aboutsummaryrefslogtreecommitdiff
path: root/gcc/loop-doloop.c
blob: c3a4523ad189f126615cdd9d3dda604c06201fd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
/* Perform doloop optimizations
   Copyright (C) 2004-2021 Free Software Foundation, Inc.
   Based on code by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "cfghooks.h"
#include "memmodel.h"
#include "emit-rtl.h"
#include "dojump.h"
#include "expr.h"
#include "cfgloop.h"
#include "cfgrtl.h"
#include "dumpfile.h"
#include "loop-unroll.h"
#include "regs.h"
#include "df.h"

/* This module is used to modify loops with a determinable number of
   iterations to use special low-overhead looping instructions.

   It first validates whether the loop is well behaved and has a
   determinable number of iterations (either at compile or run-time).
   It then modifies the loop to use a low-overhead looping pattern as
   follows:

   1. A pseudo register is allocated as the loop iteration counter.

   2. The number of loop iterations is calculated and is stored
      in the loop counter.

   3. At the end of the loop, the jump insn is replaced by the
      doloop_end pattern.  The compare must remain because it might be
      used elsewhere.  If the loop-variable or condition register are
      used elsewhere, they will be eliminated by flow.

   4. An optional doloop_begin pattern is inserted at the top of the
      loop.

   TODO The optimization should only performed when either the biv used for exit
   condition is unused at all except for the exit test, or if we do not have to
   change its value, since otherwise we have to add a new induction variable,
   which usually will not pay up (unless the cost of the doloop pattern is
   somehow extremely lower than the cost of compare & jump, or unless the bct
   register cannot be used for anything else but doloop -- ??? detect these
   cases).  */

/* Return the loop termination condition for PATTERN or zero
   if it is not a decrement and branch jump insn.  */

rtx
doloop_condition_get (rtx_insn *doloop_pat)
{
  rtx cmp;
  rtx inc;
  rtx reg;
  rtx inc_src;
  rtx condition;
  rtx pattern;
  rtx cc_reg = NULL_RTX;
  rtx reg_orig = NULL_RTX;

  /* The canonical doloop pattern we expect has one of the following
     forms:

     1)  (parallel [(set (pc) (if_then_else (condition)
	  			            (label_ref (label))
				            (pc)))
	             (set (reg) (plus (reg) (const_int -1)))
	             (additional clobbers and uses)])

     The branch must be the first entry of the parallel (also required
     by jump.c), and the second entry of the parallel must be a set of
     the loop counter register.  Some targets (IA-64) wrap the set of
     the loop counter in an if_then_else too.

     2)  (set (reg) (plus (reg) (const_int -1))
         (set (pc) (if_then_else (reg != 0)
	                         (label_ref (label))
			         (pc))).  

     Some targets (ARM) do the comparison before the branch, as in the
     following form:

     3) (parallel [(set (cc) (compare ((plus (reg) (const_int -1), 0)))
                   (set (reg) (plus (reg) (const_int -1)))])
        (set (pc) (if_then_else (cc == NE)
                                (label_ref (label))
                                (pc))) */

  pattern = PATTERN (doloop_pat);

  if (GET_CODE (pattern) != PARALLEL)
    {
      rtx cond;
      rtx_insn *prev_insn = prev_nondebug_insn (doloop_pat);
      rtx cmp_arg1, cmp_arg2;
      rtx cmp_orig;

      /* In case the pattern is not PARALLEL we expect two forms
	 of doloop which are cases 2) and 3) above: in case 2) the
	 decrement immediately precedes the branch, while in case 3)
	 the compare and decrement instructions immediately precede
	 the branch.  */

      if (prev_insn == NULL_RTX || !INSN_P (prev_insn))
        return 0;

      cmp = pattern;
      if (GET_CODE (PATTERN (prev_insn)) == PARALLEL)
        {
	  /* The third case: the compare and decrement instructions
	     immediately precede the branch.  */
	  cmp_orig = XVECEXP (PATTERN (prev_insn), 0, 0);
	  if (GET_CODE (cmp_orig) != SET)
	    return 0;
	  if (GET_CODE (SET_SRC (cmp_orig)) != COMPARE)
	    return 0;
	  cmp_arg1 = XEXP (SET_SRC (cmp_orig), 0);
          cmp_arg2 = XEXP (SET_SRC (cmp_orig), 1);
	  if (cmp_arg2 != const0_rtx 
	      || GET_CODE (cmp_arg1) != PLUS)
	    return 0;
	  reg_orig = XEXP (cmp_arg1, 0);
	  if (XEXP (cmp_arg1, 1) != GEN_INT (-1) 
	      || !REG_P (reg_orig))
	    return 0;
	  cc_reg = SET_DEST (cmp_orig);
	  
	  inc = XVECEXP (PATTERN (prev_insn), 0, 1);
	}
      else
        inc = PATTERN (prev_insn);
      if (GET_CODE (cmp) == SET && GET_CODE (SET_SRC (cmp)) == IF_THEN_ELSE)
	{
	  /* We expect the condition to be of the form (reg != 0)  */
	  cond = XEXP (SET_SRC (cmp), 0);
	  if (GET_CODE (cond) != NE || XEXP (cond, 1) != const0_rtx)
	    return 0;
	}
    }
  else
    {
      cmp = XVECEXP (pattern, 0, 0);
      inc = XVECEXP (pattern, 0, 1);
    }

  /* Check for (set (reg) (something)).  */
  if (GET_CODE (inc) != SET)
    return 0;
  reg = SET_DEST (inc);
  if (! REG_P (reg))
    return 0;

  /* Check if something = (plus (reg) (const_int -1)).
     On IA-64, this decrement is wrapped in an if_then_else.  */
  inc_src = SET_SRC (inc);
  if (GET_CODE (inc_src) == IF_THEN_ELSE)
    inc_src = XEXP (inc_src, 1);
  if (GET_CODE (inc_src) != PLUS
      || XEXP (inc_src, 0) != reg
      || XEXP (inc_src, 1) != constm1_rtx)
    return 0;

  /* Check for (set (pc) (if_then_else (condition)
                                       (label_ref (label))
                                       (pc))).  */
  if (GET_CODE (cmp) != SET
      || SET_DEST (cmp) != pc_rtx
      || GET_CODE (SET_SRC (cmp)) != IF_THEN_ELSE
      || GET_CODE (XEXP (SET_SRC (cmp), 1)) != LABEL_REF
      || XEXP (SET_SRC (cmp), 2) != pc_rtx)
    return 0;

  /* Extract loop termination condition.  */
  condition = XEXP (SET_SRC (cmp), 0);

  /* We expect a GE or NE comparison with 0 or 1.  */
  if ((GET_CODE (condition) != GE
       && GET_CODE (condition) != NE)
      || (XEXP (condition, 1) != const0_rtx
          && XEXP (condition, 1) != const1_rtx))
    return 0;

  if ((XEXP (condition, 0) == reg)
      /* For the third case:  */  
      || ((cc_reg != NULL_RTX)
	  && (XEXP (condition, 0) == cc_reg)
	  && (reg_orig == reg))
      || (GET_CODE (XEXP (condition, 0)) == PLUS
	  && XEXP (XEXP (condition, 0), 0) == reg))
   {
     if (GET_CODE (pattern) != PARALLEL)
     /*  For the second form we expect:

         (set (reg) (plus (reg) (const_int -1))
         (set (pc) (if_then_else (reg != 0)
                                 (label_ref (label))
                                 (pc))).

         is equivalent to the following:

         (parallel [(set (pc) (if_then_else (reg != 1)
                                            (label_ref (label))
                                            (pc)))
                     (set (reg) (plus (reg) (const_int -1)))
                     (additional clobbers and uses)])

        For the third form we expect:

        (parallel [(set (cc) (compare ((plus (reg) (const_int -1)), 0))
                   (set (reg) (plus (reg) (const_int -1)))])
        (set (pc) (if_then_else (cc == NE)
                                (label_ref (label))
                                (pc))) 

        which is equivalent to the following:

        (parallel [(set (cc) (compare (reg,  1))
                   (set (reg) (plus (reg) (const_int -1)))
                   (set (pc) (if_then_else (NE == cc)
                                           (label_ref (label))
                                           (pc))))])

        So we return the second form instead for the two cases.

     */
        condition = gen_rtx_fmt_ee (NE, VOIDmode, inc_src, const1_rtx);

    return condition;
   }

  /* ??? If a machine uses a funny comparison, we could return a
     canonicalized form here.  */

  return 0;
}

/* Return nonzero if the loop specified by LOOP is suitable for
   the use of special low-overhead looping instructions.  DESC
   describes the number of iterations of the loop.  */

static bool
doloop_valid_p (class loop *loop, class niter_desc *desc)
{
  basic_block *body = get_loop_body (loop), bb;
  rtx_insn *insn;
  unsigned i;
  bool result = true;

  /* Check for loops that may not terminate under special conditions.  */
  if (!desc->simple_p
      || desc->assumptions
      || desc->infinite)
    {
      /* There are some cases that would require a special attention.
	 For example if the comparison is LEU and the comparison value
	 is UINT_MAX then the loop will not terminate.  Similarly, if the
	 comparison code is GEU and the comparison value is 0, the
	 loop will not terminate.

	 If the absolute increment is not 1, the loop can be infinite
	 even with LTU/GTU, e.g. for (i = 3; i > 0; i -= 2)

	 ??? We could compute these conditions at run-time and have a
	 additional jump around the loop to ensure an infinite loop.
	 However, it is very unlikely that this is the intended
	 behavior of the loop and checking for these rare boundary
	 conditions would pessimize all other code.

	 If the loop is executed only a few times an extra check to
	 restart the loop could use up most of the benefits of using a
	 count register loop.  Note however, that normally, this
	 restart branch would never execute, so it could be predicted
	 well by the CPU.  We should generate the pessimistic code by
	 default, and have an option, e.g. -funsafe-loops that would
	 enable count-register loops in this case.  */
      if (dump_file)
	fprintf (dump_file, "Doloop: Possible infinite iteration case.\n");
      result = false;
      goto cleanup;
    }

  for (i = 0; i < loop->num_nodes; i++)
    {
      bb = body[i];

      for (insn = BB_HEAD (bb);
	   insn != NEXT_INSN (BB_END (bb));
	   insn = NEXT_INSN (insn))
	{
	  /* Different targets have different necessities for low-overhead
	     looping.  Call the back end for each instruction within the loop
	     to let it decide whether the insn prohibits a low-overhead loop.
	     It will then return the cause for it to emit to the dump file.  */
	  const char * invalid = targetm.invalid_within_doloop (insn);
	  if (invalid)
	    {
	      if (dump_file)
		fprintf (dump_file, "Doloop: %s\n", invalid);
	      result = false;
	      goto cleanup;
	    }
	}
    }
  result = true;

cleanup:
  free (body);

  return result;
}

/* Adds test of COND jumping to DEST on edge *E and set *E to the new fallthru
   edge.  If the condition is always false, do not do anything.  If it is always
   true, redirect E to DEST and return false.  In all other cases, true is
   returned.  */

static bool
add_test (rtx cond, edge *e, basic_block dest)
{
  rtx_insn *seq, *jump;
  rtx_code_label *label;
  machine_mode mode;
  rtx op0 = XEXP (cond, 0), op1 = XEXP (cond, 1);
  enum rtx_code code = GET_CODE (cond);
  basic_block bb;
  /* The jump is supposed to handle an unlikely special case.  */
  profile_probability prob = profile_probability::guessed_never ();

  mode = GET_MODE (XEXP (cond, 0));
  if (mode == VOIDmode)
    mode = GET_MODE (XEXP (cond, 1));

  start_sequence ();
  op0 = force_operand (op0, NULL_RTX);
  op1 = force_operand (op1, NULL_RTX);
  label = block_label (dest);
  do_compare_rtx_and_jump (op0, op1, code, 0, mode, NULL_RTX, NULL, label,
			   prob);

  jump = get_last_insn ();
  if (!jump || !JUMP_P (jump))
    {
      /* The condition is always false and the jump was optimized out.  */
      end_sequence ();
      return true;
    }

  seq = get_insns ();
  unshare_all_rtl_in_chain (seq);
  end_sequence ();

  /* There always is at least the jump insn in the sequence.  */
  gcc_assert (seq != NULL_RTX);

  bb = split_edge_and_insert (*e, seq);
  *e = single_succ_edge (bb);

  if (any_uncondjump_p (jump) && onlyjump_p (jump))
    {
      /* The condition is always true.  */
      delete_insn (jump);
      redirect_edge_and_branch_force (*e, dest);
      return false;
    }

  JUMP_LABEL (jump) = label;

  LABEL_NUSES (label)++;

  edge e2 = make_edge (bb, dest, (*e)->flags & ~EDGE_FALLTHRU);
  e2->probability = prob;
  (*e)->probability = prob.invert ();
  update_br_prob_note (e2->src);
  return true;
}

/* Fold (add -1; zero_ext; add +1) operations to zero_ext if not wrapping. i.e:

   73: r145:SI=r123:DI#0-0x1
   74: r144:DI=zero_extend (r145:SI)
   75: r143:DI=r144:DI+0x1
   ...
   31: r135:CC=cmp (r123:DI,0)
   72: {pc={(r143:DI!=0x1)?L70:pc};r143:DI=r143:DI-0x1;...}

   r123:DI#0-0x1 is param count derived from loop->niter_expr equal to number of
   loop iterations, if loop iterations expression doesn't overflow, then
   (zero_extend (r123:DI#0-1))+1 can be simplified to zero_extend.  */

static rtx
doloop_simplify_count (class loop *loop, scalar_int_mode mode, rtx count)
{
  widest_int iterations;
  if (GET_CODE (count) == ZERO_EXTEND)
    {
      rtx extop0 = XEXP (count, 0);
      if (GET_CODE (extop0) == PLUS)
	{
	  rtx addop0 = XEXP (extop0, 0);
	  rtx addop1 = XEXP (extop0, 1);

	  if (get_max_loop_iterations (loop, &iterations)
	      && wi::ltu_p (iterations, GET_MODE_MASK (GET_MODE (addop0)))
	      && addop1 == constm1_rtx)
	    return simplify_gen_unary (ZERO_EXTEND, mode, addop0,
				       GET_MODE (addop0));
	}
    }

  return simplify_gen_binary (PLUS, mode, count, const1_rtx);
}

/* Modify the loop to use the low-overhead looping insn where LOOP
   describes the loop, DESC describes the number of iterations of the
   loop, and DOLOOP_INSN is the low-overhead looping insn to emit at the
   end of the loop.  CONDITION is the condition separated from the
   DOLOOP_SEQ.  COUNT is the number of iterations of the LOOP.  */

static void
doloop_modify (class loop *loop, class niter_desc *desc,
	       rtx_insn *doloop_seq, rtx condition, rtx count)
{
  rtx counter_reg;
  rtx tmp, noloop = NULL_RTX;
  rtx_insn *sequence;
  rtx_insn *jump_insn;
  rtx_code_label *jump_label;
  int nonneg = 0;
  bool increment_count;
  basic_block loop_end = desc->out_edge->src;
  scalar_int_mode mode;
  widest_int iterations;

  jump_insn = BB_END (loop_end);

  if (dump_file)
    {
      fprintf (dump_file, "Doloop: Inserting doloop pattern (");
      if (desc->const_iter)
	fprintf (dump_file, "%" PRId64, desc->niter);
      else
	fputs ("runtime", dump_file);
      fputs (" iterations).\n", dump_file);
    }

  /* Discard original jump to continue loop.  The original compare
     result may still be live, so it cannot be discarded explicitly.  */
  delete_insn (jump_insn);

  counter_reg = XEXP (condition, 0);
  if (GET_CODE (counter_reg) == PLUS)
    counter_reg = XEXP (counter_reg, 0);
  /* These patterns must operate on integer counters.  */
  mode = as_a <scalar_int_mode> (GET_MODE (counter_reg));

  increment_count = false;
  switch (GET_CODE (condition))
    {
    case NE:
      /* Currently only NE tests against zero and one are supported.  */
      noloop = XEXP (condition, 1);
      if (noloop != const0_rtx)
	{
	  gcc_assert (noloop == const1_rtx);
	  increment_count = true;
	}
      break;

    case GE:
      /* Currently only GE tests against zero are supported.  */
      gcc_assert (XEXP (condition, 1) == const0_rtx);

      noloop = constm1_rtx;

      /* The iteration count does not need incrementing for a GE test.  */
      increment_count = false;

      /* Determine if the iteration counter will be non-negative.
	 Note that the maximum value loaded is iterations_max - 1.  */
      if (get_max_loop_iterations (loop, &iterations)
	  && wi::leu_p (iterations,
			wi::set_bit_in_zero <widest_int>
			(GET_MODE_PRECISION (mode) - 1)))
	nonneg = 1;
      break;

      /* Abort if an invalid doloop pattern has been generated.  */
    default:
      gcc_unreachable ();
    }

  if (increment_count)
    count = doloop_simplify_count (loop, mode, count);

  /* Insert initialization of the count register into the loop header.  */
  start_sequence ();
  /* count has been already copied through copy_rtx.  */
  reset_used_flags (count);
  set_used_flags (condition);
  tmp = force_operand (count, counter_reg);
  convert_move (counter_reg, tmp, 1);
  sequence = get_insns ();
  unshare_all_rtl_in_chain (sequence);
  end_sequence ();
  emit_insn_after (sequence, BB_END (loop_preheader_edge (loop)->src));

  if (desc->noloop_assumptions)
    {
      rtx ass = copy_rtx (desc->noloop_assumptions);
      basic_block preheader = loop_preheader_edge (loop)->src;
      basic_block set_zero = split_edge (loop_preheader_edge (loop));
      basic_block new_preheader = split_edge (loop_preheader_edge (loop));
      edge te;

      /* Expand the condition testing the assumptions and if it does not pass,
	 reset the count register to 0.  */
      redirect_edge_and_branch_force (single_succ_edge (preheader), new_preheader);
      set_immediate_dominator (CDI_DOMINATORS, new_preheader, preheader);

      set_zero->count = profile_count::uninitialized ();

      te = single_succ_edge (preheader);
      for (; ass; ass = XEXP (ass, 1))
	if (!add_test (XEXP (ass, 0), &te, set_zero))
	  break;

      if (ass)
	{
	  /* We reached a condition that is always true.  This is very hard to
	     reproduce (such a loop does not roll, and thus it would most
	     likely get optimized out by some of the preceding optimizations).
	     In fact, I do not have any testcase for it.  However, it would
	     also be very hard to show that it is impossible, so we must
	     handle this case.  */
	  set_zero->count = preheader->count;
	}

      if (EDGE_COUNT (set_zero->preds) == 0)
	{
	  /* All the conditions were simplified to false, remove the
	     unreachable set_zero block.  */
	  delete_basic_block (set_zero);
	}
      else
	{
	  /* Reset the counter to zero in the set_zero block.  */
	  start_sequence ();
	  convert_move (counter_reg, noloop, 0);
	  sequence = get_insns ();
	  end_sequence ();
	  emit_insn_after (sequence, BB_END (set_zero));

	  set_immediate_dominator (CDI_DOMINATORS, set_zero,
				   recompute_dominator (CDI_DOMINATORS,
							set_zero));
	}

      set_immediate_dominator (CDI_DOMINATORS, new_preheader,
			       recompute_dominator (CDI_DOMINATORS,
						    new_preheader));
    }

  /* Some targets (eg, C4x) need to initialize special looping
     registers.  */
  if (targetm.have_doloop_begin ())
    if (rtx_insn *seq = targetm.gen_doloop_begin (counter_reg, doloop_seq))
      emit_insn_after (seq, BB_END (loop_preheader_edge (loop)->src));

  /* Insert the new low-overhead looping insn.  */
  emit_jump_insn_after (doloop_seq, BB_END (loop_end));
  jump_insn = BB_END (loop_end);
  jump_label = block_label (desc->in_edge->dest);
  JUMP_LABEL (jump_insn) = jump_label;
  LABEL_NUSES (jump_label)++;

  /* Ensure the right fallthru edge is marked, for case we have reversed
     the condition.  */
  desc->in_edge->flags &= ~EDGE_FALLTHRU;
  desc->out_edge->flags |= EDGE_FALLTHRU;

  /* Add a REG_NONNEG note if the actual or estimated maximum number
     of iterations is non-negative.  */
  if (nonneg)
    add_reg_note (jump_insn, REG_NONNEG, NULL_RTX);

  /* Update the REG_BR_PROB note.  */
  if (desc->in_edge->probability.initialized_p ())
    add_reg_br_prob_note (jump_insn, desc->in_edge->probability);
}

/* Called through note_stores.  */

static void
record_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
  bitmap mod = (bitmap)data;
  if (REG_P (x))
    {
      unsigned int regno = REGNO (x);
      if (HARD_REGISTER_P (x))
	{
	  unsigned int end_regno = end_hard_regno (GET_MODE (x), regno);
	  do
	    bitmap_set_bit (mod, regno);
	  while (++regno < end_regno);
	}
      else
	bitmap_set_bit (mod, regno);
    }
}

/* Process loop described by LOOP validating that the loop is suitable for
   conversion to use a low overhead looping instruction, replacing the jump
   insn where suitable.  Returns true if the loop was successfully
   modified.  */

static bool
doloop_optimize (class loop *loop)
{
  scalar_int_mode mode;
  rtx doloop_reg;
  rtx count;
  widest_int iterations, iterations_max;
  rtx_code_label *start_label;
  rtx condition;
  unsigned level;
  HOST_WIDE_INT est_niter;
  int max_cost;
  class niter_desc *desc;
  unsigned word_mode_size;
  unsigned HOST_WIDE_INT word_mode_max;
  int entered_at_top;

  if (dump_file)
    fprintf (dump_file, "Doloop: Processing loop %d.\n", loop->num);

  iv_analysis_loop_init (loop);

  /* Find the simple exit of a LOOP.  */
  desc = get_simple_loop_desc (loop);

  /* Check that loop is a candidate for a low-overhead looping insn.  */
  if (!doloop_valid_p (loop, desc))
    {
      if (dump_file)
	fprintf (dump_file,
		 "Doloop: The loop is not suitable.\n");
      return false;
    }
  mode = desc->mode;

  est_niter = get_estimated_loop_iterations_int (loop);
  if (est_niter == -1)
    est_niter = get_likely_max_loop_iterations_int (loop);

  if (est_niter >= 0 && est_niter < 3)
    {
      if (dump_file)
	fprintf (dump_file,
		 "Doloop: Too few iterations (%u) to be profitable.\n",
		 (unsigned int)est_niter);
      return false;
    }

  max_cost
    = COSTS_N_INSNS (param_max_iterations_computation_cost);
  if (set_src_cost (desc->niter_expr, mode, optimize_loop_for_speed_p (loop))
      > max_cost)
    {
      if (dump_file)
	fprintf (dump_file,
		 "Doloop: number of iterations too costly to compute.\n");
      return false;
    }

  if (desc->const_iter)
    iterations = widest_int::from (rtx_mode_t (desc->niter_expr, mode),
				   UNSIGNED);
  else
    iterations = 0;
  if (!get_max_loop_iterations (loop, &iterations_max))
    iterations_max = 0;
  level = get_loop_level (loop) + 1;
  entered_at_top = (loop->latch == desc->in_edge->dest
		    && contains_no_active_insn_p (loop->latch));
  if (!targetm.can_use_doloop_p (iterations, iterations_max, level,
				 entered_at_top))
    {
      if (dump_file)
	fprintf (dump_file, "Loop rejected by can_use_doloop_p.\n");
      return false;
    }

  /* Generate looping insn.  If the pattern FAILs then give up trying
     to modify the loop since there is some aspect the back-end does
     not like.  */
  count = copy_rtx (desc->niter_expr);
  start_label = block_label (desc->in_edge->dest);
  doloop_reg = gen_reg_rtx (mode);
  rtx_insn *doloop_seq = targetm.gen_doloop_end (doloop_reg, start_label);

  word_mode_size = GET_MODE_PRECISION (word_mode);
  word_mode_max = (HOST_WIDE_INT_1U << (word_mode_size - 1) << 1) - 1;
  if (! doloop_seq
      && mode != word_mode
      /* Before trying mode different from the one in that # of iterations is
	 computed, we must be sure that the number of iterations fits into
	 the new mode.  */
      && (word_mode_size >= GET_MODE_PRECISION (mode)
 	  || wi::leu_p (iterations_max, word_mode_max)))
    {
      if (word_mode_size > GET_MODE_PRECISION (mode))
	count = simplify_gen_unary (ZERO_EXTEND, word_mode, count, mode);
      else
	count = lowpart_subreg (word_mode, count, mode);
      PUT_MODE (doloop_reg, word_mode);
      doloop_seq = targetm.gen_doloop_end (doloop_reg, start_label);
    }
  if (! doloop_seq)
    {
      if (dump_file)
	fprintf (dump_file,
		 "Doloop: Target unwilling to use doloop pattern!\n");
      return false;
    }

  /* If multiple instructions were created, the last must be the
     jump instruction.  */
  rtx_insn *doloop_insn = doloop_seq;
  while (NEXT_INSN (doloop_insn) != NULL_RTX)
    doloop_insn = NEXT_INSN (doloop_insn);
  if (!JUMP_P (doloop_insn)
      || !(condition = doloop_condition_get (doloop_insn)))
    {
      if (dump_file)
	fprintf (dump_file, "Doloop: Unrecognizable doloop pattern!\n");
      return false;
    }

  /* Ensure that the new sequence doesn't clobber a register that
     is live at the end of the block.  */
  {
    bitmap modified = BITMAP_ALLOC (NULL);

    for (rtx_insn *i = doloop_seq; i != NULL; i = NEXT_INSN (i))
      note_stores (i, record_reg_sets, modified);

    basic_block loop_end = desc->out_edge->src;
    bool fail = bitmap_intersect_p (df_get_live_out (loop_end), modified);
    BITMAP_FREE (modified);

    if (fail)
      {
	if (dump_file)
	  fprintf (dump_file, "Doloop: doloop pattern clobbers live out\n");
	return false;
      }
  }

  doloop_modify (loop, desc, doloop_seq, condition, count);
  return true;
}

/* This is the main entry point.  Process all loops using doloop_optimize.  */

void
doloop_optimize_loops (void)
{
  if (optimize == 1)
    {
      df_live_add_problem ();
      df_live_set_all_dirty ();
    }

  for (auto loop : loops_list (cfun, 0))
    doloop_optimize (loop);

  if (optimize == 1)
    df_remove_problem (df_live);

  iv_analysis_done ();

  checking_verify_loop_structure ();
}