1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
|
/* LTO partitioning logic routines.
Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "toplev.h"
#include "tree.h"
#include "tm.h"
#include "cgraph.h"
#include "lto-streamer.h"
#include "timevar.h"
#include "params.h"
#include "ipa-inline.h"
#include "ipa-utils.h"
#include "lto-partition.h"
/* Classifcation of symbols into classes WRT partitioning. */
enum symbol_class
{
/* External declarations are ignored by partitioning algorithms and they are
added into the boundary later via compute_ltrans_boundary. */
SYMBOL_EXTERNAL,
/* Partitioned symbols are pur into one of partitions. */
SYMBOL_PARTITION,
/* Duplicated symbols (such as comdat or constant pool references) are
copied into every node needing them via add_symbol_to_partition. */
SYMBOL_DUPLICATE
};
VEC(ltrans_partition, heap) *ltrans_partitions;
static void add_symbol_to_partition (ltrans_partition part, symtab_node node);
/* Classify symbol NODE. */
enum symbol_class
get_symbol_class (symtab_node node)
{
/* Inline clones are always duplicated.
This include external delcarations. */
if (symtab_function_p (node)
&& cgraph (node)->global.inlined_to)
return SYMBOL_DUPLICATE;
/* External declarations are external. */
if (DECL_EXTERNAL (node->symbol.decl))
return SYMBOL_EXTERNAL;
if (symtab_variable_p (node))
{
/* Constant pool references use local symbol names that can not
be promoted global. We should never put into a constant pool
objects that can not be duplicated across partitions. */
if (DECL_IN_CONSTANT_POOL (node->symbol.decl))
return SYMBOL_DUPLICATE;
gcc_checking_assert (varpool (node)->analyzed);
}
/* Functions that are cloned may stay in callgraph even if they are unused.
Handle them as external; compute_ltrans_boundary take care to make
proper things to happen (i.e. to make them appear in the boundary but
with body streamed, so clone can me materialized). */
else if (!cgraph (node)->analyzed)
return SYMBOL_EXTERNAL;
/* Weakref aliases are always duplicated. */
if (lookup_attribute ("weakref", DECL_ATTRIBUTES (node->symbol.decl)))
return SYMBOL_DUPLICATE;
/* Comdats are duplicated to every use unless they are keyed.
Those do not need duplication. */
if (DECL_COMDAT (node->symbol.decl)
&& !node->symbol.force_output
&& !symtab_used_from_object_file_p ((symtab_node) node))
return SYMBOL_DUPLICATE;
return SYMBOL_PARTITION;
}
/* Create new partition with name NAME. */
static ltrans_partition
new_partition (const char *name)
{
ltrans_partition part = XCNEW (struct ltrans_partition_def);
part->encoder = lto_symtab_encoder_new ();
part->name = name;
part->insns = 0;
VEC_safe_push (ltrans_partition, heap, ltrans_partitions, part);
return part;
}
/* Free memory used by ltrans datastructures. */
void
free_ltrans_partitions (void)
{
unsigned int idx;
ltrans_partition part;
for (idx = 0; VEC_iterate (ltrans_partition, ltrans_partitions, idx, part); idx++)
{
if (part->initializers_visited)
pointer_set_destroy (part->initializers_visited);
/* Symtab encoder is freed after streaming. */
free (part);
}
VEC_free (ltrans_partition, heap, ltrans_partitions);
}
/* Return true if symbol is already in some partition. */
static inline bool
symbol_partitioned_p (symtab_node node)
{
return node->symbol.aux;
}
/* Add references into the partition. */
static void
add_references_to_partition (ltrans_partition part, symtab_node node)
{
int i;
struct ipa_ref *ref;
/* Add all duplicated references to the partition. */
for (i = 0; ipa_ref_list_reference_iterate (&node->symbol.ref_list, i, ref); i++)
if (get_symbol_class (ref->referred) == SYMBOL_DUPLICATE)
add_symbol_to_partition (part, ref->referred);
/* References to a readonly variable may be constant foled into its value.
Recursively look into the initializers of the constant variable and add
references, too. */
else if (symtab_variable_p (ref->referred)
&& const_value_known_p (ref->referred->symbol.decl)
&& !lto_symtab_encoder_in_partition_p (part->encoder, ref->referred))
{
if (!part->initializers_visited)
part->initializers_visited = pointer_set_create ();
if (!pointer_set_insert (part->initializers_visited, ref->referred))
add_references_to_partition (part, ref->referred);
}
}
/* Helper function for add_symbol_to_partition doing the actual dirty work
of adding NODE to PART. */
static bool
add_symbol_to_partition_1 (ltrans_partition part, symtab_node node)
{
enum symbol_class c = get_symbol_class (node);
int i;
struct ipa_ref *ref;
symtab_node node1;
/* If NODE is already there, we have nothing to do. */
if (lto_symtab_encoder_in_partition_p (part->encoder, (symtab_node) node))
return true;
/* non-duplicated aliases or tunks of a duplicated symbol needs to be output
just once.
Be lax about comdats; they may or may not be duplicated and we may
end up in need to duplicate keyed comdat because it has unkeyed alias. */
if (c == SYMBOL_PARTITION && !DECL_COMDAT (node->symbol.decl)
&& symbol_partitioned_p (node))
return false;
/* Be sure that we never try to duplicate partitioned symbol
or add external symbol. */
gcc_assert (c != SYMBOL_EXTERNAL
&& (c == SYMBOL_DUPLICATE || !symbol_partitioned_p (node)));
lto_set_symtab_encoder_in_partition (part->encoder, (symtab_node) node);
if (symbol_partitioned_p (node))
{
node->symbol.in_other_partition = 1;
if (cgraph_dump_file)
fprintf (cgraph_dump_file, "Symbol node %s now used in multiple partitions\n",
symtab_node_name (node));
}
node->symbol.aux = (void *)((size_t)node->symbol.aux + 1);
if (symtab_function_p (node))
{
struct cgraph_node *cnode = cgraph (node);
struct cgraph_edge *e;
part->insns += inline_summary (cnode)->self_size;
/* Add all inline clones and callees that are duplicated. */
for (e = cnode->callees; e; e = e->next_callee)
if (!e->inline_failed)
add_symbol_to_partition_1 (part, (symtab_node) e->callee);
else if (get_symbol_class ((symtab_node) e->callee) == SYMBOL_DUPLICATE)
add_symbol_to_partition (part, (symtab_node) e->callee);
/* Add all thunks associated with the function. */
for (e = cnode->callers; e; e = e->next_caller)
if (e->caller->thunk.thunk_p)
add_symbol_to_partition_1 (part, (symtab_node) e->caller);
}
add_references_to_partition (part, node);
/* Add all aliases associated with the symbol. */
for (i = 0; ipa_ref_list_referring_iterate (&node->symbol.ref_list, i, ref); i++)
if (ref->use == IPA_REF_ALIAS
&& !lookup_attribute ("weakref",
DECL_ATTRIBUTES
(ref->referring->symbol.decl)))
add_symbol_to_partition_1 (part, ref->referring);
/* Ensure that SAME_COMDAT_GROUP lists all allways added in a group. */
if (node->symbol.same_comdat_group)
for (node1 = node->symbol.same_comdat_group;
node1 != node; node1 = node1->symbol.same_comdat_group)
{
bool added = add_symbol_to_partition_1 (part, node1);
gcc_assert (added);
}
return true;
}
/* If symbol NODE is really part of other symbol's definition (i.e. it is
internal label, thunk, alias or so), return the outer symbol.
When add_symbol_to_partition_1 is called on the outer symbol it must
eventually add NODE, too. */
static symtab_node
contained_in_symbol (symtab_node node)
{
/* Weakrefs are never contained in anything. */
if (lookup_attribute ("weakref",
DECL_ATTRIBUTES (node->symbol.decl)))
return node;
if (symtab_function_p (node))
{
struct cgraph_node *cnode = cgraph_function_node (cgraph (node), NULL);
if (cnode->global.inlined_to)
cnode = cnode->global.inlined_to;
return (symtab_node) cnode;
}
else if (symtab_variable_p (node))
return (symtab_node) varpool_variable_node (varpool (node), NULL);
return node;
}
/* Add symbol NODE to partition. When definition of NODE is part
of other symbol definition, add the other symbol, too. */
static void
add_symbol_to_partition (ltrans_partition part, symtab_node node)
{
symtab_node node1;
/* Verify that we do not try to duplicate something that can not be. */
gcc_checking_assert (get_symbol_class (node) == SYMBOL_DUPLICATE
|| !symbol_partitioned_p (node));
while ((node1 = contained_in_symbol (node)) != node)
node = node1;
/* If we have duplicated symbol contained in something we can not duplicate,
we are very badly screwed. The other way is possible, so we do not
assert this in add_symbol_to_partition_1.
Be lax about comdats; they may or may not be duplicated and we may
end up in need to duplicate keyed comdat because it has unkeyed alias. */
gcc_assert (get_symbol_class (node) == SYMBOL_DUPLICATE
|| DECL_COMDAT (node->symbol.decl)
|| !symbol_partitioned_p (node));
add_symbol_to_partition_1 (part, node);
}
/* Undo all additions until number of cgraph nodes in PARITION is N_CGRAPH_NODES
and number of varpool nodes is N_VARPOOL_NODES. */
static void
undo_partition (ltrans_partition partition, unsigned int n_nodes)
{
while (lto_symtab_encoder_size (partition->encoder) > (int)n_nodes)
{
symtab_node node = lto_symtab_encoder_deref (partition->encoder,
n_nodes);
/* After UNDO we no longer know what was visited. */
if (partition->initializers_visited)
pointer_set_destroy (partition->initializers_visited);
partition->initializers_visited = NULL;
if (symtab_function_p (node))
partition->insns -= inline_summary (cgraph (node))->self_size;
lto_symtab_encoder_delete_node (partition->encoder, node);
node->symbol.aux = (void *)((size_t)node->symbol.aux - 1);
}
}
/* Group cgrah nodes by input files. This is used mainly for testing
right now. */
void
lto_1_to_1_map (void)
{
symtab_node node;
struct lto_file_decl_data *file_data;
struct pointer_map_t *pmap;
ltrans_partition partition;
void **slot;
int npartitions = 0;
pmap = pointer_map_create ();
FOR_EACH_SYMBOL (node)
{
if (get_symbol_class (node) != SYMBOL_PARTITION
|| symbol_partitioned_p (node))
continue;
file_data = node->symbol.lto_file_data;
if (file_data)
{
slot = pointer_map_contains (pmap, file_data);
if (slot)
partition = (ltrans_partition) *slot;
else
{
partition = new_partition (file_data->file_name);
slot = pointer_map_insert (pmap, file_data);
*slot = partition;
npartitions++;
}
}
else if (!file_data
&& VEC_length (ltrans_partition, ltrans_partitions))
partition = VEC_index (ltrans_partition, ltrans_partitions, 0);
else
{
partition = new_partition ("");
slot = pointer_map_insert (pmap, NULL);
*slot = partition;
npartitions++;
}
add_symbol_to_partition (partition, (symtab_node) node);
}
/* If the cgraph is empty, create one cgraph node set so that there is still
an output file for any variables that need to be exported in a DSO. */
if (!npartitions)
new_partition ("empty");
pointer_map_destroy (pmap);
}
/* Maximal partitioning. Put every new symbol into new partition if possible. */
void
lto_max_map (void)
{
symtab_node node;
ltrans_partition partition;
int npartitions = 0;
FOR_EACH_SYMBOL (node)
{
if (get_symbol_class (node) != SYMBOL_PARTITION
|| symbol_partitioned_p (node))
continue;
partition = new_partition (symtab_node_asm_name (node));
add_symbol_to_partition (partition, (symtab_node) node);
npartitions++;
}
if (!npartitions)
new_partition ("empty");
}
/* Helper function for qsort; sort nodes by order. */
static int
node_cmp (const void *pa, const void *pb)
{
const struct cgraph_node *a = *(const struct cgraph_node * const *) pa;
const struct cgraph_node *b = *(const struct cgraph_node * const *) pb;
return b->symbol.order - a->symbol.order;
}
/* Helper function for qsort; sort nodes by order. */
static int
varpool_node_cmp (const void *pa, const void *pb)
{
const struct varpool_node *a = *(const struct varpool_node * const *) pa;
const struct varpool_node *b = *(const struct varpool_node * const *) pb;
return b->symbol.order - a->symbol.order;
}
/* Group cgraph nodes into equally-sized partitions.
The partitioning algorithm is simple: nodes are taken in predefined order.
The order corresponds to the order we want functions to have in the final
output. In the future this will be given by function reordering pass, but
at the moment we use the topological order, which is a good approximation.
The goal is to partition this linear order into intervals (partitions) so
that all the partitions have approximately the same size and the number of
callgraph or IPA reference edges crossing boundaries is minimal.
This is a lot faster (O(n) in size of callgraph) than algorithms doing
priority-based graph clustering that are generally O(n^2) and, since
WHOPR is designed to make things go well across partitions, it leads
to good results.
We compute the expected size of a partition as:
max (total_size / lto_partitions, min_partition_size)
We use dynamic expected size of partition so small programs are partitioned
into enough partitions to allow use of multiple CPUs, while large programs
are not partitioned too much. Creating too many partitions significantly
increases the streaming overhead.
In the future, we would like to bound the maximal size of partitions so as
to prevent the LTRANS stage from consuming too much memory. At the moment,
however, the WPA stage is the most memory intensive for large benchmarks,
since too many types and declarations are read into memory.
The function implements a simple greedy algorithm. Nodes are being added
to the current partition until after 3/4 of the expected partition size is
reached. Past this threshold, we keep track of boundary size (number of
edges going to other partitions) and continue adding functions until after
the current partition has grown to twice the expected partition size. Then
the process is undone to the point where the minimal ratio of boundary size
and in-partition calls was reached. */
void
lto_balanced_map (void)
{
int n_nodes = 0;
int n_varpool_nodes = 0, varpool_pos = 0;
struct cgraph_node **postorder =
XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
struct cgraph_node **order = XNEWVEC (struct cgraph_node *, cgraph_max_uid);
struct varpool_node **varpool_order = NULL;
int i, postorder_len;
struct cgraph_node *node;
int total_size = 0, best_total_size = 0;
int partition_size;
ltrans_partition partition;
int last_visited_node = 0;
struct varpool_node *vnode;
int cost = 0, internal = 0;
int best_n_nodes = 0, best_i = 0, best_cost =
INT_MAX, best_internal = 0;
int npartitions;
int current_order = -1;
FOR_EACH_VARIABLE (vnode)
gcc_assert (!vnode->symbol.aux);
/* Until we have better ordering facility, use toplogical order.
Include only nodes we will partition and compute estimate of program
size. Note that since nodes that are not partitioned might be put into
multiple partitions, this is just an estimate of real size. This is why
we keep partition_size updated after every partition is finalized. */
postorder_len = ipa_reverse_postorder (postorder);
for (i = 0; i < postorder_len; i++)
{
node = postorder[i];
if (get_symbol_class ((symtab_node) node) == SYMBOL_PARTITION)
{
order[n_nodes++] = node;
total_size += inline_summary (node)->size;
}
}
free (postorder);
if (!flag_toplevel_reorder)
{
qsort (order, n_nodes, sizeof (struct cgraph_node *), node_cmp);
FOR_EACH_VARIABLE (vnode)
if (get_symbol_class ((symtab_node) vnode) == SYMBOL_PARTITION)
n_varpool_nodes++;
varpool_order = XNEWVEC (struct varpool_node *, n_varpool_nodes);
n_varpool_nodes = 0;
FOR_EACH_VARIABLE (vnode)
if (get_symbol_class ((symtab_node) vnode) == SYMBOL_PARTITION)
varpool_order[n_varpool_nodes++] = vnode;
qsort (varpool_order, n_varpool_nodes, sizeof (struct varpool_node *),
varpool_node_cmp);
}
/* Compute partition size and create the first partition. */
partition_size = total_size / PARAM_VALUE (PARAM_LTO_PARTITIONS);
if (partition_size < PARAM_VALUE (MIN_PARTITION_SIZE))
partition_size = PARAM_VALUE (MIN_PARTITION_SIZE);
npartitions = 1;
partition = new_partition ("");
if (cgraph_dump_file)
fprintf (cgraph_dump_file, "Total unit size: %i, partition size: %i\n",
total_size, partition_size);
for (i = 0; i < n_nodes; i++)
{
if (symbol_partitioned_p ((symtab_node) order[i]))
continue;
current_order = order[i]->symbol.order;
if (!flag_toplevel_reorder)
while (varpool_pos < n_varpool_nodes
&& varpool_order[varpool_pos]->symbol.order < current_order)
{
if (!symbol_partitioned_p ((symtab_node) varpool_order[varpool_pos]))
add_symbol_to_partition (partition, (symtab_node) varpool_order[varpool_pos]);
varpool_pos++;
}
add_symbol_to_partition (partition, (symtab_node) order[i]);
total_size -= inline_summary (order[i])->size;
/* Once we added a new node to the partition, we also want to add
all referenced variables unless they was already added into some
earlier partition.
add_symbol_to_partition adds possibly multiple nodes and
variables that are needed to satisfy needs of ORDER[i].
We remember last visited cgraph and varpool node from last iteration
of outer loop that allows us to process every new addition.
At the same time we compute size of the boundary into COST. Every
callgraph or IPA reference edge leaving the partition contributes into
COST. Every edge inside partition was earlier computed as one leaving
it and thus we need to subtract it from COST. */
while (last_visited_node < lto_symtab_encoder_size (partition->encoder))
{
struct ipa_ref_list *refs;
int j;
struct ipa_ref *ref;
symtab_node snode = lto_symtab_encoder_deref (partition->encoder,
last_visited_node);
if (symtab_function_p (snode))
{
struct cgraph_edge *edge;
node = cgraph (snode);
refs = &node->symbol.ref_list;
last_visited_node++;
gcc_assert (node->analyzed);
/* Compute boundary cost of callgraph edges. */
for (edge = node->callees; edge; edge = edge->next_callee)
if (edge->callee->analyzed)
{
int edge_cost = edge->frequency;
int index;
if (!edge_cost)
edge_cost = 1;
gcc_assert (edge_cost > 0);
index = lto_symtab_encoder_lookup (partition->encoder,
(symtab_node)edge->callee);
if (index != LCC_NOT_FOUND
&& index < last_visited_node - 1)
cost -= edge_cost, internal += edge_cost;
else
cost += edge_cost;
}
for (edge = node->callers; edge; edge = edge->next_caller)
{
int edge_cost = edge->frequency;
int index;
gcc_assert (edge->caller->analyzed);
if (!edge_cost)
edge_cost = 1;
gcc_assert (edge_cost > 0);
index = lto_symtab_encoder_lookup (partition->encoder,
(symtab_node)edge->caller);
if (index != LCC_NOT_FOUND
&& index < last_visited_node - 1)
cost -= edge_cost;
else
cost += edge_cost;
}
}
else
{
refs = &snode->symbol.ref_list;
last_visited_node++;
}
/* Compute boundary cost of IPA REF edges and at the same time look into
variables referenced from current partition and try to add them. */
for (j = 0; ipa_ref_list_reference_iterate (refs, j, ref); j++)
if (symtab_variable_p (ref->referred))
{
int index;
vnode = ipa_ref_varpool_node (ref);
if (!vnode->finalized)
continue;
if (!symbol_partitioned_p ((symtab_node) vnode) && flag_toplevel_reorder
&& get_symbol_class ((symtab_node) vnode) == SYMBOL_PARTITION)
add_symbol_to_partition (partition, (symtab_node) vnode);
index = lto_symtab_encoder_lookup (partition->encoder,
(symtab_node)vnode);
if (index != LCC_NOT_FOUND
&& index < last_visited_node - 1)
cost--, internal++;
else
cost++;
}
else
{
int index;
node = ipa_ref_node (ref);
if (!node->analyzed)
continue;
index = lto_symtab_encoder_lookup (partition->encoder,
(symtab_node)node);
if (index != LCC_NOT_FOUND
&& index < last_visited_node - 1)
cost--, internal++;
else
cost++;
}
for (j = 0; ipa_ref_list_referring_iterate (refs, j, ref); j++)
if (symtab_variable_p (ref->referring))
{
int index;
vnode = ipa_ref_referring_varpool_node (ref);
gcc_assert (vnode->finalized);
if (!symbol_partitioned_p ((symtab_node) vnode) && flag_toplevel_reorder
&& get_symbol_class ((symtab_node) vnode) == SYMBOL_PARTITION)
add_symbol_to_partition (partition, (symtab_node) vnode);
index = lto_symtab_encoder_lookup (partition->encoder,
(symtab_node)vnode);
if (index != LCC_NOT_FOUND
&& index < last_visited_node - 1)
cost--;
else
cost++;
}
else
{
int index;
node = ipa_ref_referring_node (ref);
gcc_assert (node->analyzed);
index = lto_symtab_encoder_lookup (partition->encoder,
(symtab_node)node);
if (index != LCC_NOT_FOUND
&& index < last_visited_node - 1)
cost--;
else
cost++;
}
}
/* If the partition is large enough, start looking for smallest boundary cost. */
if (partition->insns < partition_size * 3 / 4
|| best_cost == INT_MAX
|| ((!cost
|| (best_internal * (HOST_WIDE_INT) cost
> (internal * (HOST_WIDE_INT)best_cost)))
&& partition->insns < partition_size * 5 / 4))
{
best_cost = cost;
best_internal = internal;
best_i = i;
best_n_nodes = lto_symtab_encoder_size (partition->encoder);
best_total_size = total_size;
}
if (cgraph_dump_file)
fprintf (cgraph_dump_file, "Step %i: added %s/%i, size %i, cost %i/%i best %i/%i, step %i\n", i,
cgraph_node_name (order[i]), order[i]->uid, partition->insns, cost, internal,
best_cost, best_internal, best_i);
/* Partition is too large, unwind into step when best cost was reached and
start new partition. */
if (partition->insns > 2 * partition_size)
{
if (best_i != i)
{
if (cgraph_dump_file)
fprintf (cgraph_dump_file, "Unwinding %i insertions to step %i\n",
i - best_i, best_i);
undo_partition (partition, best_n_nodes);
}
i = best_i;
/* When we are finished, avoid creating empty partition. */
while (i < n_nodes - 1 && symbol_partitioned_p ((symtab_node) order[i + 1]))
i++;
if (i == n_nodes - 1)
break;
partition = new_partition ("");
last_visited_node = 0;
total_size = best_total_size;
cost = 0;
if (cgraph_dump_file)
fprintf (cgraph_dump_file, "New partition\n");
best_n_nodes = 0;
best_cost = INT_MAX;
/* Since the size of partitions is just approximate, update the size after
we finished current one. */
if (npartitions < PARAM_VALUE (PARAM_LTO_PARTITIONS))
partition_size = total_size
/ (PARAM_VALUE (PARAM_LTO_PARTITIONS) - npartitions);
else
partition_size = INT_MAX;
if (partition_size < PARAM_VALUE (MIN_PARTITION_SIZE))
partition_size = PARAM_VALUE (MIN_PARTITION_SIZE);
npartitions ++;
}
}
/* Varables that are not reachable from the code go into last partition. */
if (flag_toplevel_reorder)
{
FOR_EACH_VARIABLE (vnode)
if (get_symbol_class ((symtab_node) vnode) == SYMBOL_PARTITION
&& !symbol_partitioned_p ((symtab_node) vnode))
add_symbol_to_partition (partition, (symtab_node) vnode);
}
else
{
while (varpool_pos < n_varpool_nodes)
{
if (!symbol_partitioned_p ((symtab_node) varpool_order[varpool_pos]))
add_symbol_to_partition (partition, (symtab_node) varpool_order[varpool_pos]);
varpool_pos++;
}
free (varpool_order);
}
free (order);
}
/* Promote variable VNODE to be static. */
static void
promote_symbol (symtab_node node)
{
/* We already promoted ... */
if (DECL_VISIBILITY (node->symbol.decl) == VISIBILITY_HIDDEN
&& DECL_VISIBILITY_SPECIFIED (node->symbol.decl)
&& TREE_PUBLIC (node->symbol.decl))
return;
gcc_checking_assert (!TREE_PUBLIC (node->symbol.decl)
&& !DECL_EXTERNAL (node->symbol.decl));
TREE_PUBLIC (node->symbol.decl) = 1;
DECL_VISIBILITY (node->symbol.decl) = VISIBILITY_HIDDEN;
DECL_VISIBILITY_SPECIFIED (node->symbol.decl) = true;
if (cgraph_dump_file)
fprintf (cgraph_dump_file,
"Promoting as hidden: %s\n", symtab_node_name (node));
}
/* Find out all static decls that need to be promoted to global because
of cross file sharing. This function must be run in the WPA mode after
all inlinees are added. */
void
lto_promote_cross_file_statics (void)
{
unsigned i, n_sets;
gcc_assert (flag_wpa);
/* First compute boundaries. */
n_sets = VEC_length (ltrans_partition, ltrans_partitions);
for (i = 0; i < n_sets; i++)
{
ltrans_partition part
= VEC_index (ltrans_partition, ltrans_partitions, i);
part->encoder = compute_ltrans_boundary (part->encoder);
}
/* Look at boundaries and promote symbols as needed. */
for (i = 0; i < n_sets; i++)
{
lto_symtab_encoder_iterator lsei;
lto_symtab_encoder_t encoder;
ltrans_partition part
= VEC_index (ltrans_partition, ltrans_partitions, i);
encoder = part->encoder;
for (lsei = lsei_start (encoder); !lsei_end_p (lsei);
lsei_next (&lsei))
{
symtab_node node = lsei_node (lsei);
/* No need to promote if symbol already is externally visible ... */
if (node->symbol.externally_visible
/* ... or if it is part of current partition ... */
|| lto_symtab_encoder_in_partition_p (encoder, node)
/* ... or if we do not partition it. This mean that it will
appear in every partition refernecing it. */
|| get_symbol_class ((symtab_node) node) != SYMBOL_PARTITION)
continue;
promote_symbol (node);
}
}
}
|