSNS (bb, insn)
{
if (INSN_P (insn))
cfg_changed |= reload_cse_simplify (insn, testreg);
cselib_process_insn (insn);
}
/* Clean up. */
end_alias_analysis ();
cselib_finish ();
if (cfg_changed)
cleanup_cfg (0);
}
/* Try to simplify a single SET instruction. SET is the set pattern.
INSN is the instruction it came from.
This function only handles one case: if we set a register to a value
which is not a register, we try to find that value in some other register
and change the set into a register copy. */
static int
reload_cse_simplify_set (rtx set, rtx_insn *insn)
{
int did_change = 0;
int dreg;
rtx src;
reg_class_t dclass;
int old_cost;
cselib_val *val;
struct elt_loc_list *l;
enum rtx_code extend_op = UNKNOWN;
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
dreg = true_regnum (SET_DEST (set));
if (dreg < 0)
return 0;
src = SET_SRC (set);
if (side_effects_p (src) || true_regnum (src) >= 0)
return 0;
dclass = REGNO_REG_CLASS (dreg);
/* When replacing a memory with a register, we need to honor assumptions
that combine made wrt the contents of sign bits. We'll do this by
generating an extend instruction instead of a reg->reg copy. Thus
the destination must be a register that we can widen. */
if (MEM_P (src)
&& (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
&& !REG_P (SET_DEST (set)))
return 0;
val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
if (! val)
return 0;
/* If memory loads are cheaper than register copies, don't change them. */
if (MEM_P (src))
old_cost = memory_move_cost (GET_MODE (src), dclass, true);
else if (REG_P (src))
old_cost = register_move_cost (GET_MODE (src),
REGNO_REG_CLASS (REGNO (src)), dclass);
else
old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
for (l = val->locs; l; l = l->next)
{
rtx this_rtx = l->loc;
int this_cost;
if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
{
if (extend_op != UNKNOWN)
{
wide_int result;
if (!CONST_SCALAR_INT_P (this_rtx))
continue;
switch (extend_op)
{
case ZERO_EXTEND:
result = wide_int::from (rtx_mode_t (this_rtx,
GET_MODE (src)),
BITS_PER_WORD, UNSIGNED);
break;
case SIGN_EXTEND:
result = wide_int::from (rtx_mode_t (this_rtx,
GET_MODE (src)),
BITS_PER_WORD, SIGNED);
break;
default:
gcc_unreachable ();
}
this_rtx = immed_wide_int_const (result, word_mode);
}
this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
}
else if (REG_P (this_rtx))
{
if (extend_op != UNKNOWN)
{
this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
this_cost = set_src_cost (this_rtx, word_mode, speed);
}
else
this_cost = register_move_cost (GET_MODE (this_rtx),
REGNO_REG_CLASS (REGNO (this_rtx)),
dclass);
}
else
continue;
/* If equal costs, prefer registers over anything else. That
tends to lead to smaller instructions on some machines. */
if (this_cost < old_cost
|| (this_cost == old_cost
&& REG_P (this_rtx)
&& !REG_P (SET_SRC (set))))
{
if (extend_op != UNKNOWN
&& REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
GET_MODE (SET_DEST (set)), word_mode))
{
rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
validate_change (insn, &SET_DEST (set), wide_dest, 1);
}
validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
old_cost = this_cost, did_change = 1;
}
}
return did_change;
}
/* Try to replace operands in INSN with equivalent values that are already
in registers. This can be viewed as optional reloading.
For each non-register operand in the insn, see if any hard regs are
known to be equivalent to that operand. Record the alternatives which
can accept these hard registers. Among all alternatives, select the
ones which are better or equal to the one currently matching, where
"better" is in terms of '?' and '!' constraints. Among the remaining
alternatives, select the one which replaces most operands with
hard registers. */
static int
reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
{
int i, j;
/* For each operand, all registers that are equivalent to it. */
HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
const char *constraints[MAX_RECOG_OPERANDS];
/* Vector recording how bad an alternative is. */
int *alternative_reject;
/* Vector recording how many registers can be introduced by choosing
this alternative. */
int *alternative_nregs;
/* Array of vectors recording, for each operand and each alternative,
which hard register to substitute, or -1 if the operand should be
left as it is. */
int *op_alt_regno[MAX_RECOG_OPERANDS];
/* Array of alternatives, sorted in order of decreasing desirability. */
int *alternative_order;
extract_constrain_insn (insn);
if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
return 0;
alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
/* For each operand, find out which regs are equivalent. */
for (i = 0; i < recog_data.n_operands; i++)
{
cselib_val *v;
struct elt_loc_list *l;
rtx op;
CLEAR_HARD_REG_SET (equiv_regs[i]);
/* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
right, so avoid the problem here. Similarly NOTE_INSN_DELETED_LABEL.
Likewise if we have a constant and the insn pattern doesn't tell us
the mode we need. */
if (LABEL_P (recog_data.operand[i])
|| (NOTE_P (recog_data.operand[i])
&& NOTE_KIND (recog_data.operand[i]) == NOTE_INSN_DELETED_LABEL)
|| (CONSTANT_P (recog_data.operand[i])
&& recog_data.operand_mode[i] == VOIDmode))
continue;
op = recog_data.operand[i];
if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
{
rtx set = single_set (insn);
/* We might have multiple sets, some of which do implicit
extension. Punt on this for now. */
if (! set)
continue;
/* If the destination is also a MEM or a STRICT_LOW_PART, no
extension applies.
Also, if there is an explicit extension, we don't have to
worry about an implicit one. */
else if (MEM_P (SET_DEST (set))
|| GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
|| GET_CODE (SET_SRC (set)) == ZERO_EXTEND
|| GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
; /* Continue ordinary processing. */
/* If the register cannot change mode to word_mode, it follows that
it cannot have been used in word_mode. */
else if (REG_P (SET_DEST (set))
&& !REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
GET_MODE (SET_DEST (set)),
word_mode))
; /* Continue ordinary processing. */
/* If this is a straight load, make the extension explicit. */
else if (REG_P (SET_DEST (set))
&& recog_data.n_operands == 2
&& SET_SRC (set) == op
&& SET_DEST (set) == recog_data.operand[1-i])
{
validate_change (insn, recog_data.operand_loc[i],
gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
word_mode, op),
1);
validate_change (insn, recog_data.operand_loc[1-i],
gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
1);
if (! apply_change_group ())
return 0;
return reload_cse_simplify_operands (insn, testreg);
}
else
/* ??? There might be arithmetic operations with memory that are
safe to optimize, but is it worth the trouble? */
continue;
}
if (side_effects_p (op))
continue;
v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
if (! v)
continue;
for (l = v->locs; l; l = l->next)
if (REG_P (l->loc))
SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
}
alternative_mask preferred = get_preferred_alternatives (insn);
for (i = 0; i < recog_data.n_operands; i++)
{
machine_mode mode;
int regno;
const char *p;
op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
for (j = 0; j < recog_data.n_alternatives; j++)
op_alt_regno[i][j] = -1;
p = constraints[i] = recog_data.constraints[i];
mode = recog_data.operand_mode[i];
/* Add the reject values for each alternative given by the constraints
for this operand. */
j = 0;
while (*p != '\0')
{
char c = *p++;
if (c == ',')
j++;
else if (c == '?')
alternative_reject[j] += 3;
else if (c == '!')
alternative_reject[j] += 300;
}
/* We won't change operands which are already registers. We
also don't want to modify output operands. */
regno = true_regnum (recog_data.operand[i]);
if (regno >= 0
|| constraints[i][0] == '='
|| constraints[i][0] == '+')
continue;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
enum reg_class rclass = NO_REGS;
if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
continue;
set_mode_and_regno (testreg, mode, regno);
/* We found a register equal to this operand. Now look for all
alternatives that can accept this register and have not been
assigned a register they can use yet. */
j = 0;
p = constraints[i];
for (;;)
{
char c = *p;
switch (c)
{
case 'g':
rclass = reg_class_subunion[rclass][GENERAL_REGS];
break;
default:
rclass
= (reg_class_subunion
[rclass]
[reg_class_for_constraint (lookup_constraint (p))]);
break;
case ',': case '\0':
/* See if REGNO fits this alternative, and set it up as the
replacement register if we don't have one for this
alternative yet and the operand being replaced is not
a cheap CONST_INT. */
if (op_alt_regno[i][j] == -1
&& TEST_BIT (preferred, j)
&& reg_fits_class_p (testreg, rclass, 0, mode)
&& (!CONST_INT_P (recog_data.operand[i])
|| (set_src_cost (recog_data.operand[i], mode,
optimize_bb_for_speed_p
(BLOCK_FOR_INSN (insn)))
> set_src_cost (testreg, mode,
optimize_bb_for_speed_p
(BLOCK_FOR_INSN (insn))))))
{
alternative_nregs[j]++;
op_alt_regno[i][j] = regno;
}
j++;
rclass = NO_REGS;
break;
}
p += CONSTRAINT_LEN (c, p);
if (c == '\0')
break;
}
}
}
/* Record all alternatives which are better or equal to the currently
matching one in the alternative_order array. */
for (i = j = 0; i < recog_data.n_alternatives; i++)
if (alternative_reject[i] <= alternative_reject[which_alternative])
alternative_order[j++] = i;
recog_data.n_alternatives = j;
/* Sort it. Given a small number of alternatives, a dumb algorithm
won't hurt too much. */
for (i = 0; i < recog_data.n_alternatives - 1; i++)
{
int best = i;
int best_reject = alternative_reject[alternative_order[i]];
int best_nregs = alternative_nregs[alternative_order[i]];
for (j = i + 1; j < recog_data.n_alternatives; j++)
{
int this_reject = alternative_reject[alternative_order[j]];
int this_nregs = alternative_nregs[alternative_order[j]];
if (this_reject < best_reject
|| (this_reject == best_reject && this_nregs > best_nregs))
{
best = j;
best_reject = this_reject;
best_nregs = this_nregs;
}
}
std::swap (alternative_order[best], alternative_order[i]);
}
/* Substitute the operands as determined by op_alt_regno for the best
alternative. */
j = alternative_order[0];
for (i = 0; i < recog_data.n_operands; i++)
{
machine_mode mode = recog_data.operand_mode[i];
if (op_alt_regno[i][j] == -1)
continue;
validate_change (insn, recog_data.operand_loc[i],
gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
}
for (i = recog_data.n_dups - 1; i >= 0; i--)
{
int op = recog_data.dup_num[i];
machine_mode mode = recog_data.operand_mode[op];
if (op_alt_regno[op][j] == -1)
continue;
validate_change (insn, recog_data.dup_loc[i],
gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
}
return apply_change_group ();
}
/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
addressing now.
This code might also be useful when reload gave up on reg+reg addressing
because of clashes between the return register and INDEX_REG_CLASS. */
/* The maximum number of uses of a register we can keep track of to
replace them with reg+reg addressing. */
#define RELOAD_COMBINE_MAX_USES 16
/* Describes a recorded use of a register. */
struct reg_use
{
/* The insn where a register has been used. */
rtx_insn *insn;
/* Points to the memory reference enclosing the use, if any, NULL_RTX
otherwise. */
rtx containing_mem;
/* Location of the register within INSN. */
rtx *usep;
/* The reverse uid of the insn. */
int ruid;
};
/* If the register is used in some unknown fashion, USE_INDEX is negative.
If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
indicates where it is first set or clobbered.
Otherwise, USE_INDEX is the index of the last encountered use of the
register (which is first among these we have seen since we scan backwards).
USE_RUID indicates the first encountered, i.e. last, of these uses.
If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
with a constant offset; OFFSET contains this constant in that case.
STORE_RUID is always meaningful if we only want to use a value in a
register in a different place: it denotes the next insn in the insn
stream (i.e. the last encountered) that sets or clobbers the register.
REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
static struct
{
struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
rtx offset;
int use_index;
int store_ruid;
int real_store_ruid;
int use_ruid;
bool all_offsets_match;
} reg_state[FIRST_PSEUDO_REGISTER];
/* Reverse linear uid. This is increased in reload_combine while scanning
the instructions from last to first. It is used to set last_label_ruid
and the store_ruid / use_ruid fields in reg_state. */
static int reload_combine_ruid;
/* The RUID of the last label we encountered in reload_combine. */
static int last_label_ruid;
/* The RUID of the last jump we encountered in reload_combine. */
static int last_jump_ruid;
/* The register numbers of the first and last index register. A value of
-1 in LAST_INDEX_REG indicates that we've previously computed these
values and found no suitable index registers. */
static int first_index_reg = -1;
static int last_index_reg;
#define LABEL_LIVE(LABEL) \
(label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
/* Subroutine of reload_combine_split_ruids, called to fix up a single
ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
static inline void
reload_combine_split_one_ruid (int *pruid, int split_ruid)
{
if (*pruid > split_ruid)
(*pruid)++;
}
/* Called when we insert a new insn in a position we've already passed in
the scan. Examine all our state, increasing all ruids that are higher
than SPLIT_RUID by one in order to make room for a new insn. */
static void
reload_combine_split_ruids (int split_ruid)
{
unsigned i;
reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int j, idx = reg_state[i].use_index;
reload_combine_split_one_ruid (®_state[i].use_ruid, split_ruid);
reload_combine_split_one_ruid (®_state[i].store_ruid, split_ruid);
reload_combine_split_one_ruid (®_state[i].real_store_ruid,
split_ruid);
if (idx < 0)
continue;
for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
{
reload_combine_split_one_ruid (®_state[i].reg_use[j].ruid,
split_ruid);
}
}
}
/* Called when we are about to rescan a previously encountered insn with
reload_combine_note_use after modifying some part of it. This clears all
information about uses in that particular insn. */
static void
reload_combine_purge_insn_uses (rtx_insn *insn)
{
unsigned i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
int j, k, idx = reg_state[i].use_index;
if (idx < 0)
continue;
j = k = RELOAD_COMBINE_MAX_USES;
while (j-- > idx)
{
if (reg_state[i].reg_use[j].insn != insn)
{
k--;
if (k != j)
reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
}
}
reg_state[i].use_index = k;
}
}
/* Called when we need to forget about all uses of REGNO after an insn
which is identified by RUID. */
static void
reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
{
int j, k, idx = reg_state[regno].use_index;
if (idx < 0)
return;
j = k = RELOAD_COMBINE_MAX_USES;
while (j-- > idx)
{
if (reg_state[regno].reg_use[j].ruid >= ruid)
{
k--;
if (k != j)
reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
}
}
reg_state[regno].use_index = k;
}
/* Find the use of REGNO with the ruid that is highest among those
lower than RUID_LIMIT, and return it if it is the only use of this
reg in the insn. Return NULL otherwise. */
static struct reg_use *
reload_combine_closest_single_use (unsigned regno, int ruid_limit)
{
int i, best_ruid = 0;
int use_idx = reg_state[regno].use_index;
struct reg_use *retval;
if (use_idx < 0)
return NULL;
retval = NULL;
for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
{
struct reg_use *use = reg_state[regno].reg_use + i;
int this_ruid = use->ruid;
if (this_ruid >= ruid_limit)
continue;
if (this_ruid > best_ruid)
{
best_ruid = this_ruid;
retval = use;
}
else if (this_ruid == best_ruid)
retval = NULL;
}
if (last_label_ruid >= best_ruid)
return NULL;
return retval;
}
/* After we've moved an add insn, fix up any debug insns that occur
between the old location of the add and the new location. REG is
the destination register of the add insn; REPLACEMENT is the
SET_SRC of the add. FROM and TO specify the range in which we
should make this change on debug insns. */
static void
fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
{
rtx_insn *insn;
for (insn = from; insn != to; insn = NEXT_INSN (insn))
{
rtx t;
if (!DEBUG_INSN_P (insn))
continue;
t = INSN_VAR_LOCATION_LOC (insn);
t = simplify_replace_rtx (t, reg, replacement);
validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
}
}
/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
with SRC in the insn described by USE, taking costs into account. Return
true if we made the replacement. */
static bool
try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
{
rtx_insn *use_insn = use->insn;
rtx mem = use->containing_mem;
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
if (mem != NULL_RTX)
{
addr_space_t as = MEM_ADDR_SPACE (mem);
rtx oldaddr = XEXP (mem, 0);
rtx newaddr = NULL_RTX;
int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
int new_cost;
newaddr = simplify_replace_rtx (oldaddr, reg, src);
if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
{
XEXP (mem, 0) = newaddr;
new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
XEXP (mem, 0) = oldaddr;
if (new_cost <= old_cost
&& validate_change (use_insn,
&XEXP (mem, 0), newaddr, 0))
return true;
}
}
else
{
rtx new_set = single_set (use_insn);
if (new_set
&& REG_P (SET_DEST (new_set))
&& GET_CODE (SET_SRC (new_set)) == PLUS
&& REG_P (XEXP (SET_SRC (new_set), 0))
&& CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
{
rtx new_src;
machine_mode mode = GET_MODE (SET_DEST (new_set));
int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
if (set_src_cost (new_src, mode, speed) <= old_cost
&& validate_change (use_insn, &SET_SRC (new_set),
new_src, 0))
return true;
}
}
return false;
}
/* Called by reload_combine when scanning INSN. This function tries to detect
patterns where a constant is added to a register, and the result is used
in an address.
Return true if no further processing is needed on INSN; false if it wasn't
recognized and should be handled normally. */
static bool
reload_combine_recognize_const_pattern (rtx_insn *insn)
{
int from_ruid = reload_combine_ruid;
rtx set, pat, reg, src, addreg;
unsigned int regno;
struct reg_use *use;
bool must_move_add;
rtx_insn *add_moved_after_insn = NULL;
int add_moved_after_ruid = 0;
int clobbered_regno = -1;
set = single_set (insn);
if (set == NULL_RTX)
return false;
reg = SET_DEST (set);
src = SET_SRC (set);
if (!REG_P (reg)
|| REG_NREGS (reg) != 1
|| GET_MODE (reg) != Pmode
|| reg == stack_pointer_rtx)
return false;
regno = REGNO (reg);
/* We look for a REG1 = REG2 + CONSTANT insn, followed by either
uses of REG1 inside an address, or inside another add insn. If
possible and profitable, merge the addition into subsequent
uses. */
if (GET_CODE (src) != PLUS
|| !REG_P (XEXP (src, 0))
|| !CONSTANT_P (XEXP (src, 1)))
return false;
addreg = XEXP (src, 0);
must_move_add = rtx_equal_p (reg, addreg);
pat = PATTERN (insn);
if (must_move_add && set != pat)
{
/* We have to be careful when moving the add; apart from the
single_set there may also be clobbers. Recognize one special
case, that of one clobber alongside the set (likely a clobber
of the CC register). */
gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
|| GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
|| !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
return false;
clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
}
do
{
use = reload_combine_closest_single_use (regno, from_ruid);
if (use)
/* Start the search for the next use from here. */
from_ruid = use->ruid;
if (use && GET_MODE (*use->usep) == Pmode)
{
bool delete_add = false;
rtx_insn *use_insn = use->insn;
int use_ruid = use->ruid;
/* Avoid moving the add insn past a jump. */
if (must_move_add && use_ruid <= last_jump_ruid)
break;
/* If the add clobbers another hard reg in parallel, don't move
it past a real set of this hard reg. */
if (must_move_add && clobbered_regno >= 0
&& reg_state[clobbered_regno].real_store_ruid >= use_ruid)
break;
/* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
break;
gcc_assert (reg_state[regno].store_ruid <= use_ruid);
/* Avoid moving a use of ADDREG past a point where it is stored. */
if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
break;
/* We also must not move the addition past an insn that sets
the same register, unless we can combine two add insns. */
if (must_move_add && reg_state[regno].store_ruid == use_ruid)
{
if (use->containing_mem == NULL_RTX)
delete_add = true;
else
break;
}
if (try_replace_in_use (use, reg, src))
{
reload_combine_purge_insn_uses (use_insn);
reload_combine_note_use (&PATTERN (use_insn), use_insn,
use_ruid, NULL_RTX);
if (delete_add)
{
fixup_debug_insns (reg, src, insn, use_insn);
delete_insn (insn);
return true;
}
if (must_move_add)
{
add_moved_after_insn = use_insn;
add_moved_after_ruid = use_ruid;
}
continue;
}
}
/* If we get here, we couldn't handle this use. */
if (must_move_add)
break;
}
while (use);
if (!must_move_add || add_moved_after_insn == NULL_RTX)
/* Process the add normally. */
return false;
fixup_debug_insns (reg, src, insn, add_moved_after_insn);
reorder_insns (insn, insn, add_moved_after_insn);
reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
reload_combine_split_ruids (add_moved_after_ruid - 1);
reload_combine_note_use (&PATTERN (insn), insn,
add_moved_after_ruid, NULL_RTX);
reg_state[regno].store_ruid = add_moved_after_ruid;
return true;
}
/* Called by reload_combine when scanning INSN. Try to detect a pattern we
can handle and improve. Return true if no further processing is needed on
INSN; false if it wasn't recognized and should be handled normally. */
static bool
reload_combine_recognize_pattern (rtx_insn *insn)
{
rtx set, reg, src;
set = single_set (insn);
if (set == NULL_RTX)
return false;
reg = SET_DEST (set);
src = SET_SRC (set);
if (!REG_P (reg) || REG_NREGS (reg) != 1)
return false;
unsigned int regno = REGNO (reg);
machine_mode mode = GET_MODE (reg);
if (reg_state[regno].use_index < 0
|| reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
return false;
for (int i = reg_state[regno].use_index;
i < RELOAD_COMBINE_MAX_USES; i++)
{
struct reg_use *use = reg_state[regno].reg_use + i;
if (GET_MODE (*use->usep) != mode)
return false;
}
/* Look for (set (REGX) (CONST_INT))
(set (REGX) (PLUS (REGX) (REGY)))
...
... (MEM (REGX)) ...
and convert it to
(set (REGZ) (CONST_INT))
...
... (MEM (PLUS (REGZ) (REGY)))... .
First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
and that we know all uses of REGX before it dies.
Also, explicitly check that REGX != REGY; our life information
does not yet show whether REGY changes in this insn. */
if (GET_CODE (src) == PLUS
&& reg_state[regno].all_offsets_match
&& last_index_reg != -1
&& REG_P (XEXP (src, 1))
&& rtx_equal_p (XEXP (src, 0), reg)
&& !rtx_equal_p (XEXP (src, 1), reg)
&& last_label_ruid < reg_state[regno].use_ruid)
{
rtx base = XEXP (src, 1);
rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
rtx prev_set = prev ? single_set (prev) : NULL_RTX;
rtx index_reg = NULL_RTX;
rtx reg_sum = NULL_RTX;
int i;
/* Now we need to set INDEX_REG to an index register (denoted as
REGZ in the illustration above) and REG_SUM to the expression
register+register that we want to use to substitute uses of REG
(typically in MEMs) with. First check REG and BASE for being
index registers; we can use them even if they are not dead. */
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
|| TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
REGNO (base)))
{
index_reg = reg;
reg_sum = src;
}
else
{
/* Otherwise, look for a free index register. Since we have
checked above that neither REG nor BASE are index registers,
if we find anything at all, it will be different from these
two registers. */
for (i = first_index_reg; i <= last_index_reg; i++)
{
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
&& reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
&& reg_state[i].store_ruid <= reg_state[regno].use_ruid
&& (call_used_regs[i] || df_regs_ever_live_p (i))
&& (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
&& !fixed_regs[i] && !global_regs[i]
&& hard_regno_nregs (i, GET_MODE (reg)) == 1
&& targetm.hard_regno_scratch_ok (i))
{
index_reg = gen_rtx_REG (GET_MODE (reg), i);
reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
break;
}
}
}
/* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
(REGY), i.e. BASE, is not clobbered before the last use we'll
create. */
if (reg_sum
&& prev_set
&& CONST_INT_P (SET_SRC (prev_set))
&& rtx_equal_p (SET_DEST (prev_set), reg)
&& (reg_state[REGNO (base)].store_ruid
<= reg_state[regno].use_ruid))
{
/* Change destination register and, if necessary, the constant
value in PREV, the constant loading instruction. */
validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
if (reg_state[regno].offset != const0_rtx)
validate_change (prev,
&SET_SRC (prev_set),
GEN_INT (INTVAL (SET_SRC (prev_set))
+ INTVAL (reg_state[regno].offset)),
1);
/* Now for every use of REG that we have recorded, replace REG
with REG_SUM. */
for (i = reg_state[regno].use_index;
i < RELOAD_COMBINE_MAX_USES; i++)
validate_unshare_change (reg_state[regno].reg_use[i].insn,
reg_state[regno].reg_use[i].usep,
/* Each change must have its own
replacement. */
reg_sum, 1);
if (apply_change_group ())
{
struct reg_use *lowest_ruid = NULL;
/* For every new use of REG_SUM, we have to record the use
of BASE therein, i.e. operand 1. */
for (i = reg_state[regno].use_index;
i < RELOAD_COMBINE_MAX_USES; i++)
{
struct reg_use *use = reg_state[regno].reg_use + i;
reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
use->ruid, use->containing_mem);
if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
lowest_ruid = use;
}
fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
/* Delete the reg-reg addition. */
delete_insn (insn);
if (reg_state[regno].offset != const0_rtx
/* Previous REG_EQUIV / REG_EQUAL notes for PREV
are now invalid. */
&& remove_reg_equal_equiv_notes (prev))
df_notes_rescan (prev);
reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
return true;
}
}
}
return false;
}
static void
reload_combine (void)
{
rtx_insn *insn, *prev;
basic_block bb;
unsigned int r;
int min_labelno, n_labels;
HARD_REG_SET ever_live_at_start, *label_live;
/* To avoid wasting too much time later searching for an index register,
determine the minimum and maximum index register numbers. */
if (INDEX_REG_CLASS == NO_REGS)
last_index_reg = -1;
else if (first_index_reg == -1 && last_index_reg == 0)
{
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
{
if (first_index_reg == -1)
first_index_reg = r;
last_index_reg = r;
}
/* If no index register is available, we can quit now. Set LAST_INDEX_REG
to -1 so we'll know to quit early the next time we get here. */
if (first_index_reg == -1)
{
last_index_reg = -1;
return;
}
}
/* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
information is a bit fuzzy immediately after reload, but it's
still good enough to determine which registers are live at a jump
destination. */
min_labelno = get_first_label_num ();
n_labels = max_label_num () - min_labelno;
label_live = XNEWVEC (HARD_REG_SET, n_labels);
CLEAR_HARD_REG_SET (ever_live_at_start);
FOR_EACH_BB_REVERSE_FN (bb, cfun)
{
insn = BB_HEAD (bb);
if (LABEL_P (insn))
{
HARD_REG_SET live;
bitmap live_in = df_get_live_in (bb);
REG_SET_TO_HARD_REG_SET (live, live_in);
compute_use_by_pseudos (&live, live_in);
COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
IOR_HARD_REG_SET (ever_live_at_start, live);
}
}
/* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
{
reg_state[r].store_ruid = 0;
reg_state[r].real_store_ruid = 0;
if (fixed_regs[r])
reg_state[r].use_index = -1;
else
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
}
for (insn = get_last_insn (); insn; insn = prev)
{
bool control_flow_insn;
rtx note;
prev = PREV_INSN (insn);
/* We cannot do our optimization across labels. Invalidating all the use
information we have would be costly, so we just note where the label
is and then later disable any optimization that would cross it. */
if (LABEL_P (insn))
last_label_ruid = reload_combine_ruid;
else if (BARRIER_P (insn))
{
/* Crossing a barrier resets all the use information. */
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (! fixed_regs[r])
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
}
else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
/* Optimizations across insns being marked as volatile must be
prevented. All the usage information is invalidated
here. */
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (! fixed_regs[r]
&& reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
reg_state[r].use_index = -1;
if (! NONDEBUG_INSN_P (insn))
continue;
reload_combine_ruid++;
control_flow_insn = control_flow_insn_p (insn);
if (control_flow_insn)
last_jump_ruid = reload_combine_ruid;
if (reload_combine_recognize_const_pattern (insn)
|| reload_combine_recognize_pattern (insn))
continue;
note_stores (PATTERN (insn), reload_combine_note_store, NULL);
if (CALL_P (insn))
{
rtx link;
HARD_REG_SET used_regs;
get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (TEST_HARD_REG_BIT (used_regs, r))
{
reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
reg_state[r].store_ruid = reload_combine_ruid;
}
for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
link = XEXP (link, 1))
{
rtx setuse = XEXP (link, 0);
rtx usage_rtx = XEXP (setuse, 0);
if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
&& REG_P (usage_rtx))
{
unsigned int end_regno = END_REGNO (usage_rtx);
for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
{
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
reg_state[i].store_ruid = reload_combine_ruid;
}
else
reg_state[i].use_index = -1;
}
}
}
if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
{
/* Non-spill registers might be used at the call destination in
some unknown fashion, so we have to mark the unknown use. */
HARD_REG_SET *live;
if ((condjump_p (insn) || condjump_in_parallel_p (insn))
&& JUMP_LABEL (insn))
{
if (ANY_RETURN_P (JUMP_LABEL (insn)))
live = NULL;
else
live = &LABEL_LIVE (JUMP_LABEL (insn));
}
else
live = &ever_live_at_start;
if (live)
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (TEST_HARD_REG_BIT (*live, r))
reg_state[r].use_index = -1;
}
reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
NULL_RTX);
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
{
if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
{
int regno = REGNO (XEXP (note, 0));
reg_state[regno].store_ruid = reload_combine_ruid;
reg_state[regno].real_store_ruid = reload_combine_ruid;
reg_state[regno].use_index = -1;
}
}
}
free (label_live);
}
/* Check if DST is a register or a subreg of a register; if it is,
update store_ruid, real_store_ruid and use_index in the reg_state
structure accordingly. Called via note_stores from reload_combine. */
static void
reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
{
int regno = 0;
int i;
machine_mode mode = GET_MODE (dst);
if (GET_CODE (dst) == SUBREG)
{
regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
GET_MODE (SUBREG_REG (dst)),
SUBREG_BYTE (dst),
GET_MODE (dst));
dst = SUBREG_REG (dst);
}
/* Some targets do argument pushes without adding REG_INC notes. */
if (MEM_P (dst))
{
dst = XEXP (dst, 0);
if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
|| GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
|| GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
{
unsigned int end_regno = END_REGNO (XEXP (dst, 0));
for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
{
/* We could probably do better, but for now mark the register
as used in an unknown fashion and set/clobbered at this
insn. */
reg_state[i].use_index = -1;
reg_state[i].store_ruid = reload_combine_ruid;
reg_state[i].real_store_ruid = reload_combine_ruid;
}
}
else
return;
}
if (!REG_P (dst))
return;
regno += REGNO (dst);
/* note_stores might have stripped a STRICT_LOW_PART, so we have to be
careful with registers / register parts that are not full words.
Similarly for ZERO_EXTRACT. */
if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
|| GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
{
for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
{
reg_state[i].use_index = -1;
reg_state[i].store_ruid = reload_combine_ruid;
reg_state[i].real_store_ruid = reload_combine_ruid;
}
}
else
{
for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
{
reg_state[i].store_ruid = reload_combine_ruid;
if (GET_CODE (set) == SET)
reg_state[i].real_store_ruid = reload_combine_ruid;
reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
}
}
}
/* XP points to a piece of rtl that has to be checked for any uses of
registers.
*XP is the pattern of INSN, or a part of it.
Called from reload_combine, and recursively by itself. */
static void
reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
{
rtx x = *xp;
enum rtx_code code = x->code;
const char *fmt;
int i, j;
rtx offset = const0_rtx; /* For the REG case below. */
switch (code)
{
case SET:
if (REG_P (SET_DEST (x)))
{
reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
return;
}
break;
case USE:
/* If this is the USE of a return value, we can't change it. */
if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
{
/* Mark the return register as used in an unknown fashion. */
rtx reg = XEXP (x, 0);
unsigned int end_regno = END_REGNO (reg);
for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
reg_state[regno].use_index = -1;
return;
}
break;
case CLOBBER:
if (REG_P (SET_DEST (x)))
{
/* No spurious CLOBBERs of pseudo registers may remain. */
gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
return;
}
break;
case PLUS:
/* We are interested in (plus (reg) (const_int)) . */
if (!REG_P (XEXP (x, 0))
|| !CONST_INT_P (XEXP (x, 1)))
break;
offset = XEXP (x, 1);
x = XEXP (x, 0);
/* Fall through. */
case REG:
{
int regno = REGNO (x);
int use_index;
int nregs;
/* No spurious USEs of pseudo registers may remain. */
gcc_assert (regno < FIRST_PSEUDO_REGISTER);
nregs = REG_NREGS (x);
/* We can't substitute into multi-hard-reg uses. */
if (nregs > 1)
{
while (--nregs >= 0)
reg_state[regno + nregs].use_index = -1;
return;
}
/* We may be called to update uses in previously seen insns.
Don't add uses beyond the last store we saw. */
if (ruid < reg_state[regno].store_ruid)
return;
/* If this register is already used in some unknown fashion, we
can't do anything.
If we decrement the index from zero to -1, we can't store more
uses, so this register becomes used in an unknown fashion. */
use_index = --reg_state[regno].use_index;
if (use_index < 0)
return;
if (use_index == RELOAD_COMBINE_MAX_USES - 1)
{
/* This is the first use of this register we have seen since we
marked it as dead. */
reg_state[regno].offset = offset;
reg_state[regno].all_offsets_match = true;
reg_state[regno].use_ruid = ruid;
}
else
{
if (reg_state[regno].use_ruid > ruid)
reg_state[regno].use_ruid = ruid;
if (! rtx_equal_p (offset, reg_state[regno].offset))
reg_state[regno].all_offsets_match = false;
}
reg_state[regno].reg_use[use_index].insn = insn;
reg_state[regno].reg_use[use_index].ruid = ruid;
reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
reg_state[regno].reg_use[use_index].usep = xp;
return;
}
case MEM:
containing_mem = x;
break;
default:
break;
}
/* Recursively process the components of X. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
containing_mem);
}
}
}
/* See if we can reduce the cost of a constant by replacing a move
with an add. We track situations in which a register is set to a
constant or to a register plus a constant. */
/* We cannot do our optimization across labels. Invalidating all the
information about register contents we have would be costly, so we
use move2add_last_label_luid to note where the label is and then
later disable any optimization that would cross it.
reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
are only valid if reg_set_luid[n] is greater than
move2add_last_label_luid.
For a set that established a new (potential) base register with
non-constant value, we use move2add_luid from the place where the
setting insn is encountered; registers based off that base then
get the same reg_set_luid. Constants all get
move2add_last_label_luid + 1 as their reg_set_luid. */
static int reg_set_luid[FIRST_PSEUDO_REGISTER];
/* If reg_base_reg[n] is negative, register n has been set to
reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
If reg_base_reg[n] is non-negative, register n has been set to the
sum of reg_offset[n] and the value of register reg_base_reg[n]
before reg_set_luid[n], calculated in mode reg_mode[n] .
For multi-hard-register registers, all but the first one are
recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
marks it as invalid. */
static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
static int reg_base_reg[FIRST_PSEUDO_REGISTER];
static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
/* move2add_luid is linearly increased while scanning the instructions
from first to last. It is used to set reg_set_luid in
reload_cse_move2add and move2add_note_store. */
static int move2add_luid;
/* move2add_last_label_luid is set whenever a label is found. Labels
invalidate all previously collected reg_offset data. */
static int move2add_last_label_luid;
/* ??? We don't know how zero / sign extension is handled, hence we
can't go from a narrower to a wider mode. */
#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
(GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
|| (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
&& TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
/* Record that REG is being set to a value with the mode of REG. */
static void
move2add_record_mode (rtx reg)
{
int regno, nregs;
machine_mode mode = GET_MODE (reg);
if (GET_CODE (reg) == SUBREG)
{
regno = subreg_regno (reg);
nregs = subreg_nregs (reg);
}
else if (REG_P (reg))
{
regno = REGNO (reg);
nregs = REG_NREGS (reg);
}
else
gcc_unreachable ();
for (int i = nregs - 1; i > 0; i--)
reg_mode[regno + i] = BLKmode;
reg_mode[regno] = mode;
}
/* Record that REG is being set to the sum of SYM and OFF. */
static void
move2add_record_sym_value (rtx reg, rtx sym, rtx off)
{
int regno = REGNO (reg);
move2add_record_mode (reg);
reg_set_luid[regno] = move2add_luid;
reg_base_reg[regno] = -1;
reg_symbol_ref[regno] = sym;
reg_offset[regno] = INTVAL (off);
}
/* Check if REGNO contains a valid value in MODE. */
static bool
move2add_valid_value_p (int regno, scalar_int_mode mode)
{
if (reg_set_luid[regno] <= move2add_last_label_luid)
return false;
if (mode != reg_mode[regno])
{
scalar_int_mode old_mode;
if (!is_a <scalar_int_mode> (reg_mode[regno], &old_mode)
|| !MODES_OK_FOR_MOVE2ADD (mode, old_mode))
return false;
/* The value loaded into regno in reg_mode[regno] is also valid in
mode after truncation only if (REG:mode regno) is the lowpart of
(REG:reg_mode[regno] regno). Now, for big endian, the starting
regno of the lowpart might be different. */
int s_off = subreg_lowpart_offset (mode, old_mode);
s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
if (s_off != 0)
/* We could in principle adjust regno, check reg_mode[regno] to be
BLKmode, and return s_off to the caller (vs. -1 for failure),
but we currently have no callers that could make use of this
information. */
return false;
}
for (int i = end_hard_regno (mode, regno) - 1; i > regno; i--)
if (reg_mode[i] != BLKmode)
return false;
return true;
}
/* This function is called with INSN that sets REG (of mode MODE)
to (SYM + OFF), while REG is known to already have value (SYM + offset).
This function tries to change INSN into an add instruction
(set (REG) (plus (REG) (OFF - offset))) using the known value.
It also updates the information about REG's known value.
Return true if we made a change. */
static bool
move2add_use_add2_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
rtx_insn *insn)
{
rtx pat = PATTERN (insn);
rtx src = SET_SRC (pat);
int regno = REGNO (reg);
rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno], mode);
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
bool changed = false;
/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
use (set (reg) (reg)) instead.
We don't delete this insn, nor do we convert it into a
note, to avoid losing register notes or the return
value flag. jump2 already knows how to get rid of
no-op moves. */
if (new_src == const0_rtx)
{
/* If the constants are different, this is a
truncation, that, if turned into (set (reg)
(reg)), would be discarded. Maybe we should
try a truncMN pattern? */
if (INTVAL (off) == reg_offset [regno])
changed = validate_change (insn, &SET_SRC (pat), reg, 0);
}
else
{
struct full_rtx_costs oldcst, newcst;
rtx tem = gen_rtx_PLUS (mode, reg, new_src);
get_full_set_rtx_cost (pat, &oldcst);
SET_SRC (pat) = tem;
get_full_set_rtx_cost (pat, &newcst);
SET_SRC (pat) = src;
if (costs_lt_p (&newcst, &oldcst, speed)
&& have_add2_insn (reg, new_src))
changed = validate_change (insn, &SET_SRC (pat), tem, 0);
else if (sym == NULL_RTX && mode != BImode)
{
scalar_int_mode narrow_mode;
FOR_EACH_MODE_UNTIL (narrow_mode, mode)
{
if (have_insn_for (STRICT_LOW_PART, narrow_mode)
&& ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
== (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
{
rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
rtx narrow_src = gen_int_mode (INTVAL (off),
narrow_mode);
rtx new_set
= gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
narrow_reg),
narrow_src);
get_full_set_rtx_cost (new_set, &newcst);
if (costs_lt_p (&newcst, &oldcst, speed))
{
changed = validate_change (insn, &PATTERN (insn),
new_set, 0);
if (changed)
break;
}
}
}
}
}
move2add_record_sym_value (reg, sym, off);
return changed;
}
/* This function is called with INSN that sets REG (of mode MODE) to
(SYM + OFF), but REG doesn't have known value (SYM + offset). This
function tries to find another register which is known to already have
value (SYM + offset) and change INSN into an add instruction
(set (REG) (plus (the found register) (OFF - offset))) if such
a register is found. It also updates the information about
REG's known value.
Return true iff we made a change. */
static bool
move2add_use_add3_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
rtx_insn *insn)
{
rtx pat = PATTERN (insn);
rtx src = SET_SRC (pat);
int regno = REGNO (reg);
int min_regno = 0;
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
int i;
bool changed = false;
struct full_rtx_costs oldcst, newcst, mincst;
rtx plus_expr;
init_costs_to_max (&mincst);
get_full_set_rtx_cost (pat, &oldcst);
plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
SET_SRC (pat) = plus_expr;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (move2add_valid_value_p (i, mode)
&& reg_base_reg[i] < 0
&& reg_symbol_ref[i] != NULL_RTX
&& rtx_equal_p (sym, reg_symbol_ref[i]))
{
rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
GET_MODE (reg));
/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
use (set (reg) (reg)) instead.
We don't delete this insn, nor do we convert it into a
note, to avoid losing register notes or the return
value flag. jump2 already knows how to get rid of
no-op moves. */
if (new_src == const0_rtx)
{
init_costs_to_zero (&mincst);
min_regno = i;
break;
}
else
{
XEXP (plus_expr, 1) = new_src;
get_full_set_rtx_cost (pat, &newcst);
if (costs_lt_p (&newcst, &mincst, speed))
{
mincst = newcst;
min_regno = i;
}
}
}
SET_SRC (pat) = src;
if (costs_lt_p (&mincst, &oldcst, speed))
{
rtx tem;
tem = gen_rtx_REG (GET_MODE (reg), min_regno);
if (i != min_regno)
{
rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
GET_MODE (reg));
tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
}
if (validate_change (insn, &SET_SRC (pat), tem, 0))
changed = true;
}
reg_set_luid[regno] = move2add_luid;
move2add_record_sym_value (reg, sym, off);
return changed;
}
/* Convert move insns with constant inputs to additions if they are cheaper.
Return true if any changes were made. */
static bool
reload_cse_move2add (rtx_insn *first)
{
int i;
rtx_insn *insn;
bool changed = false;
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
{
reg_set_luid[i] = 0;
reg_offset[i] = 0;
reg_base_reg[i] = 0;
reg_symbol_ref[i] = NULL_RTX;
reg_mode[i] = VOIDmode;
}
move2add_last_label_luid = 0;
move2add_luid = 2;
for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
{
rtx pat, note;
if (LABEL_P (insn))
{
move2add_last_label_luid = move2add_luid;
/* We're going to increment move2add_luid twice after a
label, so that we can use move2add_last_label_luid + 1 as
the luid for constants. */
move2add_luid++;
continue;
}
if (! INSN_P (insn))
continue;
pat = PATTERN (insn);
/* For simplicity, we only perform this optimization on
straightforward SETs. */
scalar_int_mode mode;
if (GET_CODE (pat) == SET
&& REG_P (SET_DEST (pat))
&& is_a <scalar_int_mode> (GET_MODE (SET_DEST (pat)), &mode))
{
rtx reg = SET_DEST (pat);
int regno = REGNO (reg);
rtx src = SET_SRC (pat);
/* Check if we have valid information on the contents of this
register in the mode of REG. */
if (move2add_valid_value_p (regno, mode)
&& dbg_cnt (cse2_move2add))
{
/* Try to transform (set (REGX) (CONST_INT A))
...
(set (REGX) (CONST_INT B))
to
(set (REGX) (CONST_INT A))
...
(set (REGX) (plus (REGX) (CONST_INT B-A)))
or
(set (REGX) (CONST_INT A))
...
(set (STRICT_LOW_PART (REGX)) (CONST_INT B))
*/
if (CONST_INT_P (src)
&& reg_base_reg[regno] < 0
&& reg_symbol_ref[regno] == NULL_RTX)
{
changed |= move2add_use_add2_insn (mode, reg, NULL_RTX,
src, insn);
continue;
}
/* Try to transform (set (REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT A)))
...
(set (REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT B)))
to
(set (REGX) (REGY))
(set (REGX) (PLUS (REGX) (CONST_INT A)))
...
(set (REGX) (plus (REGX) (CONST_INT B-A))) */
else if (REG_P (src)
&& reg_set_luid[regno] == reg_set_luid[REGNO (src)]
&& reg_base_reg[regno] == reg_base_reg[REGNO (src)]
&& move2add_valid_value_p (REGNO (src), mode))
{
rtx_insn *next = next_nonnote_nondebug_insn (insn);
rtx set = NULL_RTX;
if (next)
set = single_set (next);
if (set
&& SET_DEST (set) == reg
&& GET_CODE (SET_SRC (set)) == PLUS
&& XEXP (SET_SRC (set), 0) == reg
&& CONST_INT_P (XEXP (SET_SRC (set), 1)))
{
rtx src3 = XEXP (SET_SRC (set), 1);
unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
HOST_WIDE_INT regno_offset = reg_offset[regno];
rtx new_src =
gen_int_mode (added_offset
+ base_offset
- regno_offset,
mode);
bool success = false;
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
if (new_src == const0_rtx)
/* See above why we create (set (reg) (reg)) here. */
success
= validate_change (next, &SET_SRC (set), reg, 0);
else
{
rtx old_src = SET_SRC (set);
struct full_rtx_costs oldcst, newcst;
rtx tem = gen_rtx_PLUS (mode, reg, new_src);
get_full_set_rtx_cost (set, &oldcst);
SET_SRC (set) = tem;
get_full_set_src_cost (tem, mode, &newcst);
SET_SRC (set) = old_src;
costs_add_n_insns (&oldcst, 1);
if (costs_lt_p (&newcst, &oldcst, speed)
&& have_add2_insn (reg, new_src))
{
rtx newpat = gen_rtx_SET (reg, tem);
success
= validate_change (next, &PATTERN (next),
newpat, 0);
}
}
if (success)
delete_insn (insn);
changed |= success;
insn = next;
move2add_record_mode (reg);
reg_offset[regno]
= trunc_int_for_mode (added_offset + base_offset,
mode);
continue;
}
}
}
/* Try to transform
(set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
...
(set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
to
(set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
...
(set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
if ((GET_CODE (src) == SYMBOL_REF
|| (GET_CODE (src) == CONST
&& GET_CODE (XEXP (src, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
&& CONST_INT_P (XEXP (XEXP (src, 0), 1))))
&& dbg_cnt (cse2_move2add))
{
rtx sym, off;
if (GET_CODE (src) == SYMBOL_REF)
{
sym = src;
off = const0_rtx;
}
else
{
sym = XEXP (XEXP (src, 0), 0);
off = XEXP (XEXP (src, 0), 1);
}
/* If the reg already contains the value which is sum of
sym and some constant value, we can use an add2 insn. */
if (move2add_valid_value_p (regno, mode)
&& reg_base_reg[regno] < 0
&& reg_symbol_ref[regno] != NULL_RTX
&& rtx_equal_p (sym, reg_symbol_ref[regno]))
changed |= move2add_use_add2_insn (mode, reg, sym, off, insn);
/* Otherwise, we have to find a register whose value is sum
of sym and some constant value. */
else
changed |= move2add_use_add3_insn (mode, reg, sym, off, insn);
continue;
}
}
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
{
if (REG_NOTE_KIND (note) == REG_INC
&& REG_P (XEXP (note, 0)))
{
/* Reset the information about this register. */
int regno = REGNO (XEXP (note, 0));
if (regno < FIRST_PSEUDO_REGISTER)
{
move2add_record_mode (XEXP (note, 0));
reg_mode[regno] = VOIDmode;
}
}
}
note_stores (PATTERN (insn), move2add_note_store, insn);
/* If INSN is a conditional branch, we try to extract an
implicit set out of it. */
if (any_condjump_p (insn))
{
rtx cnd = fis_get_condition (insn);
if (cnd != NULL_RTX
&& GET_CODE (cnd) == NE
&& REG_P (XEXP (cnd, 0))
&& !reg_set_p (XEXP (cnd, 0), insn)
/* The following two checks, which are also in
move2add_note_store, are intended to reduce the
number of calls to gen_rtx_SET to avoid memory
allocation if possible. */
&& SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
&& REG_NREGS (XEXP (cnd, 0)) == 1
&& CONST_INT_P (XEXP (cnd, 1)))
{
rtx implicit_set =
gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
}
}
/* If this is a CALL_INSN, all call used registers are stored with
unknown values. */
if (CALL_P (insn))
{
rtx link;
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
{
if (call_used_regs[i])
/* Reset the information about this register. */
reg_mode[i] = VOIDmode;
}
for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
link = XEXP (link, 1))
{
rtx setuse = XEXP (link, 0);
rtx usage_rtx = XEXP (setuse, 0);
if (GET_CODE (setuse) == CLOBBER
&& REG_P (usage_rtx))
{
unsigned int end_regno = END_REGNO (usage_rtx);
for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
/* Reset the information about this register. */
reg_mode[r] = VOIDmode;
}
}
}
}
return changed;
}
/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
contains SET.
Update reg_set_luid, reg_offset and reg_base_reg accordingly.
Called from reload_cse_move2add via note_stores. */
static void
move2add_note_store (rtx dst, const_rtx set, void *data)
{
rtx_insn *insn = (rtx_insn *) data;
unsigned int regno = 0;
scalar_int_mode mode;
/* Some targets do argument pushes without adding REG_INC notes. */
if (MEM_P (dst))
{
dst = XEXP (dst, 0);
if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
|| GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
return;
}
if (GET_CODE (dst) == SUBREG)
regno = subreg_regno (dst);
else if (REG_P (dst))
regno = REGNO (dst);
else
return;
if (!is_a <scalar_int_mode> (GET_MODE (dst), &mode))
goto invalidate;
if (GET_CODE (set) == SET)
{
rtx note, sym = NULL_RTX;
rtx off;
note = find_reg_equal_equiv_note (insn);
if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
{
sym = XEXP (note, 0);
off = const0_rtx;
}
else if (note && GET_CODE (XEXP (note, 0)) == CONST
&& GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
&& CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
{
sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
off = XEXP (XEXP (XEXP (note, 0), 0), 1);
}
if (sym != NULL_RTX)
{
move2add_record_sym_value (dst, sym, off);
return;
}
}
if (GET_CODE (set) == SET
&& GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
{
rtx src = SET_SRC (set);
rtx base_reg;
unsigned HOST_WIDE_INT offset;
int base_regno;
switch (GET_CODE (src))
{
case PLUS:
if (REG_P (XEXP (src, 0)))
{
base_reg = XEXP (src, 0);
if (CONST_INT_P (XEXP (src, 1)))
offset = UINTVAL (XEXP (src, 1));
else if (REG_P (XEXP (src, 1))
&& move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
{
if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
&& reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
offset = reg_offset[REGNO (XEXP (src, 1))];
/* Maybe the first register is known to be a
constant. */
else if (move2add_valid_value_p (REGNO (base_reg), mode)
&& reg_base_reg[REGNO (base_reg)] < 0
&& reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
{
offset = reg_offset[REGNO (base_reg)];
base_reg = XEXP (src, 1);
}
else
goto invalidate;
}
else
goto invalidate;
break;
}
goto invalidate;
case REG:
base_reg = src;
offset = 0;
break;
case CONST_INT:
/* Start tracking the register as a constant. */
reg_base_reg[regno] = -1;
reg_symbol_ref[regno] = NULL_RTX;
reg_offset[regno] = INTVAL (SET_SRC (set));
/* We assign the same luid to all registers set to constants. */
reg_set_luid[regno] = move2add_last_label_luid + 1;
move2add_record_mode (dst);
return;
default:
goto invalidate;
}
base_regno = REGNO (base_reg);
/* If information about the base register is not valid, set it
up as a new base register, pretending its value is known
starting from the current insn. */
if (!move2add_valid_value_p (base_regno, mode))
{
reg_base_reg[base_regno] = base_regno;
reg_symbol_ref[base_regno] = NULL_RTX;
reg_offset[base_regno] = 0;
reg_set_luid[base_regno] = move2add_luid;
gcc_assert (GET_MODE (base_reg) == mode);
move2add_record_mode (base_reg);
}
/* Copy base information from our base register. */
reg_set_luid[regno] = reg_set_luid[base_regno];
reg_base_reg[regno] = reg_base_reg[base_regno];
reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
/* Compute the sum of the offsets or constants. */
reg_offset[regno]
= trunc_int_for_mode (offset + reg_offset[base_regno], mode);
move2add_record_mode (dst);
}
else
{
invalidate:
/* Invalidate the contents of the register. */
move2add_record_mode (dst);
reg_mode[regno] = VOIDmode;
}
}
namespace {
const pass_data pass_data_postreload_cse =
{
RTL_PASS, /* type */
"postreload", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_RELOAD_CSE_REGS, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_df_finish, /* todo_flags_finish */
};
class pass_postreload_cse : public rtl_opt_pass
{
public:
pass_postreload_cse (gcc::context *ctxt)
: rtl_opt_pass (pass_data_postreload_cse, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
virtual unsigned int execute (function *);
}; // class pass_postreload_cse
unsigned int
pass_postreload_cse::execute (function *fun)
{
if (!dbg_cnt (postreload_cse))
return 0;
/* Do a very simple CSE pass over just the hard registers. */
reload_cse_regs (get_insns ());
/* Reload_cse_regs can eliminate potentially-trapping MEMs.
Remove any EH edges associated with them. */
if (fun->can_throw_non_call_exceptions
&& purge_all_dead_edges ())
cleanup_cfg (0);
return 0;
}
} // anon namespace
rtl_opt_pass *
make_pass_postreload_cse (gcc::context *ctxt)
{
return new pass_postreload_cse (ctxt);
}
|