1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
|
/* IPA function body analysis.
Copyright (C) 2003-2021 Free Software Foundation, Inc.
Contributed by Jan Hubicka
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_IPA_SUMMARY_H
#define GCC_IPA_SUMMARY_H
#include "sreal.h"
#include "ipa-predicate.h"
/* Hints are reasons why IPA heuristics should prefer specializing given
function. They are represented as bitmap of the following values. */
enum ipa_hints_vals {
/* When specialization turns indirect call into a direct call,
it is good idea to do so. */
INLINE_HINT_indirect_call = 1,
/* Inlining may make loop iterations or loop stride known. It is good idea
to do so because it enables loop optimizations. */
INLINE_HINT_loop_iterations = 2,
INLINE_HINT_loop_stride = 4,
/* Inlining within same strongly connected component of callgraph is often
a loss due to increased stack frame usage and prologue setup costs. */
INLINE_HINT_same_scc = 8,
/* Inlining functions in strongly connected component is not such a great
win. */
INLINE_HINT_in_scc = 16,
/* If function is declared inline by user, it may be good idea to inline
it. Set by simple_edge_hints in ipa-inline-analysis.c. */
INLINE_HINT_declared_inline = 32,
/* Programs are usually still organized for non-LTO compilation and thus
if functions are in different modules, inlining may not be so important.
Set by simple_edge_hints in ipa-inline-analysis.c. */
INLINE_HINT_cross_module = 64,
/* We know that the callee is hot by profile. */
INLINE_HINT_known_hot = 128,
/* There is builtin_constant_p dependent on parameter which is usually
a strong hint to inline. */
INLINE_HINT_builtin_constant_p = 256
};
typedef int ipa_hints;
/* Simple description of whether a memory load or a condition refers to a load
from an aggregate and if so, how and where from in the aggregate.
Individual fields have the same meaning like fields with the same name in
struct condition. */
struct agg_position_info
{
HOST_WIDE_INT offset;
bool agg_contents;
bool by_ref;
};
/* Representation of function body size and time depending on the call
context. We keep simple array of record, every containing of predicate
and time/size to account. */
class size_time_entry
{
public:
/* Predicate for code to be executed. */
predicate exec_predicate;
/* Predicate for value to be constant and optimized out in a specialized copy.
When deciding on specialization this makes it possible to see how much
the executed code paths will simplify. */
predicate nonconst_predicate;
int size;
sreal time;
};
/* Summary about function and stack frame sizes. We keep this info
for inline clones and also for WPA streaming. For this reason this is not
part of ipa_fn_summary which exists only for offline functions. */
class ipa_size_summary
{
public:
/* Estimated stack frame consumption by the function. */
HOST_WIDE_INT estimated_self_stack_size;
/* Size of the function body. */
int self_size;
/* Estimated size of the function after inlining. */
int size;
ipa_size_summary ()
: estimated_self_stack_size (0), self_size (0), size (0)
{
}
};
/* Structure to capture how frequently some interesting events occur given a
particular predicate. The structure is used to estimate how often we
encounter loops with known iteration count or stride in various
contexts. */
struct GTY(()) ipa_freqcounting_predicate
{
/* The described event happens with this frequency... */
sreal freq;
/* ...when this predicate evaluates to false. */
class predicate * GTY((skip)) predicate;
};
/* Function inlining information. */
class GTY(()) ipa_fn_summary
{
public:
/* Keep all field empty so summary dumping works during its computation.
This is useful for debugging. */
ipa_fn_summary ()
: min_size (0),
inlinable (false), single_caller (false),
fp_expressions (false),
estimated_stack_size (false),
time (0), conds (NULL),
size_time_table (), call_size_time_table (vNULL),
loop_iterations (NULL), loop_strides (NULL),
builtin_constant_p_parms (vNULL),
growth (0), scc_no (0)
{
}
/* Copy constructor. */
ipa_fn_summary (const ipa_fn_summary &s)
: min_size (s.min_size),
inlinable (s.inlinable), single_caller (s.single_caller),
fp_expressions (s.fp_expressions),
estimated_stack_size (s.estimated_stack_size),
time (s.time), conds (s.conds), size_time_table (),
call_size_time_table (vNULL),
loop_iterations (s.loop_iterations), loop_strides (s.loop_strides),
builtin_constant_p_parms (s.builtin_constant_p_parms),
growth (s.growth), scc_no (s.scc_no)
{}
/* Default constructor. */
~ipa_fn_summary ();
/* Information about the function body itself. */
/* Minimal size increase after inlining. */
int min_size;
/* False when there something makes inlining impossible (such as va_arg). */
unsigned inlinable : 1;
/* True wen there is only one caller of the function before small function
inlining. */
unsigned int single_caller : 1;
/* True if function contains any floating point expressions. */
unsigned int fp_expressions : 1;
/* Information about function that will result after applying all the
inline decisions present in the callgraph. Generally kept up to
date only for functions that are not inline clones. */
/* Estimated stack frame consumption by the function. */
HOST_WIDE_INT estimated_stack_size;
/* Estimated runtime of function after inlining. */
sreal GTY((skip)) time;
/* Conditional size/time information. The summaries are being
merged during inlining. */
conditions conds;
/* Normal code is accounted in size_time_table, while calls are
accounted in call_size_time_table. This is because calls
are often adjusted by IPA optimizations and thus this summary
is generated from call summary information when needed. */
auto_vec<size_time_entry> GTY((skip)) size_time_table;
/* Unlike size_time_table that is initialized for all summaries
call_size_time_table is allocated only for functions with
many calls. Use effecient vl_ptr storage. */
vec<size_time_entry, va_heap, vl_ptr> GTY((skip)) call_size_time_table;
/* Predicates on when some loops in the function can have known bounds. */
vec<ipa_freqcounting_predicate, va_gc> *loop_iterations;
/* Predicates on when some loops in the function can have known strides. */
vec<ipa_freqcounting_predicate, va_gc> *loop_strides;
/* Parameters tested by builtin_constant_p. */
vec<int, va_heap, vl_ptr> GTY((skip)) builtin_constant_p_parms;
/* Estimated growth for inlining all copies of the function before start
of small functions inlining.
This value will get out of date as the callers are duplicated, but
using up-to-date value in the badness metric mean a lot of extra
expenses. */
int growth;
/* Number of SCC on the beginning of inlining process. */
int scc_no;
/* Record time and size under given predicates. */
void account_size_time (int, sreal, const predicate &, const predicate &,
bool call = false);
/* We keep values scaled up, so fractional sizes can be accounted. */
static const int size_scale = 2;
/* Maximal size of size_time_table before we start to be conservative. */
static const int max_size_time_table_size = 256;
};
class GTY((user)) ipa_fn_summary_t:
public fast_function_summary <ipa_fn_summary *, va_gc>
{
public:
ipa_fn_summary_t (symbol_table *symtab):
fast_function_summary <ipa_fn_summary *, va_gc> (symtab) {}
static ipa_fn_summary_t *create_ggc (symbol_table *symtab)
{
class ipa_fn_summary_t *summary
= new (ggc_alloc_no_dtor<ipa_fn_summary_t> ()) ipa_fn_summary_t (symtab);
summary->disable_insertion_hook ();
return summary;
}
/* Remove ipa_fn_summary for all callees of NODE. */
void remove_callees (cgraph_node *node);
virtual void insert (cgraph_node *, ipa_fn_summary *);
virtual void remove (cgraph_node *node, ipa_fn_summary *)
{
remove_callees (node);
}
virtual void duplicate (cgraph_node *src, cgraph_node *dst,
ipa_fn_summary *src_data, ipa_fn_summary *dst_data);
};
extern GTY(()) fast_function_summary <ipa_fn_summary *, va_gc>
*ipa_fn_summaries;
class ipa_size_summary_t:
public fast_function_summary <ipa_size_summary *, va_heap>
{
public:
ipa_size_summary_t (symbol_table *symtab):
fast_function_summary <ipa_size_summary *, va_heap> (symtab)
{
disable_insertion_hook ();
}
virtual void duplicate (cgraph_node *, cgraph_node *,
ipa_size_summary *src_data,
ipa_size_summary *dst_data)
{
*dst_data = *src_data;
}
};
extern fast_function_summary <ipa_size_summary *, va_heap>
*ipa_size_summaries;
/* Information kept about callgraph edges. */
class ipa_call_summary
{
public:
/* Keep all field empty so summary dumping works during its computation.
This is useful for debugging. */
ipa_call_summary ()
: predicate (NULL), param (vNULL), call_stmt_size (0), call_stmt_time (0),
loop_depth (0), is_return_callee_uncaptured (false)
{
}
/* Copy constructor. */
ipa_call_summary (const ipa_call_summary &s):
predicate (s.predicate), param (s.param), call_stmt_size (s.call_stmt_size),
call_stmt_time (s.call_stmt_time), loop_depth (s.loop_depth),
is_return_callee_uncaptured (s.is_return_callee_uncaptured)
{
}
/* Default destructor. */
~ipa_call_summary ();
class predicate *predicate;
/* Vector indexed by parameters. */
vec<inline_param_summary> param;
/* Estimated size and time of the call statement. */
int call_stmt_size;
int call_stmt_time;
/* Depth of loop nest, 0 means no nesting. */
unsigned int loop_depth;
/* Indicates whether the caller returns the value of it's callee. */
bool is_return_callee_uncaptured;
};
class ipa_call_summary_t: public fast_call_summary <ipa_call_summary *, va_heap>
{
public:
ipa_call_summary_t (symbol_table *symtab):
fast_call_summary <ipa_call_summary *, va_heap> (symtab) {}
/* Hook that is called by summary when an edge is duplicated. */
virtual void duplicate (cgraph_edge *src, cgraph_edge *dst,
ipa_call_summary *src_data,
ipa_call_summary *dst_data);
};
/* Estimated execution times, code sizes and other information about the
code executing a call described by ipa_call_context. */
struct ipa_call_estimates
{
/* Estimated size needed to execute call in the given context. */
int size;
/* Minimal size needed for the call that is + independent on the call context
and can be used for fast estimates. */
int min_size;
/* Estimated time needed to execute call in the given context. */
sreal time;
/* Estimated time needed to execute the function when not ignoring
computations known to be constant in this context. */
sreal nonspecialized_time;
/* Further discovered reasons why to inline or specialize the give calls. */
ipa_hints hints;
/* Frequency how often a loop with known number of iterations is encountered.
Calculated with hints. */
sreal loops_with_known_iterations;
/* Frequency how often a loop with known strides is encountered. Calculated
with hints. */
sreal loops_with_known_strides;
};
class ipa_cached_call_context;
/* This object describe a context of call. That is a summary of known
information about its parameters. Main purpose of this context is
to give more realistic estimations of function runtime, size and
inline hints. */
class ipa_call_context
{
public:
ipa_call_context (cgraph_node *node,
clause_t possible_truths,
clause_t nonspec_possible_truths,
vec<inline_param_summary> inline_param_summary,
ipa_auto_call_arg_values *arg_values);
ipa_call_context ()
: m_node(NULL)
{
}
void estimate_size_and_time (ipa_call_estimates *estimates,
bool est_times = true, bool est_hints = true);
bool equal_to (const ipa_call_context &);
bool exists_p ()
{
return m_node != NULL;
}
private:
/* Called function. */
cgraph_node *m_node;
/* Clause describing what predicate conditionals can be satisfied
in this context if function is inlined/specialized. */
clause_t m_possible_truths;
/* Clause describing what predicate conditionals can be satisfied
in this context if function is kept offline. */
clause_t m_nonspec_possible_truths;
/* Inline summary maintains info about change probabilities. */
vec<inline_param_summary> m_inline_param_summary;
/* Even after having calculated clauses, the information about argument
values is used to resolve indirect calls. */
ipa_call_arg_values m_avals;
friend ipa_cached_call_context;
};
/* Variant of ipa_call_context that is stored in a cache over a longer period
of time. */
class ipa_cached_call_context : public ipa_call_context
{
public:
void duplicate_from (const ipa_call_context &ctx);
void release ();
};
extern fast_call_summary <ipa_call_summary *, va_heap> *ipa_call_summaries;
/* In ipa-fnsummary.c */
void ipa_debug_fn_summary (struct cgraph_node *);
void ipa_dump_fn_summaries (FILE *f);
void ipa_dump_fn_summary (FILE *f, struct cgraph_node *node);
void ipa_dump_hints (FILE *f, ipa_hints);
void ipa_free_fn_summary (void);
void ipa_free_size_summary (void);
void inline_analyze_function (struct cgraph_node *node);
void estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
ipa_auto_call_arg_values *avals,
ipa_call_estimates *estimates);
void ipa_merge_fn_summary_after_inlining (struct cgraph_edge *edge);
void ipa_update_overall_fn_summary (struct cgraph_node *node, bool reset = true);
void compute_fn_summary (struct cgraph_node *, bool);
bool refs_local_or_readonly_memory_p (tree);
bool points_to_local_or_readonly_memory_p (tree);
void evaluate_properties_for_edge (struct cgraph_edge *e,
bool inline_p,
clause_t *clause_ptr,
clause_t *nonspec_clause_ptr,
ipa_auto_call_arg_values *avals,
bool compute_contexts);
void ipa_fnsummary_c_finalize (void);
HOST_WIDE_INT ipa_get_stack_frame_offset (struct cgraph_node *node);
void ipa_remove_from_growth_caches (struct cgraph_edge *edge);
/* Return true if EDGE is a cross module call. */
static inline bool
cross_module_call_p (struct cgraph_edge *edge)
{
/* Here we do not want to walk to alias target becuase ICF may create
cross-unit aliases. */
if (edge->caller->unit_id == edge->callee->unit_id)
return false;
/* If the call is to a (former) comdat function or s symbol with mutiple
extern inline definitions then treat is as in-module call. */
if (edge->callee->merged_extern_inline || edge->callee->merged_comdat
|| DECL_COMDAT (edge->callee->decl))
return false;
return true;
}
#endif /* GCC_IPA_FNSUMMARY_H */
|