aboutsummaryrefslogtreecommitdiff
path: root/gcc/lower-subreg.cc
blob: 7c9cc3c772d3669d923a5ebdd17714aa88a6a313 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
/* Decompose multiword subregs.
   Copyright (C) 2007-2023 Free Software Foundation, Inc.
   Contributed by Richard Henderson <rth@redhat.com>
		  Ian Lance Taylor <iant@google.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "expmed.h"
#include "insn-config.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cfgrtl.h"
#include "cfgbuild.h"
#include "dce.h"
#include "expr.h"
#include "explow.h"
#include "tree-pass.h"
#include "lower-subreg.h"
#include "rtl-iter.h"
#include "target.h"


/* Decompose multi-word pseudo-registers into individual
   pseudo-registers when possible and profitable.  This is possible
   when all the uses of a multi-word register are via SUBREG, or are
   copies of the register to another location.  Breaking apart the
   register permits more CSE and permits better register allocation.
   This is profitable if the machine does not have move instructions
   to do this.

   This pass only splits moves with modes that are wider than
   word_mode and ASHIFTs, LSHIFTRTs, ASHIFTRTs and ZERO_EXTENDs with
   integer modes that are twice the width of word_mode.  The latter
   could be generalized if there was a need to do this, but the trend in
   architectures is to not need this.

   There are two useful preprocessor defines for use by maintainers:

   #define LOG_COSTS 1

   if you wish to see the actual cost estimates that are being used
   for each mode wider than word mode and the cost estimates for zero
   extension and the shifts.   This can be useful when port maintainers
   are tuning insn rtx costs.

   #define FORCE_LOWERING 1

   if you wish to test the pass with all the transformation forced on.
   This can be useful for finding bugs in the transformations.  */

#define LOG_COSTS 0
#define FORCE_LOWERING 0

/* Bit N in this bitmap is set if regno N is used in a context in
   which we can decompose it.  */
static bitmap decomposable_context;

/* Bit N in this bitmap is set if regno N is used in a context in
   which it cannot be decomposed.  */
static bitmap non_decomposable_context;

/* Bit N in this bitmap is set if regno N is used in a subreg
   which changes the mode but not the size.  This typically happens
   when the register accessed as a floating-point value; we want to
   avoid generating accesses to its subwords in integer modes.  */
static bitmap subreg_context;

/* Bit N in the bitmap in element M of this array is set if there is a
   copy from reg M to reg N.  */
static vec<bitmap> reg_copy_graph;

struct target_lower_subreg default_target_lower_subreg;
#if SWITCHABLE_TARGET
struct target_lower_subreg *this_target_lower_subreg
  = &default_target_lower_subreg;
#endif

#define twice_word_mode \
  this_target_lower_subreg->x_twice_word_mode
#define choices \
  this_target_lower_subreg->x_choices

/* Return true if MODE is a mode we know how to lower.  When returning true,
   store its byte size in *BYTES and its word size in *WORDS.  */

static inline bool
interesting_mode_p (machine_mode mode, unsigned int *bytes,
		    unsigned int *words)
{
  if (!GET_MODE_SIZE (mode).is_constant (bytes))
    return false;
  *words = CEIL (*bytes, UNITS_PER_WORD);
  return true;
}

/* RTXes used while computing costs.  */
struct cost_rtxes {
  /* Source and target registers.  */
  rtx source;
  rtx target;

  /* A twice_word_mode ZERO_EXTEND of SOURCE.  */
  rtx zext;

  /* A shift of SOURCE.  */
  rtx shift;

  /* A SET of TARGET.  */
  rtx set;
};

/* Return the cost of a CODE shift in mode MODE by OP1 bits, using the
   rtxes in RTXES.  SPEED_P selects between the speed and size cost.  */

static int
shift_cost (bool speed_p, struct cost_rtxes *rtxes, enum rtx_code code,
	    machine_mode mode, int op1)
{
  PUT_CODE (rtxes->shift, code);
  PUT_MODE (rtxes->shift, mode);
  PUT_MODE (rtxes->source, mode);
  XEXP (rtxes->shift, 1) = gen_int_shift_amount (mode, op1);
  return set_src_cost (rtxes->shift, mode, speed_p);
}

/* For each X in the range [0, BITS_PER_WORD), set SPLITTING[X]
   to true if it is profitable to split a double-word CODE shift
   of X + BITS_PER_WORD bits.  SPEED_P says whether we are testing
   for speed or size profitability.

   Use the rtxes in RTXES to calculate costs.  WORD_MOVE_ZERO_COST is
   the cost of moving zero into a word-mode register.  WORD_MOVE_COST
   is the cost of moving between word registers.  */

static void
compute_splitting_shift (bool speed_p, struct cost_rtxes *rtxes,
			 bool *splitting, enum rtx_code code,
			 int word_move_zero_cost, int word_move_cost)
{
  int wide_cost, narrow_cost, upper_cost, i;

  for (i = 0; i < BITS_PER_WORD; i++)
    {
      wide_cost = shift_cost (speed_p, rtxes, code, twice_word_mode,
			      i + BITS_PER_WORD);
      if (i == 0)
	narrow_cost = word_move_cost;
      else
	narrow_cost = shift_cost (speed_p, rtxes, code, word_mode, i);

      if (code != ASHIFTRT)
	upper_cost = word_move_zero_cost;
      else if (i == BITS_PER_WORD - 1)
	upper_cost = word_move_cost;
      else
	upper_cost = shift_cost (speed_p, rtxes, code, word_mode,
				 BITS_PER_WORD - 1);

      if (LOG_COSTS)
	fprintf (stderr, "%s %s by %d: original cost %d, split cost %d + %d\n",
		 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code),
		 i + BITS_PER_WORD, wide_cost, narrow_cost, upper_cost);

      if (FORCE_LOWERING || wide_cost >= narrow_cost + upper_cost)
	splitting[i] = true;
    }
}

/* Compute what we should do when optimizing for speed or size; SPEED_P
   selects which.  Use RTXES for computing costs.  */

static void
compute_costs (bool speed_p, struct cost_rtxes *rtxes)
{
  unsigned int i;
  int word_move_zero_cost, word_move_cost;

  PUT_MODE (rtxes->target, word_mode);
  SET_SRC (rtxes->set) = CONST0_RTX (word_mode);
  word_move_zero_cost = set_rtx_cost (rtxes->set, speed_p);

  SET_SRC (rtxes->set) = rtxes->source;
  word_move_cost = set_rtx_cost (rtxes->set, speed_p);

  if (LOG_COSTS)
    fprintf (stderr, "%s move: from zero cost %d, from reg cost %d\n",
	     GET_MODE_NAME (word_mode), word_move_zero_cost, word_move_cost);

  for (i = 0; i < MAX_MACHINE_MODE; i++)
    {
      machine_mode mode = (machine_mode) i;
      unsigned int size, factor;
      if (interesting_mode_p (mode, &size, &factor) && factor > 1)
	{
	  unsigned int mode_move_cost;

	  PUT_MODE (rtxes->target, mode);
	  PUT_MODE (rtxes->source, mode);
	  mode_move_cost = set_rtx_cost (rtxes->set, speed_p);

	  if (LOG_COSTS)
	    fprintf (stderr, "%s move: original cost %d, split cost %d * %d\n",
		     GET_MODE_NAME (mode), mode_move_cost,
		     word_move_cost, factor);

	  if (FORCE_LOWERING || mode_move_cost >= word_move_cost * factor)
	    {
	      choices[speed_p].move_modes_to_split[i] = true;
	      choices[speed_p].something_to_do = true;
	    }
	}
    }

  /* For the moves and shifts, the only case that is checked is one
     where the mode of the target is an integer mode twice the width
     of the word_mode.

     If it is not profitable to split a double word move then do not
     even consider the shifts or the zero extension.  */
  if (choices[speed_p].move_modes_to_split[(int) twice_word_mode])
    {
      int zext_cost;

      /* The only case here to check to see if moving the upper part with a
	 zero is cheaper than doing the zext itself.  */
      PUT_MODE (rtxes->source, word_mode);
      zext_cost = set_src_cost (rtxes->zext, twice_word_mode, speed_p);

      if (LOG_COSTS)
	fprintf (stderr, "%s %s: original cost %d, split cost %d + %d\n",
		 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (ZERO_EXTEND),
		 zext_cost, word_move_cost, word_move_zero_cost);

      if (FORCE_LOWERING || zext_cost >= word_move_cost + word_move_zero_cost)
	choices[speed_p].splitting_zext = true;

      compute_splitting_shift (speed_p, rtxes,
			       choices[speed_p].splitting_ashift, ASHIFT,
			       word_move_zero_cost, word_move_cost);
      compute_splitting_shift (speed_p, rtxes,
			       choices[speed_p].splitting_lshiftrt, LSHIFTRT,
			       word_move_zero_cost, word_move_cost);
      compute_splitting_shift (speed_p, rtxes,
			       choices[speed_p].splitting_ashiftrt, ASHIFTRT,
			       word_move_zero_cost, word_move_cost);
    }
}

/* Do one-per-target initialisation.  This involves determining
   which operations on the machine are profitable.  If none are found,
   then the pass just returns when called.  */

void
init_lower_subreg (void)
{
  struct cost_rtxes rtxes;

  memset (this_target_lower_subreg, 0, sizeof (*this_target_lower_subreg));

  twice_word_mode = GET_MODE_2XWIDER_MODE (word_mode).require ();

  rtxes.target = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
  rtxes.source = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
  rtxes.set = gen_rtx_SET (rtxes.target, rtxes.source);
  rtxes.zext = gen_rtx_ZERO_EXTEND (twice_word_mode, rtxes.source);
  rtxes.shift = gen_rtx_ASHIFT (twice_word_mode, rtxes.source, const0_rtx);

  if (LOG_COSTS)
    fprintf (stderr, "\nSize costs\n==========\n\n");
  compute_costs (false, &rtxes);

  if (LOG_COSTS)
    fprintf (stderr, "\nSpeed costs\n===========\n\n");
  compute_costs (true, &rtxes);
}

static bool
simple_move_operand (rtx x)
{
  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  if (!OBJECT_P (x))
    return false;

  if (GET_CODE (x) == LABEL_REF
      || GET_CODE (x) == SYMBOL_REF
      || GET_CODE (x) == HIGH
      || GET_CODE (x) == CONST)
    return false;

  if (MEM_P (x)
      && (MEM_VOLATILE_P (x)
	  || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x))))
    return false;

  return true;
}

/* If X is an operator that can be treated as a simple move that we
   can split, then return the operand that is operated on.  */

static rtx
operand_for_swap_move_operator (rtx x)
{
  /* A word sized rotate of a register pair is equivalent to swapping
     the registers in the register pair.  */
  if (GET_CODE (x) == ROTATE
      && GET_MODE (x) == twice_word_mode
      && simple_move_operand (XEXP (x, 0))
      && CONST_INT_P (XEXP (x, 1))
      && INTVAL (XEXP (x, 1)) == BITS_PER_WORD)
    return XEXP (x, 0);

  return NULL_RTX;
}

/* If INSN is a single set between two objects that we want to split,
   return the single set.  SPEED_P says whether we are optimizing
   INSN for speed or size.

   INSN should have been passed to recog and extract_insn before this
   is called.  */

static rtx
simple_move (rtx_insn *insn, bool speed_p)
{
  rtx x, op;
  rtx set;
  machine_mode mode;

  if (recog_data.n_operands != 2)
    return NULL_RTX;

  set = single_set (insn);
  if (!set)
    return NULL_RTX;

  x = SET_DEST (set);
  if (x != recog_data.operand[0] && x != recog_data.operand[1])
    return NULL_RTX;
  if (!simple_move_operand (x))
    return NULL_RTX;

  x = SET_SRC (set);
  if ((op = operand_for_swap_move_operator (x)) != NULL_RTX)
    x = op;

  if (x != recog_data.operand[0] && x != recog_data.operand[1])
    return NULL_RTX;
  /* For the src we can handle ASM_OPERANDS, and it is beneficial for
     things like x86 rdtsc which returns a DImode value.  */
  if (GET_CODE (x) != ASM_OPERANDS
      && !simple_move_operand (x))
    return NULL_RTX;

  /* We try to decompose in integer modes, to avoid generating
     inefficient code copying between integer and floating point
     registers.  That means that we can't decompose if this is a
     non-integer mode for which there is no integer mode of the same
     size.  */
  mode = GET_MODE (SET_DEST (set));
  scalar_int_mode int_mode;
  if (!SCALAR_INT_MODE_P (mode)
      && (!int_mode_for_size (GET_MODE_BITSIZE (mode), 0).exists (&int_mode)
	  || !targetm.modes_tieable_p (mode, int_mode)))
    return NULL_RTX;

  /* Reject PARTIAL_INT modes.  They are used for processor specific
     purposes and it's probably best not to tamper with them.  */
  if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
    return NULL_RTX;

  if (!choices[speed_p].move_modes_to_split[(int) mode])
    return NULL_RTX;

  return set;
}

/* If SET is a copy from one multi-word pseudo-register to another,
   record that in reg_copy_graph.  Return whether it is such a
   copy.  */

static bool
find_pseudo_copy (rtx set)
{
  rtx dest = SET_DEST (set);
  rtx src = SET_SRC (set);
  rtx op;
  unsigned int rd, rs;
  bitmap b;

  if ((op = operand_for_swap_move_operator (src)) != NULL_RTX)
    src = op;

  if (!REG_P (dest) || !REG_P (src))
    return false;

  rd = REGNO (dest);
  rs = REGNO (src);
  if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
    return false;

  b = reg_copy_graph[rs];
  if (b == NULL)
    {
      b = BITMAP_ALLOC (NULL);
      reg_copy_graph[rs] = b;
    }

  bitmap_set_bit (b, rd);

  return true;
}

/* Look through the registers in DECOMPOSABLE_CONTEXT.  For each case
   where they are copied to another register, add the register to
   which they are copied to DECOMPOSABLE_CONTEXT.  Use
   NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
   copies of registers which are in NON_DECOMPOSABLE_CONTEXT.  */

static void
propagate_pseudo_copies (void)
{
  auto_bitmap queue, propagate;

  bitmap_copy (queue, decomposable_context);
  do
    {
      bitmap_iterator iter;
      unsigned int i;

      bitmap_clear (propagate);

      EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
	{
	  bitmap b = reg_copy_graph[i];
	  if (b)
	    bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
	}

      bitmap_and_compl (queue, propagate, decomposable_context);
      bitmap_ior_into (decomposable_context, propagate);
    }
  while (!bitmap_empty_p (queue));
}

/* A pointer to one of these values is passed to
   find_decomposable_subregs.  */

enum classify_move_insn
{
  /* Not a simple move from one location to another.  */
  NOT_SIMPLE_MOVE,
  /* A simple move we want to decompose.  */
  DECOMPOSABLE_SIMPLE_MOVE,
  /* Any other simple move.  */
  SIMPLE_MOVE
};

/* If we find a SUBREG in *LOC which we could use to decompose a
   pseudo-register, set a bit in DECOMPOSABLE_CONTEXT.  If we find an
   unadorned register which is not a simple pseudo-register copy,
   DATA will point at the type of move, and we set a bit in
   DECOMPOSABLE_CONTEXT or NON_DECOMPOSABLE_CONTEXT as appropriate.  */

static void
find_decomposable_subregs (rtx *loc, enum classify_move_insn *pcmi)
{
  subrtx_var_iterator::array_type array;
  FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
    {
      rtx x = *iter;
      if (GET_CODE (x) == SUBREG)
	{
	  rtx inner = SUBREG_REG (x);
	  unsigned int regno, outer_size, inner_size, outer_words, inner_words;

	  if (!REG_P (inner))
	    continue;

	  regno = REGNO (inner);
	  if (HARD_REGISTER_NUM_P (regno))
	    {
	      iter.skip_subrtxes ();
	      continue;
	    }

	  if (!interesting_mode_p (GET_MODE (x), &outer_size, &outer_words)
	      || !interesting_mode_p (GET_MODE (inner), &inner_size,
				      &inner_words))
	    continue;

	  /* We only try to decompose single word subregs of multi-word
	     registers.  When we find one, we return -1 to avoid iterating
	     over the inner register.

	     ??? This doesn't allow, e.g., DImode subregs of TImode values
	     on 32-bit targets.  We would need to record the way the
	     pseudo-register was used, and only decompose if all the uses
	     were the same number and size of pieces.  Hopefully this
	     doesn't happen much.  */

	  if (outer_words == 1
	      && inner_words > 1
	      /* Don't allow to decompose floating point subregs of
		 multi-word pseudos if the floating point mode does
		 not have word size, because otherwise we'd generate
		 a subreg with that floating mode from a different
		 sized integral pseudo which is not allowed by
		 validate_subreg.  */
	      && (!FLOAT_MODE_P (GET_MODE (x))
		  || outer_size == UNITS_PER_WORD))
	    {
	      bitmap_set_bit (decomposable_context, regno);
	      iter.skip_subrtxes ();
	      continue;
	    }

	  /* If this is a cast from one mode to another, where the modes
	     have the same size, and they are not tieable, then mark this
	     register as non-decomposable.  If we decompose it we are
	     likely to mess up whatever the backend is trying to do.  */
	  if (outer_words > 1
	      && outer_size == inner_size
	      && !targetm.modes_tieable_p (GET_MODE (x), GET_MODE (inner)))
	    {
	      bitmap_set_bit (non_decomposable_context, regno);
	      bitmap_set_bit (subreg_context, regno);
	      iter.skip_subrtxes ();
	      continue;
	    }
	}
      else if (REG_P (x))
	{
	  unsigned int regno, size, words;

	  /* We will see an outer SUBREG before we see the inner REG, so
	     when we see a plain REG here it means a direct reference to
	     the register.

	     If this is not a simple copy from one location to another,
	     then we cannot decompose this register.  If this is a simple
	     copy we want to decompose, and the mode is right,
	     then we mark the register as decomposable.
	     Otherwise we don't say anything about this register --
	     it could be decomposed, but whether that would be
	     profitable depends upon how it is used elsewhere.

	     We only set bits in the bitmap for multi-word
	     pseudo-registers, since those are the only ones we care about
	     and it keeps the size of the bitmaps down.  */

	  regno = REGNO (x);
	  if (!HARD_REGISTER_NUM_P (regno)
	      && interesting_mode_p (GET_MODE (x), &size, &words)
	      && words > 1)
	    {
	      switch (*pcmi)
		{
		case NOT_SIMPLE_MOVE:
		  bitmap_set_bit (non_decomposable_context, regno);
		  break;
		case DECOMPOSABLE_SIMPLE_MOVE:
		  if (targetm.modes_tieable_p (GET_MODE (x), word_mode))
		    bitmap_set_bit (decomposable_context, regno);
		  break;
		case SIMPLE_MOVE:
		  break;
		default:
		  gcc_unreachable ();
		}
	    }
	}
      else if (MEM_P (x))
	{
	  enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;

	  /* Any registers used in a MEM do not participate in a
	     SIMPLE_MOVE or DECOMPOSABLE_SIMPLE_MOVE.  Do our own recursion
	     here, and return -1 to block the parent's recursion.  */
	  find_decomposable_subregs (&XEXP (x, 0), &cmi_mem);
	  iter.skip_subrtxes ();
	}
    }
}

/* Decompose REGNO into word-sized components.  We smash the REG node
   in place.  This ensures that (1) something goes wrong quickly if we
   fail to make some replacement, and (2) the debug information inside
   the symbol table is automatically kept up to date.  */

static void
decompose_register (unsigned int regno)
{
  rtx reg;
  unsigned int size, words, i;
  rtvec v;

  reg = regno_reg_rtx[regno];

  regno_reg_rtx[regno] = NULL_RTX;

  if (!interesting_mode_p (GET_MODE (reg), &size, &words))
    gcc_unreachable ();

  v = rtvec_alloc (words);
  for (i = 0; i < words; ++i)
    RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);

  PUT_CODE (reg, CONCATN);
  XVEC (reg, 0) = v;

  if (dump_file)
    {
      fprintf (dump_file, "; Splitting reg %u ->", regno);
      for (i = 0; i < words; ++i)
	fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
      fputc ('\n', dump_file);
    }
}

/* Get a SUBREG of a CONCATN.  */

static rtx
simplify_subreg_concatn (machine_mode outermode, rtx op, poly_uint64 orig_byte)
{
  unsigned int outer_size, outer_words, inner_size, inner_words;
  machine_mode innermode, partmode;
  rtx part;
  unsigned int final_offset;
  unsigned int byte;

  innermode = GET_MODE (op);
  if (!interesting_mode_p (outermode, &outer_size, &outer_words)
      || !interesting_mode_p (innermode, &inner_size, &inner_words))
    gcc_unreachable ();

  /* Must be constant if interesting_mode_p passes.  */
  byte = orig_byte.to_constant ();
  gcc_assert (GET_CODE (op) == CONCATN);
  gcc_assert (byte % outer_size == 0);

  gcc_assert (byte < inner_size);
  if (outer_size > inner_size)
    return NULL_RTX;

  inner_size /= XVECLEN (op, 0);
  part = XVECEXP (op, 0, byte / inner_size);
  partmode = GET_MODE (part);

  final_offset = byte % inner_size;
  if (final_offset + outer_size > inner_size)
    return NULL_RTX;

  /* VECTOR_CSTs in debug expressions are expanded into CONCATN instead of
     regular CONST_VECTORs.  They have vector or integer modes, depending
     on the capabilities of the target.  Cope with them.  */
  if (partmode == VOIDmode && VECTOR_MODE_P (innermode))
    partmode = GET_MODE_INNER (innermode);
  else if (partmode == VOIDmode)
    partmode = mode_for_size (inner_size * BITS_PER_UNIT,
			      GET_MODE_CLASS (innermode), 0).require ();

  return simplify_gen_subreg (outermode, part, partmode, final_offset);
}

/* Wrapper around simplify_gen_subreg which handles CONCATN.  */

static rtx
simplify_gen_subreg_concatn (machine_mode outermode, rtx op,
			     machine_mode innermode, unsigned int byte)
{
  rtx ret;

  /* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
     If OP is a SUBREG of a CONCATN, then it must be a simple mode
     change with the same size and offset 0, or it must extract a
     part.  We shouldn't see anything else here.  */
  if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
    {
      rtx op2;

      if (known_eq (GET_MODE_SIZE (GET_MODE (op)),
		    GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
	  && known_eq (SUBREG_BYTE (op), 0))
	return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
					    GET_MODE (SUBREG_REG (op)), byte);

      op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
				     SUBREG_BYTE (op));
      if (op2 == NULL_RTX)
	{
	  /* We don't handle paradoxical subregs here.  */
	  gcc_assert (!paradoxical_subreg_p (outermode, GET_MODE (op)));
	  gcc_assert (!paradoxical_subreg_p (op));
	  op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
					 byte + SUBREG_BYTE (op));
	  gcc_assert (op2 != NULL_RTX);
	  return op2;
	}

      op = op2;
      gcc_assert (op != NULL_RTX);
      gcc_assert (innermode == GET_MODE (op));
    }

  if (GET_CODE (op) == CONCATN)
    return simplify_subreg_concatn (outermode, op, byte);

  ret = simplify_gen_subreg (outermode, op, innermode, byte);

  /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
     resolve_simple_move will ask for the high part of the paradoxical
     subreg, which does not have a value.  Just return a zero.  */
  if (ret == NULL_RTX
      && paradoxical_subreg_p (op))
    return CONST0_RTX (outermode);

  gcc_assert (ret != NULL_RTX);
  return ret;
}

/* Return whether we should resolve X into the registers into which it
   was decomposed.  */

static bool
resolve_reg_p (rtx x)
{
  return GET_CODE (x) == CONCATN;
}

/* Return whether X is a SUBREG of a register which we need to
   resolve.  */

static bool
resolve_subreg_p (rtx x)
{
  if (GET_CODE (x) != SUBREG)
    return false;
  return resolve_reg_p (SUBREG_REG (x));
}

/* Look for SUBREGs in *LOC which need to be decomposed.  */

static bool
resolve_subreg_use (rtx *loc, rtx insn)
{
  subrtx_ptr_iterator::array_type array;
  FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
    {
      rtx *loc = *iter;
      rtx x = *loc;
      if (resolve_subreg_p (x))
	{
	  x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
				       SUBREG_BYTE (x));

	  /* It is possible for a note to contain a reference which we can
	     decompose.  In this case, return 1 to the caller to indicate
	     that the note must be removed.  */
	  if (!x)
	    {
	      gcc_assert (!insn);
	      return true;
	    }

	  validate_change (insn, loc, x, 1);
	  iter.skip_subrtxes ();
	}
      else if (resolve_reg_p (x))
	/* Return 1 to the caller to indicate that we found a direct
	   reference to a register which is being decomposed.  This can
	   happen inside notes, multiword shift or zero-extend
	   instructions.  */
	return true;
    }

  return false;
}

/* Resolve any decomposed registers which appear in register notes on
   INSN.  */

static void
resolve_reg_notes (rtx_insn *insn)
{
  rtx *pnote, note;

  note = find_reg_equal_equiv_note (insn);
  if (note)
    {
      int old_count = num_validated_changes ();
      if (resolve_subreg_use (&XEXP (note, 0), NULL_RTX))
	remove_note (insn, note);
      else
	if (old_count != num_validated_changes ())
	  df_notes_rescan (insn);
    }

  pnote = &REG_NOTES (insn);
  while (*pnote != NULL_RTX)
    {
      bool del = false;

      note = *pnote;
      switch (REG_NOTE_KIND (note))
	{
	case REG_DEAD:
	case REG_UNUSED:
	  if (resolve_reg_p (XEXP (note, 0)))
	    del = true;
	  break;

	default:
	  break;
	}

      if (del)
	*pnote = XEXP (note, 1);
      else
	pnote = &XEXP (note, 1);
    }
}

/* Return whether X can be decomposed into subwords.  */

static bool
can_decompose_p (rtx x)
{
  if (REG_P (x))
    {
      unsigned int regno = REGNO (x);

      if (HARD_REGISTER_NUM_P (regno))
	{
	  unsigned int byte, num_bytes, num_words;

	  if (!interesting_mode_p (GET_MODE (x), &num_bytes, &num_words))
	    return false;
	  for (byte = 0; byte < num_bytes; byte += UNITS_PER_WORD)
	    if (simplify_subreg_regno (regno, GET_MODE (x), byte, word_mode) < 0)
	      return false;
	  return true;
	}
      else
	return !bitmap_bit_p (subreg_context, regno);
    }

  return true;
}

/* OPND is a concatn operand this is used with a simple move operator.
   Return a new rtx with the concatn's operands swapped.  */

static rtx
resolve_operand_for_swap_move_operator (rtx opnd)
{
  gcc_assert (GET_CODE (opnd) == CONCATN);
  rtx concatn = copy_rtx (opnd);
  rtx op0 = XVECEXP (concatn, 0, 0);
  rtx op1 = XVECEXP (concatn, 0, 1);
  XVECEXP (concatn, 0, 0) = op1;
  XVECEXP (concatn, 0, 1) = op0;
  return concatn;
}

/* Decompose the registers used in a simple move SET within INSN.  If
   we don't change anything, return INSN, otherwise return the start
   of the sequence of moves.  */

static rtx_insn *
resolve_simple_move (rtx set, rtx_insn *insn)
{
  rtx src, dest, real_dest, src_op;
  rtx_insn *insns;
  machine_mode orig_mode, dest_mode;
  unsigned int orig_size, words;
  bool pushing;

  src = SET_SRC (set);
  dest = SET_DEST (set);
  orig_mode = GET_MODE (dest);

  if (!interesting_mode_p (orig_mode, &orig_size, &words))
    gcc_unreachable ();
  gcc_assert (words > 1);

  start_sequence ();

  /* We have to handle copying from a SUBREG of a decomposed reg where
     the SUBREG is larger than word size.  Rather than assume that we
     can take a word_mode SUBREG of the destination, we copy to a new
     register and then copy that to the destination.  */

  real_dest = NULL_RTX;

  if ((src_op = operand_for_swap_move_operator (src)) != NULL_RTX)
    {
      if (resolve_reg_p (dest))
	{
	  /* DEST is a CONCATN, so swap its operands and strip
	     SRC's operator.  */
	  dest = resolve_operand_for_swap_move_operator (dest);
	  src = src_op;
	}
      else if (resolve_reg_p (src_op))
	{
	  /* SRC is an operation on a CONCATN, so strip the operator and
	     swap the CONCATN's operands.  */
	  src = resolve_operand_for_swap_move_operator (src_op);
	}
    }

  if (GET_CODE (src) == SUBREG
      && resolve_reg_p (SUBREG_REG (src))
      && (maybe_ne (SUBREG_BYTE (src), 0)
	  || maybe_ne (orig_size, GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
    {
      real_dest = dest;
      dest = gen_reg_rtx (orig_mode);
      if (REG_P (real_dest))
	REG_ATTRS (dest) = REG_ATTRS (real_dest);
    }

  /* Similarly if we are copying to a SUBREG of a decomposed reg where
     the SUBREG is larger than word size.  */

  if (GET_CODE (dest) == SUBREG
      && resolve_reg_p (SUBREG_REG (dest))
      && (maybe_ne (SUBREG_BYTE (dest), 0)
	  || maybe_ne (orig_size,
		       GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
    {
      rtx reg, smove;
      rtx_insn *minsn;

      reg = gen_reg_rtx (orig_mode);
      minsn = emit_move_insn (reg, src);
      smove = single_set (minsn);
      gcc_assert (smove != NULL_RTX);
      resolve_simple_move (smove, minsn);
      src = reg;
    }

  /* If we didn't have any big SUBREGS of decomposed registers, and
     neither side of the move is a register we are decomposing, then
     we don't have to do anything here.  */

  if (src == SET_SRC (set)
      && dest == SET_DEST (set)
      && !resolve_reg_p (src)
      && !resolve_subreg_p (src)
      && !resolve_reg_p (dest)
      && !resolve_subreg_p (dest))
    {
      end_sequence ();
      return insn;
    }

  /* It's possible for the code to use a subreg of a decomposed
     register while forming an address.  We need to handle that before
     passing the address to emit_move_insn.  We pass NULL_RTX as the
     insn parameter to resolve_subreg_use because we cannot validate
     the insn yet.  */
  if (MEM_P (src) || MEM_P (dest))
    {
      int acg;

      if (MEM_P (src))
	resolve_subreg_use (&XEXP (src, 0), NULL_RTX);
      if (MEM_P (dest))
	resolve_subreg_use (&XEXP (dest, 0), NULL_RTX);
      acg = apply_change_group ();
      gcc_assert (acg);
    }

  /* If SRC is a register which we can't decompose, or has side
     effects, we need to move via a temporary register.  */

  if (!can_decompose_p (src)
      || side_effects_p (src)
      || GET_CODE (src) == ASM_OPERANDS)
    {
      rtx reg;

      reg = gen_reg_rtx (orig_mode);

      if (AUTO_INC_DEC)
	{
	  rtx_insn *move = emit_move_insn (reg, src);
	  if (MEM_P (src))
	    {
	      rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
	      if (note)
		add_reg_note (move, REG_INC, XEXP (note, 0));
	    }
	}
      else
	emit_move_insn (reg, src);

      src = reg;
    }

  /* If DEST is a register which we can't decompose, or has side
     effects, we need to first move to a temporary register.  We
     handle the common case of pushing an operand directly.  We also
     go through a temporary register if it holds a floating point
     value.  This gives us better code on systems which can't move
     data easily between integer and floating point registers.  */

  dest_mode = orig_mode;
  pushing = push_operand (dest, dest_mode);
  if (!can_decompose_p (dest)
      || (side_effects_p (dest) && !pushing)
      || (!SCALAR_INT_MODE_P (dest_mode)
	  && !resolve_reg_p (dest)
	  && !resolve_subreg_p (dest)))
    {
      if (real_dest == NULL_RTX)
	real_dest = dest;
      if (!SCALAR_INT_MODE_P (dest_mode))
	dest_mode = int_mode_for_mode (dest_mode).require ();
      dest = gen_reg_rtx (dest_mode);
      if (REG_P (real_dest))
	REG_ATTRS (dest) = REG_ATTRS (real_dest);
    }

  if (pushing)
    {
      unsigned int i, j, jinc;

      gcc_assert (orig_size % UNITS_PER_WORD == 0);
      gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
      gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);

      if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
	{
	  j = 0;
	  jinc = 1;
	}
      else
	{
	  j = words - 1;
	  jinc = -1;
	}

      for (i = 0; i < words; ++i, j += jinc)
	{
	  rtx temp;

	  temp = copy_rtx (XEXP (dest, 0));
	  temp = adjust_automodify_address_nv (dest, word_mode, temp,
					       j * UNITS_PER_WORD);
	  emit_move_insn (temp,
			  simplify_gen_subreg_concatn (word_mode, src,
						       orig_mode,
						       j * UNITS_PER_WORD));
	}
    }
  else
    {
      unsigned int i;

      for (i = 0; i < words; ++i)
	{
	  rtx t = simplify_gen_subreg_concatn (word_mode, dest,
					       dest_mode,
					       i * UNITS_PER_WORD);
	  /* simplify_gen_subreg_concatn can return (const_int 0) for
	     some sub-objects of paradoxical subregs.  As a source operand,
	     that's fine.  As a destination it must be avoided.  Those are
	     supposed to be don't care bits, so we can just drop that store
	     on the floor.  */
	  if (t != CONST0_RTX (word_mode))
	    emit_move_insn (t,
			    simplify_gen_subreg_concatn (word_mode, src,
							 orig_mode,
							 i * UNITS_PER_WORD));
	}
    }

  if (real_dest != NULL_RTX)
    {
      rtx mdest, smove;
      rtx_insn *minsn;

      if (dest_mode == orig_mode)
	mdest = dest;
      else
	mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
      minsn = emit_move_insn (real_dest, mdest);

  if (AUTO_INC_DEC && MEM_P (real_dest)
      && !(resolve_reg_p (real_dest) || resolve_subreg_p (real_dest)))
    {
      rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
      if (note)
	add_reg_note (minsn, REG_INC, XEXP (note, 0));
    }

      smove = single_set (minsn);
      gcc_assert (smove != NULL_RTX);

      resolve_simple_move (smove, minsn);
    }

  insns = get_insns ();
  end_sequence ();

  copy_reg_eh_region_note_forward (insn, insns, NULL_RTX);

  emit_insn_before (insns, insn);

  /* If we get here via self-recursion, then INSN is not yet in the insns
     chain and delete_insn will fail.  We only want to remove INSN from the
     current sequence.  See PR56738.  */
  if (in_sequence_p ())
    remove_insn (insn);
  else
    delete_insn (insn);

  return insns;
}

/* Change a CLOBBER of a decomposed register into a CLOBBER of the
   component registers.  Return whether we changed something.  */

static bool
resolve_clobber (rtx pat, rtx_insn *insn)
{
  rtx reg;
  machine_mode orig_mode;
  unsigned int orig_size, words, i;
  int ret;

  reg = XEXP (pat, 0);
  /* For clobbers we can look through paradoxical subregs which
     we do not handle in simplify_gen_subreg_concatn.  */
  if (paradoxical_subreg_p (reg))
    reg = SUBREG_REG (reg);
  if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
    return false;

  orig_mode = GET_MODE (reg);
  if (!interesting_mode_p (orig_mode, &orig_size, &words))
    gcc_unreachable ();

  ret = validate_change (NULL_RTX, &XEXP (pat, 0),
			 simplify_gen_subreg_concatn (word_mode, reg,
						      orig_mode, 0),
			 0);
  df_insn_rescan (insn);
  gcc_assert (ret != 0);

  for (i = words - 1; i > 0; --i)
    {
      rtx x;

      x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
				       i * UNITS_PER_WORD);
      x = gen_rtx_CLOBBER (VOIDmode, x);
      emit_insn_after (x, insn);
    }

  resolve_reg_notes (insn);

  return true;
}

/* A USE of a decomposed register is no longer meaningful.  Return
   whether we changed something.  */

static bool
resolve_use (rtx pat, rtx_insn *insn)
{
  if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
    {
      delete_insn (insn);
      return true;
    }

  resolve_reg_notes (insn);

  return false;
}

/* A VAR_LOCATION can be simplified.  */

static void
resolve_debug (rtx_insn *insn)
{
  subrtx_ptr_iterator::array_type array;
  FOR_EACH_SUBRTX_PTR (iter, array, &PATTERN (insn), NONCONST)
    {
      rtx *loc = *iter;
      rtx x = *loc;
      if (resolve_subreg_p (x))
	{
	  x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
				       SUBREG_BYTE (x));

	  if (x)
	    *loc = x;
	  else
	    x = copy_rtx (*loc);
	}
      if (resolve_reg_p (x))
	*loc = copy_rtx (x);
    }

  df_insn_rescan (insn);

  resolve_reg_notes (insn);
}

/* Check if INSN is a decomposable multiword-shift or zero-extend and
   set the decomposable_context bitmap accordingly.  SPEED_P is true
   if we are optimizing INSN for speed rather than size.  Return true
   if INSN is decomposable.  */

static bool
find_decomposable_shift_zext (rtx_insn *insn, bool speed_p)
{
  rtx set;
  rtx op;
  rtx op_operand;

  set = single_set (insn);
  if (!set)
    return false;

  op = SET_SRC (set);
  if (GET_CODE (op) != ASHIFT
      && GET_CODE (op) != LSHIFTRT
      && GET_CODE (op) != ASHIFTRT
      && GET_CODE (op) != ZERO_EXTEND)
    return false;

  op_operand = XEXP (op, 0);
  if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
      || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
      || HARD_REGISTER_NUM_P (REGNO (op_operand))
      || GET_MODE (op) != twice_word_mode)
    return false;

  if (GET_CODE (op) == ZERO_EXTEND)
    {
      if (GET_MODE (op_operand) != word_mode
	  || !choices[speed_p].splitting_zext)
	return false;
    }
  else /* left or right shift */
    {
      bool *splitting = (GET_CODE (op) == ASHIFT
			 ? choices[speed_p].splitting_ashift
			 : GET_CODE (op) == ASHIFTRT
			 ? choices[speed_p].splitting_ashiftrt
			 : choices[speed_p].splitting_lshiftrt);
      if (!CONST_INT_P (XEXP (op, 1))
	  || !IN_RANGE (INTVAL (XEXP (op, 1)), BITS_PER_WORD,
			2 * BITS_PER_WORD - 1)
	  || !splitting[INTVAL (XEXP (op, 1)) - BITS_PER_WORD])
	return false;

      bitmap_set_bit (decomposable_context, REGNO (op_operand));
    }

  bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));

  return true;
}

/* Decompose a more than word wide shift (in INSN) of a multiword
   pseudo or a multiword zero-extend of a wordmode pseudo into a move
   and 'set to zero' insn.  SPEED_P says whether we are optimizing
   for speed or size, when checking if a ZERO_EXTEND is preferable.
   Return a pointer to the new insn when a replacement was done.  */

static rtx_insn *
resolve_shift_zext (rtx_insn *insn, bool speed_p)
{
  rtx set;
  rtx op;
  rtx op_operand;
  rtx_insn *insns;
  rtx src_reg, dest_reg, dest_upper, upper_src = NULL_RTX;
  int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
  scalar_int_mode inner_mode;

  set = single_set (insn);
  if (!set)
    return NULL;

  op = SET_SRC (set);
  if (GET_CODE (op) != ASHIFT
      && GET_CODE (op) != LSHIFTRT
      && GET_CODE (op) != ASHIFTRT
      && GET_CODE (op) != ZERO_EXTEND)
    return NULL;

  op_operand = XEXP (op, 0);
  if (!is_a <scalar_int_mode> (GET_MODE (op_operand), &inner_mode))
    return NULL;

  /* We can tear this operation apart only if the regs were already
     torn apart.  */
  if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
    return NULL;

  /* src_reg_num is the number of the word mode register which we
     are operating on.  For a left shift and a zero_extend on little
     endian machines this is register 0.  */
  src_reg_num = (GET_CODE (op) == LSHIFTRT || GET_CODE (op) == ASHIFTRT)
		? 1 : 0;

  if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
    src_reg_num = 1 - src_reg_num;

  if (GET_CODE (op) == ZERO_EXTEND)
    dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
  else
    dest_reg_num = 1 - src_reg_num;

  offset1 = UNITS_PER_WORD * dest_reg_num;
  offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
  src_offset = UNITS_PER_WORD * src_reg_num;

  start_sequence ();

  dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
                                          GET_MODE (SET_DEST (set)),
                                          offset1);
  dest_upper = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
					    GET_MODE (SET_DEST (set)),
					    offset2);
  src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
                                         GET_MODE (op_operand),
                                         src_offset);
  if (GET_CODE (op) == ASHIFTRT
      && INTVAL (XEXP (op, 1)) != 2 * BITS_PER_WORD - 1)
    upper_src = expand_shift (RSHIFT_EXPR, word_mode, copy_rtx (src_reg),
			      BITS_PER_WORD - 1, NULL_RTX, 0);

  if (GET_CODE (op) != ZERO_EXTEND)
    {
      int shift_count = INTVAL (XEXP (op, 1));
      if (shift_count > BITS_PER_WORD)
	src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
				LSHIFT_EXPR : RSHIFT_EXPR,
				word_mode, src_reg,
				shift_count - BITS_PER_WORD,
				dest_reg, GET_CODE (op) != ASHIFTRT);
    }

  /* Consider using ZERO_EXTEND instead of setting DEST_UPPER to zero
     if this is considered reasonable.  */
  if (GET_CODE (op) == LSHIFTRT
      && GET_MODE (op) == twice_word_mode
      && REG_P (SET_DEST (set))
      && !choices[speed_p].splitting_zext)
    {
      rtx tmp = force_reg (word_mode, copy_rtx (src_reg));
      tmp = simplify_gen_unary (ZERO_EXTEND, twice_word_mode, tmp, word_mode);
      emit_move_insn (SET_DEST (set), tmp);
    }
  else
    {
      if (dest_reg != src_reg)
	emit_move_insn (dest_reg, src_reg);
      if (GET_CODE (op) != ASHIFTRT)
	emit_move_insn (dest_upper, CONST0_RTX (word_mode));
      else if (INTVAL (XEXP (op, 1)) == 2 * BITS_PER_WORD - 1)
	emit_move_insn (dest_upper, copy_rtx (src_reg));
      else
	emit_move_insn (dest_upper, upper_src);
    }

  insns = get_insns ();

  end_sequence ();

  emit_insn_before (insns, insn);

  if (dump_file)
    {
      rtx_insn *in;
      fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
      for (in = insns; in != insn; in = NEXT_INSN (in))
	fprintf (dump_file, "%d ", INSN_UID (in));
      fprintf (dump_file, "\n");
    }

  delete_insn (insn);
  return insns;
}

/* Print to dump_file a description of what we're doing with shift code CODE.
   SPLITTING[X] is true if we are splitting shifts by X + BITS_PER_WORD.  */

static void
dump_shift_choices (enum rtx_code code, bool *splitting)
{
  int i;
  const char *sep;

  fprintf (dump_file,
	   "  Splitting mode %s for %s lowering with shift amounts = ",
	   GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code));
  sep = "";
  for (i = 0; i < BITS_PER_WORD; i++)
    if (splitting[i])
      {
	fprintf (dump_file, "%s%d", sep, i + BITS_PER_WORD);
	sep = ",";
      }
  fprintf (dump_file, "\n");
}

/* Print to dump_file a description of what we're doing when optimizing
   for speed or size; SPEED_P says which.  DESCRIPTION is a description
   of the SPEED_P choice.  */

static void
dump_choices (bool speed_p, const char *description)
{
  unsigned int size, factor, i;

  fprintf (dump_file, "Choices when optimizing for %s:\n", description);

  for (i = 0; i < MAX_MACHINE_MODE; i++)
    if (interesting_mode_p ((machine_mode) i, &size, &factor)
	&& factor > 1)
      fprintf (dump_file, "  %s mode %s for copy lowering.\n",
	       choices[speed_p].move_modes_to_split[i]
	       ? "Splitting"
	       : "Skipping",
	       GET_MODE_NAME ((machine_mode) i));

  fprintf (dump_file, "  %s mode %s for zero_extend lowering.\n",
	   choices[speed_p].splitting_zext ? "Splitting" : "Skipping",
	   GET_MODE_NAME (twice_word_mode));

  dump_shift_choices (ASHIFT, choices[speed_p].splitting_ashift);
  dump_shift_choices (LSHIFTRT, choices[speed_p].splitting_lshiftrt);
  dump_shift_choices (ASHIFTRT, choices[speed_p].splitting_ashiftrt);
  fprintf (dump_file, "\n");
}

/* Look for registers which are always accessed via word-sized SUBREGs
   or -if DECOMPOSE_COPIES is true- via copies.  Decompose these
   registers into several word-sized pseudo-registers.  */

static void
decompose_multiword_subregs (bool decompose_copies)
{
  unsigned int max;
  basic_block bb;
  bool speed_p;

  if (dump_file)
    {
      dump_choices (false, "size");
      dump_choices (true, "speed");
    }

  /* Check if this target even has any modes to consider lowering.   */
  if (!choices[false].something_to_do && !choices[true].something_to_do)
    {
      if (dump_file)
	fprintf (dump_file, "Nothing to do!\n");
      return;
    }

  max = max_reg_num ();

  /* First see if there are any multi-word pseudo-registers.  If there
     aren't, there is nothing we can do.  This should speed up this
     pass in the normal case, since it should be faster than scanning
     all the insns.  */
  {
    unsigned int i;
    bool useful_modes_seen = false;

    for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
      if (regno_reg_rtx[i] != NULL)
	{
	  machine_mode mode = GET_MODE (regno_reg_rtx[i]);
	  if (choices[false].move_modes_to_split[(int) mode]
	      || choices[true].move_modes_to_split[(int) mode])
	    {
	      useful_modes_seen = true;
	      break;
	    }
	}

    if (!useful_modes_seen)
      {
	if (dump_file)
	  fprintf (dump_file, "Nothing to lower in this function.\n");
	return;
      }
  }

  if (df)
    {
      df_set_flags (DF_DEFER_INSN_RESCAN);
      run_word_dce ();
    }

  /* FIXME: It may be possible to change this code to look for each
     multi-word pseudo-register and to find each insn which sets or
     uses that register.  That should be faster than scanning all the
     insns.  */

  decomposable_context = BITMAP_ALLOC (NULL);
  non_decomposable_context = BITMAP_ALLOC (NULL);
  subreg_context = BITMAP_ALLOC (NULL);

  reg_copy_graph.create (max);
  reg_copy_graph.safe_grow_cleared (max, true);
  memset (reg_copy_graph.address (), 0, sizeof (bitmap) * max);

  speed_p = optimize_function_for_speed_p (cfun);
  FOR_EACH_BB_FN (bb, cfun)
    {
      rtx_insn *insn;

      FOR_BB_INSNS (bb, insn)
	{
	  rtx set;
	  enum classify_move_insn cmi;
	  int i, n;

	  if (!INSN_P (insn)
	      || GET_CODE (PATTERN (insn)) == CLOBBER
	      || GET_CODE (PATTERN (insn)) == USE)
	    continue;

	  recog_memoized (insn);

	  if (find_decomposable_shift_zext (insn, speed_p))
	    continue;

	  extract_insn (insn);

	  set = simple_move (insn, speed_p);

	  if (!set)
	    cmi = NOT_SIMPLE_MOVE;
	  else
	    {
	      /* We mark pseudo-to-pseudo copies as decomposable during the
		 second pass only.  The first pass is so early that there is
		 good chance such moves will be optimized away completely by
		 subsequent optimizations anyway.

		 However, we call find_pseudo_copy even during the first pass
		 so as to properly set up the reg_copy_graph.  */
	      if (find_pseudo_copy (set))
		cmi = decompose_copies? DECOMPOSABLE_SIMPLE_MOVE : SIMPLE_MOVE;
	      else
		cmi = SIMPLE_MOVE;
	    }

	  n = recog_data.n_operands;
	  for (i = 0; i < n; ++i)
	    {
	      find_decomposable_subregs (&recog_data.operand[i], &cmi);

	      /* We handle ASM_OPERANDS as a special case to support
		 things like x86 rdtsc which returns a DImode value.
		 We can decompose the output, which will certainly be
		 operand 0, but not the inputs.  */

	      if (cmi == SIMPLE_MOVE
		  && GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
		{
		  gcc_assert (i == 0);
		  cmi = NOT_SIMPLE_MOVE;
		}
	    }
	}
    }

  bitmap_and_compl_into (decomposable_context, non_decomposable_context);
  if (!bitmap_empty_p (decomposable_context))
    {
      unsigned int i;
      sbitmap_iterator sbi;
      bitmap_iterator iter;
      unsigned int regno;

      propagate_pseudo_copies ();

      auto_sbitmap sub_blocks (last_basic_block_for_fn (cfun));
      bitmap_clear (sub_blocks);

      EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
	decompose_register (regno);

      FOR_EACH_BB_FN (bb, cfun)
	{
	  rtx_insn *insn;

	  FOR_BB_INSNS (bb, insn)
	    {
	      rtx pat;

	      if (!INSN_P (insn))
		continue;

	      pat = PATTERN (insn);
	      if (GET_CODE (pat) == CLOBBER)
		resolve_clobber (pat, insn);
	      else if (GET_CODE (pat) == USE)
		resolve_use (pat, insn);
	      else if (DEBUG_INSN_P (insn))
		resolve_debug (insn);
	      else
		{
		  rtx set;
		  int i;

		  recog_memoized (insn);
		  extract_insn (insn);

		  set = simple_move (insn, speed_p);
		  if (set)
		    {
		      rtx_insn *orig_insn = insn;
		      bool cfi = control_flow_insn_p (insn);

		      /* We can end up splitting loads to multi-word pseudos
			 into separate loads to machine word size pseudos.
			 When this happens, we first had one load that can
			 throw, and after resolve_simple_move we'll have a
			 bunch of loads (at least two).  All those loads may
			 trap if we can have non-call exceptions, so they
			 all will end the current basic block.  We split the
			 block after the outer loop over all insns, but we
			 make sure here that we will be able to split the
			 basic block and still produce the correct control
			 flow graph for it.  */
		      gcc_assert (!cfi
				  || (cfun->can_throw_non_call_exceptions
				      && can_throw_internal (insn)));

		      insn = resolve_simple_move (set, insn);
		      if (insn != orig_insn)
			{
			  recog_memoized (insn);
			  extract_insn (insn);

			  if (cfi)
			    bitmap_set_bit (sub_blocks, bb->index);
			}
		    }
		  else
		    {
		      rtx_insn *decomposed_shift;

		      decomposed_shift = resolve_shift_zext (insn, speed_p);
		      if (decomposed_shift != NULL_RTX)
			{
			  insn = decomposed_shift;
			  recog_memoized (insn);
			  extract_insn (insn);
			}
		    }

		  for (i = recog_data.n_operands - 1; i >= 0; --i)
		    resolve_subreg_use (recog_data.operand_loc[i], insn);

		  resolve_reg_notes (insn);

		  if (num_validated_changes () > 0)
		    {
		      for (i = recog_data.n_dups - 1; i >= 0; --i)
			{
			  rtx *pl = recog_data.dup_loc[i];
			  int dup_num = recog_data.dup_num[i];
			  rtx *px = recog_data.operand_loc[dup_num];

			  validate_unshare_change (insn, pl, *px, 1);
			}

		      i = apply_change_group ();
		      gcc_assert (i);
		    }
		}
	    }
	}

      /* If we had insns to split that caused control flow insns in the middle
	 of a basic block, split those blocks now.  Note that we only handle
	 the case where splitting a load has caused multiple possibly trapping
	 loads to appear.  */
      EXECUTE_IF_SET_IN_BITMAP (sub_blocks, 0, i, sbi)
	{
	  rtx_insn *insn, *end;
	  edge fallthru;

	  bb = BASIC_BLOCK_FOR_FN (cfun, i);
	  insn = BB_HEAD (bb);
	  end = BB_END (bb);

	  while (insn != end)
	    {
	      if (control_flow_insn_p (insn))
		{
		  /* Split the block after insn.  There will be a fallthru
		     edge, which is OK so we keep it.  We have to create the
		     exception edges ourselves.  */
		  fallthru = split_block (bb, insn);
		  rtl_make_eh_edge (NULL, bb, BB_END (bb));
		  bb = fallthru->dest;
		  insn = BB_HEAD (bb);
		}
	      else
	        insn = NEXT_INSN (insn);
	    }
	}
    }

  for (bitmap b : reg_copy_graph)
    if (b)
      BITMAP_FREE (b);

  reg_copy_graph.release ();

  BITMAP_FREE (decomposable_context);
  BITMAP_FREE (non_decomposable_context);
  BITMAP_FREE (subreg_context);
}

/* Implement first lower subreg pass.  */

namespace {

const pass_data pass_data_lower_subreg =
{
  RTL_PASS, /* type */
  "subreg1", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_LOWER_SUBREG, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_lower_subreg : public rtl_opt_pass
{
public:
  pass_lower_subreg (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_lower_subreg, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *) final override { return flag_split_wide_types != 0; }
  unsigned int execute (function *) final override
    {
      decompose_multiword_subregs (false);
      return 0;
    }

}; // class pass_lower_subreg

} // anon namespace

rtl_opt_pass *
make_pass_lower_subreg (gcc::context *ctxt)
{
  return new pass_lower_subreg (ctxt);
}

/* Implement second lower subreg pass.  */

namespace {

const pass_data pass_data_lower_subreg2 =
{
  RTL_PASS, /* type */
  "subreg2", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_LOWER_SUBREG, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_df_finish, /* todo_flags_finish */
};

class pass_lower_subreg2 : public rtl_opt_pass
{
public:
  pass_lower_subreg2 (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_lower_subreg2, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *) final override
  {
    return flag_split_wide_types && flag_split_wide_types_early;
  }
  unsigned int execute (function *) final override
    {
      decompose_multiword_subregs (true);
      return 0;
    }

}; // class pass_lower_subreg2

} // anon namespace

rtl_opt_pass *
make_pass_lower_subreg2 (gcc::context *ctxt)
{
  return new pass_lower_subreg2 (ctxt);
}

/* Implement third lower subreg pass.  */

namespace {

const pass_data pass_data_lower_subreg3 =
{
  RTL_PASS, /* type */
  "subreg3", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_LOWER_SUBREG, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_df_finish, /* todo_flags_finish */
};

class pass_lower_subreg3 : public rtl_opt_pass
{
public:
  pass_lower_subreg3 (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_lower_subreg3, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *) final override { return flag_split_wide_types; }
  unsigned int execute (function *) final override
    {
      decompose_multiword_subregs (true);
      return 0;
    }

}; // class pass_lower_subreg3

} // anon namespace

rtl_opt_pass *
make_pass_lower_subreg3 (gcc::context *ctxt)
{
  return new pass_lower_subreg3 (ctxt);
}