1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
/* Dynamic testing for abstract is-a relationships.
Copyright (C) 2012-2013 Free Software Foundation, Inc.
Contributed by Lawrence Crowl.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This header generic type query and conversion functions.
USING THE GENERIC TYPE FACILITY
The user functions are:
bool is_a <TYPE> (pointer)
Tests whether the pointer actually points to a more derived TYPE.
Suppose you have a symtab_node_base *ptr, AKA symtab_node ptr. You can test
whether it points to a 'derived' cgraph_node as follows.
if (is_a <cgraph_node> (ptr))
....
TYPE *as_a <TYPE> (pointer)
Converts pointer to a TYPE*.
You can just assume that it is such a node.
do_something_with (as_a <cgraph_node> *ptr);
TYPE *dyn_cast <TYPE> (pointer)
Converts pointer to TYPE* if and only if "is_a <TYPE> pointer". Otherwise,
returns NULL. This function is essentially a checked down cast.
This functions reduce compile time and increase type safety when treating a
generic item as a more specific item.
You can test and obtain a pointer to the 'derived' type in one indivisible
operation.
if (cgraph_node *cptr = dyn_cast <cgraph_node> (ptr))
....
As an example, the code change is from
if (symtab_function_p (node))
{
struct cgraph_node *cnode = cgraph (node);
....
}
to
if (cgraph_node *cnode = dyn_cast <cgraph_node> (node))
{
....
}
The necessary conditional test defines a variable that holds a known good
pointer to the specific item and avoids subsequent conversion calls and
the assertion checks that may come with them.
When, the property test is embedded within a larger condition, the
variable declaration gets pulled out of the condition. (This approach
leaves some room for using the variable inappropriately.)
if (symtab_variable_p (node) && varpool (node)->finalized)
varpool_analyze_node (varpool (node));
becomes
varpool_node *vnode = dyn_cast <varpool_node> (node);
if (vnode && vnode->finalized)
varpool_analyze_node (vnode);
Note that we have converted two sets of assertions in the calls to varpool
into safe and efficient use of a variable.
If you use these functions and get a 'inline function not defined' or a
'missing symbol' error message for 'is_a_helper<....>::test', it means that
the connection between the types has not been made. See below.
EXTENDING THE GENERIC TYPE FACILITY
Each connection between types must be made by defining a specialization of the
template member function 'test' of the template class 'is_a_helper'. For
example,
template <>
template <>
inline bool
is_a_helper <cgraph_node>::test (symtab_node_base *p)
{
return p->type == SYMTAB_FUNCTION;
}
If a simple reinterpret_cast between the pointer types is incorrect, then you
must also specialize the template member function 'cast'. Failure to do so
when needed may result in a crash. For example,
template <>
template <>
inline bool
is_a_helper <cgraph_node>::cast (symtab_node_base *p)
{
return &p->x_function;
}
*/
#ifndef GCC_IS_A_H
#define GCC_IS_A_H
/* A generic type conversion internal helper class. */
template <typename T>
struct is_a_helper
{
template <typename U>
static inline bool test (U *p);
template <typename U>
static inline T *cast (U *p);
};
/* Note that we deliberately do not define the 'test' member template. Not
doing so will result in a build-time error for type relationships that have
not been defined, rather than a run-time error. See the discussion above
for when to define this member. */
/* This is the generic implementation for casting from one type to another.
Do not use this routine directly; it is an internal function. See the
discussion above for when to define this member. */
template <typename T>
template <typename U>
inline T *
is_a_helper <T>::cast (U *p)
{
return reinterpret_cast <T *> (p);
}
/* The public interface. */
/* A generic test for a type relationship. See the discussion above for when
to use this function. The question answered is "Is type T a derived type of
type U?". */
template <typename T, typename U>
inline bool
is_a (U *p)
{
return is_a_helper<T>::test (p);
}
/* A generic conversion from a base type U to a derived type T. See the
discussion above for when to use this function. */
template <typename T, typename U>
inline T *
as_a (U *p)
{
gcc_checking_assert (is_a <T> (p));
return is_a_helper <T>::cast (p);
}
/* A generic checked conversion from a base type U to a derived type T. See
the discussion above for when to use this function. */
template <typename T, typename U>
inline T *
dyn_cast (U *p)
{
if (is_a <T> (p))
return is_a_helper <T>::cast (p);
else
return static_cast <T *> (0);
}
#endif /* GCC_IS_A_H */
|