1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
|
/* Struct-reorg optimization.
Copyright (C) 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by Olga Golovanevsky <olga@il.ibm.com>
(Initial version of this code was developed
by Caroline Tice and Mostafa Hagog.)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "gimple.h"
#include "tree-inline.h"
#include "tree-flow.h"
#include "tree-flow-inline.h"
#include "langhooks.h"
#include "pointer-set.h"
#include "hashtab.h"
#include "toplev.h"
#include "flags.h"
#include "debug.h"
#include "target.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "tree-pretty-print.h"
#include "gimple-pretty-print.h"
#include "timevar.h"
#include "params.h"
#include "fibheap.h"
#include "intl.h"
#include "function.h"
#include "basic-block.h"
#include "tree-iterator.h"
#include "tree-pass.h"
#include "ipa-struct-reorg.h"
#include "opts.h"
#include "ipa-type-escape.h"
#include "tree-dump.h"
#include "gimple.h"
/* This optimization implements structure peeling.
For example, given a structure type:
typedef struct
{
int a;
float b;
int c;
}str_t;
it can be peeled into two structure types as follows:
typedef struct and typedef struct
{ {
int a; float b;
int c; } str_t_1;
}str_t_0;
or can be fully peeled:
typedef struct
{
int a;
}str_t_0;
typedef struct
{
float b;
}str_t_1;
typedef struct
{
int c;
}str_t_2;
When structure type is peeled all instances and their accesses
in the program are updated accordingly. For example, if there is
array of structures:
str_t A[N];
and structure type str_t was peeled into two structures str_t_0
and str_t_1 as it was shown above, then array A will be replaced
by two arrays as follows:
str_t_0 A_0[N];
str_t_1 A_1[N];
The field access of field a of element i of array A: A[i].a will be
replaced by an access to field a of element i of array A_0: A_0[i].a.
This optimization also supports dynamically allocated arrays.
If array of structures was allocated by malloc function:
str_t * p = (str_t *) malloc (sizeof (str_t) * N)
the allocation site will be replaced to reflect new structure types:
str_t_0 * p_0 = (str_t_0 *) malloc (sizeof (str_t_0) * N)
str_t_1 * p_1 = (str_t_1 *) malloc (sizeof (str_t_1) * N)
The field access through the pointer p[i].a will be changed by p_0[i].a.
The goal of structure peeling is to improve spatial locality.
For example, if one of the fields of a structure is accessed frequently
in the loop:
for (i = 0; i < N; i++)
{
... = A[i].a;
}
the allocation of field a of str_t contiguously in memory will
increase the chances of fetching the field from cache.
The analysis part of this optimization is based on the frequency of
field accesses, which are collected all over the program.
Then the fields with the frequencies that satisfy the following condition
get peeled out of the structure:
freq(f) > C * max_field_freq_in_struct
where max_field_freq_in_struct is the maximum field frequency
in the structure. C is a constant defining which portion of
max_field_freq_in_struct the fields should have in order to be peeled.
If profiling information is provided, it is used to calculate the
frequency of field accesses. Otherwise, the structure is fully peeled.
IPA type-escape analysis is used to determine when it is safe
to peel a structure.
The optimization is activated by flag -fipa-struct-reorg. */
/* New variables created by this optimization.
When doing struct peeling, each variable of
the original struct type will be replaced by
the set of new variables corresponding to
the new structure types. */
struct new_var_data {
/* VAR_DECL for original struct type. */
tree orig_var;
/* Vector of new variables. */
VEC(tree, heap) *new_vars;
};
typedef struct new_var_data *new_var;
typedef const struct new_var_data *const_new_var;
/* This structure represents allocation site of the structure. */
typedef struct alloc_site
{
gimple stmt;
d_str str;
} alloc_site_t;
DEF_VEC_O (alloc_site_t);
DEF_VEC_ALLOC_O (alloc_site_t, heap);
/* Allocation sites that belong to the same function. */
struct func_alloc_sites
{
tree func;
/* Vector of allocation sites for function. */
VEC (alloc_site_t, heap) *allocs;
};
typedef struct func_alloc_sites *fallocs_t;
typedef const struct func_alloc_sites *const_fallocs_t;
/* All allocation sites in the program. */
htab_t alloc_sites = NULL;
/* New global variables. Generated once for whole program. */
htab_t new_global_vars;
/* New local variables. Generated per-function. */
htab_t new_local_vars;
/* Vector of structures to be transformed. */
typedef struct data_structure structure;
DEF_VEC_O (structure);
DEF_VEC_ALLOC_O (structure, heap);
VEC (structure, heap) *structures;
/* Forward declarations. */
static bool is_equal_types (tree, tree);
/* Strip structure TYPE from pointers and arrays. */
static inline tree
strip_type (tree type)
{
gcc_assert (TYPE_P (type));
while (POINTER_TYPE_P (type)
|| TREE_CODE (type) == ARRAY_TYPE)
type = TREE_TYPE (type);
return type;
}
/* This function returns type of VAR. */
static inline tree
get_type_of_var (tree var)
{
if (!var)
return NULL;
if (TREE_CODE (var) == PARM_DECL)
return DECL_ARG_TYPE (var);
else
return TREE_TYPE (var);
}
/* Set of actions we do for each newly generated STMT. */
static inline void
finalize_stmt (gimple stmt)
{
update_stmt (stmt);
mark_symbols_for_renaming (stmt);
}
/* This function finalizes STMT and appends it to the list STMTS. */
static inline void
finalize_stmt_and_append (gimple_seq *stmts, gimple stmt)
{
gimple_seq_add_stmt (stmts, stmt);
finalize_stmt (stmt);
}
/* This function returns true if two fields FIELD1 and FIELD2 are
semantically equal, and false otherwise. */
static bool
compare_fields (tree field1, tree field2)
{
if (DECL_NAME (field1) && DECL_NAME (field2))
{
const char *name1 = IDENTIFIER_POINTER (DECL_NAME (field1));
const char *name2 = IDENTIFIER_POINTER (DECL_NAME (field2));
gcc_assert (name1 && name2);
if (strcmp (name1, name2))
return false;
}
else if (DECL_NAME (field1) || DECL_NAME (field2))
return false;
if (!is_equal_types (TREE_TYPE (field1), TREE_TYPE (field2)))
return false;
return true;
}
/* Given structure type SRT_TYPE and field FIELD,
this function is looking for a field with the same name
and type as FIELD in STR_TYPE. It returns it if found,
or NULL_TREE otherwise. */
static tree
find_field_in_struct_1 (tree str_type, tree field)
{
tree str_field;
if (!DECL_NAME (field))
return NULL;
for (str_field = TYPE_FIELDS (str_type); str_field;
str_field = TREE_CHAIN (str_field))
{
if (!DECL_NAME (str_field))
continue;
if (compare_fields (field, str_field))
return str_field;
}
return NULL_TREE;
}
/* Given a field declaration FIELD_DECL, this function
returns corresponding field entry in structure STR. */
static struct field_entry *
find_field_in_struct (d_str str, tree field_decl)
{
int i;
tree field = find_field_in_struct_1 (str->decl, field_decl);
for (i = 0; i < str->num_fields; i++)
if (str->fields[i].decl == field)
return &(str->fields[i]);
return NULL;
}
/* This function checks whether ARG is a result of multiplication
of some number by STRUCT_SIZE. If yes, the function returns true
and this number is filled into NUM. */
static bool
is_result_of_mult (tree arg, tree *num, tree struct_size)
{
gimple size_def_stmt = SSA_NAME_DEF_STMT (arg);
/* If the allocation statement was of the form
D.2229_10 = <alloc_func> (D.2228_9);
then size_def_stmt can be D.2228_9 = num.3_8 * 8; */
if (size_def_stmt && is_gimple_assign (size_def_stmt))
{
tree lhs = gimple_assign_lhs (size_def_stmt);
/* We expect temporary here. */
if (!is_gimple_reg (lhs))
return false;
if (gimple_assign_rhs_code (size_def_stmt) == MULT_EXPR)
{
tree arg0 = gimple_assign_rhs1 (size_def_stmt);
tree arg1 = gimple_assign_rhs2 (size_def_stmt);
if (operand_equal_p (arg0, struct_size, OEP_ONLY_CONST))
{
*num = arg1;
return true;
}
if (operand_equal_p (arg1, struct_size, OEP_ONLY_CONST))
{
*num = arg0;
return true;
}
}
}
*num = NULL_TREE;
return false;
}
/* This function returns true if access ACC corresponds to the pattern
generated by compiler when an address of element i of an array
of structures STR_DECL (pointed by p) is calculated (p[i]). If this
pattern is recognized correctly, this function returns true
and fills missing fields in ACC. Otherwise it returns false. */
static bool
decompose_indirect_ref_acc (tree str_decl, struct field_access_site *acc)
{
tree ref_var;
tree struct_size, op0, op1;
tree before_cast;
enum tree_code rhs_code;
ref_var = TREE_OPERAND (acc->ref, 0);
if (TREE_CODE (ref_var) != SSA_NAME)
return false;
acc->ref_def_stmt = SSA_NAME_DEF_STMT (ref_var);
if (!(acc->ref_def_stmt)
|| (gimple_code (acc->ref_def_stmt) != GIMPLE_ASSIGN))
return false;
rhs_code = gimple_assign_rhs_code (acc->ref_def_stmt);
if (rhs_code != PLUS_EXPR
&& rhs_code != MINUS_EXPR
&& rhs_code != POINTER_PLUS_EXPR)
return false;
op0 = gimple_assign_rhs1 (acc->ref_def_stmt);
op1 = gimple_assign_rhs2 (acc->ref_def_stmt);
if (!is_array_access_through_pointer_and_index (rhs_code, op0, op1,
&acc->base, &acc->offset,
&acc->cast_stmt))
return false;
if (acc->cast_stmt)
before_cast = SINGLE_SSA_TREE_OPERAND (acc->cast_stmt, SSA_OP_USE);
else
before_cast = acc->offset;
if (!before_cast)
return false;
if (SSA_NAME_IS_DEFAULT_DEF (before_cast))
return false;
struct_size = TYPE_SIZE_UNIT (str_decl);
if (!is_result_of_mult (before_cast, &acc->num, struct_size))
return false;
return true;
}
/* This function checks whether the access ACC of structure type STR
is of the form suitable for transformation. If yes, it returns true.
False otherwise. */
static bool
decompose_access (tree str_decl, struct field_access_site *acc)
{
gcc_assert (acc->ref);
if (TREE_CODE (acc->ref) == INDIRECT_REF)
return decompose_indirect_ref_acc (str_decl, acc);
else if (TREE_CODE (acc->ref) == ARRAY_REF)
return true;
else if (TREE_CODE (acc->ref) == VAR_DECL)
return true;
return false;
}
/* This function creates empty field_access_site node. */
static inline struct field_access_site *
make_field_acc_node (void)
{
return XCNEW (struct field_access_site);
}
/* This function returns the structure field access, defined by STMT,
if it is already in hashtable of function accesses F_ACCS. */
static struct field_access_site *
is_in_field_accs (gimple stmt, htab_t f_accs)
{
return (struct field_access_site *)
htab_find_with_hash (f_accs, stmt, htab_hash_pointer (stmt));
}
/* This function adds an access ACC to the hashtable
F_ACCS of field accesses. */
static void
add_field_acc_to_acc_sites (struct field_access_site *acc,
htab_t f_accs)
{
void **slot;
gcc_assert (!is_in_field_accs (acc->stmt, f_accs));
slot = htab_find_slot_with_hash (f_accs, acc->stmt,
htab_hash_pointer (acc->stmt),
INSERT);
*slot = acc;
}
/* This function adds the VAR to vector of variables of
an access site defined by statement STMT. If access entry
with statement STMT does not exist in hashtable of
accesses ACCS, this function creates it. */
static void
add_access_to_acc_sites (gimple stmt, tree var, htab_t accs)
{
struct access_site *acc;
acc = (struct access_site *)
htab_find_with_hash (accs, stmt, htab_hash_pointer (stmt));
if (!acc)
{
void **slot;
acc = XNEW (struct access_site);
acc->stmt = stmt;
if (!is_gimple_debug (stmt))
acc->vars = VEC_alloc (tree, heap, 10);
else
acc->vars = NULL;
slot = htab_find_slot_with_hash (accs, stmt,
htab_hash_pointer (stmt), INSERT);
*slot = acc;
}
if (!is_gimple_debug (stmt))
VEC_safe_push (tree, heap, acc->vars, var);
}
/* This function adds NEW_DECL to function
referenced vars, and marks it for renaming. */
static void
finalize_var_creation (tree new_decl)
{
add_referenced_var (new_decl);
mark_sym_for_renaming (new_decl);
}
/* This function finalizes VAR creation if it is a global VAR_DECL. */
static void
finalize_global_creation (tree var)
{
if (TREE_CODE (var) == VAR_DECL
&& is_global_var (var))
finalize_var_creation (var);
}
/* This function inserts NEW_DECL to varpool. */
static inline void
insert_global_to_varpool (tree new_decl)
{
struct varpool_node *new_node;
new_node = varpool_node (new_decl);
notice_global_symbol (new_decl);
varpool_mark_needed_node (new_node);
varpool_finalize_decl (new_decl);
}
/* This function finalizes the creation of new variables,
defined by *SLOT->new_vars. */
static int
finalize_new_vars_creation (void **slot, void *data ATTRIBUTE_UNUSED)
{
new_var n_var = *(new_var *) slot;
unsigned i;
tree var;
for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
finalize_var_creation (var);
return 1;
}
/* This function looks for the variable of NEW_TYPE type, stored in VAR.
It returns it, if found, and NULL_TREE otherwise. */
static tree
find_var_in_new_vars_vec (new_var var, tree new_type)
{
tree n_var;
unsigned i;
for (i = 0; VEC_iterate (tree, var->new_vars, i, n_var); i++)
{
tree type = strip_type(get_type_of_var (n_var));
gcc_assert (type);
if (type == new_type)
return n_var;
}
return NULL_TREE;
}
/* This function returns new_var node, the orig_var of which is DECL.
It looks for new_var's in NEW_VARS_HTAB. If not found,
the function returns NULL. */
static new_var
is_in_new_vars_htab (tree decl, htab_t new_vars_htab)
{
return (new_var) htab_find_with_hash (new_vars_htab, decl,
DECL_UID (decl));
}
/* Given original variable ORIG_VAR, this function returns
new variable corresponding to it of NEW_TYPE type. */
static tree
find_new_var_of_type (tree orig_var, tree new_type)
{
new_var var;
gcc_assert (orig_var && new_type);
if (TREE_CODE (orig_var) == SSA_NAME)
orig_var = SSA_NAME_VAR (orig_var);
var = is_in_new_vars_htab (orig_var, new_global_vars);
if (!var)
var = is_in_new_vars_htab (orig_var, new_local_vars);
gcc_assert (var);
return find_var_in_new_vars_vec (var, new_type);
}
/* This function generates stmt:
res = NUM * sizeof(TYPE) and returns it.
res is filled into RES. */
static gimple
gen_size (tree num, tree type, tree *res)
{
tree struct_size = TYPE_SIZE_UNIT (type);
HOST_WIDE_INT struct_size_int = TREE_INT_CST_LOW (struct_size);
gimple new_stmt;
*res = create_tmp_var (TREE_TYPE (num), NULL);
if (*res)
add_referenced_var (*res);
if (exact_log2 (struct_size_int) == -1)
{
tree size = build_int_cst (TREE_TYPE (num), struct_size_int);
new_stmt = gimple_build_assign (*res, fold_build2 (MULT_EXPR,
TREE_TYPE (num),
num, size));
}
else
{
tree C = build_int_cst (TREE_TYPE (num), exact_log2 (struct_size_int));
new_stmt = gimple_build_assign (*res, fold_build2 (LSHIFT_EXPR,
TREE_TYPE (num),
num, C));
}
finalize_stmt (new_stmt);
return new_stmt;
}
/* This function generates and returns a statement, that cast variable
BEFORE_CAST to NEW_TYPE. The cast result variable is stored
into RES_P. ORIG_CAST_STMT is the original cast statement. */
static gimple
gen_cast_stmt (tree before_cast, tree new_type, gimple orig_cast_stmt,
tree *res_p)
{
tree lhs, new_lhs;
gimple new_stmt;
lhs = gimple_assign_lhs (orig_cast_stmt);
new_lhs = find_new_var_of_type (lhs, new_type);
gcc_assert (new_lhs);
new_stmt = gimple_build_assign_with_ops (NOP_EXPR, new_lhs, before_cast, 0);
finalize_stmt (new_stmt);
*res_p = new_lhs;
return new_stmt;
}
/* This function builds an edge between BB and E->dest and updates
phi nodes of E->dest. It returns newly created edge. */
static edge
make_edge_and_fix_phis_of_dest (basic_block bb, edge e)
{
edge new_e;
tree arg;
gimple_stmt_iterator si;
new_e = make_edge (bb, e->dest, e->flags);
for (si = gsi_start_phis (new_e->dest); !gsi_end_p (si); gsi_next (&si))
{
gimple phi = gsi_stmt (si);
arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
add_phi_arg (phi, arg, new_e, gimple_phi_arg_location_from_edge (phi, e));
}
return new_e;
}
/* This function inserts NEW_STMT before STMT. */
static void
insert_before_stmt (gimple stmt, gimple new_stmt)
{
gimple_stmt_iterator bsi;
if (!stmt || !new_stmt)
return;
bsi = gsi_for_stmt (stmt);
gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
}
/* Insert NEW_STMTS after STMT. */
static void
insert_seq_after_stmt (gimple stmt, gimple_seq new_stmts)
{
gimple_stmt_iterator bsi;
if (!stmt || !new_stmts)
return;
bsi = gsi_for_stmt (stmt);
gsi_insert_seq_after (&bsi, new_stmts, GSI_SAME_STMT);
}
/* Insert NEW_STMT after STMT. */
static void
insert_after_stmt (gimple stmt, gimple new_stmt)
{
gimple_stmt_iterator bsi;
if (!stmt || !new_stmt)
return;
bsi = gsi_for_stmt (stmt);
gsi_insert_after (&bsi, new_stmt, GSI_SAME_STMT);
}
/* This function returns vector of allocation sites
that appear in function FN_DECL. */
static fallocs_t
get_fallocs (tree fn_decl)
{
return (fallocs_t) htab_find_with_hash (alloc_sites, fn_decl,
htab_hash_pointer (fn_decl));
}
/* If ALLOC_STMT is D.2225_7 = <alloc_func> (D.2224_6);
and it is a part of allocation of a structure,
then it is usually followed by a cast stmt
p_8 = (struct str_t *) D.2225_7;
which is returned by this function. */
static gimple
get_final_alloc_stmt (gimple alloc_stmt)
{
gimple final_stmt;
use_operand_p use_p;
tree alloc_res;
if (!alloc_stmt)
return NULL;
if (!is_gimple_call (alloc_stmt))
return NULL;
alloc_res = gimple_get_lhs (alloc_stmt);
if (TREE_CODE (alloc_res) != SSA_NAME)
return NULL;
if (!single_imm_use (alloc_res, &use_p, &final_stmt))
return NULL;
else
return final_stmt;
}
/* This function returns true if STMT is one of allocation
sites of function FN_DECL. It returns false otherwise. */
static bool
is_part_of_malloc (gimple stmt, tree fn_decl)
{
fallocs_t fallocs = get_fallocs (fn_decl);
if (fallocs)
{
alloc_site_t *call;
unsigned i;
for (i = 0; VEC_iterate (alloc_site_t, fallocs->allocs, i, call); i++)
if (call->stmt == stmt
|| get_final_alloc_stmt (call->stmt) == stmt)
return true;
}
return false;
}
/* Auxiliary structure for a lookup over field accesses. */
struct find_stmt_data
{
bool found;
gimple stmt;
};
/* This function looks for DATA->stmt among
the statements involved in the field access,
defined by SLOT. It stops when it's found. */
static int
find_in_field_accs (void **slot, void *data)
{
struct field_access_site *f_acc = *(struct field_access_site **) slot;
gimple stmt = ((struct find_stmt_data *)data)->stmt;
if (f_acc->stmt == stmt
|| f_acc->ref_def_stmt == stmt
|| f_acc->cast_stmt == stmt)
{
((struct find_stmt_data *)data)->found = true;
return 0;
}
else
return 1;
}
/* This function checks whether STMT is part of field
accesses of structure STR. It returns true, if found,
and false otherwise. */
static bool
is_part_of_field_access (gimple stmt, d_str str)
{
int i;
for (i = 0; i < str->num_fields; i++)
{
struct find_stmt_data data;
data.found = false;
data.stmt = stmt;
if (str->fields[i].acc_sites)
htab_traverse (str->fields[i].acc_sites, find_in_field_accs, &data);
if (data.found)
return true;
}
return false;
}
/* Auxiliary data for exclude_from_accs function. */
struct exclude_data
{
tree fn_decl;
d_str str;
};
/* This function returns component_ref with the BASE and
field named FIELD_ID from structure TYPE. */
static inline tree
build_comp_ref (tree base, tree field_id, tree type)
{
tree field;
bool found = false;
/* Find field of structure type with the same name as field_id. */
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
{
if (DECL_NAME (field) == field_id)
{
found = true;
break;
}
}
gcc_assert (found);
return build3 (COMPONENT_REF, TREE_TYPE (field), base, field, NULL_TREE);
}
/* This struct represent data used for walk_tree
called from function find_pos_in_stmt.
- ref is a tree to be found,
- and pos is a pointer that points to ref in stmt. */
struct ref_pos
{
tree *pos;
tree ref;
tree container;
};
/* This is a callback function for walk_tree, called from
collect_accesses_in_bb function. DATA is a pointer to ref_pos structure.
When *TP is equal to DATA->ref, the walk_tree stops,
and found position, equal to TP, is assigned to DATA->pos. */
static tree
find_pos_in_stmt_1 (tree *tp, int *walk_subtrees, void * data)
{
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
struct ref_pos *r_pos = (struct ref_pos *) wi->info;
tree ref = r_pos->ref;
tree t = *tp;
if (t == ref || (TREE_CODE (t) == SSA_NAME && SSA_NAME_VAR (t) == ref))
{
r_pos->pos = tp;
return t;
}
r_pos->container = t;
*walk_subtrees = 1;
return NULL_TREE;
}
/* This function looks for the pointer of REF in STMT,
It returns it, if found, and NULL otherwise. */
static tree *
find_pos_in_stmt (gimple stmt, tree ref, struct ref_pos * r_pos)
{
struct walk_stmt_info wi;
r_pos->ref = ref;
r_pos->pos = NULL;
r_pos->container = NULL_TREE;
memset (&wi, 0, sizeof (wi));
wi.info = r_pos;
walk_gimple_op (stmt, find_pos_in_stmt_1, &wi);
return r_pos->pos;
}
/* This structure is used to represent array
or pointer-to wrappers of structure type.
For example, if type1 is structure type,
then for type1 ** we generate two type_wrapper
structures with wrap = 0 each one.
It's used to unwind the original type up to
structure type, replace it with the new structure type
and wrap it back in the opposite order. */
typedef struct type_wrapper
{
/* 0 stand for pointer wrapper, and 1 for array wrapper. */
bool wrap;
/* Relevant for arrays as domain or index. */
tree domain;
}type_wrapper_t;
DEF_VEC_O (type_wrapper_t);
DEF_VEC_ALLOC_O (type_wrapper_t, heap);
/* This function replace field access ACC by the new
field access of structure type NEW_TYPE. */
static void
replace_field_acc (struct field_access_site *acc, tree new_type)
{
tree ref_var = acc->ref;
tree new_ref;
tree lhs, rhs;
tree *pos;
tree new_acc;
tree field_id = DECL_NAME (acc->field_decl);
VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
type_wrapper_t *wr_p = NULL;
struct ref_pos r_pos;
while (TREE_CODE (ref_var) == INDIRECT_REF
|| TREE_CODE (ref_var) == ARRAY_REF)
{
type_wrapper_t wr;
if ( TREE_CODE (ref_var) == INDIRECT_REF)
{
wr.wrap = 0;
wr.domain = 0;
}
else
{
wr.wrap = 1;
wr.domain = TREE_OPERAND (ref_var, 1);
}
VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
ref_var = TREE_OPERAND (ref_var, 0);
}
new_ref = find_new_var_of_type (ref_var, new_type);
finalize_global_creation (new_ref);
while (VEC_length (type_wrapper_t, wrapper) != 0)
{
tree type = TREE_TYPE (TREE_TYPE (new_ref));
wr_p = VEC_last (type_wrapper_t, wrapper);
if (wr_p->wrap) /* Array. */
new_ref = build4 (ARRAY_REF, type, new_ref,
wr_p->domain, NULL_TREE, NULL_TREE);
else /* Pointer. */
new_ref = build1 (INDIRECT_REF, type, new_ref);
VEC_pop (type_wrapper_t, wrapper);
}
new_acc = build_comp_ref (new_ref, field_id, new_type);
VEC_free (type_wrapper_t, heap, wrapper);
if (is_gimple_assign (acc->stmt))
{
lhs = gimple_assign_lhs (acc->stmt);
rhs = gimple_assign_rhs1 (acc->stmt);
if (lhs == acc->comp_ref)
gimple_assign_set_lhs (acc->stmt, new_acc);
else if (rhs == acc->comp_ref)
gimple_assign_set_rhs1 (acc->stmt, new_acc);
else
{
pos = find_pos_in_stmt (acc->stmt, acc->comp_ref, &r_pos);
gcc_assert (pos);
*pos = new_acc;
}
}
else
{
pos = find_pos_in_stmt (acc->stmt, acc->comp_ref, &r_pos);
gcc_assert (pos);
*pos = new_acc;
}
finalize_stmt (acc->stmt);
}
/* This function replace field access ACC by a new field access
of structure type NEW_TYPE. */
static void
replace_field_access_stmt (struct field_access_site *acc, tree new_type)
{
if (TREE_CODE (acc->ref) == INDIRECT_REF
||TREE_CODE (acc->ref) == ARRAY_REF
||TREE_CODE (acc->ref) == VAR_DECL)
replace_field_acc (acc, new_type);
else
gcc_unreachable ();
}
/* This function looks for d_str, represented by TYPE, in the structures
vector. If found, it returns an index of found structure. Otherwise
it returns a length of the structures vector. */
static unsigned
find_structure (tree type)
{
d_str str;
unsigned i;
type = TYPE_MAIN_VARIANT (type);
for (i = 0; VEC_iterate (structure, structures, i, str); i++)
if (is_equal_types (str->decl, type))
return i;
return VEC_length (structure, structures);
}
/* In this function we create new statements that have the same
form as ORIG_STMT, but of type NEW_TYPE. The statements
treated by this function are simple assignments,
like assignments: p.8_7 = p; or statements with rhs of
tree codes PLUS_EXPR and MINUS_EXPR. */
static gimple
create_base_plus_offset (gimple orig_stmt, tree new_type, tree offset)
{
tree lhs;
tree new_lhs;
gimple new_stmt;
tree new_op0 = NULL_TREE, new_op1 = NULL_TREE;
lhs = gimple_assign_lhs (orig_stmt);
gcc_assert (TREE_CODE (lhs) == VAR_DECL
|| TREE_CODE (lhs) == SSA_NAME);
new_lhs = find_new_var_of_type (lhs, new_type);
gcc_assert (new_lhs);
finalize_var_creation (new_lhs);
switch (gimple_assign_rhs_code (orig_stmt))
{
case PLUS_EXPR:
case MINUS_EXPR:
case POINTER_PLUS_EXPR:
{
tree op0 = gimple_assign_rhs1 (orig_stmt);
tree op1 = gimple_assign_rhs2 (orig_stmt);
unsigned str0, str1;
unsigned length = VEC_length (structure, structures);
str0 = find_structure (strip_type (get_type_of_var (op0)));
str1 = find_structure (strip_type (get_type_of_var (op1)));
gcc_assert ((str0 != length) || (str1 != length));
if (str0 != length)
new_op0 = find_new_var_of_type (op0, new_type);
if (str1 != length)
new_op1 = find_new_var_of_type (op1, new_type);
if (!new_op0)
new_op0 = offset;
if (!new_op1)
new_op1 = offset;
}
break;
default:
gcc_unreachable();
}
new_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (orig_stmt),
new_lhs, new_op0, new_op1);
finalize_stmt (new_stmt);
return new_stmt;
}
/* Given a field access F_ACC of the FIELD, this function
replaces it by the new field access. */
static void
create_new_field_access (struct field_access_site *f_acc,
struct field_entry field)
{
tree new_type = field.field_mapping;
gimple new_stmt;
tree size_res;
gimple mult_stmt;
gimple cast_stmt;
tree cast_res = NULL;
if (f_acc->num)
{
mult_stmt = gen_size (f_acc->num, new_type, &size_res);
insert_before_stmt (f_acc->ref_def_stmt, mult_stmt);
}
if (f_acc->cast_stmt)
{
cast_stmt = gen_cast_stmt (size_res, new_type,
f_acc->cast_stmt, &cast_res);
insert_after_stmt (f_acc->cast_stmt, cast_stmt);
}
if (f_acc->ref_def_stmt)
{
tree offset;
if (cast_res)
offset = cast_res;
else
offset = size_res;
new_stmt = create_base_plus_offset (f_acc->ref_def_stmt,
new_type, offset);
insert_after_stmt (f_acc->ref_def_stmt, new_stmt);
}
/* In stmt D.2163_19 = D.2162_18->b; we replace variable
D.2162_18 by an appropriate variable of new_type type. */
replace_field_access_stmt (f_acc, new_type);
}
/* This function creates a new condition statement
corresponding to the original COND_STMT, adds new basic block
and redirects condition edges. NEW_VAR is a new condition
variable located in the condition statement at the position POS. */
static void
create_new_stmts_for_cond_expr_1 (tree new_var, gimple cond_stmt, unsigned pos)
{
gimple new_stmt;
edge true_e = NULL, false_e = NULL;
basic_block new_bb;
gimple_stmt_iterator si;
extract_true_false_edges_from_block (gimple_bb (cond_stmt),
&true_e, &false_e);
new_stmt = gimple_build_cond (gimple_cond_code (cond_stmt),
pos == 0 ? new_var : gimple_cond_lhs (cond_stmt),
pos == 1 ? new_var : gimple_cond_rhs (cond_stmt),
NULL_TREE,
NULL_TREE);
finalize_stmt (new_stmt);
/* Create new basic block after bb. */
new_bb = create_empty_bb (gimple_bb (cond_stmt));
/* Add new condition stmt to the new_bb. */
si = gsi_start_bb (new_bb);
gsi_insert_after (&si, new_stmt, GSI_NEW_STMT);
/* Create false and true edges from new_bb. */
make_edge_and_fix_phis_of_dest (new_bb, true_e);
make_edge_and_fix_phis_of_dest (new_bb, false_e);
/* Redirect one of original edges to point to new_bb. */
if (gimple_cond_code (cond_stmt) == NE_EXPR)
redirect_edge_succ (true_e, new_bb);
else
redirect_edge_succ (false_e, new_bb);
}
/* This function creates new condition statements corresponding
to original condition STMT, one for each new type, and
recursively redirect edges to newly generated basic blocks. */
static void
create_new_stmts_for_cond_expr (gimple stmt)
{
tree arg0, arg1, arg;
unsigned str0, str1;
bool s0, s1;
d_str str;
tree type;
unsigned pos;
int i;
unsigned length = VEC_length (structure, structures);
gcc_assert (gimple_cond_code (stmt) == EQ_EXPR
|| gimple_cond_code (stmt) == NE_EXPR);
arg0 = gimple_cond_lhs (stmt);
arg1 = gimple_cond_rhs (stmt);
str0 = find_structure (strip_type (get_type_of_var (arg0)));
str1 = find_structure (strip_type (get_type_of_var (arg1)));
s0 = (str0 != length) ? true : false;
s1 = (str1 != length) ? true : false;
gcc_assert (s0 || s1);
/* For now we allow only comparison with 0 or NULL. */
gcc_assert (integer_zerop (arg0) || integer_zerop (arg1));
str = integer_zerop (arg0) ?
VEC_index (structure, structures, str1):
VEC_index (structure, structures, str0);
arg = integer_zerop (arg0) ? arg1 : arg0;
pos = integer_zerop (arg0) ? 1 : 0;
for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
{
tree new_arg;
new_arg = find_new_var_of_type (arg, type);
create_new_stmts_for_cond_expr_1 (new_arg, stmt, pos);
}
}
/* This function looks for VAR in STMT, and replace it with NEW_VAR.
If needed, it wraps NEW_VAR in pointers and indirect references
before insertion. */
static void
insert_new_var_in_stmt (gimple stmt, tree var, tree new_var)
{
struct ref_pos r_pos;
tree *pos;
pos = find_pos_in_stmt (stmt, var, &r_pos);
gcc_assert (pos);
while (r_pos.container && (TREE_CODE(r_pos.container) == INDIRECT_REF
|| TREE_CODE(r_pos.container) == ADDR_EXPR))
{
tree type = TREE_TYPE (TREE_TYPE (new_var));
if (TREE_CODE(r_pos.container) == INDIRECT_REF)
new_var = build1 (INDIRECT_REF, type, new_var);
else
new_var = build_fold_addr_expr (new_var);
pos = find_pos_in_stmt (stmt, r_pos.container, &r_pos);
}
*pos = new_var;
}
/* Create a new general access to replace original access ACC
for structure type NEW_TYPE. */
static gimple
create_general_new_stmt (struct access_site *acc, tree new_type)
{
gimple old_stmt = acc->stmt;
tree var;
gimple new_stmt = gimple_copy (old_stmt);
unsigned i;
/* We are really building a new stmt, clear the virtual operands. */
if (gimple_has_mem_ops (new_stmt))
{
gimple_set_vuse (new_stmt, NULL_TREE);
gimple_set_vdef (new_stmt, NULL_TREE);
}
for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
{
tree new_var = find_new_var_of_type (var, new_type);
tree lhs, rhs = NULL_TREE;
gcc_assert (new_var);
finalize_var_creation (new_var);
if (is_gimple_assign (new_stmt))
{
lhs = gimple_assign_lhs (new_stmt);
if (TREE_CODE (lhs) == SSA_NAME)
lhs = SSA_NAME_VAR (lhs);
if (gimple_assign_rhs_code (new_stmt) == SSA_NAME)
rhs = SSA_NAME_VAR (gimple_assign_rhs1 (new_stmt));
/* It can happen that rhs is a constructor.
Then we have to replace it to be of new_type. */
if (gimple_assign_rhs_code (new_stmt) == CONSTRUCTOR)
{
/* Dealing only with empty constructors right now. */
gcc_assert (VEC_empty (constructor_elt,
CONSTRUCTOR_ELTS (rhs)));
rhs = build_constructor (new_type, 0);
gimple_assign_set_rhs1 (new_stmt, rhs);
}
if (lhs == var)
gimple_assign_set_lhs (new_stmt, new_var);
else if (rhs == var)
gimple_assign_set_rhs1 (new_stmt, new_var);
else
insert_new_var_in_stmt (new_stmt, var, new_var);
}
else
insert_new_var_in_stmt (new_stmt, var, new_var);
}
finalize_stmt (new_stmt);
return new_stmt;
}
/* For each new type in STR this function creates new general accesses
corresponding to the original access ACC. */
static void
create_new_stmts_for_general_acc (struct access_site *acc, d_str str)
{
tree type;
gimple stmt = acc->stmt;
unsigned i;
for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
{
gimple new_stmt;
new_stmt = create_general_new_stmt (acc, type);
insert_after_stmt (stmt, new_stmt);
}
}
/* This function creates a new general access of structure STR
to replace the access ACC. */
static void
create_new_general_access (struct access_site *acc, d_str str)
{
gimple stmt = acc->stmt;
switch (gimple_code (stmt))
{
case GIMPLE_COND:
create_new_stmts_for_cond_expr (stmt);
break;
case GIMPLE_DEBUG:
/* It is very hard to maintain usable debug info after struct peeling,
for now just reset all debug stmts referencing objects that have
been peeled. */
gimple_debug_bind_reset_value (stmt);
update_stmt (stmt);
break;
default:
create_new_stmts_for_general_acc (acc, str);
}
}
/* Auxiliary data for creation of accesses. */
struct create_acc_data
{
basic_block bb;
d_str str;
int field_index;
};
/* This function creates a new general access, defined by SLOT.
DATA is a pointer to create_acc_data structure. */
static int
create_new_acc (void **slot, void *data)
{
struct access_site *acc = *(struct access_site **) slot;
basic_block bb = ((struct create_acc_data *)data)->bb;
d_str str = ((struct create_acc_data *)data)->str;
if (gimple_bb (acc->stmt) == bb)
create_new_general_access (acc, str);
return 1;
}
/* This function creates a new field access, defined by SLOT.
DATA is a pointer to create_acc_data structure. */
static int
create_new_field_acc (void **slot, void *data)
{
struct field_access_site *f_acc = *(struct field_access_site **) slot;
basic_block bb = ((struct create_acc_data *)data)->bb;
d_str str = ((struct create_acc_data *)data)->str;
int i = ((struct create_acc_data *)data)->field_index;
if (gimple_bb (f_acc->stmt) == bb)
create_new_field_access (f_acc, str->fields[i]);
return 1;
}
/* This function creates new accesses for the structure
type STR in basic block BB. */
static void
create_new_accs_for_struct (d_str str, basic_block bb)
{
int i;
struct create_acc_data dt;
dt.str = str;
dt.bb = bb;
dt.field_index = -1;
for (i = 0; i < str->num_fields; i++)
{
dt.field_index = i;
if (str->fields[i].acc_sites)
htab_traverse (str->fields[i].acc_sites,
create_new_field_acc, &dt);
}
if (str->accs)
htab_traverse (str->accs, create_new_acc, &dt);
}
/* This function inserts new variables from new_var,
defined by SLOT, into varpool. */
static int
update_varpool_with_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
{
new_var n_var = *(new_var *) slot;
tree var;
unsigned i;
for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
insert_global_to_varpool (var);
return 1;
}
/* This function prints a field access site, defined by SLOT. */
static int
dump_field_acc (void **slot, void *data ATTRIBUTE_UNUSED)
{
struct field_access_site *f_acc =
*(struct field_access_site **) slot;
fprintf(dump_file, "\n");
if (f_acc->stmt)
print_gimple_stmt (dump_file, f_acc->stmt, 0, 0);
if (f_acc->ref_def_stmt)
print_gimple_stmt (dump_file, f_acc->ref_def_stmt, 0, 0);
if (f_acc->cast_stmt)
print_gimple_stmt (dump_file, f_acc->cast_stmt, 0, 0);
return 1;
}
/* Print field accesses from hashtable F_ACCS. */
static void
dump_field_acc_sites (htab_t f_accs)
{
if (!dump_file)
return;
if (f_accs)
htab_traverse (f_accs, dump_field_acc, NULL);
}
/* Hash value for fallocs_t. */
static hashval_t
malloc_hash (const void *x)
{
return htab_hash_pointer (((const_fallocs_t)x)->func);
}
/* This function returns nonzero if function of func_alloc_sites' X
is equal to Y. */
static int
malloc_eq (const void *x, const void *y)
{
return ((const_fallocs_t)x)->func == (const_tree)y;
}
/* This function is a callback for traversal over a structure accesses.
It frees an access represented by SLOT. */
static int
free_accs (void **slot, void *data ATTRIBUTE_UNUSED)
{
struct access_site * acc = *(struct access_site **) slot;
VEC_free (tree, heap, acc->vars);
free (acc);
return 1;
}
/* This is a callback function for traversal over field accesses.
It frees a field access represented by SLOT. */
static int
free_field_accs (void **slot, void *data ATTRIBUTE_UNUSED)
{
struct field_access_site *f_acc = *(struct field_access_site **) slot;
free (f_acc);
return 1;
}
/* This function inserts TYPE into vector of UNSUITABLE_TYPES,
if it is not there yet. */
static void
add_unsuitable_type (VEC (tree, heap) **unsuitable_types, tree type)
{
unsigned i;
tree t;
if (!type)
return;
type = TYPE_MAIN_VARIANT (type);
for (i = 0; VEC_iterate (tree, *unsuitable_types, i, t); i++)
if (is_equal_types (t, type))
break;
if (i == VEC_length (tree, *unsuitable_types))
VEC_safe_push (tree, heap, *unsuitable_types, type);
}
/* Given a type TYPE, this function returns the name of the type. */
static const char *
get_type_name (tree type)
{
if (! TYPE_NAME (type))
return NULL;
if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
return IDENTIFIER_POINTER (TYPE_NAME (type));
else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
&& DECL_NAME (TYPE_NAME (type)))
return IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
else
return NULL;
}
/* This function is a temporary hack to overcome the types problem.
When several compilation units are compiled together
with -combine, the TYPE_MAIN_VARIANT of the same type
can appear differently in different compilation units.
Therefore this function first compares type names.
If there are no names, structure bodies are recursively
compared. */
static bool
is_equal_types (tree type1, tree type2)
{
const char * name1,* name2;
if ((!type1 && type2)
||(!type2 && type1))
return false;
if (!type1 && !type2)
return true;
if (TREE_CODE (type1) != TREE_CODE (type2))
return false;
if (type1 == type2)
return true;
if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
return true;
name1 = get_type_name (type1);
name2 = get_type_name (type2);
if (name1 && name2)
return strcmp (name1, name2) == 0;
switch (TREE_CODE (type1))
{
case POINTER_TYPE:
case REFERENCE_TYPE:
{
return is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2));
}
break;
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
case ENUMERAL_TYPE:
{
tree field1, field2;
/* Compare fields of structure. */
for (field1 = TYPE_FIELDS (type1), field2 = TYPE_FIELDS (type2);
field1 && field2;
field1 = TREE_CHAIN (field1), field2 = TREE_CHAIN (field2))
{
if (!compare_fields (field1, field2))
return false;
}
if (field1 || field2)
return false;
else
return true;
}
break;
case INTEGER_TYPE:
{
if (TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
&& TYPE_PRECISION (type1) == TYPE_PRECISION (type2))
return true;
}
break;
case ARRAY_TYPE:
{
tree d1, d2;
tree max1, min1, max2, min2;
if (!is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2)))
return false;
d1 = TYPE_DOMAIN (type1);
d2 = TYPE_DOMAIN (type2);
if (!d1 || !d2)
return false;
max1 = TYPE_MAX_VALUE (d1);
max2 = TYPE_MAX_VALUE (d2);
min1 = TYPE_MIN_VALUE (d1);
min2 = TYPE_MIN_VALUE (d2);
if (max1 && max2 && min1 && min2
&& TREE_CODE (max1) == TREE_CODE (max2)
&& TREE_CODE (max1) == INTEGER_CST
&& TREE_CODE (min1) == TREE_CODE (min2)
&& TREE_CODE (min1) == INTEGER_CST
&& tree_int_cst_equal (max1, max2)
&& tree_int_cst_equal (min1, min2))
return true;
}
break;
default:
gcc_unreachable();
}
return false;
}
/* This function free non-field accesses from hashtable ACCS. */
static void
free_accesses (htab_t accs)
{
if (accs)
htab_traverse (accs, free_accs, NULL);
htab_delete (accs);
}
/* This function free field accesses hashtable F_ACCS. */
static void
free_field_accesses (htab_t f_accs)
{
if (f_accs)
htab_traverse (f_accs, free_field_accs, NULL);
htab_delete (f_accs);
}
/* Update call graph with new edge generated by new MALLOC_STMT.
The edge origin is CONTEXT function. */
static void
update_cgraph_with_malloc_call (gimple malloc_stmt, tree context)
{
struct cgraph_node *src, *dest;
tree malloc_fn_decl;
if (!malloc_stmt)
return;
malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
src = cgraph_node (context);
dest = cgraph_node (malloc_fn_decl);
cgraph_create_edge (src, dest, malloc_stmt,
gimple_bb (malloc_stmt)->count,
compute_call_stmt_bb_frequency
(context, gimple_bb (malloc_stmt)),
gimple_bb (malloc_stmt)->loop_depth);
}
/* This function generates set of statements required
to allocate number NUM of structures of type NEW_TYPE.
The statements are stored in NEW_STMTS. The statement that contain
call to malloc is returned. MALLOC_STMT is an original call to malloc. */
static gimple
create_new_malloc (gimple malloc_stmt, tree new_type, gimple_seq *new_stmts,
tree num)
{
tree new_malloc_size;
tree malloc_fn_decl;
gimple new_stmt;
tree malloc_res;
gimple call_stmt, final_stmt;
tree cast_res;
gcc_assert (num && malloc_stmt && new_type);
*new_stmts = gimple_seq_alloc ();
/* Generate argument to malloc as multiplication of num
and size of new_type. */
new_stmt = gen_size (num, new_type, &new_malloc_size);
gimple_seq_add_stmt (new_stmts, new_stmt);
/* Generate new call for malloc. */
malloc_res = create_tmp_var (ptr_type_node, NULL);
add_referenced_var (malloc_res);
malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
call_stmt = gimple_build_call (malloc_fn_decl, 1, new_malloc_size);
gimple_call_set_lhs (call_stmt, malloc_res);
finalize_stmt_and_append (new_stmts, call_stmt);
/* Create new cast statement. */
final_stmt = get_final_alloc_stmt (malloc_stmt);
gcc_assert (final_stmt);
new_stmt = gen_cast_stmt (malloc_res, new_type, final_stmt, &cast_res);
gimple_seq_add_stmt (new_stmts, new_stmt);
return call_stmt;
}
/* This function returns a tree representing
the number of instances of structure STR_DECL allocated
by allocation STMT. If new statements are generated,
they are filled into NEW_STMTS_P. */
static tree
gen_num_of_structs_in_malloc (gimple stmt, tree str_decl,
gimple_seq *new_stmts_p)
{
tree arg;
tree struct_size;
HOST_WIDE_INT struct_size_int;
if (!stmt)
return NULL_TREE;
/* Get malloc argument. */
if (!is_gimple_call (stmt))
return NULL_TREE;
arg = gimple_call_arg (stmt, 0);
if (TREE_CODE (arg) != SSA_NAME
&& !TREE_CONSTANT (arg))
return NULL_TREE;
struct_size = TYPE_SIZE_UNIT (str_decl);
struct_size_int = TREE_INT_CST_LOW (struct_size);
gcc_assert (struct_size);
if (TREE_CODE (arg) == SSA_NAME)
{
tree num;
gimple div_stmt;
if (is_result_of_mult (arg, &num, struct_size))
return num;
num = create_tmp_var (integer_type_node, NULL);
if (num)
add_referenced_var (num);
if (exact_log2 (struct_size_int) == -1)
div_stmt = gimple_build_assign_with_ops (TRUNC_DIV_EXPR, num, arg,
struct_size);
else
{
tree C = build_int_cst (integer_type_node,
exact_log2 (struct_size_int));
div_stmt = gimple_build_assign_with_ops (RSHIFT_EXPR, num, arg, C);
}
gimple_seq_add_stmt (new_stmts_p, div_stmt);
finalize_stmt (div_stmt);
return num;
}
if (CONSTANT_CLASS_P (arg)
&& multiple_of_p (TREE_TYPE (struct_size), arg, struct_size))
return int_const_binop (TRUNC_DIV_EXPR, arg, struct_size, 0);
return NULL_TREE;
}
/* This function is a callback for traversal on new_var's hashtable.
SLOT is a pointer to new_var. This function prints to dump_file
an original variable and all new variables from the new_var
pointed by *SLOT. */
static int
dump_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
{
new_var n_var = *(new_var *) slot;
tree var_type;
tree var;
unsigned i;
var_type = get_type_of_var (n_var->orig_var);
fprintf (dump_file, "\nOrig var: ");
print_generic_expr (dump_file, n_var->orig_var, 0);
fprintf (dump_file, " of type ");
print_generic_expr (dump_file, var_type, 0);
fprintf (dump_file, "\n");
for (i = 0;
VEC_iterate (tree, n_var->new_vars, i, var); i++)
{
var_type = get_type_of_var (var);
fprintf (dump_file, " ");
print_generic_expr (dump_file, var, 0);
fprintf (dump_file, " of type ");
print_generic_expr (dump_file, var_type, 0);
fprintf (dump_file, "\n");
}
return 1;
}
/* This function copies attributes form ORIG_DECL to NEW_DECL. */
static inline void
copy_decl_attributes (tree new_decl, tree orig_decl)
{
DECL_ARTIFICIAL (new_decl) = 1;
DECL_EXTERNAL (new_decl) = DECL_EXTERNAL (orig_decl);
TREE_STATIC (new_decl) = TREE_STATIC (orig_decl);
TREE_PUBLIC (new_decl) = TREE_PUBLIC (orig_decl);
TREE_USED (new_decl) = TREE_USED (orig_decl);
DECL_CONTEXT (new_decl) = DECL_CONTEXT (orig_decl);
TREE_THIS_VOLATILE (new_decl) = TREE_THIS_VOLATILE (orig_decl);
TREE_ADDRESSABLE (new_decl) = TREE_ADDRESSABLE (orig_decl);
if (TREE_CODE (orig_decl) == VAR_DECL)
{
TREE_READONLY (new_decl) = TREE_READONLY (orig_decl);
DECL_TLS_MODEL (new_decl) = DECL_TLS_MODEL (orig_decl);
}
}
/* This function wraps NEW_STR_TYPE in pointers or arrays wrapper
the same way as a structure type is wrapped in DECL.
It returns the generated type. */
static inline tree
gen_struct_type (tree decl, tree new_str_type)
{
tree type_orig = get_type_of_var (decl);
tree new_type = new_str_type;
VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
type_wrapper_t wr;
type_wrapper_t *wr_p;
while (POINTER_TYPE_P (type_orig)
|| TREE_CODE (type_orig) == ARRAY_TYPE)
{
if (POINTER_TYPE_P (type_orig))
{
wr.wrap = 0;
wr.domain = NULL_TREE;
}
else
{
gcc_assert (TREE_CODE (type_orig) == ARRAY_TYPE);
wr.wrap = 1;
wr.domain = TYPE_DOMAIN (type_orig);
}
VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
type_orig = TREE_TYPE (type_orig);
}
while (VEC_length (type_wrapper_t, wrapper) != 0)
{
wr_p = VEC_last (type_wrapper_t, wrapper);
if (wr_p->wrap) /* Array. */
new_type = build_array_type (new_type, wr_p->domain);
else /* Pointer. */
new_type = build_pointer_type (new_type);
VEC_pop (type_wrapper_t, wrapper);
}
VEC_free (type_wrapper_t, heap, wrapper);
return new_type;
}
/* This function generates and returns new variable name based on
ORIG_DECL name, combined with index I.
The form of the new name is <orig_name>.<I> . */
static tree
gen_var_name (tree orig_decl, unsigned HOST_WIDE_INT i)
{
const char *old_name;
char *prefix;
char *new_name;
if (!DECL_NAME (orig_decl)
|| !IDENTIFIER_POINTER (DECL_NAME (orig_decl)))
return NULL;
/* If the original variable has a name, create an
appropriate new name for the new variable. */
old_name = IDENTIFIER_POINTER (DECL_NAME (orig_decl));
prefix = XALLOCAVEC (char, strlen (old_name) + 1);
strcpy (prefix, old_name);
ASM_FORMAT_PRIVATE_NAME (new_name, prefix, i);
return get_identifier (new_name);
}
/* This function adds NEW_NODE to hashtable of new_var's NEW_VARS_HTAB. */
static void
add_to_new_vars_htab (new_var new_node, htab_t new_vars_htab)
{
void **slot;
slot = htab_find_slot_with_hash (new_vars_htab, new_node->orig_var,
DECL_UID (new_node->orig_var),
INSERT);
*slot = new_node;
}
/* This function creates and returns new_var_data node
with empty new_vars and orig_var equal to VAR. */
static new_var
create_new_var_node (tree var, d_str str)
{
new_var node;
node = XNEW (struct new_var_data);
node->orig_var = var;
node->new_vars = VEC_alloc (tree, heap, VEC_length (tree, str->new_types));
return node;
}
/* Check whether the type of VAR is potential candidate for peeling.
Returns true if yes, false otherwise. If yes, TYPE_P will contain
candidate type. If VAR is initialized, the type of VAR will be added
to UNSUITABLE_TYPES. */
static bool
is_candidate (tree var, tree *type_p, VEC (tree, heap) **unsuitable_types)
{
tree type;
bool initialized = false;
*type_p = NULL;
if (!var)
return false;
/* There is no support of initialized vars. */
if (TREE_CODE (var) == VAR_DECL
&& DECL_INITIAL (var) != NULL_TREE)
initialized = true;
type = get_type_of_var (var);
if (type)
{
type = TYPE_MAIN_VARIANT (strip_type (type));
if (TREE_CODE (type) != RECORD_TYPE)
return false;
else
{
if (initialized && unsuitable_types && *unsuitable_types)
{
if (dump_file)
{
fprintf (dump_file, "The type ");
print_generic_expr (dump_file, type, 0);
fprintf (dump_file, " is initialized...Excluded.");
}
add_unsuitable_type (unsuitable_types, type);
}
*type_p = type;
return true;
}
}
else
return false;
}
/* Hash value for field_access_site. */
static hashval_t
field_acc_hash (const void *x)
{
return htab_hash_pointer (((const struct field_access_site *)x)->stmt);
}
/* This function returns nonzero if stmt of field_access_site X
is equal to Y. */
static int
field_acc_eq (const void *x, const void *y)
{
return ((const struct field_access_site *)x)->stmt == (const_gimple)y;
}
/* This function prints an access site, defined by SLOT. */
static int
dump_acc (void **slot, void *data ATTRIBUTE_UNUSED)
{
struct access_site *acc = *(struct access_site **) slot;
tree var;
unsigned i;
fprintf(dump_file, "\n");
if (acc->stmt)
print_gimple_stmt (dump_file, acc->stmt, 0, 0);
fprintf(dump_file, " : ");
for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
{
print_generic_expr (dump_file, var, 0);
fprintf(dump_file, ", ");
}
return 1;
}
/* This function frees memory allocated for structure clusters,
starting from CLUSTER. */
static void
free_struct_cluster (struct field_cluster* cluster)
{
if (cluster)
{
if (cluster->fields_in_cluster)
sbitmap_free (cluster->fields_in_cluster);
if (cluster->sibling)
free_struct_cluster (cluster->sibling);
free (cluster);
}
}
/* Free all allocated memory under the structure node pointed by D_NODE. */
static void
free_data_struct (d_str d_node)
{
int i;
if (!d_node)
return;
if (dump_file)
{
fprintf (dump_file, "\nRemoving data structure \"");
print_generic_expr (dump_file, d_node->decl, 0);
fprintf (dump_file, "\" from data_struct_list.");
}
/* Free all space under d_node. */
if (d_node->fields)
{
for (i = 0; i < d_node->num_fields; i++)
free_field_accesses (d_node->fields[i].acc_sites);
free (d_node->fields);
}
if (d_node->accs)
free_accesses (d_node->accs);
if (d_node->struct_clustering)
free_struct_cluster (d_node->struct_clustering);
if (d_node->new_types)
VEC_free (tree, heap, d_node->new_types);
}
/* This function creates new general and field accesses in BB. */
static void
create_new_accesses_in_bb (basic_block bb)
{
d_str str;
unsigned i;
for (i = 0; VEC_iterate (structure, structures, i, str); i++)
create_new_accs_for_struct (str, bb);
}
/* This function adds allocation sites for peeled structures.
M_DATA is vector of allocation sites of function CONTEXT. */
static void
create_new_alloc_sites (fallocs_t m_data, tree context)
{
alloc_site_t *call;
unsigned j;
for (j = 0; VEC_iterate (alloc_site_t, m_data->allocs, j, call); j++)
{
gimple stmt = call->stmt;
d_str str = call->str;
tree num;
gimple_seq new_stmts = NULL;
gimple last_stmt = get_final_alloc_stmt (stmt);
unsigned i;
tree type;
num = gen_num_of_structs_in_malloc (stmt, str->decl, &new_stmts);
if (new_stmts)
{
gimple last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
insert_seq_after_stmt (last_stmt, new_stmts);
last_stmt = last_stmt_tmp;
}
/* Generate an allocation sites for each new structure type. */
for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
{
gimple new_malloc_stmt = NULL;
gimple last_stmt_tmp = NULL;
new_stmts = NULL;
new_malloc_stmt = create_new_malloc (stmt, type, &new_stmts, num);
last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
insert_seq_after_stmt (last_stmt, new_stmts);
update_cgraph_with_malloc_call (new_malloc_stmt, context);
last_stmt = last_stmt_tmp;
}
}
}
/* This function prints new variables from hashtable
NEW_VARS_HTAB to dump_file. */
static void
dump_new_vars (htab_t new_vars_htab)
{
if (!dump_file)
return;
if (new_vars_htab)
htab_traverse (new_vars_htab, dump_new_var, NULL);
}
/* Given an original variable ORIG_DECL of structure type STR,
this function generates new variables of the types defined
by STR->new_type. Generated types are saved in new_var node NODE.
ORIG_DECL should has VAR_DECL tree_code. */
static void
create_new_var_1 (tree orig_decl, d_str str, new_var node)
{
unsigned i;
tree type;
for (i = 0;
VEC_iterate (tree, str->new_types, i, type); i++)
{
tree new_decl = NULL;
tree new_name;
new_name = gen_var_name (orig_decl, i);
type = gen_struct_type (orig_decl, type);
if (is_global_var (orig_decl))
new_decl = build_decl (DECL_SOURCE_LOCATION (orig_decl),
VAR_DECL, new_name, type);
else
{
const char *name = new_name ? IDENTIFIER_POINTER (new_name) : NULL;
new_decl = create_tmp_var (type, name);
}
copy_decl_attributes (new_decl, orig_decl);
VEC_safe_push (tree, heap, node->new_vars, new_decl);
}
}
/* This function creates new variables to
substitute the original variable VAR_DECL and adds
them to the new_var's hashtable NEW_VARS_HTAB. */
static void
create_new_var (tree var_decl, htab_t new_vars_htab)
{
new_var node;
d_str str;
tree type;
unsigned i;
if (!var_decl || is_in_new_vars_htab (var_decl, new_vars_htab))
return;
if (!is_candidate (var_decl, &type, NULL))
return;
i = find_structure (type);
if (i == VEC_length (structure, structures))
return;
str = VEC_index (structure, structures, i);
node = create_new_var_node (var_decl, str);
create_new_var_1 (var_decl, str, node);
add_to_new_vars_htab (node, new_vars_htab);
}
/* Hash value for new_var. */
static hashval_t
new_var_hash (const void *x)
{
return DECL_UID (((const_new_var)x)->orig_var);
}
/* This function returns nonzero if orig_var of new_var X
and tree Y have equal UIDs. */
static int
new_var_eq (const void *x, const void *y)
{
if (DECL_P ((const_tree)y))
return DECL_UID (((const_new_var)x)->orig_var) == DECL_UID ((const_tree)y);
else
return 0;
}
/* This function check whether a structure type represented by STR
escapes due to ipa-type-escape analysis. If yes, this type is added
to UNSUITABLE_TYPES vector. */
static void
check_type_escape (d_str str, VEC (tree, heap) **unsuitable_types)
{
tree type = str->decl;
if (!ipa_type_escape_type_contained_p (type))
{
if (dump_file)
{
fprintf (dump_file, "\nEscaping type is ");
print_generic_expr (dump_file, type, 0);
}
add_unsuitable_type (unsuitable_types, type);
}
}
/* Hash value for access_site. */
static hashval_t
acc_hash (const void *x)
{
return htab_hash_pointer (((const struct access_site *)x)->stmt);
}
/* Return nonzero if stmt of access_site X is equal to Y. */
static int
acc_eq (const void *x, const void *y)
{
return ((const struct access_site *)x)->stmt == (const_gimple)y;
}
/* Given a structure declaration STRUCT_DECL, and number of fields
in the structure NUM_FIELDS, this function creates and returns
corresponding field_entry's. */
static struct field_entry *
get_fields (tree struct_decl, int num_fields)
{
struct field_entry *list;
tree t = TYPE_FIELDS (struct_decl);
int idx = 0;
list = XNEWVEC (struct field_entry, num_fields);
for (idx = 0 ; t; t = TREE_CHAIN (t), idx++)
if (TREE_CODE (t) == FIELD_DECL)
{
list[idx].index = idx;
list[idx].decl = t;
list[idx].acc_sites =
htab_create (32, field_acc_hash, field_acc_eq, NULL);
list[idx].count = 0;
list[idx].field_mapping = NULL_TREE;
}
return list;
}
/* Print non-field accesses from hashtable ACCS of structure. */
static void
dump_access_sites (htab_t accs)
{
if (!dump_file)
return;
if (accs)
htab_traverse (accs, dump_acc, NULL);
}
/* This function is a callback for alloc_sites hashtable
traversal. SLOT is a pointer to fallocs_t. This function
removes all allocations of the structure defined by DATA. */
static int
remove_str_allocs_in_func (void **slot, void *data)
{
fallocs_t fallocs = *(fallocs_t *) slot;
unsigned i = 0;
alloc_site_t *call;
while (VEC_iterate (alloc_site_t, fallocs->allocs, i, call))
{
if (call->str == (d_str) data)
VEC_ordered_remove (alloc_site_t, fallocs->allocs, i);
else
i++;
}
return 1;
}
/* This function remove all entries corresponding to the STR structure
from alloc_sites hashtable. */
static void
remove_str_allocs (d_str str)
{
if (!str)
return;
if (alloc_sites)
htab_traverse (alloc_sites, remove_str_allocs_in_func, str);
}
/* This function removes the structure with index I from structures vector. */
static void
remove_structure (unsigned i)
{
d_str str;
if (i >= VEC_length (structure, structures))
return;
str = VEC_index (structure, structures, i);
/* Before removing the structure str, we have to remove its
allocations from alloc_sites hashtable. */
remove_str_allocs (str);
free_data_struct (str);
VEC_ordered_remove (structure, structures, i);
}
/* Currently we support only EQ_EXPR or NE_EXPR conditions.
COND_STMT is a condition statement to check. */
static bool
is_safe_cond_expr (gimple cond_stmt)
{
tree arg0, arg1;
unsigned str0, str1;
bool s0, s1;
unsigned length = VEC_length (structure, structures);
if (gimple_cond_code (cond_stmt) != EQ_EXPR
&& gimple_cond_code (cond_stmt) != NE_EXPR)
return false;
arg0 = gimple_cond_lhs (cond_stmt);
arg1 = gimple_cond_rhs (cond_stmt);
str0 = find_structure (strip_type (get_type_of_var (arg0)));
str1 = find_structure (strip_type (get_type_of_var (arg1)));
s0 = (str0 != length) ? true : false;
s1 = (str1 != length) ? true : false;
if (!s0 && !s1)
return false;
/* For now we allow only comparison with 0 or NULL. */
if (!integer_zerop (arg0) && !integer_zerop (arg1))
return false;
return true;
}
/* This function excludes statements, that are
part of allocation sites or field accesses, from the
hashtable of general accesses. SLOT represents general
access that will be checked. DATA is a pointer to
exclude_data structure. */
static int
exclude_from_accs (void **slot, void *data)
{
struct access_site *acc = *(struct access_site **) slot;
tree fn_decl = ((struct exclude_data *)data)->fn_decl;
d_str str = ((struct exclude_data *)data)->str;
if (is_part_of_malloc (acc->stmt, fn_decl)
|| is_part_of_field_access (acc->stmt, str))
{
VEC_free (tree, heap, acc->vars);
free (acc);
htab_clear_slot (str->accs, slot);
}
return 1;
}
/* Callback function for walk_tree called from collect_accesses_in_bb
function. DATA is the statement which is analyzed. */
static tree
get_stmt_accesses (tree *tp, int *walk_subtrees, void *data)
{
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
gimple stmt = (gimple) wi->info;
tree t = *tp;
if (!t)
return NULL;
switch (TREE_CODE (t))
{
case BIT_FIELD_REF:
{
tree var = TREE_OPERAND(t, 0);
tree type = TYPE_MAIN_VARIANT (strip_type (get_type_of_var (var)));
unsigned i = find_structure (type);
if (i != VEC_length (structure, structures))
{
if (is_gimple_debug (stmt))
{
d_str str;
str = VEC_index (structure, structures, i);
add_access_to_acc_sites (stmt, NULL, str->accs);
*walk_subtrees = 0;
break;
}
if (dump_file)
{
fprintf (dump_file, "\nThe type ");
print_generic_expr (dump_file, type, 0);
fprintf (dump_file, " has bitfield.");
}
remove_structure (i);
}
}
break;
case COMPONENT_REF:
{
tree ref = TREE_OPERAND (t, 0);
tree field_decl = TREE_OPERAND (t, 1);
if ((TREE_CODE (ref) == INDIRECT_REF
|| TREE_CODE (ref) == ARRAY_REF
|| TREE_CODE (ref) == VAR_DECL)
&& TREE_CODE (field_decl) == FIELD_DECL)
{
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
unsigned i = find_structure (type);
if (i != VEC_length (structure, structures))
{
d_str str = VEC_index (structure, structures, i);
struct field_entry * field =
find_field_in_struct (str, field_decl);
if (is_gimple_debug (stmt))
{
add_access_to_acc_sites (stmt, NULL, str->accs);
*walk_subtrees = 0;
break;
}
if (field)
{
struct field_access_site *acc = make_field_acc_node ();
gcc_assert (acc);
acc->stmt = stmt;
acc->comp_ref = t;
acc->ref = ref;
acc->field_decl = field_decl;
/* Check whether the access is of the form
we can deal with. */
if (!decompose_access (str->decl, acc))
{
if (dump_file)
{
fprintf (dump_file, "\nThe type ");
print_generic_expr (dump_file, type, 0);
fprintf (dump_file,
" has complicate access in statement ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
remove_structure (i);
free (acc);
}
else
{
/* Increase count of field. */
basic_block bb = gimple_bb (stmt);
field->count += bb->count;
/* Add stmt to the acc_sites of field. */
add_field_acc_to_acc_sites (acc, field->acc_sites);
}
*walk_subtrees = 0;
}
}
}
}
break;
case COND_EXPR:
{
tree cond = COND_EXPR_COND (t);
int i;
for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (cond)); i++)
{
tree t = TREE_OPERAND (cond, i);
*walk_subtrees = 1;
walk_tree (&t, get_stmt_accesses, data, NULL);
}
*walk_subtrees = 0;
}
break;
case VAR_DECL:
case SSA_NAME:
{
unsigned i;
if (TREE_CODE (t) == SSA_NAME)
t = SSA_NAME_VAR (t);
i = find_structure (strip_type (get_type_of_var (t)));
if (i != VEC_length (structure, structures))
{
d_str str;
str = VEC_index (structure, structures, i);
add_access_to_acc_sites (stmt, t, str->accs);
}
*walk_subtrees = 0;
}
break;
default:
return NULL;
}
return NULL;
}
/* Free structures hashtable. */
static void
free_structures (void)
{
d_str str;
unsigned i;
for (i = 0; VEC_iterate (structure, structures, i, str); i++)
free_data_struct (str);
VEC_free (structure, heap, structures);
structures = NULL;
}
/* This function is a callback for traversal over new_var's hashtable.
SLOT is a pointer to new_var. This function frees memory allocated
for new_var and pointed by *SLOT. */
static int
free_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
{
new_var n_var = *(new_var *) slot;
/* Free vector of new_vars. */
VEC_free (tree, heap, n_var->new_vars);
free (n_var);
return 1;
}
/* Free new_vars hashtable NEW_VARS_HTAB. */
static void
free_new_vars_htab (htab_t new_vars_htab)
{
if (new_vars_htab)
htab_traverse (new_vars_htab, free_new_var, NULL);
htab_delete (new_vars_htab);
new_vars_htab = NULL;
}
/* This function creates new general and field accesses that appear in cfun. */
static void
create_new_accesses_for_func (void)
{
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
create_new_accesses_in_bb (bb);
}
/* Create new allocation sites for the function represented by NODE. */
static void
create_new_alloc_sites_for_func (struct cgraph_node *node)
{
fallocs_t fallocs = get_fallocs (node->decl);
if (fallocs)
create_new_alloc_sites (fallocs, node->decl);
}
/* For each local variable of structure type from the vector of structures
this function generates new variable(s) to replace it. */
static void
create_new_local_vars (void)
{
tree var;
referenced_var_iterator rvi;
new_local_vars = htab_create (num_referenced_vars,
new_var_hash, new_var_eq, NULL);
FOR_EACH_REFERENCED_VAR (var, rvi)
{
if (!is_global_var (var))
create_new_var (var, new_local_vars);
}
if (new_local_vars)
htab_traverse (new_local_vars, finalize_new_vars_creation, NULL);
dump_new_vars (new_local_vars);
}
/* This function prints the SHIFT number of spaces to the DUMP_FILE. */
static inline void
print_shift (unsigned HOST_WIDE_INT shift)
{
unsigned HOST_WIDE_INT sh = shift;
while (sh--)
fprintf (dump_file, " ");
}
/* This function updates field_mapping of FIELDS in CLUSTER with NEW_TYPE. */
static inline void
update_fields_mapping (struct field_cluster *cluster, tree new_type,
struct field_entry * fields, int num_fields)
{
int i;
for (i = 0; i < num_fields; i++)
if (TEST_BIT (cluster->fields_in_cluster, i))
fields[i].field_mapping = new_type;
}
/* This functions builds structure with FIELDS,
NAME and attributes similar to ORIG_STRUCT.
It returns the newly created structure. */
static tree
build_basic_struct (tree fields, tree name, tree orig_struct)
{
tree attributes = NULL_TREE;
tree ref = 0;
tree x;
if (TYPE_ATTRIBUTES (orig_struct))
attributes = unshare_expr (TYPE_ATTRIBUTES (orig_struct));
ref = make_node (RECORD_TYPE);
TYPE_SIZE (ref) = 0;
decl_attributes (&ref, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
TYPE_PACKED (ref) = TYPE_PACKED (orig_struct);
for (x = fields; x; x = TREE_CHAIN (x))
{
DECL_CONTEXT (x) = ref;
DECL_PACKED (x) |= TYPE_PACKED (ref);
}
TYPE_FIELDS (ref) = fields;
layout_type (ref);
TYPE_NAME (ref) = name;
return ref;
}
/* This function copies FIELDS from CLUSTER into TREE_CHAIN as part
of preparation for new structure building. NUM_FIELDS is a total
number of fields in the structure. The function returns newly
generated fields. */
static tree
create_fields (struct field_cluster * cluster,
struct field_entry * fields, int num_fields)
{
int i;
tree new_types = NULL_TREE;
tree last = NULL_TREE;
for (i = 0; i < num_fields; i++)
if (TEST_BIT (cluster->fields_in_cluster, i))
{
tree new_decl = unshare_expr (fields[i].decl);
if (!new_types)
new_types = new_decl;
else
TREE_CHAIN (last) = new_decl;
last = new_decl;
}
TREE_CHAIN (last) = NULL_TREE;
return new_types;
}
/* This function creates a cluster name. The name is based on
the original structure name, if it is present. It has a form:
<original_struct_name>_sub.<CLUST_NUM>
The original structure name is taken from the type of DECL.
If an original structure name is not present, it's generated to be:
struct.<STR_NUM>
The function returns identifier of the new cluster name. */
static inline tree
gen_cluster_name (tree decl, int clust_num, int str_num)
{
const char * orig_name = get_type_name (decl);
char * tmp_name = NULL;
char * prefix;
char * new_name;
size_t len;
if (!orig_name)
ASM_FORMAT_PRIVATE_NAME(tmp_name, "struct", str_num);
len = strlen (tmp_name ? tmp_name : orig_name) + strlen ("_sub");
prefix = XALLOCAVEC (char, len + 1);
memcpy (prefix, tmp_name ? tmp_name : orig_name,
strlen (tmp_name ? tmp_name : orig_name));
strcpy (prefix + strlen (tmp_name ? tmp_name : orig_name), "_sub");
ASM_FORMAT_PRIVATE_NAME (new_name, prefix, clust_num);
return get_identifier (new_name);
}
/* This function checks whether the structure STR has bitfields.
If yes, this structure type is added to UNSUITABLE_TYPES vector. */
static void
check_bitfields (d_str str, VEC (tree, heap) **unsuitable_types)
{
tree type = str->decl;
int i;
for (i = 0; i < str->num_fields; i++)
if (DECL_BIT_FIELD (str->fields[i].decl))
{
add_unsuitable_type (unsuitable_types, type);
if (dump_file)
{
fprintf (dump_file, "\nType ");
print_generic_expr (dump_file, type, 0);
fprintf (dump_file, "\nescapes due to bitfield ");
print_generic_expr (dump_file, str->fields[i].decl, 0);
}
break;
}
}
/* This function adds to UNSUITABLE_TYPES those types that escape
due to results of ipa-type-escape analysis. See ipa-type-escape.[c,h]. */
static void
exclude_escaping_types_1 (VEC (tree, heap) **unsuitable_types)
{
d_str str;
unsigned i;
for (i = 0; VEC_iterate (structure, structures, i, str); i++)
check_type_escape (str, unsuitable_types);
}
/* If a structure type is a return type of any function,
we cannot transform it. Such type is added to UNSUITABLE_TYPES vector. */
static void
exclude_returned_types (VEC (tree, heap) **unsuitable_types)
{
struct cgraph_node *c_node;
for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
{
tree ret_t = TREE_TYPE (TREE_TYPE (c_node->decl));
if (ret_t)
{
ret_t = strip_type (ret_t);
if (TREE_CODE (ret_t) == RECORD_TYPE)
{
add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (ret_t));
if (dump_file)
{
fprintf (dump_file, "\nThe type \"");
print_generic_expr (dump_file, ret_t, 0);
fprintf (dump_file,
"\" is return type of function...Excluded.");
}
}
}
}
}
/* This function looks for parameters of local functions
which are of structure types, or derived from them (arrays
of structures, pointers to structures, or their combinations).
We are not handling peeling of such structures right now.
The found structures types are added to UNSUITABLE_TYPES vector. */
static void
exclude_types_passed_to_local_func (VEC (tree, heap) **unsuitable_types)
{
struct cgraph_node *c_node;
for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
if (cgraph_function_body_availability (c_node) == AVAIL_LOCAL)
{
tree fn = c_node->decl;
tree arg;
for (arg = DECL_ARGUMENTS (fn); arg; arg = TREE_CHAIN (arg))
{
tree type = TREE_TYPE (arg);
type = strip_type (type);
if (TREE_CODE (type) == RECORD_TYPE)
{
add_unsuitable_type (unsuitable_types,
TYPE_MAIN_VARIANT (type));
if (dump_file)
{
fprintf (dump_file, "\nPointer to type \"");
print_generic_expr (dump_file, type, 0);
fprintf (dump_file,
"\" is passed to local function...Excluded.");
}
}
}
}
}
/* This function analyzes structure form of structures
potential for transformation. If we are not capable to transform
structure of some form, we remove it from the structures hashtable.
Right now we cannot handle nested structs, when nesting is
through any level of pointers or arrays.
TBD: release these constrains in future.
Note, that in this function we suppose that all structures
in the program are members of the structures hashtable right now,
without excluding escaping types. */
static void
check_struct_form (d_str str, VEC (tree, heap) **unsuitable_types)
{
int i;
for (i = 0; i < str->num_fields; i++)
{
tree f_type = strip_type(TREE_TYPE (str->fields[i].decl));
if (TREE_CODE (f_type) == RECORD_TYPE)
{
add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (f_type));
add_unsuitable_type (unsuitable_types, str->decl);
if (dump_file)
{
fprintf (dump_file, "\nType ");
print_generic_expr (dump_file, f_type, 0);
fprintf (dump_file, " is a field in the structure ");
print_generic_expr (dump_file, str->decl, 0);
fprintf (dump_file, ". Escaping...");
}
}
}
}
/* This function adds a structure TYPE to the vector of structures,
if it's not already there. */
static void
add_structure (tree type)
{
struct data_structure node;
unsigned i;
int num_fields;
type = TYPE_MAIN_VARIANT (type);
i = find_structure (type);
if (i != VEC_length (structure, structures))
return;
num_fields = fields_length (type);
node.decl = type;
node.num_fields = num_fields;
node.fields = get_fields (type, num_fields);
node.struct_clustering = NULL;
node.accs = htab_create (32, acc_hash, acc_eq, NULL);
node.new_types = VEC_alloc (tree, heap, num_fields);
node.count = 0;
VEC_safe_push (structure, heap, structures, &node);
if (dump_file)
{
fprintf (dump_file, "\nAdding data structure \"");
print_generic_expr (dump_file, type, 0);
fprintf (dump_file, "\" to data_struct_list.");
}
}
/* This function adds an allocation site to alloc_sites hashtable.
The allocation site appears in STMT of function FN_DECL and
allocates the structure represented by STR. */
static void
add_alloc_site (tree fn_decl, gimple stmt, d_str str)
{
fallocs_t fallocs = NULL;
alloc_site_t m_call;
m_call.stmt = stmt;
m_call.str = str;
fallocs =
(fallocs_t) htab_find_with_hash (alloc_sites,
fn_decl, htab_hash_pointer (fn_decl));
if (!fallocs)
{
void **slot;
fallocs = XNEW (struct func_alloc_sites);
fallocs->func = fn_decl;
fallocs->allocs = VEC_alloc (alloc_site_t, heap, 1);
slot = htab_find_slot_with_hash (alloc_sites, fn_decl,
htab_hash_pointer (fn_decl), INSERT);
*slot = fallocs;
}
VEC_safe_push (alloc_site_t, heap,
fallocs->allocs, &m_call);
if (dump_file)
{
fprintf (dump_file, "\nAdding stmt ");
print_gimple_stmt (dump_file, stmt, 0, 0);
fprintf (dump_file, " to list of mallocs.");
}
}
/* This function returns true if the result of STMT, that contains a call
to an allocation function, is cast to one of the structure types.
STMT should be of the form: T.2 = <alloc_func> (T.1);
If true, I_P contains an index of an allocated structure.
Otherwise I_P contains the length of the vector of structures. */
static bool
is_alloc_of_struct (gimple stmt, unsigned *i_p)
{
tree lhs;
tree type;
gimple final_stmt;
final_stmt = get_final_alloc_stmt (stmt);
if (!final_stmt)
return false;
/* final_stmt should be of the form:
T.3 = (struct_type *) T.2; */
if (gimple_code (final_stmt) != GIMPLE_ASSIGN)
return false;
lhs = gimple_assign_lhs (final_stmt);
type = get_type_of_var (lhs);
if (!type)
return false;
if (!POINTER_TYPE_P (type)
|| TREE_CODE (strip_type (type)) != RECORD_TYPE)
return false;
*i_p = find_structure (strip_type (type));
if (*i_p == VEC_length (structure, structures))
return false;
return true;
}
/* This function prints non-field and field accesses
of the structure STR. */
static void
dump_accs (d_str str)
{
int i;
fprintf (dump_file, "\nAccess sites of struct ");
print_generic_expr (dump_file, str->decl, 0);
for (i = 0; i < str->num_fields; i++)
{
fprintf (dump_file, "\nAccess site of field ");
print_generic_expr (dump_file, str->fields[i].decl, 0);
dump_field_acc_sites (str->fields[i].acc_sites);
fprintf (dump_file, ":\n");
}
fprintf (dump_file, "\nGeneral access sites\n");
dump_access_sites (str->accs);
}
/* This function checks whether an access statement, pointed by SLOT,
is a condition we are capable to transform. It returns false if not,
setting bool *DATA to false. */
static int
safe_cond_expr_check (void **slot, void *data)
{
struct access_site *acc = *(struct access_site **) slot;
if (gimple_code (acc->stmt) == GIMPLE_COND
&& !is_safe_cond_expr (acc->stmt))
{
if (dump_file)
{
fprintf (dump_file, "\nUnsafe conditional statement ");
print_gimple_stmt (dump_file, acc->stmt, 0, 0);
}
*(bool *) data = false;
return 0;
}
return 1;
}
/* This function excludes statements that are part of allocation sites and
field accesses from the hashtable of general accesses of the structure
type STR. Only accesses that belong to the function represented by
NODE are treated. */
static void
exclude_alloc_and_field_accs_1 (d_str str, struct cgraph_node *node)
{
struct exclude_data dt;
dt.str = str;
dt.fn_decl = node->decl;
if (dt.str->accs)
htab_traverse (dt.str->accs, exclude_from_accs, &dt);
}
/* Collect accesses to the structure types that appear in basic block BB. */
static void
collect_accesses_in_bb (basic_block bb)
{
gimple_stmt_iterator bsi;
struct walk_stmt_info wi;
memset (&wi, 0, sizeof (wi));
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
gimple stmt = gsi_stmt (bsi);
/* In asm stmt we cannot always track the arguments,
so we just give up. */
if (gimple_code (stmt) == GIMPLE_ASM)
{
free_structures ();
break;
}
wi.info = (void *) stmt;
walk_gimple_op (stmt, get_stmt_accesses, &wi);
}
}
/* This function generates cluster substructure that contains FIELDS.
The cluster added to the set of clusters of the structure STR. */
static void
gen_cluster (sbitmap fields, d_str str)
{
struct field_cluster *crr_cluster = XCNEW (struct field_cluster);
crr_cluster->sibling = str->struct_clustering;
str->struct_clustering = crr_cluster;
crr_cluster->fields_in_cluster = fields;
}
/* This function peels a field with the index I from the structure DS. */
static void
peel_field (int i, d_str ds)
{
struct field_cluster *crr_cluster = XCNEW (struct field_cluster);
crr_cluster->sibling = ds->struct_clustering;
ds->struct_clustering = crr_cluster;
crr_cluster->fields_in_cluster =
sbitmap_alloc ((unsigned int) ds->num_fields);
sbitmap_zero (crr_cluster->fields_in_cluster);
SET_BIT (crr_cluster->fields_in_cluster, i);
}
/* This function calculates maximum field count in
the structure STR. */
static gcov_type
get_max_field_count (d_str str)
{
gcov_type max = 0;
int i;
for (i = 0; i < str->num_fields; i++)
if (str->fields[i].count > max)
max = str->fields[i].count;
return max;
}
/* Do struct-reorg transformation for individual function
represented by NODE. All structure types relevant
for this function are transformed. */
static void
do_reorg_for_func (struct cgraph_node *node)
{
create_new_local_vars ();
create_new_alloc_sites_for_func (node);
create_new_accesses_for_func ();
update_ssa (TODO_update_ssa);
cleanup_tree_cfg ();
cgraph_rebuild_references ();
/* Free auxiliary data representing local variables. */
free_new_vars_htab (new_local_vars);
}
/* Print structure TYPE, its name, if it exists, and body.
INDENT defines the level of indentation (similar
to the option -i of indent command). SHIFT parameter
defines a number of spaces by which a structure will
be shifted right. */
static void
dump_struct_type (tree type, unsigned HOST_WIDE_INT indent,
unsigned HOST_WIDE_INT shift)
{
const char *struct_name;
tree field;
if (!type || !dump_file)
return;
if (TREE_CODE (type) != RECORD_TYPE)
{
print_generic_expr (dump_file, type, 0);
return;
}
print_shift (shift);
struct_name = get_type_name (type);
fprintf (dump_file, "struct ");
if (struct_name)
fprintf (dump_file, "%s\n",struct_name);
print_shift (shift);
fprintf (dump_file, "{\n");
for (field = TYPE_FIELDS (type); field;
field = TREE_CHAIN (field))
{
unsigned HOST_WIDE_INT s = indent;
tree f_type = TREE_TYPE (field);
print_shift (shift);
while (s--)
fprintf (dump_file, " ");
dump_struct_type (f_type, indent, shift + indent);
fprintf(dump_file, " ");
print_generic_expr (dump_file, field, 0);
fprintf(dump_file, ";\n");
}
print_shift (shift);
fprintf (dump_file, "}\n");
}
/* This function creates new structure types to replace original type,
indicated by STR->decl. The names of the new structure types are
derived from the original structure type. If the original structure
type has no name, we assume that its name is 'struct.<STR_NUM>'. */
static void
create_new_type (d_str str, int *str_num)
{
int cluster_num = 0;
struct field_cluster *cluster = str->struct_clustering;
while (cluster)
{
tree name = gen_cluster_name (str->decl, cluster_num,
*str_num);
tree fields;
tree new_type;
cluster_num++;
fields = create_fields (cluster, str->fields,
str->num_fields);
new_type = build_basic_struct (fields, name, str->decl);
update_fields_mapping (cluster, new_type,
str->fields, str->num_fields);
VEC_safe_push (tree, heap, str->new_types, new_type);
cluster = cluster->sibling;
}
(*str_num)++;
}
/* This function is a callback for alloc_sites hashtable
traversal. SLOT is a pointer to fallocs_t.
This function frees memory pointed by *SLOT. */
static int
free_falloc_sites (void **slot, void *data ATTRIBUTE_UNUSED)
{
fallocs_t fallocs = *(fallocs_t *) slot;
VEC_free (alloc_site_t, heap, fallocs->allocs);
free (fallocs);
return 1;
}
/* Remove structures collected in UNSUITABLE_TYPES
from structures vector. */
static void
remove_unsuitable_types (VEC (tree, heap) *unsuitable_types)
{
d_str str;
tree type;
unsigned i, j;
for (j = 0; VEC_iterate (tree, unsuitable_types, j, type); j++)
for (i = 0; VEC_iterate (structure, structures, i, str); i++)
if (is_equal_types (str->decl, type))
{
remove_structure (i);
break;
}
}
/* Exclude structure types with bitfields.
We would not want to interfere with other optimizations
that can be done in this case. The structure types with
bitfields are added to UNSUITABLE_TYPES vector. */
static void
exclude_types_with_bit_fields (VEC (tree, heap) **unsuitable_types)
{
d_str str;
unsigned i;
for (i = 0; VEC_iterate (structure, structures, i, str); i++)
check_bitfields (str, unsuitable_types);
}
/* This function checks three types of escape. A structure type escapes:
1. if it's a type of parameter of a local function.
2. if it's a type of function return value.
3. if it escapes as a result of ipa-type-escape analysis.
The escaping structure types are added to UNSUITABLE_TYPES vector. */
static void
exclude_escaping_types (VEC (tree, heap) **unsuitable_types)
{
exclude_types_passed_to_local_func (unsuitable_types);
exclude_returned_types (unsuitable_types);
exclude_escaping_types_1 (unsuitable_types);
}
/* This function analyzes whether the form of
structure is such that we are capable to transform it.
Nested structures are checked here. Unsuitable structure
types are added to UNSUITABLE_TYPE vector. */
static void
analyze_struct_form (VEC (tree, heap) **unsuitable_types)
{
d_str str;
unsigned i;
for (i = 0; VEC_iterate (structure, structures, i, str); i++)
check_struct_form (str, unsuitable_types);
}
/* This function looks for structure types instantiated in the program.
The candidate types are added to the structures vector.
Unsuitable types are collected into UNSUITABLE_TYPES vector. */
static void
build_data_structure (VEC (tree, heap) **unsuitable_types)
{
tree var, type;
tree var_list;
struct varpool_node *current_varpool;
struct cgraph_node *c_node;
/* Check global variables. */
FOR_EACH_STATIC_VARIABLE (current_varpool)
{
var = current_varpool->decl;
if (is_candidate (var, &type, unsuitable_types))
add_structure (type);
}
/* Now add structures that are types of function parameters and
local variables. */
for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
{
enum availability avail =
cgraph_function_body_availability (c_node);
/* We need AVAIL_AVAILABLE for main function. */
if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
{
struct function *fn = DECL_STRUCT_FUNCTION (c_node->decl);
for (var = DECL_ARGUMENTS (c_node->decl); var;
var = TREE_CHAIN (var))
if (is_candidate (var, &type, unsuitable_types))
add_structure (type);
if (fn == NULL)
{
/* Skip cones that haven't been materialized yet. */
gcc_assert (c_node->clone_of
&& c_node->clone_of->decl != c_node->decl);
continue;
}
/* Check function local variables. */
for (var_list = fn->local_decls; var_list;
var_list = TREE_CHAIN (var_list))
{
var = TREE_VALUE (var_list);
if (is_candidate (var, &type, unsuitable_types))
add_structure (type);
}
}
}
}
/* This function returns true if the program contains
a call to user defined allocation function, or other
functions that can interfere with struct-reorg optimizations. */
static bool
program_redefines_malloc_p (void)
{
struct cgraph_node *c_node;
struct cgraph_node *c_node2;
struct cgraph_edge *c_edge;
tree fndecl2;
for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
{
for (c_edge = c_node->callees; c_edge; c_edge = c_edge->next_callee)
{
c_node2 = c_edge->callee;
fndecl2 = c_node2->decl;
if (is_gimple_call (c_edge->call_stmt))
{
const char * fname = get_name (fndecl2);
if ((gimple_call_flags (c_edge->call_stmt) & ECF_MALLOC)
&& (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_MALLOC)
&& (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_CALLOC)
&& (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_ALLOCA))
return true;
/* Check that there is no __builtin_object_size,
__builtin_offsetof, or realloc's in the program. */
if (DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_OBJECT_SIZE
|| !strcmp (fname, "__builtin_offsetof")
|| !strcmp (fname, "realloc"))
return true;
}
}
}
return false;
}
/* In this function we assume that an allocation statement
var = (type_cast) malloc (size);
is converted into the following set of statements:
T.1 = size;
T.2 = malloc (T.1);
T.3 = (type_cast) T.2;
var = T.3;
In this function we collect into alloc_sites the allocation
sites of variables of structure types that are present
in structures vector. */
static void
collect_alloc_sites (void)
{
struct cgraph_node *node;
struct cgraph_edge *cs;
for (node = cgraph_nodes; node; node = node->next)
if (node->analyzed && node->decl)
{
for (cs = node->callees; cs; cs = cs->next_callee)
{
gimple stmt = cs->call_stmt;
if (stmt)
{
tree decl;
if (is_gimple_call (stmt)
&& (decl = gimple_call_fndecl (stmt))
&& gimple_call_lhs (stmt))
{
unsigned i;
if (is_alloc_of_struct (stmt, &i))
{
/* We support only malloc now. */
if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MALLOC)
{
d_str str;
str = VEC_index (structure, structures, i);
add_alloc_site (node->decl, stmt, str);
}
else
{
if (dump_file)
{
fprintf (dump_file,
"\nUnsupported allocation function ");
print_gimple_stmt (dump_file, stmt, 0, 0);
}
remove_structure (i);
}
}
}
}
}
}
}
/* Print collected accesses. */
static void
dump_accesses (void)
{
d_str str;
unsigned i;
if (!dump_file)
return;
for (i = 0; VEC_iterate (structure, structures, i, str); i++)
dump_accs (str);
}
/* This function checks whether the accesses of structures in condition
expressions are of the kind we are capable to transform.
If not, such structures are removed from the vector of structures. */
static void
check_cond_exprs (void)
{
d_str str;
unsigned i;
i = 0;
while (VEC_iterate (structure, structures, i, str))
{
bool safe_p = true;
if (str->accs)
htab_traverse (str->accs, safe_cond_expr_check, &safe_p);
if (!safe_p)
remove_structure (i);
else
i++;
}
}
/* We exclude from non-field accesses of the structure
all statements that will be treated as part of the structure
allocation sites or field accesses. */
static void
exclude_alloc_and_field_accs (struct cgraph_node *node)
{
d_str str;
unsigned i;
for (i = 0; VEC_iterate (structure, structures, i, str); i++)
exclude_alloc_and_field_accs_1 (str, node);
}
/* This function collects accesses of the fields of the structures
that appear at function FN. */
static void
collect_accesses_in_func (struct function *fn)
{
basic_block bb;
if (! fn)
return;
/* Collect accesses for each basic blocks separately. */
FOR_EACH_BB_FN (bb, fn)
collect_accesses_in_bb (bb);
}
/* This function summarizes counts of the fields into the structure count. */
static void
sum_counts (d_str str, gcov_type *hottest)
{
int i;
str->count = 0;
for (i = 0; i < str->num_fields; i++)
{
if (dump_file)
{
fprintf (dump_file, "\nCounter of field \"");
print_generic_expr (dump_file, str->fields[i].decl, 0);
fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC,
str->fields[i].count);
}
str->count += str->fields[i].count;
}
if (dump_file)
{
fprintf (dump_file, "\nCounter of struct \"");
print_generic_expr (dump_file, str->decl, 0);
fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC, str->count);
}
if (str->count > *hottest)
*hottest = str->count;
}
/* This function peels the field into separate structure if it's
sufficiently hot, i.e. if its count provides at least 90% of
the maximum field count in the structure. */
static void
peel_hot_fields (d_str str)
{
gcov_type max_field_count;
sbitmap fields_left = sbitmap_alloc (str->num_fields);
int i;
sbitmap_ones (fields_left);
max_field_count =
(gcov_type) (get_max_field_count (str)/100)*90;
str->struct_clustering = NULL;
for (i = 0; i < str->num_fields; i++)
{
if (str->count >= max_field_count)
{
RESET_BIT (fields_left, i);
peel_field (i, str);
}
}
i = sbitmap_first_set_bit (fields_left);
if (i != -1)
gen_cluster (fields_left, str);
else
sbitmap_free (fields_left);
}
/* This function is a helper for do_reorg. It goes over
functions in call graph and performs actual transformation
on them. */
static void
do_reorg_1 (void)
{
struct cgraph_node *node;
/* Initialize the default bitmap obstack. */
bitmap_obstack_initialize (NULL);
for (node = cgraph_nodes; node; node = node->next)
if (node->analyzed && node->decl)
{
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
current_function_decl = node->decl;
if (dump_file)
fprintf (dump_file, "\nFunction to do reorg is %s: \n",
(const char *) IDENTIFIER_POINTER (DECL_NAME (node->decl)));
do_reorg_for_func (node);
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
current_function_decl = NULL;
pop_cfun ();
}
set_cfun (NULL);
bitmap_obstack_release (NULL);
}
/* This function creates new global struct variables.
For each original variable, the set of new variables
is created with the new structure types corresponding
to the structure type of original variable.
Only VAR_DECL variables are treated by this function. */
static void
create_new_global_vars (void)
{
struct varpool_node *current_varpool;
unsigned HOST_WIDE_INT i;
unsigned HOST_WIDE_INT varpool_size = 0;
for (i = 0; i < 2; i++)
{
if (i)
new_global_vars = htab_create (varpool_size,
new_var_hash, new_var_eq, NULL);
FOR_EACH_STATIC_VARIABLE(current_varpool)
{
tree var_decl = current_varpool->decl;
if (!var_decl || TREE_CODE (var_decl) != VAR_DECL)
continue;
if (!i)
varpool_size++;
else
create_new_var (var_decl, new_global_vars);
}
}
if (new_global_vars)
htab_traverse (new_global_vars, update_varpool_with_new_var, NULL);
}
/* Dump all new types generated by this optimization. */
static void
dump_new_types (void)
{
d_str str;
tree type;
unsigned i, j;
if (!dump_file)
return;
fprintf (dump_file, "\nThe following are the new types generated by"
" this optimization:\n");
for (i = 0; VEC_iterate (structure, structures, i, str); i++)
{
if (dump_file)
{
fprintf (dump_file, "\nFor type ");
dump_struct_type (str->decl, 2, 0);
fprintf (dump_file, "\nthe number of new types is %d\n",
VEC_length (tree, str->new_types));
}
for (j = 0; VEC_iterate (tree, str->new_types, j, type); j++)
dump_struct_type (type, 2, 0);
}
}
/* This function creates new types to replace old structure types. */
static void
create_new_types (void)
{
d_str str;
unsigned i;
int str_num = 0;
for (i = 0; VEC_iterate (structure, structures, i, str); i++)
create_new_type (str, &str_num);
}
/* Free allocation sites hashtable. */
static void
free_alloc_sites (void)
{
if (alloc_sites)
htab_traverse (alloc_sites, free_falloc_sites, NULL);
htab_delete (alloc_sites);
alloc_sites = NULL;
}
/* This function collects structures potential
for peeling transformation, and inserts
them into structures hashtable. */
static void
collect_structures (void)
{
VEC (tree, heap) *unsuitable_types = VEC_alloc (tree, heap, 32);
structures = VEC_alloc (structure, heap, 32);
/* If program contains user defined mallocs, we give up. */
if (program_redefines_malloc_p ())
return;
/* Build data structures hashtable of all data structures
in the program. */
build_data_structure (&unsuitable_types);
/* This function analyzes whether the form of
structure is such that we are capable to transform it.
Nested structures are checked here. */
analyze_struct_form (&unsuitable_types);
/* This function excludes those structure types
that escape compilation unit. */
exclude_escaping_types (&unsuitable_types);
/* We do not want to change data layout of the structures with bitfields. */
exclude_types_with_bit_fields (&unsuitable_types);
remove_unsuitable_types (unsuitable_types);
VEC_free (tree, heap, unsuitable_types);
}
/* Collect structure allocation sites. In case of arrays
we have nothing to do. */
static void
collect_allocation_sites (void)
{
alloc_sites = htab_create (32, malloc_hash, malloc_eq, NULL);
collect_alloc_sites ();
}
/* This function collects data accesses for the
structures to be transformed. For each structure
field it updates the count field in field_entry. */
static void
collect_data_accesses (void)
{
struct cgraph_node *c_node;
for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
{
enum availability avail = cgraph_function_body_availability (c_node);
if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
{
struct function *func = DECL_STRUCT_FUNCTION (c_node->decl);
collect_accesses_in_func (func);
exclude_alloc_and_field_accs (c_node);
}
}
check_cond_exprs ();
/* Print collected accesses. */
dump_accesses ();
}
/* We do not bother to transform cold structures.
Coldness of the structure is defined relatively
to the highest structure count among the structures
to be transformed. It's triggered by the compiler parameter
--param struct-reorg-cold-struct-ratio=<value>
where <value> ranges from 0 to 100. Structures with count ratios
that are less than this parameter are considered to be cold. */
static void
exclude_cold_structs (void)
{
gcov_type hottest = 0;
unsigned i;
d_str str;
/* We summarize counts of fields of a structure into the structure count. */
for (i = 0; VEC_iterate (structure, structures, i, str); i++)
sum_counts (str, &hottest);
/* Remove cold structures from structures vector. */
i = 0;
while (VEC_iterate (structure, structures, i, str))
if (str->count * 100 < (hottest * STRUCT_REORG_COLD_STRUCT_RATIO))
{
if (dump_file)
{
fprintf (dump_file, "\nThe structure ");
print_generic_expr (dump_file, str->decl, 0);
fprintf (dump_file, " is cold.");
}
remove_structure (i);
}
else
i++;
}
/* This function decomposes original structure into substructures,
i.e.clusters. */
static void
peel_structs (void)
{
d_str str;
unsigned i;
for (i = 0; VEC_iterate (structure, structures, i, str); i++)
peel_hot_fields (str);
}
/* Stage 3. */
/* Do the actual transformation for each structure
from the structures hashtable. */
static void
do_reorg (void)
{
/* Check that there is a work to do. */
if (!VEC_length (structure, structures))
{
if (dump_file)
fprintf (dump_file, "\nNo structures to transform. Exiting...");
return;
}
else
{
if (dump_file)
{
fprintf (dump_file, "\nNumber of structures to transform is %d",
VEC_length (structure, structures));
}
}
/* Generate new types. */
create_new_types ();
dump_new_types ();
/* Create new global variables. */
create_new_global_vars ();
dump_new_vars (new_global_vars);
/* Decompose structures for each function separately. */
do_reorg_1 ();
/* Free auxiliary data collected for global variables. */
free_new_vars_htab (new_global_vars);
}
/* Free all auxiliary data used by this optimization. */
static void
free_data_structs (void)
{
free_structures ();
free_alloc_sites ();
}
/* Perform structure decomposition (peeling). */
static void
reorg_structs (void)
{
/* Stage1. */
/* Collect structure types. */
collect_structures ();
/* Collect structure allocation sites. */
collect_allocation_sites ();
/* Collect structure accesses. */
collect_data_accesses ();
/* We transform only hot structures. */
exclude_cold_structs ();
/* Stage2. */
/* Decompose structures into substructures, i.e. clusters. */
peel_structs ();
/* Stage3. */
/* Do the actual transformation for each structure
from the structures hashtable. */
do_reorg ();
/* Free all auxiliary data used by this optimization. */
free_data_structs ();
}
/* Struct-reorg optimization entry point function. */
static unsigned int
reorg_structs_drive (void)
{
reorg_structs ();
return 0;
}
/* Struct-reorg optimization gate function. */
static bool
struct_reorg_gate (void)
{
return flag_ipa_struct_reorg
&& flag_whole_program
&& (optimize > 0);
}
struct simple_ipa_opt_pass pass_ipa_struct_reorg =
{
{
SIMPLE_IPA_PASS,
"ipa_struct_reorg", /* name */
struct_reorg_gate, /* gate */
reorg_structs_drive, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_INTEGRATION, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
TODO_verify_ssa, /* todo_flags_start */
TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
}
};
|