aboutsummaryrefslogtreecommitdiff
path: root/gcc/machmode.h
blob: c31ec2f2ebc7c3ee2efbdb8aabb72616fe730bc0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
/* Machine mode definitions for GCC; included by rtl.h and tree.h.
   Copyright (C) 1991-2024 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef HAVE_MACHINE_MODES
#define HAVE_MACHINE_MODES

typedef opt_mode<machine_mode> opt_machine_mode;

extern CONST_MODE_SIZE poly_uint16 mode_size[NUM_MACHINE_MODES];
extern CONST_MODE_PRECISION poly_uint16 mode_precision[NUM_MACHINE_MODES];
extern const unsigned short mode_inner[NUM_MACHINE_MODES];
extern CONST_MODE_NUNITS poly_uint16 mode_nunits[NUM_MACHINE_MODES];
extern CONST_MODE_UNIT_SIZE unsigned char mode_unit_size[NUM_MACHINE_MODES];
extern const unsigned short mode_unit_precision[NUM_MACHINE_MODES];
extern const unsigned short mode_next[NUM_MACHINE_MODES];
extern const unsigned short mode_wider[NUM_MACHINE_MODES];
extern const unsigned short mode_2xwider[NUM_MACHINE_MODES];

template<typename T>
struct mode_traits
{
  /* For use by the machmode support code only.

     There are cases in which the machmode support code needs to forcibly
     convert a machine_mode to a specific mode class T, and in which the
     context guarantees that this is valid without the need for an assert.
     This can be done using:

       return typename mode_traits<T>::from_int (mode);

     when returning a T and:

       res = T (typename mode_traits<T>::from_int (mode));

     when assigning to a value RES that must be assignment-compatible
     with (but possibly not the same as) T.  */
#ifdef USE_ENUM_MODES
  /* Allow direct conversion of enums to specific mode classes only
     when USE_ENUM_MODES is defined.  This is only intended for use
     by gencondmd, so that it can tell more easily when .md conditions
     are always false.  */
  typedef machine_mode from_int;
#else
  /* Here we use an enum type distinct from machine_mode but with the
     same range as machine_mode.  T should have a constructor that
     accepts this enum type; it should not have a constructor that
     accepts machine_mode.

     We use this somewhat indirect approach to avoid too many constructor
     calls when the compiler is built with -O0.  For example, even in
     unoptimized code, the return statement above would construct the
     returned T directly from the numerical value of MODE.  */
  enum from_int { dummy = MAX_MACHINE_MODE };
#endif
};

template<>
struct mode_traits<machine_mode>
{
  /* machine_mode itself needs no conversion.  */
  typedef machine_mode from_int;
};

/* Always treat machine modes as fixed-size while compiling code specific
   to targets that have no variable-size modes.  */
#if defined (IN_TARGET_CODE) && NUM_POLY_INT_COEFFS == 1
#define ONLY_FIXED_SIZE_MODES 1
#else
#define ONLY_FIXED_SIZE_MODES 0
#endif

/* Get the name of mode MODE as a string.  */

extern const char * const mode_name[NUM_MACHINE_MODES];
#define GET_MODE_NAME(MODE)  mode_name[MODE]

/* Mode classes.  */

#include "mode-classes.def"
#define DEF_MODE_CLASS(M) M
enum mode_class { MODE_CLASSES, MAX_MODE_CLASS };
#undef DEF_MODE_CLASS
#undef MODE_CLASSES

/* Get the general kind of object that mode MODE represents
   (integer, floating, complex, etc.)  */

extern const unsigned char mode_class[NUM_MACHINE_MODES];
#define GET_MODE_CLASS(MODE)  ((enum mode_class) mode_class[MODE])

/* Nonzero if MODE is an integral mode.  */
#define INTEGRAL_MODE_P(MODE)			\
  (GET_MODE_CLASS (MODE) == MODE_INT		\
   || GET_MODE_CLASS (MODE) == MODE_PARTIAL_INT \
   || GET_MODE_CLASS (MODE) == MODE_COMPLEX_INT \
   || GET_MODE_CLASS (MODE) == MODE_VECTOR_BOOL \
   || GET_MODE_CLASS (MODE) == MODE_VECTOR_INT)

/* Nonzero if MODE is a floating-point mode.  */
#define FLOAT_MODE_P(MODE)		\
  (GET_MODE_CLASS (MODE) == MODE_FLOAT	\
   || GET_MODE_CLASS (MODE) == MODE_DECIMAL_FLOAT \
   || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
   || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT)

/* Nonzero if MODE is a complex mode.  */
#define COMPLEX_MODE_P(MODE)			\
  (GET_MODE_CLASS (MODE) == MODE_COMPLEX_INT	\
   || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)

/* Nonzero if MODE is a vector mode.  */
#define VECTOR_MODE_P(MODE)				\
  (GET_MODE_CLASS (MODE) == MODE_VECTOR_BOOL		\
   || GET_MODE_CLASS (MODE) == MODE_VECTOR_INT		\
   || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT	\
   || GET_MODE_CLASS (MODE) == MODE_VECTOR_FRACT	\
   || GET_MODE_CLASS (MODE) == MODE_VECTOR_UFRACT	\
   || GET_MODE_CLASS (MODE) == MODE_VECTOR_ACCUM	\
   || GET_MODE_CLASS (MODE) == MODE_VECTOR_UACCUM)

/* Nonzero if MODE is a scalar integral mode.  */
#define SCALAR_INT_MODE_P(MODE)			\
  (GET_MODE_CLASS (MODE) == MODE_INT		\
   || GET_MODE_CLASS (MODE) == MODE_PARTIAL_INT)

/* Nonzero if MODE is a scalar floating point mode.  */
#define SCALAR_FLOAT_MODE_P(MODE)		\
  (GET_MODE_CLASS (MODE) == MODE_FLOAT		\
   || GET_MODE_CLASS (MODE) == MODE_DECIMAL_FLOAT)

/* Nonzero if MODE is a decimal floating point mode.  */
#define DECIMAL_FLOAT_MODE_P(MODE)		\
  (GET_MODE_CLASS (MODE) == MODE_DECIMAL_FLOAT)

/* Nonzero if MODE is a scalar fract mode.  */
#define SCALAR_FRACT_MODE_P(MODE)	\
  (GET_MODE_CLASS (MODE) == MODE_FRACT)

/* Nonzero if MODE is a scalar ufract mode.  */
#define SCALAR_UFRACT_MODE_P(MODE)	\
  (GET_MODE_CLASS (MODE) == MODE_UFRACT)

/* Nonzero if MODE is a scalar fract or ufract mode.  */
#define ALL_SCALAR_FRACT_MODE_P(MODE)	\
  (SCALAR_FRACT_MODE_P (MODE) || SCALAR_UFRACT_MODE_P (MODE))

/* Nonzero if MODE is a scalar accum mode.  */
#define SCALAR_ACCUM_MODE_P(MODE)	\
  (GET_MODE_CLASS (MODE) == MODE_ACCUM)

/* Nonzero if MODE is a scalar uaccum mode.  */
#define SCALAR_UACCUM_MODE_P(MODE)	\
  (GET_MODE_CLASS (MODE) == MODE_UACCUM)

/* Nonzero if MODE is a scalar accum or uaccum mode.  */
#define ALL_SCALAR_ACCUM_MODE_P(MODE)	\
  (SCALAR_ACCUM_MODE_P (MODE) || SCALAR_UACCUM_MODE_P (MODE))

/* Nonzero if MODE is a scalar fract or accum mode.  */
#define SIGNED_SCALAR_FIXED_POINT_MODE_P(MODE)	\
  (SCALAR_FRACT_MODE_P (MODE) || SCALAR_ACCUM_MODE_P (MODE))

/* Nonzero if MODE is a scalar ufract or uaccum mode.  */
#define UNSIGNED_SCALAR_FIXED_POINT_MODE_P(MODE)	\
  (SCALAR_UFRACT_MODE_P (MODE) || SCALAR_UACCUM_MODE_P (MODE))

/* Nonzero if MODE is a scalar fract, ufract, accum or uaccum mode.  */
#define ALL_SCALAR_FIXED_POINT_MODE_P(MODE)	\
  (SIGNED_SCALAR_FIXED_POINT_MODE_P (MODE)	\
   || UNSIGNED_SCALAR_FIXED_POINT_MODE_P (MODE))

/* Nonzero if MODE is a scalar/vector fract mode.  */
#define FRACT_MODE_P(MODE)		\
  (GET_MODE_CLASS (MODE) == MODE_FRACT	\
   || GET_MODE_CLASS (MODE) == MODE_VECTOR_FRACT)

/* Nonzero if MODE is a scalar/vector ufract mode.  */
#define UFRACT_MODE_P(MODE)		\
  (GET_MODE_CLASS (MODE) == MODE_UFRACT	\
   || GET_MODE_CLASS (MODE) == MODE_VECTOR_UFRACT)

/* Nonzero if MODE is a scalar/vector fract or ufract mode.  */
#define ALL_FRACT_MODE_P(MODE)		\
  (FRACT_MODE_P (MODE) || UFRACT_MODE_P (MODE))

/* Nonzero if MODE is a scalar/vector accum mode.  */
#define ACCUM_MODE_P(MODE)		\
  (GET_MODE_CLASS (MODE) == MODE_ACCUM	\
   || GET_MODE_CLASS (MODE) == MODE_VECTOR_ACCUM)

/* Nonzero if MODE is a scalar/vector uaccum mode.  */
#define UACCUM_MODE_P(MODE)		\
  (GET_MODE_CLASS (MODE) == MODE_UACCUM	\
   || GET_MODE_CLASS (MODE) == MODE_VECTOR_UACCUM)

/* Nonzero if MODE is a scalar/vector accum or uaccum mode.  */
#define ALL_ACCUM_MODE_P(MODE)		\
  (ACCUM_MODE_P (MODE) || UACCUM_MODE_P (MODE))

/* Nonzero if MODE is a scalar/vector fract or accum mode.  */
#define SIGNED_FIXED_POINT_MODE_P(MODE)		\
  (FRACT_MODE_P (MODE) || ACCUM_MODE_P (MODE))

/* Nonzero if MODE is a scalar/vector ufract or uaccum mode.  */
#define UNSIGNED_FIXED_POINT_MODE_P(MODE)	\
  (UFRACT_MODE_P (MODE) || UACCUM_MODE_P (MODE))

/* Nonzero if MODE is a scalar/vector fract, ufract, accum or uaccum mode.  */
#define ALL_FIXED_POINT_MODE_P(MODE)		\
  (SIGNED_FIXED_POINT_MODE_P (MODE)		\
   || UNSIGNED_FIXED_POINT_MODE_P (MODE))

/* Nonzero if MODE is opaque.  */
#define OPAQUE_MODE_P(MODE)                     \
    (GET_MODE_CLASS (MODE) == MODE_OPAQUE)

/* Nonzero if CLASS modes can be widened.  */
#define CLASS_HAS_WIDER_MODES_P(CLASS)         \
  (CLASS == MODE_INT                           \
   || CLASS == MODE_PARTIAL_INT                \
   || CLASS == MODE_FLOAT                      \
   || CLASS == MODE_DECIMAL_FLOAT              \
   || CLASS == MODE_COMPLEX_FLOAT              \
   || CLASS == MODE_FRACT                      \
   || CLASS == MODE_UFRACT                     \
   || CLASS == MODE_ACCUM                      \
   || CLASS == MODE_UACCUM)

/* The MACHINE_MODE_BITSIZE should be exactly aligned with the type of the
   machine_mode array in the machmode.h and genmodes.cc.  For example as below.
   +------------------------+-------+
   | MACHINE_MODE_BITSIZE   |    16 |
   +------------------------+-------+
   | mode_inter[]           | short |
   | mode_next[]            | short |
   | mode_wider[]           | short |
   | mode_2xwider[]         | short |
   | mode_complex[]         | short |
   | class_narrowest_mode[] | short |
   +------------------------+-------+
   */
#define MACHINE_MODE_BITSIZE 16

/* An optional T (i.e. a T or nothing), where T is some form of mode class.  */
template<typename T>
class opt_mode
{
public:
  enum from_int { dummy = MAX_MACHINE_MODE };

  ALWAYS_INLINE CONSTEXPR opt_mode () : m_mode (E_VOIDmode) {}
  ALWAYS_INLINE CONSTEXPR opt_mode (const T &m) : m_mode (m) {}
  template<typename U>
  ALWAYS_INLINE CONSTEXPR opt_mode (const U &m) : m_mode (T (m)) {}
  ALWAYS_INLINE CONSTEXPR opt_mode (from_int m) : m_mode (machine_mode (m)) {}

  machine_mode else_void () const;
  machine_mode else_blk () const { return else_mode (BLKmode); }
  machine_mode else_mode (machine_mode) const;
  T require () const;

  bool exists () const;
  template<typename U> bool exists (U *) const;

  bool operator== (const T &m) const { return m_mode == m; }
  bool operator!= (const T &m) const { return m_mode != m; }

private:
  machine_mode m_mode;
};

/* If the object contains a T, return its enum value, otherwise return
   E_VOIDmode.  */

template<typename T>
ALWAYS_INLINE machine_mode
opt_mode<T>::else_void () const
{
  return m_mode;
}

/* If the T exists, return its enum value, otherwise return FALLBACK.  */

template<typename T>
inline machine_mode
opt_mode<T>::else_mode (machine_mode fallback) const
{
  return m_mode == E_VOIDmode ? fallback : m_mode;
}

/* Assert that the object contains a T and return it.  */

template<typename T>
inline T
opt_mode<T>::require () const
{
  gcc_checking_assert (m_mode != E_VOIDmode);
  return typename mode_traits<T>::from_int (m_mode);
}

/* Return true if the object contains a T rather than nothing.  */

template<typename T>
ALWAYS_INLINE bool
opt_mode<T>::exists () const
{
  return m_mode != E_VOIDmode;
}

/* Return true if the object contains a T, storing it in *MODE if so.  */

template<typename T>
template<typename U>
inline bool
opt_mode<T>::exists (U *mode) const
{
  if (m_mode != E_VOIDmode)
    {
      *mode = T (typename mode_traits<T>::from_int (m_mode));
      return true;
    }
  return false;
}

/* A POD version of mode class T.  */

template<typename T>
struct pod_mode
{
  typedef typename mode_traits<T>::from_int from_int;
  typedef typename T::measurement_type measurement_type;

  machine_mode m_mode;
  ALWAYS_INLINE CONSTEXPR
  operator machine_mode () const { return m_mode; }

  ALWAYS_INLINE CONSTEXPR
  operator T () const { return from_int (m_mode); }

  ALWAYS_INLINE pod_mode &operator = (const T &m) { m_mode = m; return *this; }
};

/* Return true if mode M has type T.  */

template<typename T>
inline bool
is_a (machine_mode m)
{
  return T::includes_p (m);
}

template<typename T, typename U>
inline bool
is_a (const opt_mode<U> &m)
{
  return T::includes_p (m.else_void ());
}

/* Assert that mode M has type T, and return it in that form.  */

template<typename T>
inline T
as_a (machine_mode m)
{
  gcc_checking_assert (T::includes_p (m));
  return typename mode_traits<T>::from_int (m);
}

template<typename T, typename U>
inline T
as_a (const opt_mode<U> &m)
{
  return as_a <T> (m.else_void ());
}

/* Convert M to an opt_mode<T>.  */

template<typename T>
inline opt_mode<T>
dyn_cast (machine_mode m)
{
  if (T::includes_p (m))
    return T (typename mode_traits<T>::from_int (m));
  return opt_mode<T> ();
}

template<typename T, typename U>
inline opt_mode<T>
dyn_cast (const opt_mode<U> &m)
{
  return dyn_cast <T> (m.else_void ());
}

/* Return true if mode M has type T, storing it as a T in *RESULT
   if so.  */

template<typename T, typename U>
inline bool
is_a (machine_mode m, U *result)
{
  if (T::includes_p (m))
    {
      *result = T (typename mode_traits<T>::from_int (m));
      return true;
    }
  return false;
}

/* Represents a machine mode that is known to be a SCALAR_INT_MODE_P.  */
class scalar_int_mode
{
public:
  typedef mode_traits<scalar_int_mode>::from_int from_int;
  typedef unsigned short measurement_type;

  ALWAYS_INLINE scalar_int_mode () {}

  ALWAYS_INLINE CONSTEXPR
  scalar_int_mode (from_int m) : m_mode (machine_mode (m)) {}

  ALWAYS_INLINE CONSTEXPR operator machine_mode () const { return m_mode; }

  static bool includes_p (machine_mode);

protected:
  machine_mode m_mode;
};

/* Return true if M is a scalar_int_mode.  */

inline bool
scalar_int_mode::includes_p (machine_mode m)
{
  return SCALAR_INT_MODE_P (m);
}

/* Represents a machine mode that is known to be a SCALAR_FLOAT_MODE_P.  */
class scalar_float_mode
{
public:
  typedef mode_traits<scalar_float_mode>::from_int from_int;
  typedef unsigned short measurement_type;

  ALWAYS_INLINE scalar_float_mode () {}

  ALWAYS_INLINE CONSTEXPR
  scalar_float_mode (from_int m) : m_mode (machine_mode (m)) {}

  ALWAYS_INLINE CONSTEXPR operator machine_mode () const { return m_mode; }

  static bool includes_p (machine_mode);

protected:
  machine_mode m_mode;
};

/* Return true if M is a scalar_float_mode.  */

inline bool
scalar_float_mode::includes_p (machine_mode m)
{
  return SCALAR_FLOAT_MODE_P (m);
}

/* Represents a machine mode that is known to be scalar.  */
class scalar_mode
{
public:
  typedef mode_traits<scalar_mode>::from_int from_int;
  typedef unsigned short measurement_type;

  ALWAYS_INLINE scalar_mode () {}

  ALWAYS_INLINE CONSTEXPR
  scalar_mode (from_int m) : m_mode (machine_mode (m)) {}

  ALWAYS_INLINE CONSTEXPR
  scalar_mode (const scalar_int_mode &m) : m_mode (m) {}

  ALWAYS_INLINE CONSTEXPR
  scalar_mode (const scalar_float_mode &m) : m_mode (m) {}

  ALWAYS_INLINE CONSTEXPR
  scalar_mode (const scalar_int_mode_pod &m) : m_mode (m) {}

  ALWAYS_INLINE CONSTEXPR operator machine_mode () const { return m_mode; }

  static bool includes_p (machine_mode);

protected:
  machine_mode m_mode;
};

/* Return true if M represents some kind of scalar value.  */

inline bool
scalar_mode::includes_p (machine_mode m)
{
  switch (GET_MODE_CLASS (m))
    {
    case MODE_INT:
    case MODE_PARTIAL_INT:
    case MODE_FRACT:
    case MODE_UFRACT:
    case MODE_ACCUM:
    case MODE_UACCUM:
    case MODE_FLOAT:
    case MODE_DECIMAL_FLOAT:
      return true;
    default:
      return false;
    }
}

/* Represents a machine mode that is known to be a COMPLEX_MODE_P.  */
class complex_mode
{
public:
  typedef mode_traits<complex_mode>::from_int from_int;
  typedef unsigned short measurement_type;

  ALWAYS_INLINE complex_mode () {}

  ALWAYS_INLINE CONSTEXPR
  complex_mode (from_int m) : m_mode (machine_mode (m)) {}

  ALWAYS_INLINE CONSTEXPR operator machine_mode () const { return m_mode; }

  static bool includes_p (machine_mode);

protected:
  machine_mode m_mode;
};

/* Return true if M is a complex_mode.  */

inline bool
complex_mode::includes_p (machine_mode m)
{
  return COMPLEX_MODE_P (m);
}

/* Return the base GET_MODE_SIZE value for MODE.  */

ALWAYS_INLINE poly_uint16
mode_to_bytes (machine_mode mode)
{
#if GCC_VERSION >= 4001
  return (__builtin_constant_p (mode)
	  ? mode_size_inline (mode) : mode_size[mode]);
#else
  return mode_size[mode];
#endif
}

/* Return the base GET_MODE_BITSIZE value for MODE.  */

ALWAYS_INLINE poly_uint16
mode_to_bits (machine_mode mode)
{
  return mode_to_bytes (mode) * BITS_PER_UNIT;
}

/* Return the base GET_MODE_PRECISION value for MODE.  */

ALWAYS_INLINE poly_uint16
mode_to_precision (machine_mode mode)
{
  return mode_precision[mode];
}

/* Return the base GET_MODE_INNER value for MODE.  */

ALWAYS_INLINE scalar_mode
mode_to_inner (machine_mode mode)
{
#if GCC_VERSION >= 4001
  return scalar_mode::from_int (__builtin_constant_p (mode)
				? mode_inner_inline (mode)
				: mode_inner[mode]);
#else
  return scalar_mode::from_int (mode_inner[mode]);
#endif
}

/* Return the base GET_MODE_UNIT_SIZE value for MODE.  */

ALWAYS_INLINE unsigned char
mode_to_unit_size (machine_mode mode)
{
#if GCC_VERSION >= 4001
  return (__builtin_constant_p (mode)
	  ? mode_unit_size_inline (mode) : mode_unit_size[mode]);
#else
  return mode_unit_size[mode];
#endif
}

/* Return the base GET_MODE_UNIT_PRECISION value for MODE.  */

ALWAYS_INLINE unsigned short
mode_to_unit_precision (machine_mode mode)
{
#if GCC_VERSION >= 4001
  return (__builtin_constant_p (mode)
	  ? mode_unit_precision_inline (mode) : mode_unit_precision[mode]);
#else
  return mode_unit_precision[mode];
#endif
}

/* Return the base GET_MODE_NUNITS value for MODE.  */

ALWAYS_INLINE poly_uint16
mode_to_nunits (machine_mode mode)
{
#if GCC_VERSION >= 4001
  return (__builtin_constant_p (mode)
	  ? mode_nunits_inline (mode) : mode_nunits[mode]);
#else
  return mode_nunits[mode];
#endif
}

/* Get the size in bytes of an object of mode MODE.  */

#if ONLY_FIXED_SIZE_MODES
#define GET_MODE_SIZE(MODE) ((unsigned short) mode_to_bytes (MODE).coeffs[0])
#else
ALWAYS_INLINE poly_uint16
GET_MODE_SIZE (machine_mode mode)
{
  return mode_to_bytes (mode);
}

template<typename T>
ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type
GET_MODE_SIZE (const T &mode)
{
  return mode_to_bytes (mode);
}

template<typename T>
ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type
GET_MODE_SIZE (const T &mode)
{
  return mode_to_bytes (mode).coeffs[0];
}
#endif

/* Get the size in bits of an object of mode MODE.  */

#if ONLY_FIXED_SIZE_MODES
#define GET_MODE_BITSIZE(MODE) ((unsigned short) mode_to_bits (MODE).coeffs[0])
#else
ALWAYS_INLINE poly_uint16
GET_MODE_BITSIZE (machine_mode mode)
{
  return mode_to_bits (mode);
}

template<typename T>
ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type
GET_MODE_BITSIZE (const T &mode)
{
  return mode_to_bits (mode);
}

template<typename T>
ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type
GET_MODE_BITSIZE (const T &mode)
{
  return mode_to_bits (mode).coeffs[0];
}
#endif

/* Get the number of value bits of an object of mode MODE.  */

#if ONLY_FIXED_SIZE_MODES
#define GET_MODE_PRECISION(MODE) \
  ((unsigned short) mode_to_precision (MODE).coeffs[0])
#else
ALWAYS_INLINE poly_uint16
GET_MODE_PRECISION (machine_mode mode)
{
  return mode_to_precision (mode);
}

template<typename T>
ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type
GET_MODE_PRECISION (const T &mode)
{
  return mode_to_precision (mode);
}

template<typename T>
ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type
GET_MODE_PRECISION (const T &mode)
{
  return mode_to_precision (mode).coeffs[0];
}
#endif

/* Get the number of integral bits of an object of mode MODE.  */
extern CONST_MODE_IBIT unsigned char mode_ibit[NUM_MACHINE_MODES];
#define GET_MODE_IBIT(MODE) mode_ibit[MODE]

/* Get the number of fractional bits of an object of mode MODE.  */
extern CONST_MODE_FBIT unsigned char mode_fbit[NUM_MACHINE_MODES];
#define GET_MODE_FBIT(MODE) mode_fbit[MODE]

/* Get a bitmask containing 1 for all bits in a word
   that fit within mode MODE.  */

extern CONST_MODE_MASK unsigned HOST_WIDE_INT
  mode_mask_array[NUM_MACHINE_MODES];

#define GET_MODE_MASK(MODE) mode_mask_array[MODE]

/* Return the mode of the basic parts of MODE.  For vector modes this is the
   mode of the vector elements.  For complex modes it is the mode of the real
   and imaginary parts.  For other modes it is MODE itself.  */

#define GET_MODE_INNER(MODE) (mode_to_inner (MODE))

/* Get the size in bytes or bits of the basic parts of an
   object of mode MODE.  */

#define GET_MODE_UNIT_SIZE(MODE) mode_to_unit_size (MODE)

#define GET_MODE_UNIT_BITSIZE(MODE) \
  ((unsigned short) (GET_MODE_UNIT_SIZE (MODE) * BITS_PER_UNIT))

#define GET_MODE_UNIT_PRECISION(MODE) (mode_to_unit_precision (MODE))

/* Get the number of units in an object of mode MODE.  This is 2 for
   complex modes and the number of elements for vector modes.  */

#if ONLY_FIXED_SIZE_MODES
#define GET_MODE_NUNITS(MODE) (mode_to_nunits (MODE).coeffs[0])
#else
ALWAYS_INLINE poly_uint16
GET_MODE_NUNITS (machine_mode mode)
{
  return mode_to_nunits (mode);
}

template<typename T>
ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type
GET_MODE_NUNITS (const T &mode)
{
  return mode_to_nunits (mode);
}

template<typename T>
ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type
GET_MODE_NUNITS (const T &mode)
{
  return mode_to_nunits (mode).coeffs[0];
}
#endif

/* Get the next natural mode (not narrower, eg, QI -> HI -> SI -> DI -> TI
   or HF -> BF -> SF -> DF -> XF -> TF).  */

template<typename T>
ALWAYS_INLINE opt_mode<T>
GET_MODE_NEXT_MODE (const T &m)
{
  return typename opt_mode<T>::from_int (mode_next[m]);
}

/* Get the next wider mode (eg, QI -> HI -> SI -> DI -> TI
   or { HF, BF } -> SF -> DF -> XF -> TF).
   This is similar to GET_MODE_NEXT_MODE, but while GET_MODE_NEXT_MODE
   can include mode that have the same precision (e.g.
   GET_MODE_NEXT_MODE (HFmode) can be BFmode even when both have the same
   precision), this one will skip those.  And always VOIDmode for
   modes whose class is !CLASS_HAS_WIDER_MODES_P.  */

template<typename T>
ALWAYS_INLINE opt_mode<T>
GET_MODE_WIDER_MODE (const T &m)
{
  return typename opt_mode<T>::from_int (mode_wider[m]);
}

/* For scalars, this is a mode with twice the precision.  For vectors,
   this is a mode with the same inner mode but with twice the elements.  */

template<typename T>
ALWAYS_INLINE opt_mode<T>
GET_MODE_2XWIDER_MODE (const T &m)
{
  return typename opt_mode<T>::from_int (mode_2xwider[m]);
}

/* Get the complex mode from the component mode.  */
extern const unsigned short mode_complex[NUM_MACHINE_MODES];
#define GET_MODE_COMPLEX_MODE(MODE) ((machine_mode) mode_complex[MODE])

/* Represents a machine mode that must have a fixed size.  The main
   use of this class is to represent the modes of objects that always
   have static storage duration, such as constant pool entries.
   (No current target supports the concept of variable-size static data.)  */
class fixed_size_mode
{
public:
  typedef mode_traits<fixed_size_mode>::from_int from_int;
  typedef unsigned short measurement_type;

  ALWAYS_INLINE fixed_size_mode () {}

  ALWAYS_INLINE CONSTEXPR
  fixed_size_mode (from_int m) : m_mode (machine_mode (m)) {}

  ALWAYS_INLINE CONSTEXPR
  fixed_size_mode (const scalar_mode &m) : m_mode (m) {}

  ALWAYS_INLINE CONSTEXPR
  fixed_size_mode (const scalar_int_mode &m) : m_mode (m) {}

  ALWAYS_INLINE CONSTEXPR
  fixed_size_mode (const scalar_float_mode &m) : m_mode (m) {}

  ALWAYS_INLINE CONSTEXPR
  fixed_size_mode (const scalar_mode_pod &m) : m_mode (m) {}

  ALWAYS_INLINE CONSTEXPR
  fixed_size_mode (const scalar_int_mode_pod &m) : m_mode (m) {}

  ALWAYS_INLINE CONSTEXPR
  fixed_size_mode (const complex_mode &m) : m_mode (m) {}

  ALWAYS_INLINE CONSTEXPR operator machine_mode () const { return m_mode; }

  static bool includes_p (machine_mode);

protected:
  machine_mode m_mode;
};

/* Return true if MODE has a fixed size.  */

inline bool
fixed_size_mode::includes_p (machine_mode mode)
{
  return mode_to_bytes (mode).is_constant ();
}

/* Wrapper for mode arguments to target macros, so that if a target
   doesn't need polynomial-sized modes, its header file can continue
   to treat everything as fixed_size_mode.  This should go away once
   macros are moved to target hooks.  It shouldn't be used in other
   contexts.  */
#if NUM_POLY_INT_COEFFS == 1
#define MACRO_MODE(MODE) (as_a <fixed_size_mode> (MODE))
#else
#define MACRO_MODE(MODE) (MODE)
#endif

extern opt_machine_mode mode_for_size (poly_uint64, enum mode_class, int);

/* Return the machine mode to use for a MODE_INT of SIZE bits, if one
   exists.  If LIMIT is nonzero, modes wider than MAX_FIXED_MODE_SIZE
   will not be used.  */

inline opt_scalar_int_mode
int_mode_for_size (poly_uint64 size, int limit)
{
  return dyn_cast <scalar_int_mode> (mode_for_size (size, MODE_INT, limit));
}

/* Return the machine mode to use for a MODE_FLOAT of SIZE bits, if one
   exists.  */

inline opt_scalar_float_mode
float_mode_for_size (poly_uint64 size)
{
  return dyn_cast <scalar_float_mode> (mode_for_size (size, MODE_FLOAT, 0));
}

/* Likewise for MODE_DECIMAL_FLOAT.  */

inline opt_scalar_float_mode
decimal_float_mode_for_size (unsigned int size)
{
  return dyn_cast <scalar_float_mode>
    (mode_for_size (size, MODE_DECIMAL_FLOAT, 0));
}

extern machine_mode smallest_mode_for_size (poly_uint64, enum mode_class);

/* Find the narrowest integer mode that contains at least SIZE bits.
   Such a mode must exist.  */

inline scalar_int_mode
smallest_int_mode_for_size (poly_uint64 size)
{
  return as_a <scalar_int_mode> (smallest_mode_for_size (size, MODE_INT));
}

extern opt_scalar_int_mode int_mode_for_mode (machine_mode);
extern opt_machine_mode bitwise_mode_for_mode (machine_mode);
extern opt_machine_mode mode_for_vector (scalar_mode, poly_uint64);
extern opt_machine_mode related_vector_mode (machine_mode, scalar_mode,
					     poly_uint64 = 0);
extern opt_machine_mode related_int_vector_mode (machine_mode);

/* A class for iterating through possible bitfield modes.  */
class bit_field_mode_iterator
{
public:
  bit_field_mode_iterator (HOST_WIDE_INT, HOST_WIDE_INT,
			   poly_int64, poly_int64,
			   unsigned int, bool);
  bool next_mode (scalar_int_mode *);
  bool prefer_smaller_modes ();

private:
  opt_scalar_int_mode m_mode;
  /* We use signed values here because the bit position can be negative
     for invalid input such as gcc.dg/pr48335-8.c.  */
  HOST_WIDE_INT m_bitsize;
  HOST_WIDE_INT m_bitpos;
  poly_int64 m_bitregion_start;
  poly_int64 m_bitregion_end;
  unsigned int m_align;
  bool m_volatilep;
  int m_count;
};

/* Find the best mode to use to access a bit field.  */

extern bool get_best_mode (int, int, poly_uint64, poly_uint64, unsigned int,
			   unsigned HOST_WIDE_INT, bool, scalar_int_mode *);

/* Determine alignment, 1<=result<=BIGGEST_ALIGNMENT.  */

extern CONST_MODE_BASE_ALIGN unsigned short mode_base_align[NUM_MACHINE_MODES];

extern unsigned get_mode_alignment (machine_mode);

#define GET_MODE_ALIGNMENT(MODE) get_mode_alignment (MODE)

/* For each class, get the narrowest mode in that class.  */

extern const unsigned short class_narrowest_mode[MAX_MODE_CLASS];
#define GET_CLASS_NARROWEST_MODE(CLASS) \
  ((machine_mode) class_narrowest_mode[CLASS])

/* The narrowest full integer mode available on the target.  */

#define NARROWEST_INT_MODE \
  (scalar_int_mode \
   (scalar_int_mode::from_int (class_narrowest_mode[MODE_INT])))

/* Return the narrowest mode in T's class.  */

template<typename T>
inline T
get_narrowest_mode (T mode)
{
  return typename mode_traits<T>::from_int
    (class_narrowest_mode[GET_MODE_CLASS (mode)]);
}

/* Define the integer modes whose sizes are BITS_PER_UNIT and BITS_PER_WORD
   and the mode whose class is Pmode and whose size is POINTER_SIZE.  */

extern scalar_int_mode byte_mode;
extern scalar_int_mode word_mode;
extern scalar_int_mode ptr_mode;

/* Target-dependent machine mode initialization - in insn-modes.cc.  */
extern void init_adjust_machine_modes (void);

#define TRULY_NOOP_TRUNCATION_MODES_P(MODE1, MODE2) \
  (targetm.truly_noop_truncation (GET_MODE_PRECISION (MODE1), \
				  GET_MODE_PRECISION (MODE2)))

/* Return true if MODE is a scalar integer mode that fits in a
   HOST_WIDE_INT.  */

inline bool
HWI_COMPUTABLE_MODE_P (machine_mode mode)
{
  machine_mode mme = mode;
  return (SCALAR_INT_MODE_P (mme)
	  && mode_to_precision (mme).coeffs[0] <= HOST_BITS_PER_WIDE_INT);
}

inline bool
HWI_COMPUTABLE_MODE_P (scalar_int_mode mode)
{
  return GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT;
}

struct int_n_data_t {
  /* These parts are initailized by genmodes output */
  unsigned int bitsize;
  scalar_int_mode_pod m;
  /* RID_* is RID_INTN_BASE + index into this array */
};

/* This is also in tree.h.  genmodes.cc guarantees the're sorted from
   smallest bitsize to largest bitsize. */
extern bool int_n_enabled_p[NUM_INT_N_ENTS];
extern const int_n_data_t int_n_data[NUM_INT_N_ENTS];

/* Return true if MODE has class MODE_INT, storing it as a scalar_int_mode
   in *INT_MODE if so.  */

template<typename T>
inline bool
is_int_mode (machine_mode mode, T *int_mode)
{
  if (GET_MODE_CLASS (mode) == MODE_INT)
    {
      *int_mode = scalar_int_mode (scalar_int_mode::from_int (mode));
      return true;
    }
  return false;
}

/* Return true if MODE has class MODE_FLOAT, storing it as a
   scalar_float_mode in *FLOAT_MODE if so.  */

template<typename T>
inline bool
is_float_mode (machine_mode mode, T *float_mode)
{
  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
    {
      *float_mode = scalar_float_mode (scalar_float_mode::from_int (mode));
      return true;
    }
  return false;
}

/* Return true if MODE has class MODE_COMPLEX_INT, storing it as
   a complex_mode in *CMODE if so.  */

template<typename T>
inline bool
is_complex_int_mode (machine_mode mode, T *cmode)
{
  if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
    {
      *cmode = complex_mode (complex_mode::from_int (mode));
      return true;
    }
  return false;
}

/* Return true if MODE has class MODE_COMPLEX_FLOAT, storing it as
   a complex_mode in *CMODE if so.  */

template<typename T>
inline bool
is_complex_float_mode (machine_mode mode, T *cmode)
{
  if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
    {
      *cmode = complex_mode (complex_mode::from_int (mode));
      return true;
    }
  return false;
}

/* Return true if MODE is a scalar integer mode with a precision
   smaller than LIMIT's precision.  */

inline bool
is_narrower_int_mode (machine_mode mode, scalar_int_mode limit)
{
  scalar_int_mode int_mode;
  return (is_a <scalar_int_mode> (mode, &int_mode)
	  && GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (limit));
}

namespace mode_iterator
{
  /* Start mode iterator *ITER at the first mode in class MCLASS, if any.  */

  template<typename T>
  inline void
  start (opt_mode<T> *iter, enum mode_class mclass)
  {
    if (GET_CLASS_NARROWEST_MODE (mclass) == E_VOIDmode)
      *iter = opt_mode<T> ();
    else
      *iter = as_a<T> (GET_CLASS_NARROWEST_MODE (mclass));
  }

  inline void
  start (machine_mode *iter, enum mode_class mclass)
  {
    *iter = GET_CLASS_NARROWEST_MODE (mclass);
  }

  /* Return true if mode iterator *ITER has not reached the end.  */

  template<typename T>
  inline bool
  iterate_p (opt_mode<T> *iter)
  {
    return iter->exists ();
  }

  inline bool
  iterate_p (machine_mode *iter)
  {
    return *iter != E_VOIDmode;
  }

  /* Set mode iterator *ITER to the next mode in the same class,
     if any.  */

  template<typename T>
  inline void
  get_next (opt_mode<T> *iter)
  {
    *iter = GET_MODE_NEXT_MODE (iter->require ());
  }

  inline void
  get_next (machine_mode *iter)
  {
    *iter = GET_MODE_NEXT_MODE (*iter).else_void ();
  }

  /* Set mode iterator *ITER to the next mode in the same class.
     Such a mode is known to exist.  */

  template<typename T>
  inline void
  get_known_next (T *iter)
  {
    *iter = GET_MODE_NEXT_MODE (*iter).require ();
  }

  /* Set mode iterator *ITER to the next wider mode in the same class,
     if any.  */

  template<typename T>
  inline void
  get_wider (opt_mode<T> *iter)
  {
    *iter = GET_MODE_WIDER_MODE (iter->require ());
  }

  inline void
  get_wider (machine_mode *iter)
  {
    *iter = GET_MODE_WIDER_MODE (*iter).else_void ();
  }

  /* Set mode iterator *ITER to the next wider mode in the same class.
     Such a mode is known to exist.  */

  template<typename T>
  inline void
  get_known_wider (T *iter)
  {
    *iter = GET_MODE_WIDER_MODE (*iter).require ();
  }

  /* Set mode iterator *ITER to the mode that is two times wider than the
     current one, if such a mode exists.  */

  template<typename T>
  inline void
  get_2xwider (opt_mode<T> *iter)
  {
    *iter = GET_MODE_2XWIDER_MODE (iter->require ());
  }

  inline void
  get_2xwider (machine_mode *iter)
  {
    *iter = GET_MODE_2XWIDER_MODE (*iter).else_void ();
  }
}

/* Make ITERATOR iterate over all the modes in mode class CLASS,
   from narrowest to widest.  */
#define FOR_EACH_MODE_IN_CLASS(ITERATOR, CLASS)  \
  for (mode_iterator::start (&(ITERATOR), CLASS); \
       mode_iterator::iterate_p (&(ITERATOR)); \
       mode_iterator::get_next (&(ITERATOR)))

/* Make ITERATOR iterate over all the modes in the range [START, END),
   in order of increasing width.  */
#define FOR_EACH_MODE(ITERATOR, START, END) \
  for ((ITERATOR) = (START); \
       (ITERATOR) != (END); \
       mode_iterator::get_known_next (&(ITERATOR)))

/* Make ITERATOR iterate over START and all non-narrower modes in the same
   class, in order of increasing width.  */
#define FOR_EACH_MODE_FROM(ITERATOR, START) \
  for ((ITERATOR) = (START); \
       mode_iterator::iterate_p (&(ITERATOR)); \
       mode_iterator::get_next (&(ITERATOR)))

/* Make ITERATOR iterate over START and all wider modes in the same
   class, in order of strictly increasing width.  */
#define FOR_EACH_WIDER_MODE_FROM(ITERATOR, START) \
  for ((ITERATOR) = (START); \
       mode_iterator::iterate_p (&(ITERATOR)); \
       mode_iterator::get_wider (&(ITERATOR)))

/* Make ITERATOR iterate over modes in the range [NARROWEST, END)
   in order of increasing width, where NARROWEST is the narrowest mode
   in END's class.  */
#define FOR_EACH_MODE_UNTIL(ITERATOR, END) \
  FOR_EACH_MODE (ITERATOR, get_narrowest_mode (END), END)

/* Make ITERATOR iterate over modes in the same class as MODE, in order
   of non-decreasing width.  Start at next such mode after START,
   or don't iterate at all if there is no such mode.  */
#define FOR_EACH_NEXT_MODE(ITERATOR, START) \
  for ((ITERATOR) = (START), mode_iterator::get_next (&(ITERATOR)); \
       mode_iterator::iterate_p (&(ITERATOR)); \
       mode_iterator::get_next (&(ITERATOR)))

/* Make ITERATOR iterate over modes in the same class as MODE, in order
   of increasing width.  Start at the first mode wider than START,
   or don't iterate at all if there is no wider mode.  */
#define FOR_EACH_WIDER_MODE(ITERATOR, START) \
  for ((ITERATOR) = (START), mode_iterator::get_wider (&(ITERATOR)); \
       mode_iterator::iterate_p (&(ITERATOR)); \
       mode_iterator::get_wider (&(ITERATOR)))

/* Make ITERATOR iterate over modes in the same class as MODE, in order
   of increasing width, and with each mode being twice the width of the
   previous mode.  Start at the mode that is two times wider than START,
   or don't iterate at all if there is no such mode.  */
#define FOR_EACH_2XWIDER_MODE(ITERATOR, START) \
  for ((ITERATOR) = (START), mode_iterator::get_2xwider (&(ITERATOR)); \
       mode_iterator::iterate_p (&(ITERATOR)); \
       mode_iterator::get_2xwider (&(ITERATOR)))

template<typename T>
void
gt_ggc_mx (pod_mode<T> *)
{
}

template<typename T>
void
gt_pch_nx (pod_mode<T> *)
{
}

template<typename T>
void
gt_pch_nx (pod_mode<T> *, gt_pointer_operator, void *)
{
}

#endif /* not HAVE_MACHINE_MODES */