aboutsummaryrefslogtreecommitdiff
path: root/gcc/mode-switching.cc
blob: 9041838a791f4989e02ddc9141f91fcb3ba85c3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
/* CPU mode switching
   Copyright (C) 1998-2024 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "regs.h"
#include "emit-rtl.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "lcm.h"
#include "cfgcleanup.h"
#include "tree-pass.h"
#include "cfgbuild.h"

/* We want target macros for the mode switching code to be able to refer
   to instruction attribute values.  */
#include "insn-attr.h"

#ifdef OPTIMIZE_MODE_SWITCHING

/* The algorithm for setting the modes consists of scanning the insn list
   and finding all the insns which require a specific mode.  Each insn gets
   a unique struct seginfo element.  These structures are inserted into a list
   for each basic block.  For each entity, there is an array of bb_info over
   the flow graph basic blocks (local var 'bb_info'), which contains a list
   of all insns within that basic block, in the order they are encountered.

   For each entity, any basic block WITHOUT any insns requiring a specific
   mode are given a single entry without a mode (each basic block in the
   flow graph must have at least one entry in the segment table).

   The LCM algorithm is then run over the flow graph to determine where to
   place the sets to the highest-priority mode with respect to the first
   insn in any one block.  Any adjustments required to the transparency
   vectors are made, then the next iteration starts for the next-lower
   priority mode, till for each entity all modes are exhausted.

   More details can be found in the code of optimize_mode_switching.  */

/* This structure contains the information for each insn which requires
   either single or double mode to be set.
   MODE is the mode this insn must be executed in.
   INSN_PTR is the insn to be executed (may be the note that marks the
   beginning of a basic block).
   NEXT is the next insn in the same basic block.  */
struct seginfo
{
  int prev_mode;
  int mode;
  rtx_insn *insn_ptr;
  struct seginfo *next;
  HARD_REG_SET regs_live;
};

struct bb_info
{
  struct seginfo *seginfo;
  int computing;
  int mode_out;
  int mode_in;
  int single_succ;
};

/* Clear ode I from entity J in bitmap B.  */
#define clear_mode_bit(b, j, i) \
       bitmap_clear_bit (b, (j * max_num_modes) + i)

/* Test mode I from entity J in bitmap B.  */
#define mode_bit_p(b, j, i) \
       bitmap_bit_p (b, (j * max_num_modes) + i)

/* Set mode I from entity J in bitmal B.  */
#define set_mode_bit(b, j, i) \
       bitmap_set_bit (b, (j * max_num_modes) + i)

/* Emit modes segments from EDGE_LIST associated with entity E.
   INFO gives mode availability for each mode.  */

static bool
commit_mode_sets (struct edge_list *edge_list, int e, struct bb_info *info)
{
  bool need_commit = false;

  for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
    {
      edge eg = INDEX_EDGE (edge_list, ed);

      if (eg->aux)
	{
	  int mode = (int) (intptr_t) eg->aux - 1;
	  HARD_REG_SET live_at_edge;
	  basic_block src_bb = eg->src;
	  int cur_mode = info[src_bb->index].mode_out;
	  rtx_insn *mode_set;

	  REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));

	  rtl_profile_for_edge (eg);
	  start_sequence ();

	  targetm.mode_switching.emit (e, mode, cur_mode, live_at_edge);

	  mode_set = get_insns ();
	  end_sequence ();
	  default_rtl_profile ();

	  /* Do not bother to insert empty sequence.  */
	  if (mode_set == NULL)
	    continue;

	  /* We should not get an abnormal edge here.  */
	  gcc_assert (! (eg->flags & EDGE_ABNORMAL));

	  need_commit = true;
	  insert_insn_on_edge (mode_set, eg);
	}
    }

  return need_commit;
}

/* Allocate a new BBINFO structure, initialized with the PREV_MODE, MODE,
   INSN, and REGS_LIVE parameters.
   INSN may not be a NOTE_INSN_BASIC_BLOCK, unless it is an empty
   basic block; that allows us later to insert instructions in a FIFO-like
   manner.  */

static struct seginfo *
new_seginfo (int prev_mode, int mode, rtx_insn *insn,
	     const HARD_REG_SET &regs_live)
{
  struct seginfo *ptr;

  gcc_assert (!NOTE_INSN_BASIC_BLOCK_P (insn)
	      || insn == BB_END (NOTE_BASIC_BLOCK (insn)));
  ptr = XNEW (struct seginfo);
  ptr->prev_mode = prev_mode;
  ptr->mode = mode;
  ptr->insn_ptr = insn;
  ptr->next = NULL;
  ptr->regs_live = regs_live;
  return ptr;
}

/* Add a seginfo element to the end of a list.
   TAIL is a pointer to the list's null terminator.
   INFO is the structure to be linked in.  */

static void
add_seginfo (struct seginfo ***tail_ptr, struct seginfo *info)
{
  **tail_ptr = info;
  *tail_ptr = &info->next;
}

/* Record in LIVE that register REG died.  */

static void
reg_dies (rtx reg, HARD_REG_SET *live)
{
  int regno;

  if (!REG_P (reg))
    return;

  regno = REGNO (reg);
  if (regno < FIRST_PSEUDO_REGISTER)
    remove_from_hard_reg_set (live, GET_MODE (reg), regno);
}

/* Record in LIVE that register REG became live.
   This is called via note_stores.  */

static void
reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
{
  int regno;

  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);

  if (!REG_P (reg))
    return;

  regno = REGNO (reg);
  if (regno < FIRST_PSEUDO_REGISTER)
    add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
}

/* Split the fallthrough edge to the exit block, so that we can note
   that there NORMAL_MODE is required.  Return the new block if it's
   inserted before the exit block.  Otherwise return null.  */

static basic_block
create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
{
  edge eg;
  edge_iterator ei;
  basic_block pre_exit;

  /* The only non-call predecessor at this stage is a block with a
     fallthrough edge; there can be at most one, but there could be
     none at all, e.g. when exit is called.  */
  pre_exit = 0;
  FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
    if (eg->flags & EDGE_FALLTHRU)
      {
	basic_block src_bb = eg->src;
	rtx_insn *last_insn;
	rtx ret_reg;

	gcc_assert (!pre_exit);
	/* If this function returns a value at the end, we have to
	   insert the final mode switch before the return value copy
	   to its hard register.

	   x86 targets use mode-switching infrastructure to
	   conditionally insert vzeroupper instruction at the exit
	   from the function where there is no need to switch the
	   mode before the return value copy.  The vzeroupper insertion
	   pass runs after reload, so use !reload_completed as a stand-in
	   for x86 to skip the search for the return value copy insn.

	   N.b.: the code below assumes that the return copy insn
	   immediately precedes its corresponding use insn.  This
	   assumption does not hold after reload, since sched1 pass
	   can schedule the return copy insn away from its
	   corresponding use insn.  */
	if (!reload_completed
	    && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) == 1
	    && NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
	    && GET_CODE (PATTERN (last_insn)) == USE
	    && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
	  {
	    auto_bitmap live;
	    df_simulate_initialize_backwards (src_bb, live);

	    int ret_start = REGNO (ret_reg);
	    int nregs = REG_NREGS (ret_reg);
	    int ret_end = ret_start + nregs;
	    bool short_block = false;
	    bool multi_reg_return = false;
	    bool forced_late_switch = false;
	    rtx_insn *before_return_copy;

	    df_simulate_one_insn_backwards (src_bb, last_insn, live);

	    do
	      {
		rtx_insn *return_copy = PREV_INSN (last_insn);
		rtx return_copy_pat, copy_reg;
		int copy_start, copy_num;
		int j;

		df_simulate_one_insn_backwards (src_bb, return_copy, live);

		if (NONDEBUG_INSN_P (return_copy))
		  {
		    /* When using SJLJ exceptions, the call to the
		       unregister function is inserted between the
		       clobber of the return value and the copy.
		       We do not want to split the block before this
		       or any other call; if we have not found the
		       copy yet, the copy must have been deleted.  */
		    if (CALL_P (return_copy))
		      {
			short_block = true;
			break;
		      }
		    return_copy_pat = PATTERN (return_copy);
		    switch (GET_CODE (return_copy_pat))
		      {
		      case USE:
			/* Skip USEs of multiple return registers.
			   __builtin_apply pattern is also handled here.  */
			if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
			    && (targetm.calls.function_value_regno_p
				(REGNO (XEXP (return_copy_pat, 0)))))
			  {
			    multi_reg_return = true;
			    last_insn = return_copy;
			    continue;
			  }
			break;

		      case ASM_OPERANDS:
			/* Skip barrier insns.  */
			if (!MEM_VOLATILE_P (return_copy_pat))
			  break;

			/* Fall through.  */

		      case ASM_INPUT:
		      case UNSPEC_VOLATILE:
			last_insn = return_copy;
			continue;

		      default:
			break;
		      }

		    /* If the return register is not (in its entirety)
		       likely spilled, the return copy might be
		       partially or completely optimized away.  */
		    return_copy_pat = single_set (return_copy);
		    if (!return_copy_pat)
		      {
			return_copy_pat = PATTERN (return_copy);
			if (GET_CODE (return_copy_pat) != CLOBBER)
			  break;
			else if (!optimize)
			  {
			    /* This might be (clobber (reg [<result>]))
			       when not optimizing.  Then check if
			       the previous insn is the clobber for
			       the return register.  */
			    copy_reg = SET_DEST (return_copy_pat);
			    if (GET_CODE (copy_reg) == REG
				&& !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
			      {
				if (INSN_P (PREV_INSN (return_copy)))
				  {
				    return_copy = PREV_INSN (return_copy);
				    return_copy_pat = PATTERN (return_copy);
				    if (GET_CODE (return_copy_pat) != CLOBBER)
				      break;
				  }
			      }
			  }
		      }
		    copy_reg = SET_DEST (return_copy_pat);
		    if (GET_CODE (copy_reg) == REG)
		      copy_start = REGNO (copy_reg);
		    else if (GET_CODE (copy_reg) == SUBREG
			     && GET_CODE (SUBREG_REG (copy_reg)) == REG)
		      copy_start = REGNO (SUBREG_REG (copy_reg));
		    else
		      {
			/* When control reaches end of non-void function,
			   there are no return copy insns at all.  This
			   avoids an ice on that invalid function.  */
			if (ret_start + nregs == ret_end)
			  short_block = true;
			break;
		      }
		    if (!targetm.calls.function_value_regno_p (copy_start))
		      copy_num = 0;
		    else
		      copy_num = hard_regno_nregs (copy_start,
						   GET_MODE (copy_reg));

		    /* If the return register is not likely spilled, - as is
		       the case for floating point on SH4 - then it might
		       be set by an arithmetic operation that needs a
		       different mode than the exit block.  */
		    HARD_REG_SET hard_regs_live;
		    REG_SET_TO_HARD_REG_SET (hard_regs_live, live);
		    for (j = n_entities - 1; j >= 0; j--)
		      {
			int e = entity_map[j];
			int mode =
			  targetm.mode_switching.needed (e, return_copy,
							 hard_regs_live);

			if (mode != num_modes[e]
			    && mode != targetm.mode_switching.exit (e))
			  break;
		      }
		    if (j >= 0)
		      {
			/* __builtin_return emits a sequence of loads to all
			   return registers.  One of them might require
			   another mode than MODE_EXIT, even if it is
			   unrelated to the return value, so we want to put
			   the final mode switch after it.  */
			if (multi_reg_return
			    && targetm.calls.function_value_regno_p
			        (copy_start))
			  forced_late_switch = true;

			/* For the SH4, floating point loads depend on fpscr,
			   thus we might need to put the final mode switch
			   after the return value copy.  That is still OK,
			   because a floating point return value does not
			   conflict with address reloads.  */
			if (copy_start >= ret_start
			    && copy_start + copy_num <= ret_end
			    && GET_CODE (return_copy_pat) == SET
			    && OBJECT_P (SET_SRC (return_copy_pat)))
			  forced_late_switch = true;
			break;
		      }
		    if (copy_num == 0)
		      {
			last_insn = return_copy;
			continue;
		      }

		    if (copy_start >= ret_start
			&& copy_start + copy_num <= ret_end)
		      nregs -= copy_num;
		    else if (!multi_reg_return
			     || !targetm.calls.function_value_regno_p
				 (copy_start))
		      break;
		    last_insn = return_copy;
		  }
		/* ??? Exception handling can lead to the return value
		   copy being already separated from the return value use,
		   as in  unwind-dw2.c .
		   Similarly, conditionally returning without a value,
		   and conditionally using builtin_return can lead to an
		   isolated use.  */
		if (return_copy == BB_HEAD (src_bb))
		  {
		    short_block = true;
		    break;
		  }
		last_insn = return_copy;
	      }
	    while (nregs);

	    /* If we didn't see a full return value copy, verify that there
	       is a plausible reason for this.  If some, but not all of the
	       return register is likely spilled, we can expect that there
	       is a copy for the likely spilled part.  */
	    gcc_assert (!nregs
			|| forced_late_switch
			|| short_block
			|| !(targetm.class_likely_spilled_p
			     (REGNO_REG_CLASS (ret_start)))
			|| nregs != REG_NREGS (ret_reg)
			/* For multi-hard-register floating point
		   	   values, sometimes the likely-spilled part
		   	   is ordinarily copied first, then the other
		   	   part is set with an arithmetic operation.
		   	   This doesn't actually cause reload
		   	   failures, so let it pass.  */
			|| (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
			    && nregs != 1));

	    if (!NOTE_INSN_BASIC_BLOCK_P (last_insn))
	      {
		before_return_copy
		  = emit_note_before (NOTE_INSN_DELETED, last_insn);
		/* Instructions preceding LAST_INSN in the same block might
		   require a different mode than MODE_EXIT, so if we might
		   have such instructions, keep them in a separate block
		   from pre_exit.  */
		src_bb = split_block (src_bb,
				      PREV_INSN (before_return_copy))->dest;
	      }
	    else
	      before_return_copy = last_insn;
	    pre_exit = split_block (src_bb, before_return_copy)->src;
	  }
	else
	  {
	    pre_exit = split_edge (eg);
	  }
      }

  return pre_exit;
}

/* Return the confluence of modes MODE1 and MODE2 for entity ENTITY,
   using NO_MODE to represent an unknown mode if nothing more precise
   is available.  */

int
mode_confluence (int entity, int mode1, int mode2, int no_mode)
{
  if (mode1 == mode2)
    return mode1;

  if (mode1 != no_mode
      && mode2 != no_mode
      && targetm.mode_switching.confluence)
    return targetm.mode_switching.confluence (entity, mode1, mode2);

  return no_mode;
}

/* Information for the dataflow problems below.  */
struct
{
  /* Information about each basic block, indexed by block id.  */
  struct bb_info *bb_info;

  /* A bitmap of blocks for which the current entity is transparent.  */
  sbitmap transp;

  /* The entity that we're processing.  */
  int entity;

  /* The number of modes defined for the entity, and thus the identifier
     of the "don't know" mode.  */
  int no_mode;
} confluence_info;

/* Propagate information about any mode change on edge E to the
   destination block's mode_in.  Return true if something changed.

   The mode_in and mode_out fields use no_mode + 1 to mean "not yet set".  */

static bool
forward_confluence_n (edge e)
{
  /* The entry and exit blocks have no useful mode information.  */
  if (e->src->index == ENTRY_BLOCK || e->dest->index == EXIT_BLOCK)
    return false;

  /* We don't control mode changes across abnormal edges.  */
  if (e->flags & EDGE_ABNORMAL)
    return false;

  /* E->aux is nonzero if we have computed the LCM problem and scheduled
     E to change the mode to E->aux - 1.  Otherwise model the change
     from the source to the destination.  */
  struct bb_info *bb_info = confluence_info.bb_info;
  int no_mode = confluence_info.no_mode;
  int src_mode = bb_info[e->src->index].mode_out;
  if (e->aux)
    src_mode = (int) (intptr_t) e->aux - 1;
  if (src_mode == no_mode + 1)
    return false;

  int dest_mode = bb_info[e->dest->index].mode_in;
  if (dest_mode == no_mode + 1)
    {
      bb_info[e->dest->index].mode_in = src_mode;
      return true;
    }

  int entity = confluence_info.entity;
  int new_mode = mode_confluence (entity, src_mode, dest_mode, no_mode);
  if (dest_mode == new_mode)
    return false;

  bb_info[e->dest->index].mode_in = new_mode;
  return true;
}

/* Update block BB_INDEX's mode_out based on its mode_in.  Return true if
   something changed.  */

static bool
forward_transfer (int bb_index)
{
  /* The entry and exit blocks have no useful mode information.  */
  if (bb_index == ENTRY_BLOCK || bb_index == EXIT_BLOCK)
    return false;

  /* Only propagate through a block if the entity is transparent.  */
  struct bb_info *bb_info = confluence_info.bb_info;
  if (bb_info[bb_index].computing != confluence_info.no_mode
      || bb_info[bb_index].mode_out == bb_info[bb_index].mode_in)
    return false;

  bb_info[bb_index].mode_out = bb_info[bb_index].mode_in;
  return true;
}

/* A backwards confluence function.  Update the bb_info single_succ
   field for E's source block, based on changes to E's destination block.
   At the end of the dataflow problem, single_succ is the single mode
   that all successors require (directly or indirectly), or no_mode
   if there are conflicting requirements.

   Initially, a value of no_mode + 1 means "don't know".  */

static bool
single_succ_confluence_n (edge e)
{
  /* The entry block has no associated mode information.  */
  if (e->src->index == ENTRY_BLOCK)
    return false;

  /* We don't control mode changes across abnormal edges.  */
  if (e->flags & EDGE_ABNORMAL)
    return false;

  /* Do nothing if we've already found a conflict.  */
  struct bb_info *bb_info = confluence_info.bb_info;
  int no_mode = confluence_info.no_mode;
  int src_mode = bb_info[e->src->index].single_succ;
  if (src_mode == no_mode)
    return false;

  /* Work out what mode the destination block (or its successors) require.  */
  int dest_mode;
  if (e->dest->index == EXIT_BLOCK)
    dest_mode = no_mode;
  else if (bitmap_bit_p (confluence_info.transp, e->dest->index))
    dest_mode = bb_info[e->dest->index].single_succ;
  else
    dest_mode = bb_info[e->dest->index].seginfo->mode;

  /* Do nothing if the destination block has no new information.  */
  if (dest_mode == no_mode + 1 || dest_mode == src_mode)
    return false;

  /* Detect conflicting modes.  */
  if (src_mode != no_mode + 1)
    dest_mode = no_mode;

  bb_info[e->src->index].single_succ = dest_mode;
  return true;
}

/* A backward transfer function for computing the bb_info single_succ
   fields, as described above single_succ_confluence.  */

static bool
single_succ_transfer (int bb_index)
{
  /* We don't have any field to transfer to.  Assume that, after the
     first iteration, we are only called if single_succ has changed.
     We should then process incoming edges if the entity is transparent.  */
  return bitmap_bit_p (confluence_info.transp, bb_index);
}

/* Check whether the target wants to back-propagate a mode change across
   edge E, and update the source block's computed mode if so.  Return true
   if something changed.  */

static bool
backprop_confluence_n (edge e)
{
  /* The entry and exit blocks have no useful mode information.  */
  if (e->src->index == ENTRY_BLOCK || e->dest->index == EXIT_BLOCK)
    return false;

  /* We don't control mode changes across abnormal edges.  */
  if (e->flags & EDGE_ABNORMAL)
    return false;

  /* We can only require a new mode in the source block if the entity
     was originally transparent there.  */
  if (!bitmap_bit_p (confluence_info.transp, e->src->index))
    return false;

  /* Exit now if there is no required mode, or if all paths into the
     source block leave the entity in the required mode.  */
  struct bb_info *bb_info = confluence_info.bb_info;
  int no_mode = confluence_info.no_mode;
  int src_mode = bb_info[e->src->index].mode_out;
  int dest_mode = bb_info[e->dest->index].mode_in;
  if (dest_mode == no_mode || src_mode == dest_mode)
    return false;

  /* See what the target thinks about this transition.  */
  int entity = confluence_info.entity;
  int new_mode = targetm.mode_switching.backprop (entity, src_mode,
						  dest_mode);
  if (new_mode == no_mode)
    return false;

  /* The target doesn't like the current transition, but would be happy
     with a transition from NEW_MODE.

     If we force the source block to use NEW_MODE, we might introduce a
     double transition on at least one path through the function (one to
     NEW_MODE and then one to DEST_MODE).  Therefore, if all destination
     blocks require the same mode, it is usually better to bring that
     mode requirement forward.

     If that isn't possible, merge the preference for this edge with
     the preferences for other edges.  no_mode + 1 indicates that there
     was no previous preference.  */
  int old_mode = bb_info[e->src->index].computing;
  if (bb_info[e->src->index].single_succ != no_mode)
    new_mode = bb_info[e->src->index].single_succ;
  else if (old_mode != no_mode + 1)
    new_mode = mode_confluence (entity, old_mode, new_mode, no_mode);

  if (old_mode == new_mode)
    return false;

  bb_info[e->src->index].computing = new_mode;
  return true;
}

/* If the current entity was originally transparent in block BB_INDEX,
   update the incoming mode to match the outgoing mode.  Register a mode
   change if the entity is no longer transparent.

   Also, as an on-the-fly optimization, check whether the entity was
   originally transparent in BB_INDEX and if all successor blocks require
   the same mode.  If so, anticipate the mode change in BB_INDEX if
   doing it on the incoming edges would require no more mode changes than
   doing it on the outgoing edges.  The aim is to reduce the total number
   of mode changes emitted for the function (and thus reduce code size and
   cfg complexity) without increasing the number of mode changes on any
   given path through the function.  A typical case where it helps is:

	  T
	 / \
	T   M
	 \ /
	  M

   where the entity is transparent in the T blocks and is required to have
   mode M in the M blocks.  If there are no redundancies leading up to this,
   there will be two mutually-exclusive changes to mode M, one on each of
   the T->M edges.  The optimization instead converts it to:

	  T            T            M
	 / \          / \          / \
	T   M   ->   M   M   ->   M   M
	 \ /          \ /          \ /
	  M            M            M

   which creates a single transition to M for both paths through the diamond.

   Return true if something changed.  */

static bool
backprop_transfer (int bb_index)
{
  /* The entry and exit blocks have no useful mode information.  */
  if (bb_index == ENTRY_BLOCK || bb_index == EXIT_BLOCK)
    return false;

  /* We can only require a new mode if the entity was previously
     transparent.  */
  if (!bitmap_bit_p (confluence_info.transp, bb_index))
    return false;

  struct bb_info *bb_info = confluence_info.bb_info;
  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
  int no_mode = confluence_info.no_mode;
  int mode_in = bb_info[bb_index].mode_in;
  int mode_out = bb_info[bb_index].computing;
  if (mode_out == no_mode + 1)
    {
      /* The entity is still transparent for this block.  See whether
	 all successor blocks need the same mode, either directly or
	 indirectly.  */
      mode_out = bb_info[bb_index].single_succ;
      if (mode_out == no_mode)
	return false;

      /* Get a minimum bound on the number of transitions that would be
	 removed if BB itself required MODE_OUT.  */
      unsigned int moved = 0;
      for (edge e : bb->succs)
	if (e->dest->index != EXIT_BLOCK
	    && mode_out == bb_info[e->dest->index].seginfo->mode)
	  moved += 1;

      /* See whether making the mode change on all incoming edges would
	 be no worse than making it on MOVED outgoing edges.  */
      if (moved < EDGE_COUNT (bb->preds))
	return false;

      bb_info[bb_index].mode_out = mode_out;
      bb_info[bb_index].computing = mode_out;
    }
  else if (mode_out == mode_in)
    return false;

  bb_info[bb_index].mode_in = mode_out;
  bb_info[bb_index].seginfo->mode = mode_out;
  return true;
}

/* Find all insns that need a particular mode setting, and insert the
   necessary mode switches.  Return true if we did work.  */

static int
optimize_mode_switching (void)
{
  int e;
  basic_block bb;
  bool need_commit = false;
  static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
#define N_ENTITIES ARRAY_SIZE (num_modes)
  int entity_map[N_ENTITIES] = {};
  struct bb_info *bb_info[N_ENTITIES] = {};
  int i, j;
  int n_entities = 0;
  int max_num_modes = 0;
  bool emitted ATTRIBUTE_UNUSED = false;
  basic_block post_entry = 0;
  basic_block pre_exit = 0;
  struct edge_list *edge_list = 0;

  /* These bitmaps are used for the LCM algorithm.  */
  sbitmap *kill, *del, *insert, *antic, *transp, *comp;
  sbitmap *avin, *avout;

  for (e = N_ENTITIES - 1; e >= 0; e--)
    if (OPTIMIZE_MODE_SWITCHING (e))
      {
	int entry_exit_extra = 0;

	/* Create the list of segments within each basic block.
	   If NORMAL_MODE is defined, allow for two extra
	   blocks split from the entry and exit block.  */
	if (targetm.mode_switching.entry && targetm.mode_switching.exit)
	  entry_exit_extra = 3;

	bb_info[n_entities]
	  = XCNEWVEC (struct bb_info,
		      last_basic_block_for_fn (cfun) + entry_exit_extra);
	entity_map[n_entities++] = e;
	if (num_modes[e] > max_num_modes)
	  max_num_modes = num_modes[e];
      }

  if (! n_entities)
    return 0;

  /* Make sure if MODE_ENTRY is defined MODE_EXIT is defined.  */
  gcc_assert ((targetm.mode_switching.entry && targetm.mode_switching.exit)
	      || (!targetm.mode_switching.entry
		  && !targetm.mode_switching.exit));

  if (targetm.mode_switching.entry && targetm.mode_switching.exit)
    {
      /* Split the edge from the entry block, so that we can note that
	 there NORMAL_MODE is supplied.  */
      post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
      pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
    }

  df_note_add_problem ();
  df_analyze ();

  /* Create the bitmap vectors.  */
  antic = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
				n_entities * max_num_modes);
  transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
				 n_entities * max_num_modes);
  comp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
			       n_entities * max_num_modes);
  avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
			       n_entities * max_num_modes);
  avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
				n_entities * max_num_modes);
  kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
			       n_entities * max_num_modes);

  bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
  bitmap_vector_clear (antic, last_basic_block_for_fn (cfun));
  bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));

  auto_sbitmap transp_all (last_basic_block_for_fn (cfun));

  auto_bitmap blocks;

  /* Forward-propagate mode information through blocks where the entity
     is transparent, so that mode_in describes the mode on entry to each
     block and mode_out describes the mode on exit from each block.  */
  auto forwprop_mode_info = [&](struct bb_info *info,
				int entity, int no_mode)
    {
      /* Use no_mode + 1 to mean "not yet set".  */
      FOR_EACH_BB_FN (bb, cfun)
	{
	  if (bb_has_abnormal_pred (bb))
	    info[bb->index].mode_in = info[bb->index].seginfo->mode;
	  else
	    info[bb->index].mode_in = no_mode + 1;
	  if (info[bb->index].computing != no_mode)
	    info[bb->index].mode_out = info[bb->index].computing;
	  else
	    info[bb->index].mode_out = no_mode + 1;
	}

      confluence_info.bb_info = info;
      confluence_info.transp = nullptr;
      confluence_info.entity = entity;
      confluence_info.no_mode = no_mode;

      bitmap_set_range (blocks, 0, last_basic_block_for_fn (cfun));
      df_simple_dataflow (DF_FORWARD, NULL, NULL, forward_confluence_n,
			  forward_transfer, blocks,
			  df_get_postorder (DF_FORWARD),
			  df_get_n_blocks (DF_FORWARD));

    };

  if (targetm.mode_switching.backprop)
    clear_aux_for_edges ();

  for (j = n_entities - 1; j >= 0; j--)
    {
      int e = entity_map[j];
      int no_mode = num_modes[e];
      struct bb_info *info = bb_info[j];
      rtx_insn *insn;

      bitmap_ones (transp_all);

      /* Determine what the first use (if any) need for a mode of entity E is.
	 This will be the mode that is anticipatable for this block.
	 Also compute the initial transparency settings.  */
      FOR_EACH_BB_FN (bb, cfun)
	{
	  struct seginfo **tail_ptr = &info[bb->index].seginfo;
	  struct seginfo *ptr;
	  int last_mode = no_mode;
	  bool any_set_required = false;
	  HARD_REG_SET live_now;

	  info[bb->index].mode_out = info[bb->index].mode_in = no_mode;

	  REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));

	  /* Pretend the mode is clobbered across abnormal edges.  */
	  {
	    edge_iterator ei;
	    edge eg;
	    FOR_EACH_EDGE (eg, ei, bb->preds)
	      if (eg->flags & EDGE_COMPLEX)
		break;
	    if (eg)
	      {
		rtx_insn *ins_pos = BB_HEAD (bb);
		if (LABEL_P (ins_pos))
		  ins_pos = NEXT_INSN (ins_pos);
		gcc_assert (NOTE_INSN_BASIC_BLOCK_P (ins_pos));
		if (ins_pos != BB_END (bb))
		  ins_pos = NEXT_INSN (ins_pos);
		if (bb_has_eh_pred (bb)
		    && targetm.mode_switching.eh_handler)
		  last_mode = targetm.mode_switching.eh_handler (e);
		ptr = new_seginfo (no_mode, last_mode, ins_pos, live_now);
		add_seginfo (&tail_ptr, ptr);
		bitmap_clear_bit (transp_all, bb->index);
	      }
	  }

	  FOR_BB_INSNS (bb, insn)
	    {
	      if (NONDEBUG_INSN_P (insn))
		{
		  int mode = targetm.mode_switching.needed (e, insn, live_now);
		  rtx link;

		  if (mode != no_mode && mode != last_mode)
		    {
		      ptr = new_seginfo (last_mode, mode, insn, live_now);
		      add_seginfo (&tail_ptr, ptr);
		      bitmap_clear_bit (transp_all, bb->index);
		      any_set_required = true;
		      last_mode = mode;
		    }

		  /* Update LIVE_NOW.  */
		  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
		    if (REG_NOTE_KIND (link) == REG_DEAD)
		      reg_dies (XEXP (link, 0), &live_now);

		  note_stores (insn, reg_becomes_live, &live_now);
		  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
		    if (REG_NOTE_KIND (link) == REG_UNUSED)
		      reg_dies (XEXP (link, 0), &live_now);

		  if (targetm.mode_switching.after)
		    last_mode = targetm.mode_switching.after (e, last_mode,
							      insn, live_now);
		}
	    }

	  info[bb->index].computing = last_mode;
	  /* Check for blocks without ANY mode requirements.
	     N.B. because of MODE_AFTER, last_mode might still
	     be different from no_mode, in which case we need to
	     mark the block as nontransparent.  */
	  if (!any_set_required)
	    {
	      ptr = new_seginfo (last_mode, no_mode, BB_END (bb), live_now);
	      add_seginfo (&tail_ptr, ptr);
	      if (last_mode != no_mode)
		bitmap_clear_bit (transp_all, bb->index);
	    }
	}
      if (targetm.mode_switching.entry && targetm.mode_switching.exit)
	{
	  info[post_entry->index].mode_out =
	    info[post_entry->index].mode_in = no_mode;

	  int mode = targetm.mode_switching.entry (e);
	  if (mode != no_mode)
	    {
	      /* Insert a fake computing definition of MODE into entry
		 blocks which compute no mode. This represents the mode on
		 entry.  */
	      info[post_entry->index].computing = mode;
	      bitmap_clear_bit (transp_all, post_entry->index);
	    }

	  if (pre_exit)
	    {
	      info[pre_exit->index].mode_out =
		info[pre_exit->index].mode_in = no_mode;

	      int mode = targetm.mode_switching.exit (e);
	      if (mode != no_mode)
		{
		  info[pre_exit->index].seginfo->mode = mode;
		  bitmap_clear_bit (transp_all, pre_exit->index);
		}
	    }
	}

      /* If the target requests it, back-propagate selected mode requirements
	 through transparent blocks.  */
      if (targetm.mode_switching.backprop)
	{
	  /* First work out the mode on entry to and exit from each block.  */
	  forwprop_mode_info (info, e, no_mode);

	  /* Compute the single_succ fields, as described above
	     single_succ_confluence.  */
	  FOR_EACH_BB_FN (bb, cfun)
	    info[bb->index].single_succ = no_mode + 1;

	  confluence_info.transp = transp_all;
	  bitmap_set_range (blocks, 0, last_basic_block_for_fn (cfun));
	  df_simple_dataflow (DF_BACKWARD, NULL, NULL,
			      single_succ_confluence_n,
			      single_succ_transfer, blocks,
			      df_get_postorder (DF_BACKWARD),
			      df_get_n_blocks (DF_BACKWARD));

	  FOR_EACH_BB_FN (bb, cfun)
	    {
	      /* Repurpose mode_in as the first mode required by the block,
		 or the output mode if none.  */
	      if (info[bb->index].seginfo->mode != no_mode)
		info[bb->index].mode_in = info[bb->index].seginfo->mode;

	      /* In transparent blocks, use computing == no_mode + 1
		 to indicate that no propagation has taken place.  */
	      if (info[bb->index].computing == no_mode)
		info[bb->index].computing = no_mode + 1;
	    }

	  bitmap_set_range (blocks, 0, last_basic_block_for_fn (cfun));
	  df_simple_dataflow (DF_BACKWARD, NULL, NULL, backprop_confluence_n,
			      backprop_transfer, blocks,
			      df_get_postorder (DF_BACKWARD),
			      df_get_n_blocks (DF_BACKWARD));

	  /* Any block that now computes a mode is no longer transparent.  */
	  FOR_EACH_BB_FN (bb, cfun)
	    if (info[bb->index].computing == no_mode + 1)
	      info[bb->index].computing = no_mode;
	    else if (info[bb->index].computing != no_mode)
	      bitmap_clear_bit (transp_all, bb->index);
	}

      /* Set the anticipatable and computing arrays.  */
      for (i = 0; i < no_mode; i++)
	{
	  int m = targetm.mode_switching.priority (entity_map[j], i);

	  FOR_EACH_BB_FN (bb, cfun)
	    {
	      if (!bitmap_bit_p (transp_all, bb->index))
		clear_mode_bit (transp[bb->index], j, m);

	      if (info[bb->index].seginfo->mode == m)
		set_mode_bit (antic[bb->index], j, m);

	      if (info[bb->index].computing == m)
		set_mode_bit (comp[bb->index], j, m);
	    }
	}
    }

  /* Calculate the optimal locations for the
     placement mode switches to modes with priority I.  */

  FOR_EACH_BB_FN (bb, cfun)
    bitmap_not (kill[bb->index], transp[bb->index]);

  edge_list = pre_edge_lcm_avs (n_entities * max_num_modes, transp, comp, antic,
				kill, avin, avout, &insert, &del);

  auto_sbitmap jumping_blocks (last_basic_block_for_fn (cfun));
  bitmap_clear (jumping_blocks);
  for (j = n_entities - 1; j >= 0; j--)
    {
      int no_mode = num_modes[entity_map[j]];
      struct bb_info *info = bb_info[j];

      /* Insert all mode sets that have been inserted by lcm.  */

      for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
	{
	  edge eg = INDEX_EDGE (edge_list, ed);

	  eg->aux = (void *) (intptr_t) 0;

	  for (i = 0; i < no_mode; i++)
	    {
	      int m = targetm.mode_switching.priority (entity_map[j], i);
	      if (mode_bit_p (insert[ed], j, m))
		{
		  eg->aux = (void *) (intptr_t) (m + 1);
		  break;
		}
	    }
	}

      /* mode_in and mode_out can be calculated directly from avin and
	 avout if all the modes are mutually exclusive.  Use the target-
	 provided confluence function otherwise.  */
      if (targetm.mode_switching.confluence)
	forwprop_mode_info (info, entity_map[j], no_mode);

      FOR_EACH_BB_FN (bb, cfun)
	{
	  auto modes_confluence = [&](sbitmap *av)
	    {
	      for (int i = 0; i < no_mode; ++i)
		if (mode_bit_p (av[bb->index], j, i))
		  {
		    for (int i2 = i + 1; i2 < no_mode; ++i2)
		      if (mode_bit_p (av[bb->index], j, i2))
			return no_mode;
		    return i;
		  }
	      return no_mode;
	    };

	  /* intialize mode in/out availability for bb.  */
	  if (!targetm.mode_switching.confluence)
	    {
	      info[bb->index].mode_out = modes_confluence (avout);
	      info[bb->index].mode_in = modes_confluence (avin);
	    }

	  for (i = 0; i < no_mode; i++)
	    if (mode_bit_p (del[bb->index], j, i))
	      info[bb->index].seginfo->mode = no_mode;

	  /* See whether the target can perform the first transition.
	     If not, push it onto the incoming edges.  The earlier backprop
	     pass should ensure that the resulting transitions are valid.  */
	  if (targetm.mode_switching.backprop)
	    {
	      int from_mode = info[bb->index].mode_in;
	      int to_mode = info[bb->index].seginfo->mode;
	      if (targetm.mode_switching.backprop (entity_map[j], from_mode,
						   to_mode) != no_mode)
		{
		  for (edge e : bb->preds)
		    e->aux = (void *) (intptr_t) (to_mode + 1);
		  info[bb->index].mode_in = to_mode;
		}
	    }
	}

      /* Now output the remaining mode sets in all the segments.  */

      /* In case there was no mode inserted. the mode information on the edge
	 might not be complete.
	 Update mode info on edges and commit pending mode sets.  */
      need_commit |= commit_mode_sets (edge_list, entity_map[j], bb_info[j]);

      /* Reset modes for next entity.  */
      clear_aux_for_edges ();

      FOR_EACH_BB_FN (bb, cfun)
	{
	  struct seginfo *ptr, *next;
	  struct seginfo *first = bb_info[j][bb->index].seginfo;

	  for (ptr = first; ptr; ptr = next)
	    {
	      next = ptr->next;
	      if (ptr->mode != no_mode)
		{
		  rtx_insn *mode_set;

		  rtl_profile_for_bb (bb);
		  start_sequence ();

		  int cur_mode = (ptr == first && ptr->prev_mode == no_mode
				  ? bb_info[j][bb->index].mode_in
				  : ptr->prev_mode);

		  targetm.mode_switching.emit (entity_map[j], ptr->mode,
					       cur_mode, ptr->regs_live);
		  mode_set = get_insns ();
		  end_sequence ();

		  /* Insert MODE_SET only if it is nonempty.  */
		  if (mode_set != NULL_RTX)
		    {
		      for (auto insn = mode_set; insn; insn = NEXT_INSN (insn))
			if (JUMP_P (insn))
			  {
			    rebuild_jump_labels_chain (mode_set);
			    bitmap_set_bit (jumping_blocks, bb->index);
			    break;
			  }
		      emitted = true;
		      if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
			/* We need to emit the insns in a FIFO-like manner,
			   i.e. the first to be emitted at our insertion
			   point ends up first in the instruction steam.
			   Because we made sure that NOTE_INSN_BASIC_BLOCK is
			   only used for initially empty basic blocks, we
			   can achieve this by appending at the end of
			   the block.  */
			emit_insn_after
			  (mode_set, BB_END (NOTE_BASIC_BLOCK (ptr->insn_ptr)));
		      else
			emit_insn_before (mode_set, ptr->insn_ptr);
		    }

		  default_rtl_profile ();
		}

	      free (ptr);
	    }
	}

      free (bb_info[j]);
    }

  free_edge_list (edge_list);

  /* Finished. Free up all the things we've allocated.  */
  sbitmap_vector_free (del);
  sbitmap_vector_free (insert);
  sbitmap_vector_free (kill);
  sbitmap_vector_free (antic);
  sbitmap_vector_free (transp);
  sbitmap_vector_free (comp);
  sbitmap_vector_free (avin);
  sbitmap_vector_free (avout);

  gcc_assert (SBITMAP_SIZE ((sbitmap) jumping_blocks)
	      == (unsigned int) last_basic_block_for_fn (cfun));
  if (!bitmap_empty_p (jumping_blocks))
    find_many_sub_basic_blocks (jumping_blocks);

  if (need_commit)
    commit_edge_insertions ();

  if (targetm.mode_switching.entry && targetm.mode_switching.exit)
    {
      free_dominance_info (CDI_DOMINATORS);
      cleanup_cfg (CLEANUP_NO_INSN_DEL);
    }
  else if (!need_commit && !emitted)
    return 0;

  return 1;
}

#endif /* OPTIMIZE_MODE_SWITCHING */

namespace {

const pass_data pass_data_mode_switching =
{
  RTL_PASS, /* type */
  "mode_sw", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_MODE_SWITCH, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_df_finish, /* todo_flags_finish */
};

class pass_mode_switching : public rtl_opt_pass
{
public:
  pass_mode_switching (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_mode_switching, ctxt)
  {}

  /* opt_pass methods: */
  /* The epiphany backend creates a second instance of this pass, so we need
     a clone method.  */
  opt_pass * clone () final override { return new pass_mode_switching (m_ctxt); }
  bool gate (function *) final override
    {
#ifdef OPTIMIZE_MODE_SWITCHING
      return true;
#else
      return false;
#endif
    }

  unsigned int execute (function *) final override
    {
#ifdef OPTIMIZE_MODE_SWITCHING
      optimize_mode_switching ();
#endif /* OPTIMIZE_MODE_SWITCHING */
      return 0;
    }

}; // class pass_mode_switching

} // anon namespace

rtl_opt_pass *
make_pass_mode_switching (gcc::context *ctxt)
{
  return new pass_mode_switching (ctxt);
}