aboutsummaryrefslogtreecommitdiff
path: root/gcc/mode-switching.cc
blob: c3e4d24de9b89769622b7d66e267bafe1e64091b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
/* CPU mode switching
   Copyright (C) 1998-2023 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "regs.h"
#include "emit-rtl.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "lcm.h"
#include "cfgcleanup.h"
#include "tree-pass.h"

/* We want target macros for the mode switching code to be able to refer
   to instruction attribute values.  */
#include "insn-attr.h"

#ifdef OPTIMIZE_MODE_SWITCHING

/* The algorithm for setting the modes consists of scanning the insn list
   and finding all the insns which require a specific mode.  Each insn gets
   a unique struct seginfo element.  These structures are inserted into a list
   for each basic block.  For each entity, there is an array of bb_info over
   the flow graph basic blocks (local var 'bb_info'), which contains a list
   of all insns within that basic block, in the order they are encountered.

   For each entity, any basic block WITHOUT any insns requiring a specific
   mode are given a single entry without a mode (each basic block in the
   flow graph must have at least one entry in the segment table).

   The LCM algorithm is then run over the flow graph to determine where to
   place the sets to the highest-priority mode with respect to the first
   insn in any one block.  Any adjustments required to the transparency
   vectors are made, then the next iteration starts for the next-lower
   priority mode, till for each entity all modes are exhausted.

   More details can be found in the code of optimize_mode_switching.  */

/* This structure contains the information for each insn which requires
   either single or double mode to be set.
   MODE is the mode this insn must be executed in.
   INSN_PTR is the insn to be executed (may be the note that marks the
   beginning of a basic block).
   NEXT is the next insn in the same basic block.  */
struct seginfo
{
  int mode;
  rtx_insn *insn_ptr;
  struct seginfo *next;
  HARD_REG_SET regs_live;
};

struct bb_info
{
  struct seginfo *seginfo;
  int computing;
  int mode_out;
  int mode_in;
};

/* Clear ode I from entity J in bitmap B.  */
#define clear_mode_bit(b, j, i) \
       bitmap_clear_bit (b, (j * max_num_modes) + i)

/* Test mode I from entity J in bitmap B.  */
#define mode_bit_p(b, j, i) \
       bitmap_bit_p (b, (j * max_num_modes) + i)

/* Set mode I from entity J in bitmal B.  */
#define set_mode_bit(b, j, i) \
       bitmap_set_bit (b, (j * max_num_modes) + i)

/* Emit modes segments from EDGE_LIST associated with entity E.
   INFO gives mode availability for each mode.  */

static bool
commit_mode_sets (struct edge_list *edge_list, int e, struct bb_info *info)
{
  bool need_commit = false;

  for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
    {
      edge eg = INDEX_EDGE (edge_list, ed);
      int mode;

      if ((mode = (int)(intptr_t)(eg->aux)) != -1)
	{
	  HARD_REG_SET live_at_edge;
	  basic_block src_bb = eg->src;
	  int cur_mode = info[src_bb->index].mode_out;
	  rtx_insn *mode_set;

	  REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));

	  rtl_profile_for_edge (eg);
	  start_sequence ();

	  targetm.mode_switching.emit (e, mode, cur_mode, live_at_edge);

	  mode_set = get_insns ();
	  end_sequence ();
	  default_rtl_profile ();

	  /* Do not bother to insert empty sequence.  */
	  if (mode_set == NULL)
	    continue;

	  /* We should not get an abnormal edge here.  */
	  gcc_assert (! (eg->flags & EDGE_ABNORMAL));

	  need_commit = true;
	  insert_insn_on_edge (mode_set, eg);
	}
    }

  return need_commit;
}

/* Allocate a new BBINFO structure, initialized with the MODE, INSN,
   and REGS_LIVE parameters.
   INSN may not be a NOTE_INSN_BASIC_BLOCK, unless it is an empty
   basic block; that allows us later to insert instructions in a FIFO-like
   manner.  */

static struct seginfo *
new_seginfo (int mode, rtx_insn *insn, const HARD_REG_SET &regs_live)
{
  struct seginfo *ptr;

  gcc_assert (!NOTE_INSN_BASIC_BLOCK_P (insn)
	      || insn == BB_END (NOTE_BASIC_BLOCK (insn)));
  ptr = XNEW (struct seginfo);
  ptr->mode = mode;
  ptr->insn_ptr = insn;
  ptr->next = NULL;
  ptr->regs_live = regs_live;
  return ptr;
}

/* Add a seginfo element to the end of a list.
   HEAD is a pointer to the list beginning.
   INFO is the structure to be linked in.  */

static void
add_seginfo (struct bb_info *head, struct seginfo *info)
{
  struct seginfo *ptr;

  if (head->seginfo == NULL)
    head->seginfo = info;
  else
    {
      ptr = head->seginfo;
      while (ptr->next != NULL)
	ptr = ptr->next;
      ptr->next = info;
    }
}

/* Record in LIVE that register REG died.  */

static void
reg_dies (rtx reg, HARD_REG_SET *live)
{
  int regno;

  if (!REG_P (reg))
    return;

  regno = REGNO (reg);
  if (regno < FIRST_PSEUDO_REGISTER)
    remove_from_hard_reg_set (live, GET_MODE (reg), regno);
}

/* Record in LIVE that register REG became live.
   This is called via note_stores.  */

static void
reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
{
  int regno;

  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);

  if (!REG_P (reg))
    return;

  regno = REGNO (reg);
  if (regno < FIRST_PSEUDO_REGISTER)
    add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
}

/* Split the fallthrough edge to the exit block, so that we can note
   that there NORMAL_MODE is required.  Return the new block if it's
   inserted before the exit block.  Otherwise return null.  */

static basic_block
create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
{
  edge eg;
  edge_iterator ei;
  basic_block pre_exit;

  /* The only non-call predecessor at this stage is a block with a
     fallthrough edge; there can be at most one, but there could be
     none at all, e.g. when exit is called.  */
  pre_exit = 0;
  FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
    if (eg->flags & EDGE_FALLTHRU)
      {
	basic_block src_bb = eg->src;
	rtx_insn *last_insn;
	rtx ret_reg;

	gcc_assert (!pre_exit);
	/* If this function returns a value at the end, we have to
	   insert the final mode switch before the return value copy
	   to its hard register.

	   x86 targets use mode-switching infrastructure to
	   conditionally insert vzeroupper instruction at the exit
	   from the function where there is no need to switch the
	   mode before the return value copy.  The vzeroupper insertion
	   pass runs after reload, so use !reload_completed as a stand-in
	   for x86 to skip the search for the return value copy insn.

	   N.b.: the code below assumes that the return copy insn
	   immediately precedes its corresponding use insn.  This
	   assumption does not hold after reload, since sched1 pass
	   can schedule the return copy insn away from its
	   corresponding use insn.  */
	if (!reload_completed
	    && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) == 1
	    && NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
	    && GET_CODE (PATTERN (last_insn)) == USE
	    && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
	  {
	    int ret_start = REGNO (ret_reg);
	    int nregs = REG_NREGS (ret_reg);
	    int ret_end = ret_start + nregs;
	    bool short_block = false;
	    bool multi_reg_return = false;
	    bool forced_late_switch = false;
	    rtx_insn *before_return_copy;

	    do
	      {
		rtx_insn *return_copy = PREV_INSN (last_insn);
		rtx return_copy_pat, copy_reg;
		int copy_start, copy_num;
		int j;

		if (NONDEBUG_INSN_P (return_copy))
		  {
		    /* When using SJLJ exceptions, the call to the
		       unregister function is inserted between the
		       clobber of the return value and the copy.
		       We do not want to split the block before this
		       or any other call; if we have not found the
		       copy yet, the copy must have been deleted.  */
		    if (CALL_P (return_copy))
		      {
			short_block = true;
			break;
		      }
		    return_copy_pat = PATTERN (return_copy);
		    switch (GET_CODE (return_copy_pat))
		      {
		      case USE:
			/* Skip USEs of multiple return registers.
			   __builtin_apply pattern is also handled here.  */
			if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
			    && (targetm.calls.function_value_regno_p
				(REGNO (XEXP (return_copy_pat, 0)))))
			  {
			    multi_reg_return = true;
			    last_insn = return_copy;
			    continue;
			  }
			break;

		      case ASM_OPERANDS:
			/* Skip barrier insns.  */
			if (!MEM_VOLATILE_P (return_copy_pat))
			  break;

			/* Fall through.  */

		      case ASM_INPUT:
		      case UNSPEC_VOLATILE:
			last_insn = return_copy;
			continue;

		      default:
			break;
		      }

		    /* If the return register is not (in its entirety)
		       likely spilled, the return copy might be
		       partially or completely optimized away.  */
		    return_copy_pat = single_set (return_copy);
		    if (!return_copy_pat)
		      {
			return_copy_pat = PATTERN (return_copy);
			if (GET_CODE (return_copy_pat) != CLOBBER)
			  break;
			else if (!optimize)
			  {
			    /* This might be (clobber (reg [<result>]))
			       when not optimizing.  Then check if
			       the previous insn is the clobber for
			       the return register.  */
			    copy_reg = SET_DEST (return_copy_pat);
			    if (GET_CODE (copy_reg) == REG
				&& !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
			      {
				if (INSN_P (PREV_INSN (return_copy)))
				  {
				    return_copy = PREV_INSN (return_copy);
				    return_copy_pat = PATTERN (return_copy);
				    if (GET_CODE (return_copy_pat) != CLOBBER)
				      break;
				  }
			      }
			  }
		      }
		    copy_reg = SET_DEST (return_copy_pat);
		    if (GET_CODE (copy_reg) == REG)
		      copy_start = REGNO (copy_reg);
		    else if (GET_CODE (copy_reg) == SUBREG
			     && GET_CODE (SUBREG_REG (copy_reg)) == REG)
		      copy_start = REGNO (SUBREG_REG (copy_reg));
		    else
		      {
			/* When control reaches end of non-void function,
			   there are no return copy insns at all.  This
			   avoids an ice on that invalid function.  */
			if (ret_start + nregs == ret_end)
			  short_block = true;
			break;
		      }
		    if (!targetm.calls.function_value_regno_p (copy_start))
		      copy_num = 0;
		    else
		      copy_num = hard_regno_nregs (copy_start,
						   GET_MODE (copy_reg));

		    /* If the return register is not likely spilled, - as is
		       the case for floating point on SH4 - then it might
		       be set by an arithmetic operation that needs a
		       different mode than the exit block.  */
		    for (j = n_entities - 1; j >= 0; j--)
		      {
			int e = entity_map[j];
			int mode =
			  targetm.mode_switching.needed (e, return_copy);

			if (mode != num_modes[e]
			    && mode != targetm.mode_switching.exit (e))
			  break;
		      }
		    if (j >= 0)
		      {
			/* __builtin_return emits a sequence of loads to all
			   return registers.  One of them might require
			   another mode than MODE_EXIT, even if it is
			   unrelated to the return value, so we want to put
			   the final mode switch after it.  */
			if (multi_reg_return
			    && targetm.calls.function_value_regno_p
			        (copy_start))
			  forced_late_switch = true;

			/* For the SH4, floating point loads depend on fpscr,
			   thus we might need to put the final mode switch
			   after the return value copy.  That is still OK,
			   because a floating point return value does not
			   conflict with address reloads.  */
			if (copy_start >= ret_start
			    && copy_start + copy_num <= ret_end
			    && GET_CODE (return_copy_pat) == SET
			    && OBJECT_P (SET_SRC (return_copy_pat)))
			  forced_late_switch = true;
			break;
		      }
		    if (copy_num == 0)
		      {
			last_insn = return_copy;
			continue;
		      }

		    if (copy_start >= ret_start
			&& copy_start + copy_num <= ret_end)
		      nregs -= copy_num;
		    else if (!multi_reg_return
			     || !targetm.calls.function_value_regno_p
				 (copy_start))
		      break;
		    last_insn = return_copy;
		  }
		/* ??? Exception handling can lead to the return value
		   copy being already separated from the return value use,
		   as in  unwind-dw2.c .
		   Similarly, conditionally returning without a value,
		   and conditionally using builtin_return can lead to an
		   isolated use.  */
		if (return_copy == BB_HEAD (src_bb))
		  {
		    short_block = true;
		    break;
		  }
		last_insn = return_copy;
	      }
	    while (nregs);

	    /* If we didn't see a full return value copy, verify that there
	       is a plausible reason for this.  If some, but not all of the
	       return register is likely spilled, we can expect that there
	       is a copy for the likely spilled part.  */
	    gcc_assert (!nregs
			|| forced_late_switch
			|| short_block
			|| !(targetm.class_likely_spilled_p
			     (REGNO_REG_CLASS (ret_start)))
			|| nregs != REG_NREGS (ret_reg)
			/* For multi-hard-register floating point
		   	   values, sometimes the likely-spilled part
		   	   is ordinarily copied first, then the other
		   	   part is set with an arithmetic operation.
		   	   This doesn't actually cause reload
		   	   failures, so let it pass.  */
			|| (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
			    && nregs != 1));

	    if (!NOTE_INSN_BASIC_BLOCK_P (last_insn))
	      {
		before_return_copy
		  = emit_note_before (NOTE_INSN_DELETED, last_insn);
		/* Instructions preceding LAST_INSN in the same block might
		   require a different mode than MODE_EXIT, so if we might
		   have such instructions, keep them in a separate block
		   from pre_exit.  */
		src_bb = split_block (src_bb,
				      PREV_INSN (before_return_copy))->dest;
	      }
	    else
	      before_return_copy = last_insn;
	    pre_exit = split_block (src_bb, before_return_copy)->src;
	  }
	else
	  {
	    pre_exit = split_edge (eg);
	  }
      }

  return pre_exit;
}

/* Find all insns that need a particular mode setting, and insert the
   necessary mode switches.  Return true if we did work.  */

static int
optimize_mode_switching (void)
{
  int e;
  basic_block bb;
  bool need_commit = false;
  static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
#define N_ENTITIES ARRAY_SIZE (num_modes)
  int entity_map[N_ENTITIES] = {};
  struct bb_info *bb_info[N_ENTITIES] = {};
  int i, j;
  int n_entities = 0;
  int max_num_modes = 0;
  bool emitted ATTRIBUTE_UNUSED = false;
  basic_block post_entry = 0;
  basic_block pre_exit = 0;
  struct edge_list *edge_list = 0;

  /* These bitmaps are used for the LCM algorithm.  */
  sbitmap *kill, *del, *insert, *antic, *transp, *comp;
  sbitmap *avin, *avout;

  for (e = N_ENTITIES - 1; e >= 0; e--)
    if (OPTIMIZE_MODE_SWITCHING (e))
      {
	int entry_exit_extra = 0;

	/* Create the list of segments within each basic block.
	   If NORMAL_MODE is defined, allow for two extra
	   blocks split from the entry and exit block.  */
	if (targetm.mode_switching.entry && targetm.mode_switching.exit)
	  entry_exit_extra = 3;

	bb_info[n_entities]
	  = XCNEWVEC (struct bb_info,
		      last_basic_block_for_fn (cfun) + entry_exit_extra);
	entity_map[n_entities++] = e;
	if (num_modes[e] > max_num_modes)
	  max_num_modes = num_modes[e];
      }

  if (! n_entities)
    return 0;

  /* Make sure if MODE_ENTRY is defined MODE_EXIT is defined.  */
  gcc_assert ((targetm.mode_switching.entry && targetm.mode_switching.exit)
	      || (!targetm.mode_switching.entry
		  && !targetm.mode_switching.exit));

  if (targetm.mode_switching.entry && targetm.mode_switching.exit)
    {
      /* Split the edge from the entry block, so that we can note that
	 there NORMAL_MODE is supplied.  */
      post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
      pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
    }

  df_analyze ();

  /* Create the bitmap vectors.  */
  antic = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
				n_entities * max_num_modes);
  transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
				 n_entities * max_num_modes);
  comp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
			       n_entities * max_num_modes);
  avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
			       n_entities * max_num_modes);
  avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
				n_entities * max_num_modes);
  kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
			       n_entities * max_num_modes);

  bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
  bitmap_vector_clear (antic, last_basic_block_for_fn (cfun));
  bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));

  for (j = n_entities - 1; j >= 0; j--)
    {
      int e = entity_map[j];
      int no_mode = num_modes[e];
      struct bb_info *info = bb_info[j];
      rtx_insn *insn;

      /* Determine what the first use (if any) need for a mode of entity E is.
	 This will be the mode that is anticipatable for this block.
	 Also compute the initial transparency settings.  */
      FOR_EACH_BB_FN (bb, cfun)
	{
	  struct seginfo *ptr;
	  int last_mode = no_mode;
	  bool any_set_required = false;
	  HARD_REG_SET live_now;

	  info[bb->index].mode_out = info[bb->index].mode_in = no_mode;

	  REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));

	  /* Pretend the mode is clobbered across abnormal edges.  */
	  {
	    edge_iterator ei;
	    edge eg;
	    FOR_EACH_EDGE (eg, ei, bb->preds)
	      if (eg->flags & EDGE_COMPLEX)
		break;
	    if (eg)
	      {
		rtx_insn *ins_pos = BB_HEAD (bb);
		if (LABEL_P (ins_pos))
		  ins_pos = NEXT_INSN (ins_pos);
		gcc_assert (NOTE_INSN_BASIC_BLOCK_P (ins_pos));
		if (ins_pos != BB_END (bb))
		  ins_pos = NEXT_INSN (ins_pos);
		ptr = new_seginfo (no_mode, ins_pos, live_now);
		add_seginfo (info + bb->index, ptr);
		for (i = 0; i < no_mode; i++)
		  clear_mode_bit (transp[bb->index], j, i);
	      }
	  }

	  FOR_BB_INSNS (bb, insn)
	    {
	      if (INSN_P (insn))
		{
		  int mode = targetm.mode_switching.needed (e, insn);
		  rtx link;

		  if (mode != no_mode && mode != last_mode)
		    {
		      any_set_required = true;
		      last_mode = mode;
		      ptr = new_seginfo (mode, insn, live_now);
		      add_seginfo (info + bb->index, ptr);
		      for (i = 0; i < no_mode; i++)
			clear_mode_bit (transp[bb->index], j, i);
		    }

		  if (targetm.mode_switching.after)
		    last_mode = targetm.mode_switching.after (e, last_mode,
							      insn);

		  /* Update LIVE_NOW.  */
		  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
		    if (REG_NOTE_KIND (link) == REG_DEAD)
		      reg_dies (XEXP (link, 0), &live_now);

		  note_stores (insn, reg_becomes_live, &live_now);
		  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
		    if (REG_NOTE_KIND (link) == REG_UNUSED)
		      reg_dies (XEXP (link, 0), &live_now);
		}
	    }

	  info[bb->index].computing = last_mode;
	  /* Check for blocks without ANY mode requirements.
	     N.B. because of MODE_AFTER, last_mode might still
	     be different from no_mode, in which case we need to
	     mark the block as nontransparent.  */
	  if (!any_set_required)
	    {
	      ptr = new_seginfo (no_mode, BB_END (bb), live_now);
	      add_seginfo (info + bb->index, ptr);
	      if (last_mode != no_mode)
		for (i = 0; i < no_mode; i++)
		  clear_mode_bit (transp[bb->index], j, i);
	    }
	}
      if (targetm.mode_switching.entry && targetm.mode_switching.exit)
	{
	  int mode = targetm.mode_switching.entry (e);

	  info[post_entry->index].mode_out =
	    info[post_entry->index].mode_in = no_mode;
	  if (pre_exit)
	    {
	      info[pre_exit->index].mode_out =
		info[pre_exit->index].mode_in = no_mode;
	    }

	  if (mode != no_mode)
	    {
	      bb = post_entry;

	      /* By always making this nontransparent, we save
		 an extra check in make_preds_opaque.  We also
		 need this to avoid confusing pre_edge_lcm when
		 antic is cleared but transp and comp are set.  */
	      for (i = 0; i < no_mode; i++)
		clear_mode_bit (transp[bb->index], j, i);

	      /* Insert a fake computing definition of MODE into entry
		 blocks which compute no mode. This represents the mode on
		 entry.  */
	      info[bb->index].computing = mode;

	      if (pre_exit)
		info[pre_exit->index].seginfo->mode =
		  targetm.mode_switching.exit (e);
	    }
	}

      /* Set the anticipatable and computing arrays.  */
      for (i = 0; i < no_mode; i++)
	{
	  int m = targetm.mode_switching.priority (entity_map[j], i);

	  FOR_EACH_BB_FN (bb, cfun)
	    {
	      if (info[bb->index].seginfo->mode == m)
		set_mode_bit (antic[bb->index], j, m);

	      if (info[bb->index].computing == m)
		set_mode_bit (comp[bb->index], j, m);
	    }
	}
    }

  /* Calculate the optimal locations for the
     placement mode switches to modes with priority I.  */

  FOR_EACH_BB_FN (bb, cfun)
    bitmap_not (kill[bb->index], transp[bb->index]);

  edge_list = pre_edge_lcm_avs (n_entities * max_num_modes, transp, comp, antic,
				kill, avin, avout, &insert, &del);

  for (j = n_entities - 1; j >= 0; j--)
    {
      int no_mode = num_modes[entity_map[j]];

      /* Insert all mode sets that have been inserted by lcm.  */

      for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
	{
	  edge eg = INDEX_EDGE (edge_list, ed);

	  eg->aux = (void *)(intptr_t)-1;

	  for (i = 0; i < no_mode; i++)
	    {
	      int m = targetm.mode_switching.priority (entity_map[j], i);
	      if (mode_bit_p (insert[ed], j, m))
		{
		  eg->aux = (void *)(intptr_t)m;
		  break;
		}
	    }
	}

      FOR_EACH_BB_FN (bb, cfun)
	{
	  struct bb_info *info = bb_info[j];
	  int last_mode = no_mode;

	  /* intialize mode in availability for bb.  */
	  for (i = 0; i < no_mode; i++)
	    if (mode_bit_p (avout[bb->index], j, i))
	      {
		if (last_mode == no_mode)
		  last_mode = i;
		if (last_mode != i)
		  {
		    last_mode = no_mode;
		    break;
		  }
	      }
	  info[bb->index].mode_out = last_mode;

	  /* intialize mode out availability for bb.  */
	  last_mode = no_mode;
	  for (i = 0; i < no_mode; i++)
	    if (mode_bit_p (avin[bb->index], j, i))
	      {
		if (last_mode == no_mode)
		  last_mode = i;
		if (last_mode != i)
		  {
		    last_mode = no_mode;
		    break;
		  }
	      }
	  info[bb->index].mode_in = last_mode;

	  for (i = 0; i < no_mode; i++)
	    if (mode_bit_p (del[bb->index], j, i))
	      info[bb->index].seginfo->mode = no_mode;
	}

      /* Now output the remaining mode sets in all the segments.  */

      /* In case there was no mode inserted. the mode information on the edge
	 might not be complete.
	 Update mode info on edges and commit pending mode sets.  */
      need_commit |= commit_mode_sets (edge_list, entity_map[j], bb_info[j]);

      /* Reset modes for next entity.  */
      clear_aux_for_edges ();

      FOR_EACH_BB_FN (bb, cfun)
	{
	  struct seginfo *ptr, *next;
	  int cur_mode = bb_info[j][bb->index].mode_in;

	  for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
	    {
	      next = ptr->next;
	      if (ptr->mode != no_mode)
		{
		  rtx_insn *mode_set;

		  rtl_profile_for_bb (bb);
		  start_sequence ();

		  targetm.mode_switching.emit (entity_map[j], ptr->mode,
					       cur_mode, ptr->regs_live);
		  mode_set = get_insns ();
		  end_sequence ();

		  /* modes kill each other inside a basic block.  */
		  cur_mode = ptr->mode;

		  /* Insert MODE_SET only if it is nonempty.  */
		  if (mode_set != NULL_RTX)
		    {
		      emitted = true;
		      if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
			/* We need to emit the insns in a FIFO-like manner,
			   i.e. the first to be emitted at our insertion
			   point ends up first in the instruction steam.
			   Because we made sure that NOTE_INSN_BASIC_BLOCK is
			   only used for initially empty basic blocks, we
			   can achieve this by appending at the end of
			   the block.  */
			emit_insn_after
			  (mode_set, BB_END (NOTE_BASIC_BLOCK (ptr->insn_ptr)));
		      else
			emit_insn_before (mode_set, ptr->insn_ptr);
		    }

		  default_rtl_profile ();
		}

	      free (ptr);
	    }
	}

      free (bb_info[j]);
    }

  free_edge_list (edge_list);

  /* Finished. Free up all the things we've allocated.  */
  sbitmap_vector_free (del);
  sbitmap_vector_free (insert);
  sbitmap_vector_free (kill);
  sbitmap_vector_free (antic);
  sbitmap_vector_free (transp);
  sbitmap_vector_free (comp);
  sbitmap_vector_free (avin);
  sbitmap_vector_free (avout);

  if (need_commit)
    commit_edge_insertions ();

  if (targetm.mode_switching.entry && targetm.mode_switching.exit)
    {
      free_dominance_info (CDI_DOMINATORS);
      cleanup_cfg (CLEANUP_NO_INSN_DEL);
    }
  else if (!need_commit && !emitted)
    return 0;

  return 1;
}

#endif /* OPTIMIZE_MODE_SWITCHING */

namespace {

const pass_data pass_data_mode_switching =
{
  RTL_PASS, /* type */
  "mode_sw", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_MODE_SWITCH, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_df_finish, /* todo_flags_finish */
};

class pass_mode_switching : public rtl_opt_pass
{
public:
  pass_mode_switching (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_mode_switching, ctxt)
  {}

  /* opt_pass methods: */
  /* The epiphany backend creates a second instance of this pass, so we need
     a clone method.  */
  opt_pass * clone () final override { return new pass_mode_switching (m_ctxt); }
  bool gate (function *) final override
    {
#ifdef OPTIMIZE_MODE_SWITCHING
      return true;
#else
      return false;
#endif
    }

  unsigned int execute (function *) final override
    {
#ifdef OPTIMIZE_MODE_SWITCHING
      optimize_mode_switching ();
#endif /* OPTIMIZE_MODE_SWITCHING */
      return 0;
    }

}; // class pass_mode_switching

} // anon namespace

rtl_opt_pass *
make_pass_mode_switching (gcc::context *ctxt)
{
  return new pass_mode_switching (ctxt);
}