1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
|
.. Copyright (C) 2014-2022 Free Software Foundation, Inc.
Originally contributed by David Malcolm <dmalcolm@redhat.com>
This is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see
<https://www.gnu.org/licenses/>.
.. default-domain:: c
Expressions
===========
Rvalues
-------
.. type:: gcc_jit_rvalue
A :c:type:`gcc_jit_rvalue *` is an expression that can be computed.
It can be simple, e.g.:
* an integer value e.g. `0` or `42`
* a string literal e.g. `"Hello world"`
* a variable e.g. `i`. These are also lvalues (see below).
or compound e.g.:
* a unary expression e.g. `!cond`
* a binary expression e.g. `(a + b)`
* a function call e.g. `get_distance (&player_ship, &target)`
* etc.
Every rvalue has an associated type, and the API will check to ensure
that types match up correctly (otherwise the context will emit an error).
.. function:: gcc_jit_type *gcc_jit_rvalue_get_type (gcc_jit_rvalue *rvalue)
Get the type of this rvalue.
.. function:: gcc_jit_object *gcc_jit_rvalue_as_object (gcc_jit_rvalue *rvalue)
Upcast the given rvalue to be an object.
Simple expressions
******************
.. function:: gcc_jit_rvalue *\
gcc_jit_context_new_rvalue_from_int (gcc_jit_context *ctxt, \
gcc_jit_type *numeric_type, \
int value)
Given a numeric type (integer or floating point), build an rvalue for
the given constant :c:type:`int` value.
.. function:: gcc_jit_rvalue *\
gcc_jit_context_new_rvalue_from_long (gcc_jit_context *ctxt, \
gcc_jit_type *numeric_type, \
long value)
Given a numeric type (integer or floating point), build an rvalue for
the given constant :c:type:`long` value.
.. function:: gcc_jit_rvalue *gcc_jit_context_zero (gcc_jit_context *ctxt, \
gcc_jit_type *numeric_type)
Given a numeric type (integer or floating point), get the rvalue for
zero. Essentially this is just a shortcut for:
.. code-block:: c
gcc_jit_context_new_rvalue_from_int (ctxt, numeric_type, 0)
.. function:: gcc_jit_rvalue *gcc_jit_context_one (gcc_jit_context *ctxt, \
gcc_jit_type *numeric_type)
Given a numeric type (integer or floating point), get the rvalue for
one. Essentially this is just a shortcut for:
.. code-block:: c
gcc_jit_context_new_rvalue_from_int (ctxt, numeric_type, 1)
.. function:: gcc_jit_rvalue *\
gcc_jit_context_new_rvalue_from_double (gcc_jit_context *ctxt, \
gcc_jit_type *numeric_type, \
double value)
Given a numeric type (integer or floating point), build an rvalue for
the given constant :c:type:`double` value.
.. function:: gcc_jit_rvalue *\
gcc_jit_context_new_rvalue_from_ptr (gcc_jit_context *ctxt, \
gcc_jit_type *pointer_type, \
void *value)
Given a pointer type, build an rvalue for the given address.
.. function:: gcc_jit_rvalue *gcc_jit_context_null (gcc_jit_context *ctxt, \
gcc_jit_type *pointer_type)
Given a pointer type, build an rvalue for ``NULL``. Essentially this
is just a shortcut for:
.. code-block:: c
gcc_jit_context_new_rvalue_from_ptr (ctxt, pointer_type, NULL)
.. function:: gcc_jit_rvalue *\
gcc_jit_context_new_string_literal (gcc_jit_context *ctxt, \
const char *value)
Generate an rvalue for the given NIL-terminated string, of type
:c:data:`GCC_JIT_TYPE_CONST_CHAR_PTR`.
The parameter ``value`` must be non-NULL. The call takes a copy of the
underlying string, so it is valid to pass in a pointer to an on-stack
buffer.
Constructor expressions
***********************
The following functions make constructors for array, struct and union
types.
The constructor rvalue can be used for assignment to locals.
It can be used to initialize global variables with
:func:`gcc_jit_global_set_initializer_rvalue`. It can also be used as a
temporary value for function calls and return values, but its address
can't be taken.
Note that arrays in libgccjit do not collapse to pointers like in
C. I.e. if an array constructor is used as e.g. a return value, the whole
array would be returned by value - array constructors can be assigned to
array variables.
The constructor can contain nested constructors.
Note that a string literal rvalue can't be used to construct a char array;
the latter needs one rvalue for each char.
These entrypoints were added in :ref:`LIBGCCJIT_ABI_19`; you can test for
their presence using:
.. code-block:: c
#ifdef LIBGCCJIT_HAVE_CTORS
.. function:: gcc_jit_rvalue *\
gcc_jit_context_new_array_constructor (gcc_jit_context *ctxt,\
gcc_jit_location *loc,\
gcc_jit_type *type,\
size_t num_values,\
gcc_jit_rvalue **values)
Create a constructor for an array as an rvalue.
Returns NULL on error. ``values`` are copied and
do not have to outlive the context.
``type`` specifies what the constructor will build and has to be
an array.
``num_values`` specifies the number of elements in ``values`` and
it can't have more elements than the array type.
Each value in ``values`` sets the corresponding value in the array.
If the array type itself has more elements than ``values``, the
left-over elements will be zeroed.
Each value in ``values`` need to be the same unqualified type as the
array type's element type.
If ``num_values`` is 0, the ``values`` parameter will be
ignored and zero initialization will be used.
This entrypoint was added in :ref:`LIBGCCJIT_ABI_19`; you can test for its
presence using:
.. code-block:: c
#ifdef LIBGCCJIT_HAVE_CTORS
.. function:: gcc_jit_rvalue *\
gcc_jit_context_new_struct_constructor (gcc_jit_context *ctxt,\
gcc_jit_location *loc,\
gcc_jit_type *type,\
size_t num_values,\
gcc_jit_field **fields,\
gcc_jit_rvalue **value)
Create a constructor for a struct as an rvalue.
Returns NULL on error. The two parameter arrays are copied and
do not have to outlive the context.
``type`` specifies what the constructor will build and has to be
a struct.
``num_values`` specifies the number of elements in ``values``.
``fields`` need to have the same length as ``values``, or be NULL.
If ``fields`` is null, the values are applied in definition order.
Otherwise, each field in ``fields`` specifies which field in the struct to
set to the corresponding value in ``values``. ``fields`` and ``values``
are paired by index.
The fields in ``fields`` have to be in definition order, but there
can be gaps. Any field in the struct that is not specified in
``fields`` will be zeroed.
The fields in ``fields`` need to be the same objects that were used
to create the struct.
Each value has to have have the same unqualified type as the field
it is applied to.
A NULL value element in ``values`` is a shorthand for zero initialization
of the corresponding field.
If ``num_values`` is 0, the array parameters will be
ignored and zero initialization will be used.
This entrypoint was added in :ref:`LIBGCCJIT_ABI_19`; you can test for its
presence using:
.. code-block:: c
#ifdef LIBGCCJIT_HAVE_CTORS
.. function:: gcc_jit_rvalue *\
gcc_jit_context_new_union_constructor (gcc_jit_context *ctxt,\
gcc_jit_location *loc,\
gcc_jit_type *type,\
gcc_jit_field *field,\
gcc_jit_rvalue *value)
Create a constructor for a union as an rvalue.
Returns NULL on error.
``type`` specifies what the constructor will build and has to be
an union.
``field`` specifies which field to set. If it is NULL, the first
field in the union will be set.``field`` need to be the same object
that were used to create the union.
``value`` specifies what value to set the corresponding field to.
If ``value`` is NULL, zero initialization will be used.
Each value has to have have the same unqualified type as the field
it is applied to.
This entrypoint was added in :ref:`LIBGCCJIT_ABI_19`; you can test for its
presence using:
.. code-block:: c
#ifdef LIBGCCJIT_HAVE_CTORS
Vector expressions
******************
.. function:: gcc_jit_rvalue * \
gcc_jit_context_new_rvalue_from_vector (gcc_jit_context *ctxt, \
gcc_jit_location *loc, \
gcc_jit_type *vec_type, \
size_t num_elements, \
gcc_jit_rvalue **elements)
Build a vector rvalue from an array of elements.
"vec_type" should be a vector type, created using
:func:`gcc_jit_type_get_vector`.
"num_elements" should match that of the vector type.
This entrypoint was added in :ref:`LIBGCCJIT_ABI_10`; you can test for
its presence using
.. code-block:: c
#ifdef LIBGCCJIT_HAVE_gcc_jit_context_new_rvalue_from_vector
Unary Operations
****************
.. function:: gcc_jit_rvalue * \
gcc_jit_context_new_unary_op (gcc_jit_context *ctxt, \
gcc_jit_location *loc, \
enum gcc_jit_unary_op op, \
gcc_jit_type *result_type, \
gcc_jit_rvalue *rvalue)
Build a unary operation out of an input rvalue.
The parameter ``result_type`` must be a numeric type.
.. type:: enum gcc_jit_unary_op
The available unary operations are:
========================================== ============
Unary Operation C equivalent
========================================== ============
:c:macro:`GCC_JIT_UNARY_OP_MINUS` `-(EXPR)`
:c:macro:`GCC_JIT_UNARY_OP_BITWISE_NEGATE` `~(EXPR)`
:c:macro:`GCC_JIT_UNARY_OP_LOGICAL_NEGATE` `!(EXPR)`
:c:macro:`GCC_JIT_UNARY_OP_ABS` `abs (EXPR)`
========================================== ============
.. c:macro:: GCC_JIT_UNARY_OP_MINUS
Negate an arithmetic value; analogous to:
.. code-block:: c
-(EXPR)
in C.
.. c:macro:: GCC_JIT_UNARY_OP_BITWISE_NEGATE
Bitwise negation of an integer value (one's complement); analogous
to:
.. code-block:: c
~(EXPR)
in C.
.. c:macro:: GCC_JIT_UNARY_OP_LOGICAL_NEGATE
Logical negation of an arithmetic or pointer value; analogous to:
.. code-block:: c
!(EXPR)
in C.
.. c:macro:: GCC_JIT_UNARY_OP_ABS
Absolute value of an arithmetic expression; analogous to:
.. code-block:: c
abs (EXPR)
in C.
Binary Operations
*****************
.. function:: gcc_jit_rvalue *gcc_jit_context_new_binary_op (gcc_jit_context *ctxt, \
gcc_jit_location *loc, \
enum gcc_jit_binary_op op, \
gcc_jit_type *result_type, \
gcc_jit_rvalue *a, gcc_jit_rvalue *b)
Build a binary operation out of two constituent rvalues.
The parameter ``result_type`` must be a numeric type.
.. type:: enum gcc_jit_binary_op
The available binary operations are:
======================================== ============
Binary Operation C equivalent
======================================== ============
:c:macro:`GCC_JIT_BINARY_OP_PLUS` `x + y`
:c:macro:`GCC_JIT_BINARY_OP_MINUS` `x - y`
:c:macro:`GCC_JIT_BINARY_OP_MULT` `x * y`
:c:macro:`GCC_JIT_BINARY_OP_DIVIDE` `x / y`
:c:macro:`GCC_JIT_BINARY_OP_MODULO` `x % y`
:c:macro:`GCC_JIT_BINARY_OP_BITWISE_AND` `x & y`
:c:macro:`GCC_JIT_BINARY_OP_BITWISE_XOR` `x ^ y`
:c:macro:`GCC_JIT_BINARY_OP_BITWISE_OR` `x | y`
:c:macro:`GCC_JIT_BINARY_OP_LOGICAL_AND` `x && y`
:c:macro:`GCC_JIT_BINARY_OP_LOGICAL_OR` `x || y`
:c:macro:`GCC_JIT_BINARY_OP_LSHIFT` `x << y`
:c:macro:`GCC_JIT_BINARY_OP_RSHIFT` `x >> y`
======================================== ============
.. c:macro:: GCC_JIT_BINARY_OP_PLUS
Addition of arithmetic values; analogous to:
.. code-block:: c
(EXPR_A) + (EXPR_B)
in C.
For pointer addition, use :c:func:`gcc_jit_context_new_array_access`.
.. c:macro:: GCC_JIT_BINARY_OP_MINUS
Subtraction of arithmetic values; analogous to:
.. code-block:: c
(EXPR_A) - (EXPR_B)
in C.
.. c:macro:: GCC_JIT_BINARY_OP_MULT
Multiplication of a pair of arithmetic values; analogous to:
.. code-block:: c
(EXPR_A) * (EXPR_B)
in C.
.. c:macro:: GCC_JIT_BINARY_OP_DIVIDE
Quotient of division of arithmetic values; analogous to:
.. code-block:: c
(EXPR_A) / (EXPR_B)
in C.
The result type affects the kind of division: if the result type is
integer-based, then the result is truncated towards zero, whereas
a floating-point result type indicates floating-point division.
.. c:macro:: GCC_JIT_BINARY_OP_MODULO
Remainder of division of arithmetic values; analogous to:
.. code-block:: c
(EXPR_A) % (EXPR_B)
in C.
.. c:macro:: GCC_JIT_BINARY_OP_BITWISE_AND
Bitwise AND; analogous to:
.. code-block:: c
(EXPR_A) & (EXPR_B)
in C.
.. c:macro:: GCC_JIT_BINARY_OP_BITWISE_XOR
Bitwise exclusive OR; analogous to:
.. code-block:: c
(EXPR_A) ^ (EXPR_B)
in C.
.. c:macro:: GCC_JIT_BINARY_OP_BITWISE_OR
Bitwise inclusive OR; analogous to:
.. code-block:: c
(EXPR_A) | (EXPR_B)
in C.
.. c:macro:: GCC_JIT_BINARY_OP_LOGICAL_AND
Logical AND; analogous to:
.. code-block:: c
(EXPR_A) && (EXPR_B)
in C.
.. c:macro:: GCC_JIT_BINARY_OP_LOGICAL_OR
Logical OR; analogous to:
.. code-block:: c
(EXPR_A) || (EXPR_B)
in C.
.. c:macro:: GCC_JIT_BINARY_OP_LSHIFT
Left shift; analogous to:
.. code-block:: c
(EXPR_A) << (EXPR_B)
in C.
.. c:macro:: GCC_JIT_BINARY_OP_RSHIFT
Right shift; analogous to:
.. code-block:: c
(EXPR_A) >> (EXPR_B)
in C.
Comparisons
***********
.. function:: gcc_jit_rvalue *\
gcc_jit_context_new_comparison (gcc_jit_context *ctxt,\
gcc_jit_location *loc,\
enum gcc_jit_comparison op,\
gcc_jit_rvalue *a, gcc_jit_rvalue *b)
Build a boolean rvalue out of the comparison of two other rvalues.
.. type:: enum gcc_jit_comparison
======================================= ============
Comparison C equivalent
======================================= ============
:c:macro:`GCC_JIT_COMPARISON_EQ` `x == y`
:c:macro:`GCC_JIT_COMPARISON_NE` `x != y`
:c:macro:`GCC_JIT_COMPARISON_LT` `x < y`
:c:macro:`GCC_JIT_COMPARISON_LE` `x <= y`
:c:macro:`GCC_JIT_COMPARISON_GT` `x > y`
:c:macro:`GCC_JIT_COMPARISON_GE` `x >= y`
======================================= ============
Function calls
**************
.. function:: gcc_jit_rvalue *\
gcc_jit_context_new_call (gcc_jit_context *ctxt,\
gcc_jit_location *loc,\
gcc_jit_function *func,\
int numargs , gcc_jit_rvalue **args)
Given a function and the given table of argument rvalues, construct a
call to the function, with the result as an rvalue.
.. note::
:c:func:`gcc_jit_context_new_call` merely builds a
:c:type:`gcc_jit_rvalue` i.e. an expression that can be evaluated,
perhaps as part of a more complicated expression.
The call *won't* happen unless you add a statement to a function
that evaluates the expression.
For example, if you want to call a function and discard the result
(or to call a function with ``void`` return type), use
:c:func:`gcc_jit_block_add_eval`:
.. code-block:: c
/* Add "(void)printf (arg0, arg1);". */
gcc_jit_block_add_eval (
block, NULL,
gcc_jit_context_new_call (
ctxt,
NULL,
printf_func,
2, args));
.. function:: gcc_jit_rvalue *\
gcc_jit_context_new_call_through_ptr (gcc_jit_context *ctxt,\
gcc_jit_location *loc,\
gcc_jit_rvalue *fn_ptr,\
int numargs, \
gcc_jit_rvalue **args)
Given an rvalue of function pointer type (e.g. from
:c:func:`gcc_jit_context_new_function_ptr_type`), and the given table of
argument rvalues, construct a call to the function pointer, with the
result as an rvalue.
.. note::
The same caveat as for :c:func:`gcc_jit_context_new_call` applies.
.. function:: void\
gcc_jit_rvalue_set_bool_require_tail_call (gcc_jit_rvalue *call,\
int require_tail_call)
Given an :c:type:`gcc_jit_rvalue *` for a call created through
:c:func:`gcc_jit_context_new_call` or
:c:func:`gcc_jit_context_new_call_through_ptr`, mark/clear the
call as needing tail-call optimization. The optimizer will
attempt to optimize the call into a jump instruction; if it is
unable to do do, an error will be emitted.
This may be useful when implementing functions that use the
continuation-passing style (e.g. for functional programming
languages), in which every function "returns" by calling a
"continuation" function pointer. This call must be
guaranteed to be implemented as a jump, otherwise the program
could consume an arbitrary amount of stack space as it executed.
This entrypoint was added in :ref:`LIBGCCJIT_ABI_6`; you can test for
its presence using
.. code-block:: c
#ifdef LIBGCCJIT_HAVE_gcc_jit_rvalue_set_bool_require_tail_call
Function pointers
*****************
Function pointers can be obtained:
* from a :c:type:`gcc_jit_function` using
:c:func:`gcc_jit_function_get_address`, or
* from an existing function using
:c:func:`gcc_jit_context_new_rvalue_from_ptr`,
using a function pointer type obtained using
:c:func:`gcc_jit_context_new_function_ptr_type`.
Type-coercion
*************
.. function:: gcc_jit_rvalue *\
gcc_jit_context_new_cast (gcc_jit_context *ctxt,\
gcc_jit_location *loc,\
gcc_jit_rvalue *rvalue,\
gcc_jit_type *type)
Given an rvalue of T, construct another rvalue of another type.
Currently only a limited set of conversions are possible:
* int <-> float
* int <-> bool
* P* <-> Q*, for pointer types P and Q
Lvalues
-------
.. type:: gcc_jit_lvalue
An lvalue is something that can of the *left*-hand side of an assignment:
a storage area (such as a variable). It is also usable as an rvalue,
where the rvalue is computed by reading from the storage area.
.. function:: gcc_jit_object *\
gcc_jit_lvalue_as_object (gcc_jit_lvalue *lvalue)
Upcast an lvalue to be an object.
.. function:: gcc_jit_rvalue *\
gcc_jit_lvalue_as_rvalue (gcc_jit_lvalue *lvalue)
Upcast an lvalue to be an rvalue.
.. function:: gcc_jit_rvalue *\
gcc_jit_lvalue_get_address (gcc_jit_lvalue *lvalue,\
gcc_jit_location *loc)
Take the address of an lvalue; analogous to:
.. code-block:: c
&(EXPR)
in C.
.. function:: void\
gcc_jit_lvalue_set_tls_model (gcc_jit_lvalue *lvalue,\
enum gcc_jit_tls_model model)
Make a variable a thread-local variable.
The "model" parameter determines the thread-local storage model of the "lvalue":
.. type:: enum gcc_jit_tls_model
.. c:macro:: GCC_JIT_TLS_MODEL_NONE
Don't set the TLS model.
.. c:macro:: GCC_JIT_TLS_MODEL_GLOBAL_DYNAMIC
.. c:macro:: GCC_JIT_TLS_MODEL_LOCAL_DYNAMIC
.. c:macro:: GCC_JIT_TLS_MODEL_INITIAL_EXEC
.. c:macro:: GCC_JIT_TLS_MODEL_LOCAL_EXEC
This is analogous to:
.. code-block:: c
_Thread_local int foo __attribute__ ((tls_model("MODEL")));
in C.
This entrypoint was added in :ref:`LIBGCCJIT_ABI_17`; you can test for
its presence using
.. code-block:: c
#ifdef LIBGCCJIT_HAVE_gcc_jit_lvalue_set_tls_model
.. function:: void
gcc_jit_lvalue_set_link_section (gcc_jit_lvalue *lvalue,
const char *section_name)
Set the link section of a variable.
The parameter ``section_name`` must be non-NULL and must contain the
leading dot. Analogous to:
.. code-block:: c
int variable __attribute__((section(".section")));
in C.
This entrypoint was added in :ref:`LIBGCCJIT_ABI_18`; you can test for
its presence using
.. code-block:: c
#ifdef LIBGCCJIT_HAVE_gcc_jit_lvalue_set_link_section
Global variables
****************
.. function:: gcc_jit_lvalue *\
gcc_jit_context_new_global (gcc_jit_context *ctxt,\
gcc_jit_location *loc,\
enum gcc_jit_global_kind kind,\
gcc_jit_type *type,\
const char *name)
Add a new global variable of the given type and name to the context.
The parameter ``type`` must be non-`void`.
The parameter ``name`` must be non-NULL. The call takes a copy of the
underlying string, so it is valid to pass in a pointer to an on-stack
buffer.
The "kind" parameter determines the visibility of the "global" outside
of the :c:type:`gcc_jit_result`:
.. type:: enum gcc_jit_global_kind
.. c:macro:: GCC_JIT_GLOBAL_EXPORTED
Global is defined by the client code and is visible
by name outside of this JIT context via
:c:func:`gcc_jit_result_get_global` (and this value is required for
the global to be accessible via that entrypoint).
.. c:macro:: GCC_JIT_GLOBAL_INTERNAL
Global is defined by the client code, but is invisible
outside of it. Analogous to a "static" global within a .c file.
Specifically, the variable will only be visible within this
context and within child contexts.
.. c:macro:: GCC_JIT_GLOBAL_IMPORTED
Global is not defined by the client code; we're merely
referring to it. Analogous to using an "extern" global from a
header file.
.. function:: gcc_jit_lvalue *\
gcc_jit_global_set_initializer (gcc_jit_lvalue *global,\
const void *blob,\
size_t num_bytes)
Set an initializer for ``global`` using the memory content pointed
by ``blob`` for ``num_bytes``. ``global`` must be an array of an
integral type. Return the global itself.
The parameter ``blob`` must be non-NULL. The call copies the memory
pointed by ``blob`` for ``num_bytes`` bytes, so it is valid to pass
in a pointer to an on-stack buffer. The content will be stored in
the compilation unit and used as initialization value of the array.
This entrypoint was added in :ref:`LIBGCCJIT_ABI_14`; you can test for
its presence using
.. code-block:: c
#ifdef LIBGCCJIT_HAVE_gcc_jit_global_set_initializer
.. function:: gcc_jit_lvalue *\
gcc_jit_global_set_initializer_rvalue (gcc_jit_lvalue *global,
gcc_jit_rvalue *init_value)
Set the initial value of a global with an rvalue.
The rvalue needs to be a constant expression, e.g. no function calls.
The global can't have the ``kind`` :ref:`GCC_JIT_GLOBAL_IMPORTED`.
As a non-comprehensive example it is OK to do the equivalent of:
.. code-block:: c
int foo = 3 * 2; /* rvalue from gcc_jit_context_new_binary_op. */
int arr[] = {1,2,3,4}; /* rvalue from gcc_jit_context_new_constructor. */
int *bar = &arr[2] + 1; /* rvalue from nested "get address" of "array access". */
const int baz = 3; /* rvalue from gcc_jit_context_rvalue_from_int. */
int boz = baz; /* rvalue from gcc_jit_lvalue_as_rvalue. */
Use together with :ref:`gcc_jit_context_new_constructor` to
initialize structs, unions and arrays.
On success, returns the ``global`` parameter unchanged. Otherwise, ``NULL``.
This entrypoint was added in :ref:`LIBGCCJIT_ABI_19`; you can test for its
presence using:
.. code-block:: c
#ifdef LIBGCCJIT_HAVE_CTORS
Working with pointers, structs and unions
-----------------------------------------
.. function:: gcc_jit_lvalue *\
gcc_jit_rvalue_dereference (gcc_jit_rvalue *rvalue,\
gcc_jit_location *loc)
Given an rvalue of pointer type ``T *``, dereferencing the pointer,
getting an lvalue of type ``T``. Analogous to:
.. code-block:: c
*(EXPR)
in C.
Field access is provided separately for both lvalues and rvalues.
.. function:: gcc_jit_lvalue *\
gcc_jit_lvalue_access_field (gcc_jit_lvalue *struct_,\
gcc_jit_location *loc,\
gcc_jit_field *field)
Given an lvalue of struct or union type, access the given field,
getting an lvalue of the field's type. Analogous to:
.. code-block:: c
(EXPR).field = ...;
in C.
.. function:: gcc_jit_rvalue *\
gcc_jit_rvalue_access_field (gcc_jit_rvalue *struct_,\
gcc_jit_location *loc,\
gcc_jit_field *field)
Given an rvalue of struct or union type, access the given field
as an rvalue. Analogous to:
.. code-block:: c
(EXPR).field
in C.
.. function:: gcc_jit_lvalue *\
gcc_jit_rvalue_dereference_field (gcc_jit_rvalue *ptr,\
gcc_jit_location *loc,\
gcc_jit_field *field)
Given an rvalue of pointer type ``T *`` where T is of struct or union
type, access the given field as an lvalue. Analogous to:
.. code-block:: c
(EXPR)->field
in C, itself equivalent to ``(*EXPR).FIELD``.
.. function:: gcc_jit_lvalue *\
gcc_jit_context_new_array_access (gcc_jit_context *ctxt,\
gcc_jit_location *loc,\
gcc_jit_rvalue *ptr,\
gcc_jit_rvalue *index)
Given an rvalue of pointer type ``T *``, get at the element `T` at
the given index, using standard C array indexing rules i.e. each
increment of ``index`` corresponds to ``sizeof(T)`` bytes.
Analogous to:
.. code-block:: c
PTR[INDEX]
in C (or, indeed, to ``PTR + INDEX``).
|