1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
|
/* Generic partial redundancy elimination with lazy code motion support.
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* These routines are meant to be used by various optimization
passes which can be modeled as lazy code motion problems.
Including, but not limited to:
* Traditional partial redundancy elimination.
* Placement of caller/caller register save/restores.
* Load/store motion.
* Copy motion.
* Conversion of flat register files to a stacked register
model.
* Dead load/store elimination.
These routines accept as input:
* Basic block information (number of blocks, lists of
predecessors and successors). Note the granularity
does not need to be basic block, they could be statements
or functions.
* Bitmaps of local properties (computed, transparent and
anticipatable expressions).
The output of these routines is bitmap of redundant computations
and a bitmap of optimal placement points. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"
#include "output.h"
#include "tm_p.h"
#include "function.h"
/* We want target macros for the mode switching code to be able to refer
to instruction attribute values. */
#include "insn-attr.h"
/* Edge based LCM routines. */
static void compute_antinout_edge (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
static void compute_earliest (struct edge_list *, int, sbitmap *, sbitmap *,
sbitmap *, sbitmap *, sbitmap *);
static void compute_laterin (struct edge_list *, sbitmap *, sbitmap *,
sbitmap *, sbitmap *);
static void compute_insert_delete (struct edge_list *edge_list, sbitmap *,
sbitmap *, sbitmap *, sbitmap *, sbitmap *);
/* Edge based LCM routines on a reverse flowgraph. */
static void compute_farthest (struct edge_list *, int, sbitmap *, sbitmap *,
sbitmap*, sbitmap *, sbitmap *);
static void compute_nearerout (struct edge_list *, sbitmap *, sbitmap *,
sbitmap *, sbitmap *);
static void compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *,
sbitmap *, sbitmap *, sbitmap *,
sbitmap *);
/* Edge based lcm routines. */
/* Compute expression anticipatability at entrance and exit of each block.
This is done based on the flow graph, and not on the pred-succ lists.
Other than that, its pretty much identical to compute_antinout. */
static void
compute_antinout_edge (sbitmap *antloc, sbitmap *transp, sbitmap *antin,
sbitmap *antout)
{
basic_block bb;
edge e;
basic_block *worklist, *qin, *qout, *qend;
unsigned int qlen;
edge_iterator ei;
/* Allocate a worklist array/queue. Entries are only added to the
list if they were not already on the list. So the size is
bounded by the number of basic blocks. */
qin = qout = worklist = XNEWVEC (basic_block, n_basic_blocks);
/* We want a maximal solution, so make an optimistic initialization of
ANTIN. */
sbitmap_vector_ones (antin, last_basic_block);
/* Put every block on the worklist; this is necessary because of the
optimistic initialization of ANTIN above. */
FOR_EACH_BB_REVERSE (bb)
{
*qin++ = bb;
bb->aux = bb;
}
qin = worklist;
qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
/* Mark blocks which are predecessors of the exit block so that we
can easily identify them below. */
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
e->src->aux = EXIT_BLOCK_PTR;
/* Iterate until the worklist is empty. */
while (qlen)
{
/* Take the first entry off the worklist. */
bb = *qout++;
qlen--;
if (qout >= qend)
qout = worklist;
if (bb->aux == EXIT_BLOCK_PTR)
/* Do not clear the aux field for blocks which are predecessors of
the EXIT block. That way we never add then to the worklist
again. */
sbitmap_zero (antout[bb->index]);
else
{
/* Clear the aux field of this block so that it can be added to
the worklist again if necessary. */
bb->aux = NULL;
sbitmap_intersection_of_succs (antout[bb->index], antin, bb->index);
}
if (sbitmap_a_or_b_and_c_cg (antin[bb->index], antloc[bb->index],
transp[bb->index], antout[bb->index]))
/* If the in state of this block changed, then we need
to add the predecessors of this block to the worklist
if they are not already on the worklist. */
FOR_EACH_EDGE (e, ei, bb->preds)
if (!e->src->aux && e->src != ENTRY_BLOCK_PTR)
{
*qin++ = e->src;
e->src->aux = e;
qlen++;
if (qin >= qend)
qin = worklist;
}
}
clear_aux_for_edges ();
clear_aux_for_blocks ();
free (worklist);
}
/* Compute the earliest vector for edge based lcm. */
static void
compute_earliest (struct edge_list *edge_list, int n_exprs, sbitmap *antin,
sbitmap *antout, sbitmap *avout, sbitmap *kill,
sbitmap *earliest)
{
sbitmap difference, temp_bitmap;
int x, num_edges;
basic_block pred, succ;
num_edges = NUM_EDGES (edge_list);
difference = sbitmap_alloc (n_exprs);
temp_bitmap = sbitmap_alloc (n_exprs);
for (x = 0; x < num_edges; x++)
{
pred = INDEX_EDGE_PRED_BB (edge_list, x);
succ = INDEX_EDGE_SUCC_BB (edge_list, x);
if (pred == ENTRY_BLOCK_PTR)
sbitmap_copy (earliest[x], antin[succ->index]);
else
{
if (succ == EXIT_BLOCK_PTR)
sbitmap_zero (earliest[x]);
else
{
sbitmap_difference (difference, antin[succ->index],
avout[pred->index]);
sbitmap_not (temp_bitmap, antout[pred->index]);
sbitmap_a_and_b_or_c (earliest[x], difference,
kill[pred->index], temp_bitmap);
}
}
}
sbitmap_free (temp_bitmap);
sbitmap_free (difference);
}
/* later(p,s) is dependent on the calculation of laterin(p).
laterin(p) is dependent on the calculation of later(p2,p).
laterin(ENTRY) is defined as all 0's
later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
If we progress in this manner, starting with all basic blocks
in the work list, anytime we change later(bb), we need to add
succs(bb) to the worklist if they are not already on the worklist.
Boundary conditions:
We prime the worklist all the normal basic blocks. The ENTRY block can
never be added to the worklist since it is never the successor of any
block. We explicitly prevent the EXIT block from being added to the
worklist.
We optimistically initialize LATER. That is the only time this routine
will compute LATER for an edge out of the entry block since the entry
block is never on the worklist. Thus, LATERIN is neither used nor
computed for the ENTRY block.
Since the EXIT block is never added to the worklist, we will neither
use nor compute LATERIN for the exit block. Edges which reach the
EXIT block are handled in the normal fashion inside the loop. However,
the insertion/deletion computation needs LATERIN(EXIT), so we have
to compute it. */
static void
compute_laterin (struct edge_list *edge_list, sbitmap *earliest,
sbitmap *antloc, sbitmap *later, sbitmap *laterin)
{
int num_edges, i;
edge e;
basic_block *worklist, *qin, *qout, *qend, bb;
unsigned int qlen;
edge_iterator ei;
num_edges = NUM_EDGES (edge_list);
/* Allocate a worklist array/queue. Entries are only added to the
list if they were not already on the list. So the size is
bounded by the number of basic blocks. */
qin = qout = worklist
= XNEWVEC (basic_block, n_basic_blocks);
/* Initialize a mapping from each edge to its index. */
for (i = 0; i < num_edges; i++)
INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
/* We want a maximal solution, so initially consider LATER true for
all edges. This allows propagation through a loop since the incoming
loop edge will have LATER set, so if all the other incoming edges
to the loop are set, then LATERIN will be set for the head of the
loop.
If the optimistic setting of LATER on that edge was incorrect (for
example the expression is ANTLOC in a block within the loop) then
this algorithm will detect it when we process the block at the head
of the optimistic edge. That will requeue the affected blocks. */
sbitmap_vector_ones (later, num_edges);
/* Note that even though we want an optimistic setting of LATER, we
do not want to be overly optimistic. Consider an outgoing edge from
the entry block. That edge should always have a LATER value the
same as EARLIEST for that edge. */
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
sbitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
/* Add all the blocks to the worklist. This prevents an early exit from
the loop given our optimistic initialization of LATER above. */
FOR_EACH_BB (bb)
{
*qin++ = bb;
bb->aux = bb;
}
/* Note that we do not use the last allocated element for our queue,
as EXIT_BLOCK is never inserted into it. */
qin = worklist;
qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
/* Iterate until the worklist is empty. */
while (qlen)
{
/* Take the first entry off the worklist. */
bb = *qout++;
bb->aux = NULL;
qlen--;
if (qout >= qend)
qout = worklist;
/* Compute the intersection of LATERIN for each incoming edge to B. */
sbitmap_ones (laterin[bb->index]);
FOR_EACH_EDGE (e, ei, bb->preds)
sbitmap_a_and_b (laterin[bb->index], laterin[bb->index],
later[(size_t)e->aux]);
/* Calculate LATER for all outgoing edges. */
FOR_EACH_EDGE (e, ei, bb->succs)
if (sbitmap_union_of_diff_cg (later[(size_t) e->aux],
earliest[(size_t) e->aux],
laterin[e->src->index],
antloc[e->src->index])
/* If LATER for an outgoing edge was changed, then we need
to add the target of the outgoing edge to the worklist. */
&& e->dest != EXIT_BLOCK_PTR && e->dest->aux == 0)
{
*qin++ = e->dest;
e->dest->aux = e;
qlen++;
if (qin >= qend)
qin = worklist;
}
}
/* Computation of insertion and deletion points requires computing LATERIN
for the EXIT block. We allocated an extra entry in the LATERIN array
for just this purpose. */
sbitmap_ones (laterin[last_basic_block]);
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
sbitmap_a_and_b (laterin[last_basic_block],
laterin[last_basic_block],
later[(size_t) e->aux]);
clear_aux_for_edges ();
free (worklist);
}
/* Compute the insertion and deletion points for edge based LCM. */
static void
compute_insert_delete (struct edge_list *edge_list, sbitmap *antloc,
sbitmap *later, sbitmap *laterin, sbitmap *insert,
sbitmap *delete)
{
int x;
basic_block bb;
FOR_EACH_BB (bb)
sbitmap_difference (delete[bb->index], antloc[bb->index],
laterin[bb->index]);
for (x = 0; x < NUM_EDGES (edge_list); x++)
{
basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
if (b == EXIT_BLOCK_PTR)
sbitmap_difference (insert[x], later[x], laterin[last_basic_block]);
else
sbitmap_difference (insert[x], later[x], laterin[b->index]);
}
}
/* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and
delete vectors for edge based LCM. Returns an edgelist which is used to
map the insert vector to what edge an expression should be inserted on. */
struct edge_list *
pre_edge_lcm (int n_exprs, sbitmap *transp,
sbitmap *avloc, sbitmap *antloc, sbitmap *kill,
sbitmap **insert, sbitmap **delete)
{
sbitmap *antin, *antout, *earliest;
sbitmap *avin, *avout;
sbitmap *later, *laterin;
struct edge_list *edge_list;
int num_edges;
edge_list = create_edge_list ();
num_edges = NUM_EDGES (edge_list);
#ifdef LCM_DEBUG_INFO
if (dump_file)
{
fprintf (dump_file, "Edge List:\n");
verify_edge_list (dump_file, edge_list);
print_edge_list (dump_file, edge_list);
dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block);
dump_sbitmap_vector (dump_file, "antloc", "", antloc, last_basic_block);
dump_sbitmap_vector (dump_file, "avloc", "", avloc, last_basic_block);
dump_sbitmap_vector (dump_file, "kill", "", kill, last_basic_block);
}
#endif
/* Compute global availability. */
avin = sbitmap_vector_alloc (last_basic_block, n_exprs);
avout = sbitmap_vector_alloc (last_basic_block, n_exprs);
compute_available (avloc, kill, avout, avin);
sbitmap_vector_free (avin);
/* Compute global anticipatability. */
antin = sbitmap_vector_alloc (last_basic_block, n_exprs);
antout = sbitmap_vector_alloc (last_basic_block, n_exprs);
compute_antinout_edge (antloc, transp, antin, antout);
#ifdef LCM_DEBUG_INFO
if (dump_file)
{
dump_sbitmap_vector (dump_file, "antin", "", antin, last_basic_block);
dump_sbitmap_vector (dump_file, "antout", "", antout, last_basic_block);
}
#endif
/* Compute earliestness. */
earliest = sbitmap_vector_alloc (num_edges, n_exprs);
compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
#ifdef LCM_DEBUG_INFO
if (dump_file)
dump_sbitmap_vector (dump_file, "earliest", "", earliest, num_edges);
#endif
sbitmap_vector_free (antout);
sbitmap_vector_free (antin);
sbitmap_vector_free (avout);
later = sbitmap_vector_alloc (num_edges, n_exprs);
/* Allocate an extra element for the exit block in the laterin vector. */
laterin = sbitmap_vector_alloc (last_basic_block + 1, n_exprs);
compute_laterin (edge_list, earliest, antloc, later, laterin);
#ifdef LCM_DEBUG_INFO
if (dump_file)
{
dump_sbitmap_vector (dump_file, "laterin", "", laterin, last_basic_block + 1);
dump_sbitmap_vector (dump_file, "later", "", later, num_edges);
}
#endif
sbitmap_vector_free (earliest);
*insert = sbitmap_vector_alloc (num_edges, n_exprs);
*delete = sbitmap_vector_alloc (last_basic_block, n_exprs);
compute_insert_delete (edge_list, antloc, later, laterin, *insert, *delete);
sbitmap_vector_free (laterin);
sbitmap_vector_free (later);
#ifdef LCM_DEBUG_INFO
if (dump_file)
{
dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
dump_sbitmap_vector (dump_file, "pre_delete_map", "", *delete,
last_basic_block);
}
#endif
return edge_list;
}
/* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
Return the number of passes we performed to iterate to a solution. */
void
compute_available (sbitmap *avloc, sbitmap *kill, sbitmap *avout,
sbitmap *avin)
{
edge e;
basic_block *worklist, *qin, *qout, *qend, bb;
unsigned int qlen;
edge_iterator ei;
/* Allocate a worklist array/queue. Entries are only added to the
list if they were not already on the list. So the size is
bounded by the number of basic blocks. */
qin = qout = worklist =
XNEWVEC (basic_block, n_basic_blocks - NUM_FIXED_BLOCKS);
/* We want a maximal solution. */
sbitmap_vector_ones (avout, last_basic_block);
/* Put every block on the worklist; this is necessary because of the
optimistic initialization of AVOUT above. */
FOR_EACH_BB (bb)
{
*qin++ = bb;
bb->aux = bb;
}
qin = worklist;
qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
/* Mark blocks which are successors of the entry block so that we
can easily identify them below. */
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
e->dest->aux = ENTRY_BLOCK_PTR;
/* Iterate until the worklist is empty. */
while (qlen)
{
/* Take the first entry off the worklist. */
bb = *qout++;
qlen--;
if (qout >= qend)
qout = worklist;
/* If one of the predecessor blocks is the ENTRY block, then the
intersection of avouts is the null set. We can identify such blocks
by the special value in the AUX field in the block structure. */
if (bb->aux == ENTRY_BLOCK_PTR)
/* Do not clear the aux field for blocks which are successors of the
ENTRY block. That way we never add then to the worklist again. */
sbitmap_zero (avin[bb->index]);
else
{
/* Clear the aux field of this block so that it can be added to
the worklist again if necessary. */
bb->aux = NULL;
sbitmap_intersection_of_preds (avin[bb->index], avout, bb->index);
}
if (sbitmap_union_of_diff_cg (avout[bb->index], avloc[bb->index],
avin[bb->index], kill[bb->index]))
/* If the out state of this block changed, then we need
to add the successors of this block to the worklist
if they are not already on the worklist. */
FOR_EACH_EDGE (e, ei, bb->succs)
if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR)
{
*qin++ = e->dest;
e->dest->aux = e;
qlen++;
if (qin >= qend)
qin = worklist;
}
}
clear_aux_for_edges ();
clear_aux_for_blocks ();
free (worklist);
}
/* Compute the farthest vector for edge based lcm. */
static void
compute_farthest (struct edge_list *edge_list, int n_exprs,
sbitmap *st_avout, sbitmap *st_avin, sbitmap *st_antin,
sbitmap *kill, sbitmap *farthest)
{
sbitmap difference, temp_bitmap;
int x, num_edges;
basic_block pred, succ;
num_edges = NUM_EDGES (edge_list);
difference = sbitmap_alloc (n_exprs);
temp_bitmap = sbitmap_alloc (n_exprs);
for (x = 0; x < num_edges; x++)
{
pred = INDEX_EDGE_PRED_BB (edge_list, x);
succ = INDEX_EDGE_SUCC_BB (edge_list, x);
if (succ == EXIT_BLOCK_PTR)
sbitmap_copy (farthest[x], st_avout[pred->index]);
else
{
if (pred == ENTRY_BLOCK_PTR)
sbitmap_zero (farthest[x]);
else
{
sbitmap_difference (difference, st_avout[pred->index],
st_antin[succ->index]);
sbitmap_not (temp_bitmap, st_avin[succ->index]);
sbitmap_a_and_b_or_c (farthest[x], difference,
kill[succ->index], temp_bitmap);
}
}
}
sbitmap_free (temp_bitmap);
sbitmap_free (difference);
}
/* Compute nearer and nearerout vectors for edge based lcm.
This is the mirror of compute_laterin, additional comments on the
implementation can be found before compute_laterin. */
static void
compute_nearerout (struct edge_list *edge_list, sbitmap *farthest,
sbitmap *st_avloc, sbitmap *nearer, sbitmap *nearerout)
{
int num_edges, i;
edge e;
basic_block *worklist, *tos, bb;
edge_iterator ei;
num_edges = NUM_EDGES (edge_list);
/* Allocate a worklist array/queue. Entries are only added to the
list if they were not already on the list. So the size is
bounded by the number of basic blocks. */
tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
/* Initialize NEARER for each edge and build a mapping from an edge to
its index. */
for (i = 0; i < num_edges; i++)
INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
/* We want a maximal solution. */
sbitmap_vector_ones (nearer, num_edges);
/* Note that even though we want an optimistic setting of NEARER, we
do not want to be overly optimistic. Consider an incoming edge to
the exit block. That edge should always have a NEARER value the
same as FARTHEST for that edge. */
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
sbitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
/* Add all the blocks to the worklist. This prevents an early exit
from the loop given our optimistic initialization of NEARER. */
FOR_EACH_BB (bb)
{
*tos++ = bb;
bb->aux = bb;
}
/* Iterate until the worklist is empty. */
while (tos != worklist)
{
/* Take the first entry off the worklist. */
bb = *--tos;
bb->aux = NULL;
/* Compute the intersection of NEARER for each outgoing edge from B. */
sbitmap_ones (nearerout[bb->index]);
FOR_EACH_EDGE (e, ei, bb->succs)
sbitmap_a_and_b (nearerout[bb->index], nearerout[bb->index],
nearer[(size_t) e->aux]);
/* Calculate NEARER for all incoming edges. */
FOR_EACH_EDGE (e, ei, bb->preds)
if (sbitmap_union_of_diff_cg (nearer[(size_t) e->aux],
farthest[(size_t) e->aux],
nearerout[e->dest->index],
st_avloc[e->dest->index])
/* If NEARER for an incoming edge was changed, then we need
to add the source of the incoming edge to the worklist. */
&& e->src != ENTRY_BLOCK_PTR && e->src->aux == 0)
{
*tos++ = e->src;
e->src->aux = e;
}
}
/* Computation of insertion and deletion points requires computing NEAREROUT
for the ENTRY block. We allocated an extra entry in the NEAREROUT array
for just this purpose. */
sbitmap_ones (nearerout[last_basic_block]);
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
sbitmap_a_and_b (nearerout[last_basic_block],
nearerout[last_basic_block],
nearer[(size_t) e->aux]);
clear_aux_for_edges ();
free (tos);
}
/* Compute the insertion and deletion points for edge based LCM. */
static void
compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *st_avloc,
sbitmap *nearer, sbitmap *nearerout,
sbitmap *insert, sbitmap *delete)
{
int x;
basic_block bb;
FOR_EACH_BB (bb)
sbitmap_difference (delete[bb->index], st_avloc[bb->index],
nearerout[bb->index]);
for (x = 0; x < NUM_EDGES (edge_list); x++)
{
basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
if (b == ENTRY_BLOCK_PTR)
sbitmap_difference (insert[x], nearer[x], nearerout[last_basic_block]);
else
sbitmap_difference (insert[x], nearer[x], nearerout[b->index]);
}
}
/* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
insert and delete vectors for edge based reverse LCM. Returns an
edgelist which is used to map the insert vector to what edge
an expression should be inserted on. */
struct edge_list *
pre_edge_rev_lcm (int n_exprs, sbitmap *transp,
sbitmap *st_avloc, sbitmap *st_antloc, sbitmap *kill,
sbitmap **insert, sbitmap **delete)
{
sbitmap *st_antin, *st_antout;
sbitmap *st_avout, *st_avin, *farthest;
sbitmap *nearer, *nearerout;
struct edge_list *edge_list;
int num_edges;
edge_list = create_edge_list ();
num_edges = NUM_EDGES (edge_list);
st_antin = sbitmap_vector_alloc (last_basic_block, n_exprs);
st_antout = sbitmap_vector_alloc (last_basic_block, n_exprs);
sbitmap_vector_zero (st_antin, last_basic_block);
sbitmap_vector_zero (st_antout, last_basic_block);
compute_antinout_edge (st_antloc, transp, st_antin, st_antout);
/* Compute global anticipatability. */
st_avout = sbitmap_vector_alloc (last_basic_block, n_exprs);
st_avin = sbitmap_vector_alloc (last_basic_block, n_exprs);
compute_available (st_avloc, kill, st_avout, st_avin);
#ifdef LCM_DEBUG_INFO
if (dump_file)
{
fprintf (dump_file, "Edge List:\n");
verify_edge_list (dump_file, edge_list);
print_edge_list (dump_file, edge_list);
dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block);
dump_sbitmap_vector (dump_file, "st_avloc", "", st_avloc, last_basic_block);
dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
dump_sbitmap_vector (dump_file, "st_antin", "", st_antin, last_basic_block);
dump_sbitmap_vector (dump_file, "st_antout", "", st_antout, last_basic_block);
dump_sbitmap_vector (dump_file, "st_kill", "", kill, last_basic_block);
}
#endif
#ifdef LCM_DEBUG_INFO
if (dump_file)
{
dump_sbitmap_vector (dump_file, "st_avout", "", st_avout, last_basic_block);
dump_sbitmap_vector (dump_file, "st_avin", "", st_avin, last_basic_block);
}
#endif
/* Compute farthestness. */
farthest = sbitmap_vector_alloc (num_edges, n_exprs);
compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
kill, farthest);
#ifdef LCM_DEBUG_INFO
if (dump_file)
dump_sbitmap_vector (dump_file, "farthest", "", farthest, num_edges);
#endif
sbitmap_vector_free (st_antin);
sbitmap_vector_free (st_antout);
sbitmap_vector_free (st_avin);
sbitmap_vector_free (st_avout);
nearer = sbitmap_vector_alloc (num_edges, n_exprs);
/* Allocate an extra element for the entry block. */
nearerout = sbitmap_vector_alloc (last_basic_block + 1, n_exprs);
compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
#ifdef LCM_DEBUG_INFO
if (dump_file)
{
dump_sbitmap_vector (dump_file, "nearerout", "", nearerout,
last_basic_block + 1);
dump_sbitmap_vector (dump_file, "nearer", "", nearer, num_edges);
}
#endif
sbitmap_vector_free (farthest);
*insert = sbitmap_vector_alloc (num_edges, n_exprs);
*delete = sbitmap_vector_alloc (last_basic_block, n_exprs);
compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
*insert, *delete);
sbitmap_vector_free (nearerout);
sbitmap_vector_free (nearer);
#ifdef LCM_DEBUG_INFO
if (dump_file)
{
dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
dump_sbitmap_vector (dump_file, "pre_delete_map", "", *delete,
last_basic_block);
}
#endif
return edge_list;
}
|