aboutsummaryrefslogtreecommitdiff
path: root/gcc/lra-remat.c
blob: 10838116143e50878ac8c08d3a57997c5ec93ff1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
/* Rematerialize pseudos values.
   Copyright (C) 2014-2019 Free Software Foundation, Inc.
   Contributed by Vladimir Makarov <vmakarov@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.	If not see
<http://www.gnu.org/licenses/>.	 */

/* This code objective is to rematerialize spilled pseudo values.  To
   do this we calculate available insn candidates.  The candidate is
   available at some point if there is dominated set of insns with the
   same pattern, the insn inputs are not dying or modified on any path
   from the set, the outputs are not modified.

   The insns containing memory or spilled pseudos (except for the
   rematerialized pseudo) are not considered as such insns are not
   profitable in comparison with regular loads of spilled pseudo
   values.  That simplifies the implementation as we don't need to
   deal with memory aliasing.

   To speed up available candidate calculation, we calculate partially
   available candidates first and use them for initialization of the
   availability.  That is because (partial) availability sets are
   sparse.

   The rematerialization sub-pass could be improved further in the
   following ways:

   o We could make longer live ranges of inputs in the
     rematerialization candidates if their hard registers are not used
     for other purposes.  This could be complicated if we need to
     update BB live info information as LRA does not use
     DF-infrastructure for compile-time reasons.  This problem could
     be overcome if constrain making live ranges longer only in BB/EBB
     scope.
   o We could use cost-based decision to choose rematerialization insn
     (currently all insns without memory is can be used).
   o We could use other free hard regs for unused output pseudos in
     rematerialization candidates although such cases probably will
     be very rare.  */


#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "df.h"
#include "insn-config.h"
#include "regs.h"
#include "memmodel.h"
#include "ira.h"
#include "recog.h"
#include "lra.h"
#include "lra-int.h"

/* Number of candidates for rematerialization.  */
static unsigned int cands_num;

/* The following is used for representation of call_used_reg_set in
   form array whose elements are hard register numbers with nonzero bit
   in CALL_USED_REG_SET. */
static int call_used_regs_arr_len;
static int call_used_regs_arr[FIRST_PSEUDO_REGISTER];

/* Bitmap used for different calculations.  */
static bitmap_head temp_bitmap;

/* Registers accessed via subreg_p.  */
static bitmap_head subreg_regs;

typedef struct cand *cand_t;
typedef const struct cand *const_cand_t;

/* Insn candidates for rematerialization.  The candidate insn should
   have the following properies:
   o no any memory (as access to memory is non-profitable)
   o no INOUT regs (it means no non-paradoxical subreg of output reg)
   o one output spilled pseudo (or reload pseudo of a spilled pseudo)
   o all other pseudos are with assigned hard regs.  */
struct cand
{
  /* Index of the candidates in all_cands. */
  int index;
  /* Insn pseudo regno for rematerialization.  */
  int regno;
  /* The candidate insn.  */
  rtx_insn *insn;
  /* Non-negative if a reload pseudo is in the insn instead of the
     pseudo for rematerialization.  */
  int reload_regno;
  /* Number of the operand containing the regno or its reload
     regno.  */
  int nop;
  /* Next candidate for the same regno.  */
  cand_t next_regno_cand;
};

/* Vector containing all candidates.  */
static vec<cand_t> all_cands;
/* Map: insn -> candidate representing it.  It is null if the insn cannot
   be used for rematerialization.  */
static cand_t *insn_to_cand;
/* A secondary map, for candidates that involve two insns, where the
   second one makes the equivalence.  The candidate must not be used
   before seeing this activation insn.  */
static cand_t *insn_to_cand_activation;

/* Map regno -> candidates can be used for the regno
   rematerialization.  */
static cand_t *regno_cands;

/* Data about basic blocks used for the rematerialization
   sub-pass.  */
struct remat_bb_data
{
  /* Basic block about which the below data are.  */
  basic_block bb;
  /* Registers changed in the basic block: */
  bitmap_head changed_regs;
  /* Registers becoming dead in the BB.  */
  bitmap_head dead_regs;
  /* Cands present in the BB whose in/out regs are not changed after
     the cands occurence and are not dead (except the reload
     regno).  */
  bitmap_head gen_cands;
  bitmap_head livein_cands; /* cands whose inputs live at the BB start.  */
  bitmap_head pavin_cands; /* cands partially available at BB entry.  */
  bitmap_head pavout_cands; /* cands partially available at BB exit.  */
  bitmap_head avin_cands; /* cands available at the entry of the BB.  */
  bitmap_head avout_cands; /* cands available at the exit of the BB.  */
};

/* Array for all BB data.  Indexed by the corresponding BB index.  */
typedef struct remat_bb_data *remat_bb_data_t;

/* Basic blocks for data flow problems -- all bocks except the special
   ones.  */
static bitmap_head all_blocks;

/* All basic block data are referred through the following array.  */
static remat_bb_data_t remat_bb_data;

/* Two small functions for access to the bb data.  */
static inline remat_bb_data_t
get_remat_bb_data (basic_block bb)
{
  return &remat_bb_data[(bb)->index];
}

static inline remat_bb_data_t
get_remat_bb_data_by_index (int index)
{
  return &remat_bb_data[index];
}



/* Hash table for the candidates.  Different insns (e.g. structurally
   the same insns or even insns with different unused output regs) can
   be represented by the same candidate in the table.  */
static htab_t cand_table;

/* Hash function for candidate CAND.  */
static hashval_t
cand_hash (const void *cand)
{
  const_cand_t c = (const_cand_t) cand;
  lra_insn_recog_data_t id = lra_get_insn_recog_data (c->insn);
  struct lra_static_insn_data *static_id = id->insn_static_data;
  int nops = static_id->n_operands;
  hashval_t hash = 0;

  for (int i = 0; i < nops; i++)
    if (i == c->nop)
      hash = iterative_hash_object (c->regno, hash);
    else if (static_id->operand[i].type == OP_IN)
      hash = iterative_hash_object (*id->operand_loc[i], hash);
  return hash;
}

/* Equal function for candidates CAND1 and CAND2.  They are equal if
   the corresponding candidate insns have the same code, the same
   regno for rematerialization, the same input operands.  */
static int
cand_eq_p (const void *cand1, const void *cand2)
{
  const_cand_t c1 = (const_cand_t) cand1;
  const_cand_t c2 = (const_cand_t) cand2;
  lra_insn_recog_data_t id1 = lra_get_insn_recog_data (c1->insn);
  lra_insn_recog_data_t id2 = lra_get_insn_recog_data (c2->insn);
  struct lra_static_insn_data *static_id1 = id1->insn_static_data;
  int nops = static_id1->n_operands;

  if (c1->regno != c2->regno
      || INSN_CODE (c1->insn) < 0
      || INSN_CODE (c1->insn) != INSN_CODE (c2->insn))
    return false;
  gcc_assert (c1->nop == c2->nop);
  for (int i = 0; i < nops; i++)
    if (i != c1->nop && static_id1->operand[i].type == OP_IN
	&& *id1->operand_loc[i] != *id2->operand_loc[i])
      return false;
  return true;
}

/* Insert candidate CAND into the table if it is not there yet.
   Return candidate which is in the table.  */
static cand_t
insert_cand (cand_t cand)
{
  void **entry_ptr;

  entry_ptr = htab_find_slot (cand_table, cand, INSERT);
  if (*entry_ptr == NULL)
    *entry_ptr = (void *) cand;
  return (cand_t) *entry_ptr;
}

/* Free candidate CAND memory.  */
static void
free_cand (void *cand)
{
  free (cand);
}

/* Initiate the candidate table.  */
static void
initiate_cand_table (void)
{
  cand_table = htab_create (8000, cand_hash, cand_eq_p,
			    (htab_del) free_cand);
}

/* Finish the candidate table.  */
static void
finish_cand_table (void)
{
  htab_delete (cand_table);
}



/* Return true if X contains memory or some UNSPEC.  We cannot just
   check insn operands as memory or unspec might be not an operand
   itself but contain an operand.  Insn with memory access is not
   profitable for rematerialization.  Rematerialization of UNSPEC
   might result in wrong code generation as the UNPEC effect is
   unknown (e.g. generating a label).  */
static bool
bad_for_rematerialization_p (rtx x)
{
  int i, j;
  const char *fmt;
  enum rtx_code code;

  if (MEM_P (x) || GET_CODE (x) == UNSPEC || GET_CODE (x) == UNSPEC_VOLATILE)
    return true;
  code = GET_CODE (x);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  if (bad_for_rematerialization_p (XEXP (x, i)))
	    return true;
	}
      else if (fmt[i] == 'E')
	{
	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (bad_for_rematerialization_p (XVECEXP (x, i, j)))
	      return true;
	}
    }
  return false;
}

/* If INSN cannot be used for rematerialization, return negative
   value.  If INSN can be considered as a candidate for
   rematerialization, return value which is the operand number of the
   pseudo for which the insn can be used for rematerialization.  Here
   we consider the insns without any memory, spilled pseudo (except
   for the rematerialization pseudo), or dying or unused regs.  */
static int
operand_to_remat (rtx_insn *insn)
{
  lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
  struct lra_static_insn_data *static_id = id->insn_static_data;
  struct lra_insn_reg *reg, *found_reg = NULL;

  /* Don't rematerialize insns which can change PC.  */
  if (JUMP_P (insn) || CALL_P (insn))
    return -1;
  /* First find a pseudo which can be rematerialized.  */
  for (reg = id->regs; reg != NULL; reg = reg->next)
    {
      /* True FRAME_POINTER_NEEDED might be because we cannot follow
	 changing sp offsets, e.g. alloca is used.  If the insn contains
	 stack pointer in such case, we cannot rematerialize it as we
	 cannot know sp offset at a rematerialization place.  */
      if (reg->regno == STACK_POINTER_REGNUM && frame_pointer_needed)
	return -1;
      else if (reg->type == OP_OUT && ! reg->subreg_p
	       && find_regno_note (insn, REG_UNUSED, reg->regno) == NULL)
	{
	  /* We permits only one spilled reg.  */
	  if (found_reg != NULL)
	    return -1;
	  found_reg = reg;
        }
      /* IRA calculates conflicts separately for subregs of two words
	 pseudo.  Even if the pseudo lives, e.g. one its subreg can be
	 used lately, another subreg hard register can be already used
	 for something else.  In such case, it is not safe to
	 rematerialize the insn.  */
      if (reg->regno >= FIRST_PSEUDO_REGISTER
	  && bitmap_bit_p (&subreg_regs, reg->regno))
	return -1;

      /* Don't allow hard registers to be rematerialized.  */
      if (reg->regno < FIRST_PSEUDO_REGISTER)
	return -1;
    }
  if (found_reg == NULL)
    return -1;
  if (found_reg->regno < FIRST_PSEUDO_REGISTER)
    return -1;
  if (bad_for_rematerialization_p (PATTERN (insn)))
    return -1;
  /* Check the other regs are not spilled. */
  for (reg = id->regs; reg != NULL; reg = reg->next)
    if (found_reg == reg)
      continue;
    else if (reg->type == OP_INOUT)
      return -1;
    else if (reg->regno >= FIRST_PSEUDO_REGISTER
	     && reg_renumber[reg->regno] < 0)
      /* Another spilled reg.  */
      return -1;
    else if (reg->type == OP_IN)
      {
	if (find_regno_note (insn, REG_DEAD, reg->regno) != NULL)
	  /* We don't want to make live ranges longer.  */
	  return -1;
	/* Check that there is no output reg as the input one.  */
	for (struct lra_insn_reg *reg2 = id->regs;
	     reg2 != NULL;
	     reg2 = reg2->next)
	  if (reg2->type == OP_OUT && reg->regno == reg2->regno)
	    return -1;
	if (reg->regno < FIRST_PSEUDO_REGISTER)
	  for (struct lra_insn_reg *reg2 = static_id->hard_regs;
	       reg2 != NULL;
	       reg2 = reg2->next)
	    if (reg2->type == OP_OUT
		&& reg->regno <= reg2->regno
		&& (reg2->regno
		    < (int) end_hard_regno (reg->biggest_mode, reg->regno)))
	      return -1;
      }
  /* Check hard coded insn registers.  */
  for (struct lra_insn_reg *reg = static_id->hard_regs;
       reg != NULL;
       reg = reg->next)
    if (reg->type == OP_INOUT)
      return -1;
    else if (reg->type == OP_IN)
      {
	/* Check that there is no output hard reg as the input
	   one.  */
	  for (struct lra_insn_reg *reg2 = static_id->hard_regs;
	       reg2 != NULL;
	       reg2 = reg2->next)
	    if (reg2->type == OP_OUT && reg->regno == reg2->regno)
		return -1;
      }
  /* Find the rematerialization operand.  */
  int nop = static_id->n_operands;
  for (int i = 0; i < nop; i++)
    if (REG_P (*id->operand_loc[i])
	&& (int) REGNO (*id->operand_loc[i]) == found_reg->regno)
      return i;
  return -1;
}

/* Create candidate for INSN with rematerialization operand NOP and
   REGNO.  Insert the candidate into the table and set up the
   corresponding INSN_TO_CAND element.  */
static void
create_cand (rtx_insn *insn, int nop, int regno, rtx_insn *activation = NULL)
{
  lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
  rtx reg = *id->operand_loc[nop];
  gcc_assert (REG_P (reg));
  int op_regno = REGNO (reg);
  gcc_assert (op_regno >= FIRST_PSEUDO_REGISTER);
  cand_t cand = XNEW (struct cand);
  cand->insn = insn;
  cand->nop = nop;
  cand->regno = regno;
  cand->reload_regno = op_regno == regno ? -1 : op_regno;
  gcc_assert (cand->regno >= 0);
  cand_t cand_in_table = insert_cand (cand);
  insn_to_cand[INSN_UID (insn)] = cand_in_table;
  if (cand != cand_in_table)
    free (cand);
  else
    {
      /* A new cand.  */
      cand->index = all_cands.length ();
      all_cands.safe_push (cand);
      cand->next_regno_cand = regno_cands[cand->regno];
      regno_cands[cand->regno] = cand;
    }
  if (activation)
    insn_to_cand_activation[INSN_UID (activation)] = cand_in_table;
}

/* Create rematerialization candidates (inserting them into the
   table).  */
static void
create_cands (void)
{
  rtx_insn *insn;
  struct potential_cand
  {
    rtx_insn *insn;
    int nop;
  };
  struct potential_cand *regno_potential_cand;

  /* Create candidates.  */
  regno_potential_cand = XCNEWVEC (struct potential_cand, max_reg_num ());
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (NONDEBUG_INSN_P (insn))
      {
	lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
	int keep_regno = -1;
	rtx set = single_set (insn);
	int nop;

	/* See if this is an output reload for a previous insn.  */
	if (set != NULL
	    && REG_P (SET_SRC (set)) && REG_P (SET_DEST (set)))
	  {
	    rtx dstreg = SET_DEST (set);
	    int src_regno = REGNO (SET_SRC (set));
	    int dst_regno = REGNO (dstreg);
	    rtx_insn *insn2 = regno_potential_cand[src_regno].insn;

	    if (insn2 != NULL 
		&& dst_regno >= FIRST_PSEUDO_REGISTER
		&& reg_renumber[dst_regno] < 0
		&& BLOCK_FOR_INSN (insn2) == BLOCK_FOR_INSN (insn))
	      {
		create_cand (insn2, regno_potential_cand[src_regno].nop,
			     dst_regno, insn);
		goto done;
	      }
	  }

	nop = operand_to_remat (insn);
	if (nop >= 0)
	  {
	    gcc_assert (REG_P (*id->operand_loc[nop]));
	    int regno = REGNO (*id->operand_loc[nop]);
	    gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
	    /* If we're setting an unrenumbered pseudo, make a candidate immediately.
	       If it's an output reload register, save it for later; the code above
	       looks for output reload insns later on.  */
	    if (reg_renumber[regno] < 0)
	      create_cand (insn, nop, regno);
	    else if (regno >= lra_constraint_new_regno_start)
	      {
		regno_potential_cand[regno].insn = insn;
		regno_potential_cand[regno].nop = nop;
		keep_regno = regno;
	      }
	  }

      done:
	for (struct lra_insn_reg *reg = id->regs; reg != NULL; reg = reg->next)
	  if (reg->type != OP_IN && reg->regno != keep_regno
	      && reg->regno >= FIRST_PSEUDO_REGISTER)
	    regno_potential_cand[reg->regno].insn = NULL;
      }
  cands_num = all_cands.length ();
  free (regno_potential_cand);
}



/* Create and initialize BB data.  */
static void
create_remat_bb_data (void)
{
  basic_block bb;
  remat_bb_data_t bb_info;

  remat_bb_data = XNEWVEC (struct remat_bb_data,
			   last_basic_block_for_fn (cfun));
  FOR_ALL_BB_FN (bb, cfun)
    {
      gcc_checking_assert (bb->index >= 0
			   && bb->index < last_basic_block_for_fn (cfun));
      bb_info = get_remat_bb_data (bb);
      bb_info->bb = bb;
      bitmap_initialize (&bb_info->changed_regs, &reg_obstack);
      bitmap_initialize (&bb_info->dead_regs, &reg_obstack);
      bitmap_initialize (&bb_info->gen_cands, &reg_obstack);
      bitmap_initialize (&bb_info->livein_cands, &reg_obstack);
      bitmap_initialize (&bb_info->pavin_cands, &reg_obstack);
      bitmap_initialize (&bb_info->pavout_cands, &reg_obstack);
      bitmap_initialize (&bb_info->avin_cands, &reg_obstack);
      bitmap_initialize (&bb_info->avout_cands, &reg_obstack);
    }
}

/* Dump all candidates to DUMP_FILE.  */
static void
dump_cands (FILE *dump_file)
{
  int i;
  cand_t cand;

  fprintf (dump_file, "\nCands:\n");
  for (i = 0; i < (int) cands_num; i++)
    {
      cand = all_cands[i];
      fprintf (dump_file, "%d (nop=%d, remat_regno=%d, reload_regno=%d):\n",
	       i, cand->nop, cand->regno, cand->reload_regno);
      print_inline_rtx (dump_file, cand->insn, 6);
      fprintf (dump_file, "\n");
    }
}

/* Dump all candidates and BB data.  */
static void
dump_candidates_and_remat_bb_data (void)
{
  basic_block bb;

  if (lra_dump_file == NULL)
    return;
  dump_cands (lra_dump_file);
  FOR_EACH_BB_FN (bb, cfun)
    {
      fprintf (lra_dump_file, "\nBB %d:\n", bb->index);
      /* Livein */
      fprintf (lra_dump_file, "  register live in:");
      dump_regset (df_get_live_in (bb), lra_dump_file);
      putc ('\n', lra_dump_file);
      /* Liveout */
      fprintf (lra_dump_file, "  register live out:");
      dump_regset (df_get_live_out (bb), lra_dump_file);
      putc ('\n', lra_dump_file);
      /* Changed/dead regs: */
      fprintf (lra_dump_file, "  changed regs:");
      dump_regset (&get_remat_bb_data (bb)->changed_regs, lra_dump_file);
      putc ('\n', lra_dump_file);
      fprintf (lra_dump_file, "  dead regs:");
      dump_regset (&get_remat_bb_data (bb)->dead_regs, lra_dump_file);
      putc ('\n', lra_dump_file);
      lra_dump_bitmap_with_title ("cands generated in BB",
				  &get_remat_bb_data (bb)->gen_cands, bb->index);
      lra_dump_bitmap_with_title ("livein cands in BB",
				  &get_remat_bb_data (bb)->livein_cands, bb->index);
      lra_dump_bitmap_with_title ("pavin cands in BB",
				  &get_remat_bb_data (bb)->pavin_cands, bb->index);
      lra_dump_bitmap_with_title ("pavout cands in BB",
				  &get_remat_bb_data (bb)->pavout_cands, bb->index);
      lra_dump_bitmap_with_title ("avin cands in BB",
				  &get_remat_bb_data (bb)->avin_cands, bb->index);
      lra_dump_bitmap_with_title ("avout cands in BB",
				  &get_remat_bb_data (bb)->avout_cands, bb->index);
    }
  fprintf (lra_dump_file, "subreg regs:");
  dump_regset (&subreg_regs, lra_dump_file);
  putc ('\n', lra_dump_file);
}

/* Free all BB data.  */
static void
finish_remat_bb_data (void)
{
  basic_block bb;

  FOR_EACH_BB_FN (bb, cfun)
    {
      bitmap_clear (&get_remat_bb_data (bb)->avout_cands);
      bitmap_clear (&get_remat_bb_data (bb)->avin_cands);
      bitmap_clear (&get_remat_bb_data (bb)->pavout_cands);
      bitmap_clear (&get_remat_bb_data (bb)->pavin_cands);
      bitmap_clear (&get_remat_bb_data (bb)->livein_cands);
      bitmap_clear (&get_remat_bb_data (bb)->gen_cands);
      bitmap_clear (&get_remat_bb_data (bb)->dead_regs);
      bitmap_clear (&get_remat_bb_data (bb)->changed_regs);
    }
  free (remat_bb_data);
}



/* Update changed_regs, dead_regs, subreg_regs of BB from INSN.  */
static void
set_bb_regs (basic_block bb, rtx_insn *insn)
{
  lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
  remat_bb_data_t bb_info = get_remat_bb_data (bb);
  struct lra_insn_reg *reg;

  for (reg = id->regs; reg != NULL; reg = reg->next)
    {
      unsigned regno = reg->regno;
      if (reg->type != OP_IN)
        bitmap_set_bit (&bb_info->changed_regs, regno);
      else if (find_regno_note (insn, REG_DEAD, regno) != NULL)
	bitmap_set_bit (&bb_info->dead_regs, regno);
      if (regno >= FIRST_PSEUDO_REGISTER && reg->subreg_p)
	bitmap_set_bit (&subreg_regs, regno);
    }
  if (CALL_P (insn))
    for (int i = 0; i < call_used_regs_arr_len; i++)
      bitmap_set_bit (&get_remat_bb_data (bb)->dead_regs,
		      call_used_regs_arr[i]);
}

/* Calculate changed_regs and dead_regs for each BB.  */
static void
calculate_local_reg_remat_bb_data (void)
{
  basic_block bb;
  rtx_insn *insn;

  FOR_EACH_BB_FN (bb, cfun)
    FOR_BB_INSNS (bb, insn)
      if (NONDEBUG_INSN_P (insn))
	set_bb_regs (bb, insn);
}



/* Return true if REG overlaps an input operand of INSN.  */
static bool
reg_overlap_for_remat_p (lra_insn_reg *reg, rtx_insn *insn)
{
  int iter;
  lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
  struct lra_static_insn_data *static_id = id->insn_static_data;
  unsigned regno = reg->regno;
  int nregs;

  if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0)
    regno = reg_renumber[regno];
  if (regno >= FIRST_PSEUDO_REGISTER)
    nregs = 1;
  else
    nregs = hard_regno_nregs (regno, reg->biggest_mode);

  struct lra_insn_reg *reg2;

  for (iter = 0; iter < 2; iter++)
    for (reg2 = (iter == 0 ? id->regs : static_id->hard_regs);
	 reg2 != NULL;
	 reg2 = reg2->next)
      {
	if (reg2->type != OP_IN)
	  continue;
	unsigned regno2 = reg2->regno;
	int nregs2;

	if (regno2 >= FIRST_PSEUDO_REGISTER && reg_renumber[regno2] >= 0)
	  regno2 = reg_renumber[regno2];
	if (regno2 >= FIRST_PSEUDO_REGISTER)
	  nregs2 = 1;
	else
	  nregs2 = hard_regno_nregs (regno2, reg->biggest_mode);

	if ((regno2 + nregs2 - 1 >= regno && regno2 < regno + nregs)
	    || (regno + nregs - 1 >= regno2 && regno < regno2 + nregs2))
	  return true;
      }
  return false;
}

/* Return true if a call used register is an input operand of INSN.  */
static bool
call_used_input_regno_present_p (rtx_insn *insn)
{
  int iter;
  lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
  struct lra_static_insn_data *static_id = id->insn_static_data;
  struct lra_insn_reg *reg;

  for (iter = 0; iter < 2; iter++)
    for (reg = (iter == 0 ? id->regs : static_id->hard_regs);
	 reg != NULL;
	 reg = reg->next)
      if (reg->type == OP_IN && reg->regno < FIRST_PSEUDO_REGISTER
	  && TEST_HARD_REG_BIT (call_used_reg_set, reg->regno))
	return true;
  return false;
}

/* Calculate livein_cands for each BB.  */
static void
calculate_livein_cands (void)
{
  basic_block bb;

  FOR_EACH_BB_FN (bb, cfun)
    {
      bitmap livein_regs = df_get_live_in (bb);
      bitmap livein_cands = &get_remat_bb_data (bb)->livein_cands;
      for (unsigned int i = 0; i < cands_num; i++)
	{
	  cand_t cand = all_cands[i];
	  lra_insn_recog_data_t id = lra_get_insn_recog_data (cand->insn);
	  struct lra_insn_reg *reg;

	  for (reg = id->regs; reg != NULL; reg = reg->next)
	    if (reg->type == OP_IN && ! bitmap_bit_p (livein_regs, reg->regno))
	      break;
	  if (reg == NULL)
	    bitmap_set_bit (livein_cands, i);
	}
    }
}

/* Calculate gen_cands for each BB.  */
static void
calculate_gen_cands (void)
{
  basic_block bb;
  bitmap gen_cands;
  rtx_insn *insn;

  FOR_EACH_BB_FN (bb, cfun)
    {
      gen_cands = &get_remat_bb_data (bb)->gen_cands;
      auto_bitmap gen_insns (&reg_obstack);
      FOR_BB_INSNS (bb, insn)
	if (INSN_P (insn))
	  {
	    lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
	    struct lra_static_insn_data *static_id = id->insn_static_data;
	    struct lra_insn_reg *reg;
	    unsigned int uid;
	    bitmap_iterator bi;
	    cand_t cand;
	    rtx set;
	    int iter;
	    int src_regno = -1, dst_regno = -1;

	    if ((set = single_set (insn)) != NULL
		&& REG_P (SET_SRC (set)) && REG_P (SET_DEST (set)))
	      {
		src_regno = REGNO (SET_SRC (set));
		dst_regno = REGNO (SET_DEST (set));
	      }

	    /* Update gen_cands:  */
	    bitmap_clear (&temp_bitmap);
	    for (iter = 0; iter < 2; iter++)
	      for (reg = (iter == 0 ? id->regs : static_id->hard_regs);
		   reg != NULL;
		   reg = reg->next)
		if (reg->type != OP_IN
		    || find_regno_note (insn, REG_DEAD, reg->regno) != NULL)
		  EXECUTE_IF_SET_IN_BITMAP (gen_insns, 0, uid, bi)
		    {
		      rtx_insn *insn2 = lra_insn_recog_data[uid]->insn;
		      
		      cand = insn_to_cand[INSN_UID (insn2)];
		      gcc_assert (cand != NULL);
		      /* Ignore the reload insn.  */
		      if (src_regno == cand->reload_regno
			  && dst_regno == cand->regno)
			continue;
		      if (cand->regno == reg->regno
			  || reg_overlap_for_remat_p (reg, insn2))
			{
			  bitmap_clear_bit (gen_cands, cand->index);
			  bitmap_set_bit (&temp_bitmap, uid);
			}
		    }
	    
	    if (CALL_P (insn))
	      EXECUTE_IF_SET_IN_BITMAP (gen_insns, 0, uid, bi)
		{
		  rtx_insn *insn2 = lra_insn_recog_data[uid]->insn;
		  
		  cand = insn_to_cand[INSN_UID (insn2)];
		  gcc_assert (cand != NULL);
		  if (call_used_input_regno_present_p (insn2))
		    {
		      bitmap_clear_bit (gen_cands, cand->index);
		      bitmap_set_bit (&temp_bitmap, uid);
		    }
		}
	    bitmap_and_compl_into (gen_insns, &temp_bitmap);

	    cand = insn_to_cand[INSN_UID (insn)];
	    if (cand != NULL)
	      {
		bitmap_set_bit (gen_cands, cand->index);
		bitmap_set_bit (gen_insns, INSN_UID (insn));
	      }
	  }
    }  
}



/* The common transfer function used by the DF equation solver to
   propagate (partial) availability info BB_IN to BB_OUT through block
   with BB_INDEX according to the following equation:

      bb.out =  ((bb.in & bb.livein) - bb.killed) OR  bb.gen
*/
static bool
cand_trans_fun (int bb_index, bitmap bb_in, bitmap bb_out)
{
  remat_bb_data_t bb_info;
  bitmap bb_livein, bb_changed_regs, bb_dead_regs;
  unsigned int cid;
  bitmap_iterator bi;

  bb_info = get_remat_bb_data_by_index (bb_index);
  bb_livein = &bb_info->livein_cands;
  bb_changed_regs = &bb_info->changed_regs;
  bb_dead_regs = &bb_info->dead_regs;
  /* Calculate killed avin cands -- cands whose regs are changed or
     becoming dead in the BB.  We calculate it here as we hope that
     repeated calculations are compensated by smaller size of BB_IN in
     comparison with all candidates number.  */
  bitmap_clear (&temp_bitmap);
  EXECUTE_IF_SET_IN_BITMAP (bb_in, 0, cid, bi)
    {
      cand_t cand = all_cands[cid];
      lra_insn_recog_data_t id = lra_get_insn_recog_data (cand->insn);
      struct lra_insn_reg *reg;

      if (! bitmap_bit_p (bb_livein, cid))
	{
	  bitmap_set_bit (&temp_bitmap, cid);
	  continue;
	}
      for (reg = id->regs; reg != NULL; reg = reg->next)
	/* Ignore all outputs which are not the regno for
	   rematerialization.  */
	if (reg->type == OP_OUT && reg->regno != cand->regno)
	  continue;
	else if (bitmap_bit_p (bb_changed_regs, reg->regno)
		 || bitmap_bit_p (bb_dead_regs, reg->regno))
	  {
	    bitmap_set_bit (&temp_bitmap, cid);
	    break;
	  }
      /* Check regno for rematerialization.  */
      if (bitmap_bit_p (bb_changed_regs, cand->regno)
	  || bitmap_bit_p (bb_dead_regs, cand->regno))
	bitmap_set_bit (&temp_bitmap, cid);
    }
  return bitmap_ior_and_compl (bb_out,
			       &bb_info->gen_cands, bb_in, &temp_bitmap);
}



/* The transfer function used by the DF equation solver to propagate
   partial candidate availability info through block with BB_INDEX
   according to the following equation:

     bb.pavout = ((bb.pavin & bb.livein) - bb.killed) OR bb.gen
*/
static bool
cand_pav_trans_fun (int bb_index)
{
  remat_bb_data_t bb_info;

  bb_info = get_remat_bb_data_by_index (bb_index);
  return cand_trans_fun (bb_index, &bb_info->pavin_cands,
			 &bb_info->pavout_cands);
}

/* The confluence function used by the DF equation solver to set up
   cand_pav info for a block BB without predecessor.  */
static void
cand_pav_con_fun_0 (basic_block bb)
{
  bitmap_clear (&get_remat_bb_data (bb)->pavin_cands);
}

/* The confluence function used by the DF equation solver to propagate
   partial candidate availability info from predecessor to successor
   on edge E (pred->bb) according to the following equation:

      bb.pavin_cands = 0 for entry block | OR (pavout_cands of predecessors)
 */
static bool
cand_pav_con_fun_n (edge e)
{
  basic_block pred = e->src;
  basic_block bb = e->dest;
  remat_bb_data_t bb_info;
  bitmap bb_pavin, pred_pavout;
  
  bb_info = get_remat_bb_data (bb);
  bb_pavin = &bb_info->pavin_cands;
  pred_pavout = &get_remat_bb_data (pred)->pavout_cands;
  return bitmap_ior_into (bb_pavin, pred_pavout);
}



/* The transfer function used by the DF equation solver to propagate
   candidate availability info through block with BB_INDEX according
   to the following equation:

      bb.avout =  ((bb.avin & bb.livein) - bb.killed) OR  bb.gen
*/
static bool
cand_av_trans_fun (int bb_index)
{
  remat_bb_data_t bb_info;

  bb_info = get_remat_bb_data_by_index (bb_index);
  return cand_trans_fun (bb_index, &bb_info->avin_cands,
			 &bb_info->avout_cands);
}

/* The confluence function used by the DF equation solver to set up
   cand_av info for a block BB without predecessor.  */
static void
cand_av_con_fun_0 (basic_block bb)
{
  bitmap_clear (&get_remat_bb_data (bb)->avin_cands);
}

/* The confluence function used by the DF equation solver to propagate
   cand_av info from predecessor to successor on edge E (pred->bb)
   according to the following equation:

      bb.avin_cands = 0 for entry block | AND (avout_cands of predecessors)
 */
static bool
cand_av_con_fun_n (edge e)
{
  basic_block pred = e->src;
  basic_block bb = e->dest;
  remat_bb_data_t bb_info;
  bitmap bb_avin, pred_avout;
  
  bb_info = get_remat_bb_data (bb);
  bb_avin = &bb_info->avin_cands;
  pred_avout = &get_remat_bb_data (pred)->avout_cands;
  return bitmap_and_into (bb_avin, pred_avout);
}

/* Calculate available candidates for each BB.  */
static void
calculate_global_remat_bb_data (void)
{
  basic_block bb;

  df_simple_dataflow
    (DF_FORWARD, NULL, cand_pav_con_fun_0, cand_pav_con_fun_n,
     cand_pav_trans_fun, &all_blocks,
     df_get_postorder (DF_FORWARD), df_get_n_blocks (DF_FORWARD));
  /* Initialize avin by pavin.  */
  FOR_EACH_BB_FN (bb, cfun)
    bitmap_copy (&get_remat_bb_data (bb)->avin_cands,
		 &get_remat_bb_data (bb)->pavin_cands);
  df_simple_dataflow
    (DF_FORWARD, NULL, cand_av_con_fun_0, cand_av_con_fun_n,
     cand_av_trans_fun, &all_blocks,
     df_get_postorder (DF_FORWARD), df_get_n_blocks (DF_FORWARD));
}



/* Setup sp offset attribute to SP_OFFSET for all INSNS.  */
static void
change_sp_offset (rtx_insn *insns, poly_int64 sp_offset)
{
  for (rtx_insn *insn = insns; insn != NULL; insn = NEXT_INSN (insn))
    eliminate_regs_in_insn (insn, false, false, sp_offset);
}

/* Return start hard register of REG (can be a hard or a pseudo reg)
   or -1 (if it is a spilled pseudo).  Return number of hard registers
   occupied by REG through parameter NREGS if the start hard reg is
   not negative.  */
static int
get_hard_regs (struct lra_insn_reg *reg, int &nregs)
{
  int regno = reg->regno;
  int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];

  if (hard_regno >= 0)
    nregs = hard_regno_nregs (hard_regno, reg->biggest_mode);
  return hard_regno;
}

/* Make copy of and register scratch pseudos in rematerialized insn
   REMAT_INSN.  */
static void
update_scratch_ops (rtx_insn *remat_insn)
{
  int hard_regno;
  lra_insn_recog_data_t id = lra_get_insn_recog_data (remat_insn);
  struct lra_static_insn_data *static_id = id->insn_static_data;
  for (int i = 0; i < static_id->n_operands; i++)
    {
      rtx *loc = id->operand_loc[i];
      if (! REG_P (*loc))
	continue;
      int regno = REGNO (*loc);
      if (! lra_former_scratch_p (regno))
	continue;
      hard_regno = reg_renumber[regno];
      *loc = lra_create_new_reg (GET_MODE (*loc), *loc,
				 lra_get_allocno_class (regno),
				 "scratch pseudo copy");
      if (hard_regno >= 0)
	{
	  reg_renumber[REGNO (*loc)] = hard_regno;
	  if (lra_dump_file)
	    fprintf (lra_dump_file, "	 Assigning the same %d to r%d\n",
		     REGNO (*loc), hard_regno);
	}
      lra_register_new_scratch_op (remat_insn, i, id->icode);
    }
  
}

/* Insert rematerialization insns using the data-flow data calculated
   earlier.  */
static bool
do_remat (void)
{
  unsigned regno;
  rtx_insn *insn;
  basic_block bb;
  bool changed_p = false;
  /* Living hard regs and hard registers of living pseudos.  */
  HARD_REG_SET live_hard_regs;
  bitmap_iterator bi;

  auto_bitmap avail_cands (&reg_obstack);
  auto_bitmap active_cands (&reg_obstack);
  FOR_EACH_BB_FN (bb, cfun)
    {
      CLEAR_HARD_REG_SET (live_hard_regs);
      EXECUTE_IF_SET_IN_BITMAP (df_get_live_in (bb), 0, regno, bi)
	{
	  int hard_regno = regno < FIRST_PSEUDO_REGISTER
			   ? regno
			   : reg_renumber[regno];
	  if (hard_regno >= 0)
	    SET_HARD_REG_BIT (live_hard_regs, hard_regno);
	}
      bitmap_and (avail_cands, &get_remat_bb_data (bb)->avin_cands,
		  &get_remat_bb_data (bb)->livein_cands);
      /* Activating insns are always in the same block as their corresponding
	 remat insn, so at the start of a block the two bitsets are equal.  */
      bitmap_copy (active_cands, avail_cands);
      FOR_BB_INSNS (bb, insn)
	{
	  if (!NONDEBUG_INSN_P (insn))
	    continue;

	  lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
	  struct lra_static_insn_data *static_id = id->insn_static_data;
	  struct lra_insn_reg *reg;
	  cand_t cand;
	  unsigned int cid;
	  bitmap_iterator bi;
	  rtx set;
	  int iter;
	  int src_regno = -1, dst_regno = -1;

	  if ((set = single_set (insn)) != NULL
	      && REG_P (SET_SRC (set)) && REG_P (SET_DEST (set)))
	    {
	      src_regno = REGNO (SET_SRC (set));
	      dst_regno = REGNO (SET_DEST (set));
	    }

	  cand = NULL;
	  /* Check possibility of rematerialization (hard reg or
	     unpsilled pseudo <- spilled pseudo): */
	  if (dst_regno >= 0 && src_regno >= FIRST_PSEUDO_REGISTER
	      && reg_renumber[src_regno] < 0
	      && (dst_regno < FIRST_PSEUDO_REGISTER
		  || reg_renumber[dst_regno] >= 0))
	    {
	      for (cand = regno_cands[src_regno];
		   cand != NULL;
		   cand = cand->next_regno_cand)
		if (bitmap_bit_p (avail_cands, cand->index)
		    && bitmap_bit_p (active_cands, cand->index))
		  break;
	    }
	  int i, hard_regno, nregs;
	  int dst_hard_regno, dst_nregs;
	  rtx_insn *remat_insn = NULL;
	  poly_int64 cand_sp_offset = 0;
	  if (cand != NULL)
	    {
	      lra_insn_recog_data_t cand_id
		= lra_get_insn_recog_data (cand->insn);
	      struct lra_static_insn_data *static_cand_id
		= cand_id->insn_static_data;
	      rtx saved_op = *cand_id->operand_loc[cand->nop];

	      /* Check clobbers do not kill something living.  */
	      gcc_assert (REG_P (saved_op));
	      int ignore_regno = REGNO (saved_op); 

	      dst_hard_regno = dst_regno < FIRST_PSEUDO_REGISTER
		? dst_regno : reg_renumber[dst_regno];
	      gcc_assert (dst_hard_regno >= 0);
	      machine_mode mode = GET_MODE (SET_DEST (set));
	      dst_nregs = hard_regno_nregs (dst_hard_regno, mode);

	      for (reg = cand_id->regs; reg != NULL; reg = reg->next)
		if (reg->type != OP_IN && reg->regno != ignore_regno)
		  {
		    hard_regno = get_hard_regs (reg, nregs);
		    gcc_assert (hard_regno >= 0);
		    for (i = 0; i < nregs; i++)
		      if (TEST_HARD_REG_BIT (live_hard_regs, hard_regno + i))
			break;
		    if (i < nregs)
		      break;
		    /* Ensure the clobber also doesn't overlap dst_regno.  */
		    if (hard_regno + nregs > dst_hard_regno
			&& hard_regno < dst_hard_regno + dst_nregs)
		      break;
		  }

	      if (reg == NULL)
		{
		  for (reg = static_cand_id->hard_regs;
		       reg != NULL;
		       reg = reg->next)
		    if (reg->type != OP_IN)
		      {
			if (TEST_HARD_REG_BIT (live_hard_regs, reg->regno))
			  break;
			if (reg->regno >= dst_hard_regno
			    && reg->regno < dst_hard_regno + dst_nregs)
			  break;
		      }
		}

	      if (reg == NULL)
		{
		  *cand_id->operand_loc[cand->nop] = SET_DEST (set);
		  lra_update_insn_regno_info (cand->insn);
		  bool ok_p = lra_constrain_insn (cand->insn);
		  if (ok_p)
		    {
		      rtx remat_pat = copy_insn (PATTERN (cand->insn));
		      
		      start_sequence ();
		      emit_insn (remat_pat);
		      remat_insn = get_insns ();
		      end_sequence ();
		      if (recog_memoized (remat_insn) < 0)
			remat_insn = NULL;
		      cand_sp_offset = cand_id->sp_offset;
		    }
		  *cand_id->operand_loc[cand->nop] = saved_op;
		  lra_update_insn_regno_info (cand->insn);
		}
	    }

	  bitmap_clear (&temp_bitmap);
	  /* Update avail_cands (see analogous code for
	     calculate_gen_cands).  */
	  for (iter = 0; iter < 2; iter++)
	    for (reg = (iter == 0 ? id->regs : static_id->hard_regs);
		 reg != NULL;
		 reg = reg->next)
	      if (reg->type != OP_IN
		  || find_regno_note (insn, REG_DEAD, reg->regno) != NULL)
		EXECUTE_IF_SET_IN_BITMAP (avail_cands, 0, cid, bi)
		  {
		    cand = all_cands[cid];
		    
		    /* Ignore the reload insn.  */
		    if (src_regno == cand->reload_regno
			&& dst_regno == cand->regno)
		      continue;
		    if (cand->regno == reg->regno
			|| reg_overlap_for_remat_p (reg, cand->insn))
		      bitmap_set_bit (&temp_bitmap, cand->index);
		  }

	  if (CALL_P (insn))
	    EXECUTE_IF_SET_IN_BITMAP (avail_cands, 0, cid, bi)
	      {
		cand = all_cands[cid];
		
		if (call_used_input_regno_present_p (cand->insn))
		  bitmap_set_bit (&temp_bitmap, cand->index);
	      }

	  bitmap_and_compl_into (avail_cands, &temp_bitmap);

	  /* Now see whether a candidate is made active or available
	     by this insn.  */
	  cand = insn_to_cand_activation[INSN_UID (insn)];
	  if (cand)
	    bitmap_set_bit (active_cands, cand->index);

	  cand = insn_to_cand[INSN_UID (insn)];
	  if (cand != NULL)
	    {
	      bitmap_set_bit (avail_cands, cand->index);
	      if (cand->reload_regno == -1)
		bitmap_set_bit (active_cands, cand->index);
	      else
		bitmap_clear_bit (active_cands, cand->index);
	    }

	  if (remat_insn != NULL)
	    {
	      poly_int64 sp_offset_change = cand_sp_offset - id->sp_offset;
	      if (maybe_ne (sp_offset_change, 0))
		change_sp_offset (remat_insn, sp_offset_change);
	      update_scratch_ops (remat_insn);
	      lra_process_new_insns (insn, remat_insn, NULL,
				     "Inserting rematerialization insn");
	      lra_set_insn_deleted (insn);
	      changed_p = true;
	      continue;
	    }

	  /* Update live hard regs: */
	  for (reg = id->regs; reg != NULL; reg = reg->next)
	    if (reg->type == OP_IN
		&& find_regno_note (insn, REG_DEAD, reg->regno) != NULL)
	      {
		if ((hard_regno = get_hard_regs (reg, nregs)) < 0)
		  continue;
		for (i = 0; i < nregs; i++)
		  CLEAR_HARD_REG_BIT (live_hard_regs, hard_regno + i);
	      }
	  /* Process also hard regs (e.g. CC register) which are part
	     of insn definition.  */
	  for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
	    if (reg->type == OP_IN
		&& find_regno_note (insn, REG_DEAD, reg->regno) != NULL)
	      CLEAR_HARD_REG_BIT (live_hard_regs, reg->regno);
	  /* Inputs have been processed, now process outputs.  */
	  for (reg = id->regs; reg != NULL; reg = reg->next)
	    if (reg->type != OP_IN
		&& find_regno_note (insn, REG_UNUSED, reg->regno) == NULL)
	      {
		if ((hard_regno = get_hard_regs (reg, nregs)) < 0)
		  continue;
		for (i = 0; i < nregs; i++)
		  SET_HARD_REG_BIT (live_hard_regs, hard_regno + i);
	      }
	  for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
	    if (reg->type != OP_IN
		&& find_regno_note (insn, REG_UNUSED, reg->regno) == NULL)
	      SET_HARD_REG_BIT (live_hard_regs, reg->regno);
	}
    }
  return changed_p;
}



/* Current number of rematerialization iteration.  */
int lra_rematerialization_iter;

/* Entry point of the rematerialization sub-pass.  Return true if we
   did any rematerialization.  */
bool
lra_remat (void)
{
  basic_block bb;
  bool result;
  int max_regno = max_reg_num ();

  if (! flag_lra_remat)
    return false;
  lra_rematerialization_iter++;
  if (lra_rematerialization_iter > LRA_MAX_REMATERIALIZATION_PASSES)
    return false;
  if (lra_dump_file != NULL)
    fprintf (lra_dump_file,
	     "\n******** Rematerialization #%d: ********\n\n",
	     lra_rematerialization_iter);
  timevar_push (TV_LRA_REMAT);
  insn_to_cand = XCNEWVEC (cand_t, get_max_uid ());
  insn_to_cand_activation = XCNEWVEC (cand_t, get_max_uid ());
  regno_cands = XCNEWVEC (cand_t, max_regno);
  all_cands.create (8000);
  call_used_regs_arr_len = 0;
  for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (call_used_regs[i])
      call_used_regs_arr[call_used_regs_arr_len++] = i;
  initiate_cand_table ();
  create_remat_bb_data ();
  bitmap_initialize (&temp_bitmap, &reg_obstack);
  bitmap_initialize (&subreg_regs, &reg_obstack);
  calculate_local_reg_remat_bb_data ();
  create_cands ();
  calculate_livein_cands ();
  calculate_gen_cands ();
  bitmap_initialize (&all_blocks, &reg_obstack);
  FOR_ALL_BB_FN (bb, cfun)
    bitmap_set_bit (&all_blocks, bb->index);
  calculate_global_remat_bb_data ();
  dump_candidates_and_remat_bb_data ();
  result = do_remat ();
  all_cands.release ();
  bitmap_clear (&temp_bitmap);
  bitmap_clear (&subreg_regs);
  finish_remat_bb_data ();
  finish_cand_table ();
  bitmap_clear (&all_blocks);
  free (regno_cands);
  free (insn_to_cand);
  free (insn_to_cand_activation);
  timevar_pop (TV_LRA_REMAT);
  return result;
}