1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
|
/* Interprocedural constant propagation
Copyright (C) 2005-2022 Free Software Foundation, Inc.
Contributed by Razya Ladelsky <RAZYA@il.ibm.com> and Martin Jambor
<mjambor@suse.cz>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Interprocedural constant propagation (IPA-CP).
The goal of this transformation is to
1) discover functions which are always invoked with some arguments with the
same known constant values and modify the functions so that the
subsequent optimizations can take advantage of the knowledge, and
2) partial specialization - create specialized versions of functions
transformed in this way if some parameters are known constants only in
certain contexts but the estimated tradeoff between speedup and cost size
is deemed good.
The algorithm also propagates types and attempts to perform type based
devirtualization. Types are propagated much like constants.
The algorithm basically consists of three stages. In the first, functions
are analyzed one at a time and jump functions are constructed for all known
call-sites. In the second phase, the pass propagates information from the
jump functions across the call to reveal what values are available at what
call sites, performs estimations of effects of known values on functions and
their callees, and finally decides what specialized extra versions should be
created. In the third, the special versions materialize and appropriate
calls are redirected.
The algorithm used is to a certain extent based on "Interprocedural Constant
Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon,
Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D
Cooper, Mary W. Hall, and Ken Kennedy.
First stage - intraprocedural analysis
=======================================
This phase computes jump_function and modification flags.
A jump function for a call-site represents the values passed as an actual
arguments of a given call-site. In principle, there are three types of
values:
Pass through - the caller's formal parameter is passed as an actual
argument, plus an operation on it can be performed.
Constant - a constant is passed as an actual argument.
Unknown - neither of the above.
All jump function types are described in detail in ipa-prop.h, together with
the data structures that represent them and methods of accessing them.
ipcp_generate_summary() is the main function of the first stage.
Second stage - interprocedural analysis
========================================
This stage is itself divided into two phases. In the first, we propagate
known values over the call graph, in the second, we make cloning decisions.
It uses a different algorithm than the original Callahan's paper.
First, we traverse the functions topologically from callers to callees and,
for each strongly connected component (SCC), we propagate constants
according to previously computed jump functions. We also record what known
values depend on other known values and estimate local effects. Finally, we
propagate cumulative information about these effects from dependent values
to those on which they depend.
Second, we again traverse the call graph in the same topological order and
make clones for functions which we know are called with the same values in
all contexts and decide about extra specialized clones of functions just for
some contexts - these decisions are based on both local estimates and
cumulative estimates propagated from callees.
ipcp_propagate_stage() and ipcp_decision_stage() together constitute the
third stage.
Third phase - materialization of clones, call statement updates.
============================================
This stage is currently performed by call graph code (mainly in cgraphunit.cc
and tree-inline.cc) according to instructions inserted to the call graph by
the second stage. */
#define INCLUDE_ALGORITHM
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple-expr.h"
#include "gimple.h"
#include "predict.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "gimple-fold.h"
#include "symbol-summary.h"
#include "tree-vrp.h"
#include "ipa-prop.h"
#include "tree-pretty-print.h"
#include "tree-inline.h"
#include "ipa-fnsummary.h"
#include "ipa-utils.h"
#include "tree-ssa-ccp.h"
#include "stringpool.h"
#include "attribs.h"
#include "dbgcnt.h"
#include "symtab-clones.h"
template <typename valtype> class ipcp_value;
/* Describes a particular source for an IPA-CP value. */
template <typename valtype>
struct ipcp_value_source
{
public:
/* Aggregate offset of the source, negative if the source is scalar value of
the argument itself. */
HOST_WIDE_INT offset;
/* The incoming edge that brought the value. */
cgraph_edge *cs;
/* If the jump function that resulted into his value was a pass-through or an
ancestor, this is the ipcp_value of the caller from which the described
value has been derived. Otherwise it is NULL. */
ipcp_value<valtype> *val;
/* Next pointer in a linked list of sources of a value. */
ipcp_value_source *next;
/* If the jump function that resulted into his value was a pass-through or an
ancestor, this is the index of the parameter of the caller the jump
function references. */
int index;
};
/* Common ancestor for all ipcp_value instantiations. */
class ipcp_value_base
{
public:
/* Time benefit and that specializing the function for this value would bring
about in this function alone. */
sreal local_time_benefit;
/* Time benefit that specializing the function for this value can bring about
in it's callees. */
sreal prop_time_benefit;
/* Size cost that specializing the function for this value would bring about
in this function alone. */
int local_size_cost;
/* Size cost that specializing the function for this value can bring about in
it's callees. */
int prop_size_cost;
ipcp_value_base ()
: local_time_benefit (0), prop_time_benefit (0),
local_size_cost (0), prop_size_cost (0) {}
};
/* Describes one particular value stored in struct ipcp_lattice. */
template <typename valtype>
class ipcp_value : public ipcp_value_base
{
public:
/* The actual value for the given parameter. */
valtype value;
/* The list of sources from which this value originates. */
ipcp_value_source <valtype> *sources = nullptr;
/* Next pointers in a linked list of all values in a lattice. */
ipcp_value *next = nullptr;
/* Next pointers in a linked list of values in a strongly connected component
of values. */
ipcp_value *scc_next = nullptr;
/* Next pointers in a linked list of SCCs of values sorted topologically
according their sources. */
ipcp_value *topo_next = nullptr;
/* A specialized node created for this value, NULL if none has been (so far)
created. */
cgraph_node *spec_node = nullptr;
/* Depth first search number and low link for topological sorting of
values. */
int dfs = 0;
int low_link = 0;
/* SCC number to identify values which recursively feed into each other.
Values in the same SCC have the same SCC number. */
int scc_no = 0;
/* Non zero if the value is generated from another value in the same lattice
for a self-recursive call, the actual number is how many times the
operation has been performed. In the unlikely event of the value being
present in two chains fo self-recursive value generation chains, it is the
maximum. */
unsigned self_recursion_generated_level = 0;
/* True if this value is currently on the topo-sort stack. */
bool on_stack = false;
void add_source (cgraph_edge *cs, ipcp_value *src_val, int src_idx,
HOST_WIDE_INT offset);
/* Return true if both THIS value and O feed into each other. */
bool same_scc (const ipcp_value<valtype> *o)
{
return o->scc_no == scc_no;
}
/* Return true, if a this value has been generated for a self-recursive call as
a result of an arithmetic pass-through jump-function acting on a value in
the same lattice function. */
bool self_recursion_generated_p ()
{
return self_recursion_generated_level > 0;
}
};
/* Lattice describing potential values of a formal parameter of a function, or
a part of an aggregate. TOP is represented by a lattice with zero values
and with contains_variable and bottom flags cleared. BOTTOM is represented
by a lattice with the bottom flag set. In that case, values and
contains_variable flag should be disregarded. */
template <typename valtype>
struct ipcp_lattice
{
public:
/* The list of known values and types in this lattice. Note that values are
not deallocated if a lattice is set to bottom because there may be value
sources referencing them. */
ipcp_value<valtype> *values;
/* Number of known values and types in this lattice. */
int values_count;
/* The lattice contains a variable component (in addition to values). */
bool contains_variable;
/* The value of the lattice is bottom (i.e. variable and unusable for any
propagation). */
bool bottom;
inline bool is_single_const ();
inline bool set_to_bottom ();
inline bool set_contains_variable ();
bool add_value (valtype newval, cgraph_edge *cs,
ipcp_value<valtype> *src_val = NULL,
int src_idx = 0, HOST_WIDE_INT offset = -1,
ipcp_value<valtype> **val_p = NULL,
unsigned same_lat_gen_level = 0);
void print (FILE * f, bool dump_sources, bool dump_benefits);
};
/* Lattice of tree values with an offset to describe a part of an
aggregate. */
struct ipcp_agg_lattice : public ipcp_lattice<tree>
{
public:
/* Offset that is being described by this lattice. */
HOST_WIDE_INT offset;
/* Size so that we don't have to re-compute it every time we traverse the
list. Must correspond to TYPE_SIZE of all lat values. */
HOST_WIDE_INT size;
/* Next element of the linked list. */
struct ipcp_agg_lattice *next;
};
/* Lattice of known bits, only capable of holding one value.
Bitwise constant propagation propagates which bits of a
value are constant.
For eg:
int f(int x)
{
return some_op (x);
}
int f1(int y)
{
if (cond)
return f (y & 0xff);
else
return f (y & 0xf);
}
In the above case, the param 'x' will always have all
the bits (except the bits in lsb) set to 0.
Hence the mask of 'x' would be 0xff. The mask
reflects that the bits in lsb are unknown.
The actual propagated value is given by m_value & ~m_mask. */
class ipcp_bits_lattice
{
public:
bool bottom_p () const { return m_lattice_val == IPA_BITS_VARYING; }
bool top_p () const { return m_lattice_val == IPA_BITS_UNDEFINED; }
bool constant_p () const { return m_lattice_val == IPA_BITS_CONSTANT; }
bool set_to_bottom ();
bool set_to_constant (widest_int, widest_int);
bool known_nonzero_p () const;
widest_int get_value () const { return m_value; }
widest_int get_mask () const { return m_mask; }
bool meet_with (ipcp_bits_lattice& other, unsigned, signop,
enum tree_code, tree, bool);
bool meet_with (widest_int, widest_int, unsigned);
void print (FILE *);
private:
enum { IPA_BITS_UNDEFINED, IPA_BITS_CONSTANT, IPA_BITS_VARYING } m_lattice_val;
/* Similar to ccp_lattice_t, mask represents which bits of value are constant.
If a bit in mask is set to 0, then the corresponding bit in
value is known to be constant. */
widest_int m_value, m_mask;
bool meet_with_1 (widest_int, widest_int, unsigned, bool);
void get_value_and_mask (tree, widest_int *, widest_int *);
};
/* Lattice of value ranges. */
class ipcp_vr_lattice
{
public:
value_range m_vr;
inline bool bottom_p () const;
inline bool top_p () const;
inline bool set_to_bottom ();
bool meet_with (const value_range *p_vr);
bool meet_with (const ipcp_vr_lattice &other);
void init () { gcc_assert (m_vr.undefined_p ()); }
void print (FILE * f);
private:
bool meet_with_1 (const value_range *other_vr);
};
/* Structure containing lattices for a parameter itself and for pieces of
aggregates that are passed in the parameter or by a reference in a parameter
plus some other useful flags. */
class ipcp_param_lattices
{
public:
/* Lattice describing the value of the parameter itself. */
ipcp_lattice<tree> itself;
/* Lattice describing the polymorphic contexts of a parameter. */
ipcp_lattice<ipa_polymorphic_call_context> ctxlat;
/* Lattices describing aggregate parts. */
ipcp_agg_lattice *aggs;
/* Lattice describing known bits. */
ipcp_bits_lattice bits_lattice;
/* Lattice describing value range. */
ipcp_vr_lattice m_value_range;
/* Number of aggregate lattices */
int aggs_count;
/* True if aggregate data were passed by reference (as opposed to by
value). */
bool aggs_by_ref;
/* All aggregate lattices contain a variable component (in addition to
values). */
bool aggs_contain_variable;
/* The value of all aggregate lattices is bottom (i.e. variable and unusable
for any propagation). */
bool aggs_bottom;
/* There is a virtual call based on this parameter. */
bool virt_call;
};
/* Allocation pools for values and their sources in ipa-cp. */
object_allocator<ipcp_value<tree> > ipcp_cst_values_pool
("IPA-CP constant values");
object_allocator<ipcp_value<ipa_polymorphic_call_context> >
ipcp_poly_ctx_values_pool ("IPA-CP polymorphic contexts");
object_allocator<ipcp_value_source<tree> > ipcp_sources_pool
("IPA-CP value sources");
object_allocator<ipcp_agg_lattice> ipcp_agg_lattice_pool
("IPA_CP aggregate lattices");
/* Base count to use in heuristics when using profile feedback. */
static profile_count base_count;
/* Original overall size of the program. */
static long overall_size, orig_overall_size;
/* Node name to unique clone suffix number map. */
static hash_map<const char *, unsigned> *clone_num_suffixes;
/* Return the param lattices structure corresponding to the Ith formal
parameter of the function described by INFO. */
static inline class ipcp_param_lattices *
ipa_get_parm_lattices (class ipa_node_params *info, int i)
{
gcc_assert (i >= 0 && i < ipa_get_param_count (info));
gcc_checking_assert (!info->ipcp_orig_node);
gcc_checking_assert (info->lattices);
return &(info->lattices[i]);
}
/* Return the lattice corresponding to the scalar value of the Ith formal
parameter of the function described by INFO. */
static inline ipcp_lattice<tree> *
ipa_get_scalar_lat (class ipa_node_params *info, int i)
{
class ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
return &plats->itself;
}
/* Return the lattice corresponding to the scalar value of the Ith formal
parameter of the function described by INFO. */
static inline ipcp_lattice<ipa_polymorphic_call_context> *
ipa_get_poly_ctx_lat (class ipa_node_params *info, int i)
{
class ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
return &plats->ctxlat;
}
/* Return whether LAT is a lattice with a single constant and without an
undefined value. */
template <typename valtype>
inline bool
ipcp_lattice<valtype>::is_single_const ()
{
if (bottom || contains_variable || values_count != 1)
return false;
else
return true;
}
/* Return true iff X and Y should be considered equal values by IPA-CP. */
static bool
values_equal_for_ipcp_p (tree x, tree y)
{
gcc_checking_assert (x != NULL_TREE && y != NULL_TREE);
if (x == y)
return true;
if (TREE_CODE (x) == ADDR_EXPR
&& TREE_CODE (y) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (x, 0)) == CONST_DECL
&& TREE_CODE (TREE_OPERAND (y, 0)) == CONST_DECL)
return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x, 0)),
DECL_INITIAL (TREE_OPERAND (y, 0)), 0);
else
return operand_equal_p (x, y, 0);
}
/* Print V which is extracted from a value in a lattice to F. */
static void
print_ipcp_constant_value (FILE * f, tree v)
{
if (TREE_CODE (v) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (v, 0)) == CONST_DECL)
{
fprintf (f, "& ");
print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (v, 0)));
}
else
print_generic_expr (f, v);
}
/* Print V which is extracted from a value in a lattice to F. */
static void
print_ipcp_constant_value (FILE * f, ipa_polymorphic_call_context v)
{
v.dump(f, false);
}
/* Print a lattice LAT to F. */
template <typename valtype>
void
ipcp_lattice<valtype>::print (FILE * f, bool dump_sources, bool dump_benefits)
{
ipcp_value<valtype> *val;
bool prev = false;
if (bottom)
{
fprintf (f, "BOTTOM\n");
return;
}
if (!values_count && !contains_variable)
{
fprintf (f, "TOP\n");
return;
}
if (contains_variable)
{
fprintf (f, "VARIABLE");
prev = true;
if (dump_benefits)
fprintf (f, "\n");
}
for (val = values; val; val = val->next)
{
if (dump_benefits && prev)
fprintf (f, " ");
else if (!dump_benefits && prev)
fprintf (f, ", ");
else
prev = true;
print_ipcp_constant_value (f, val->value);
if (dump_sources)
{
ipcp_value_source<valtype> *s;
if (val->self_recursion_generated_p ())
fprintf (f, " [self_gen(%i), from:",
val->self_recursion_generated_level);
else
fprintf (f, " [scc: %i, from:", val->scc_no);
for (s = val->sources; s; s = s->next)
fprintf (f, " %i(%f)", s->cs->caller->order,
s->cs->sreal_frequency ().to_double ());
fprintf (f, "]");
}
if (dump_benefits)
fprintf (f, " [loc_time: %g, loc_size: %i, "
"prop_time: %g, prop_size: %i]\n",
val->local_time_benefit.to_double (), val->local_size_cost,
val->prop_time_benefit.to_double (), val->prop_size_cost);
}
if (!dump_benefits)
fprintf (f, "\n");
}
void
ipcp_bits_lattice::print (FILE *f)
{
if (top_p ())
fprintf (f, " Bits unknown (TOP)\n");
else if (bottom_p ())
fprintf (f, " Bits unusable (BOTTOM)\n");
else
{
fprintf (f, " Bits: value = "); print_hex (get_value (), f);
fprintf (f, ", mask = "); print_hex (get_mask (), f);
fprintf (f, "\n");
}
}
/* Print value range lattice to F. */
void
ipcp_vr_lattice::print (FILE * f)
{
dump_value_range (f, &m_vr);
}
/* Print all ipcp_lattices of all functions to F. */
static void
print_all_lattices (FILE * f, bool dump_sources, bool dump_benefits)
{
struct cgraph_node *node;
int i, count;
fprintf (f, "\nLattices:\n");
FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
{
class ipa_node_params *info;
info = ipa_node_params_sum->get (node);
/* Skip unoptimized functions and constprop clones since we don't make
lattices for them. */
if (!info || info->ipcp_orig_node)
continue;
fprintf (f, " Node: %s:\n", node->dump_name ());
count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
struct ipcp_agg_lattice *aglat;
class ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
fprintf (f, " param [%d]: ", i);
plats->itself.print (f, dump_sources, dump_benefits);
fprintf (f, " ctxs: ");
plats->ctxlat.print (f, dump_sources, dump_benefits);
plats->bits_lattice.print (f);
fprintf (f, " ");
plats->m_value_range.print (f);
fprintf (f, "\n");
if (plats->virt_call)
fprintf (f, " virt_call flag set\n");
if (plats->aggs_bottom)
{
fprintf (f, " AGGS BOTTOM\n");
continue;
}
if (plats->aggs_contain_variable)
fprintf (f, " AGGS VARIABLE\n");
for (aglat = plats->aggs; aglat; aglat = aglat->next)
{
fprintf (f, " %soffset " HOST_WIDE_INT_PRINT_DEC ": ",
plats->aggs_by_ref ? "ref " : "", aglat->offset);
aglat->print (f, dump_sources, dump_benefits);
}
}
}
}
/* Determine whether it is at all technically possible to create clones of NODE
and store this information in the ipa_node_params structure associated
with NODE. */
static void
determine_versionability (struct cgraph_node *node,
class ipa_node_params *info)
{
const char *reason = NULL;
/* There are a number of generic reasons functions cannot be versioned. We
also cannot remove parameters if there are type attributes such as fnspec
present. */
if (node->alias || node->thunk)
reason = "alias or thunk";
else if (!node->versionable)
reason = "not a tree_versionable_function";
else if (node->get_availability () <= AVAIL_INTERPOSABLE)
reason = "insufficient body availability";
else if (!opt_for_fn (node->decl, optimize)
|| !opt_for_fn (node->decl, flag_ipa_cp))
reason = "non-optimized function";
else if (lookup_attribute ("omp declare simd", DECL_ATTRIBUTES (node->decl)))
{
/* Ideally we should clone the SIMD clones themselves and create
vector copies of them, so IPA-cp and SIMD clones can happily
coexist, but that may not be worth the effort. */
reason = "function has SIMD clones";
}
else if (lookup_attribute ("target_clones", DECL_ATTRIBUTES (node->decl)))
{
/* Ideally we should clone the target clones themselves and create
copies of them, so IPA-cp and target clones can happily
coexist, but that may not be worth the effort. */
reason = "function target_clones attribute";
}
/* Don't clone decls local to a comdat group; it breaks and for C++
decloned constructors, inlining is always better anyway. */
else if (node->comdat_local_p ())
reason = "comdat-local function";
else if (node->calls_comdat_local)
{
/* TODO: call is versionable if we make sure that all
callers are inside of a comdat group. */
reason = "calls comdat-local function";
}
/* Functions calling BUILT_IN_VA_ARG_PACK and BUILT_IN_VA_ARG_PACK_LEN
work only when inlined. Cloning them may still lead to better code
because ipa-cp will not give up on cloning further. If the function is
external this however leads to wrong code because we may end up producing
offline copy of the function. */
if (DECL_EXTERNAL (node->decl))
for (cgraph_edge *edge = node->callees; !reason && edge;
edge = edge->next_callee)
if (fndecl_built_in_p (edge->callee->decl, BUILT_IN_NORMAL))
{
if (DECL_FUNCTION_CODE (edge->callee->decl) == BUILT_IN_VA_ARG_PACK)
reason = "external function which calls va_arg_pack";
if (DECL_FUNCTION_CODE (edge->callee->decl)
== BUILT_IN_VA_ARG_PACK_LEN)
reason = "external function which calls va_arg_pack_len";
}
if (reason && dump_file && !node->alias && !node->thunk)
fprintf (dump_file, "Function %s is not versionable, reason: %s.\n",
node->dump_name (), reason);
info->versionable = (reason == NULL);
}
/* Return true if it is at all technically possible to create clones of a
NODE. */
static bool
ipcp_versionable_function_p (struct cgraph_node *node)
{
ipa_node_params *info = ipa_node_params_sum->get (node);
return info && info->versionable;
}
/* Structure holding accumulated information about callers of a node. */
struct caller_statistics
{
/* If requested (see below), self-recursive call counts are summed into this
field. */
profile_count rec_count_sum;
/* The sum of all ipa counts of all the other (non-recursive) calls. */
profile_count count_sum;
/* Sum of all frequencies for all calls. */
sreal freq_sum;
/* Number of calls and hot calls respectively. */
int n_calls, n_hot_calls;
/* If itself is set up, also count the number of non-self-recursive
calls. */
int n_nonrec_calls;
/* If non-NULL, this is the node itself and calls from it should have their
counts included in rec_count_sum and not count_sum. */
cgraph_node *itself;
};
/* Initialize fields of STAT to zeroes and optionally set it up so that edges
from IGNORED_CALLER are not counted. */
static inline void
init_caller_stats (caller_statistics *stats, cgraph_node *itself = NULL)
{
stats->rec_count_sum = profile_count::zero ();
stats->count_sum = profile_count::zero ();
stats->n_calls = 0;
stats->n_hot_calls = 0;
stats->n_nonrec_calls = 0;
stats->freq_sum = 0;
stats->itself = itself;
}
/* Worker callback of cgraph_for_node_and_aliases accumulating statistics of
non-thunk incoming edges to NODE. */
static bool
gather_caller_stats (struct cgraph_node *node, void *data)
{
struct caller_statistics *stats = (struct caller_statistics *) data;
struct cgraph_edge *cs;
for (cs = node->callers; cs; cs = cs->next_caller)
if (!cs->caller->thunk)
{
ipa_node_params *info = ipa_node_params_sum->get (cs->caller);
if (info && info->node_dead)
continue;
if (cs->count.ipa ().initialized_p ())
{
if (stats->itself && stats->itself == cs->caller)
stats->rec_count_sum += cs->count.ipa ();
else
stats->count_sum += cs->count.ipa ();
}
stats->freq_sum += cs->sreal_frequency ();
stats->n_calls++;
if (stats->itself && stats->itself != cs->caller)
stats->n_nonrec_calls++;
if (cs->maybe_hot_p ())
stats->n_hot_calls ++;
}
return false;
}
/* Return true if this NODE is viable candidate for cloning. */
static bool
ipcp_cloning_candidate_p (struct cgraph_node *node)
{
struct caller_statistics stats;
gcc_checking_assert (node->has_gimple_body_p ());
if (!opt_for_fn (node->decl, flag_ipa_cp_clone))
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; "
"-fipa-cp-clone disabled.\n",
node->dump_name ());
return false;
}
if (node->optimize_for_size_p ())
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; "
"optimizing it for size.\n",
node->dump_name ());
return false;
}
init_caller_stats (&stats);
node->call_for_symbol_thunks_and_aliases (gather_caller_stats, &stats, false);
if (ipa_size_summaries->get (node)->self_size < stats.n_calls)
{
if (dump_file)
fprintf (dump_file, "Considering %s for cloning; code might shrink.\n",
node->dump_name ());
return true;
}
/* When profile is available and function is hot, propagate into it even if
calls seems cold; constant propagation can improve function's speed
significantly. */
if (stats.count_sum > profile_count::zero ()
&& node->count.ipa ().initialized_p ())
{
if (stats.count_sum > node->count.ipa ().apply_scale (90, 100))
{
if (dump_file)
fprintf (dump_file, "Considering %s for cloning; "
"usually called directly.\n",
node->dump_name ());
return true;
}
}
if (!stats.n_hot_calls)
{
if (dump_file)
fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
node->dump_name ());
return false;
}
if (dump_file)
fprintf (dump_file, "Considering %s for cloning.\n",
node->dump_name ());
return true;
}
template <typename valtype>
class value_topo_info
{
public:
/* Head of the linked list of topologically sorted values. */
ipcp_value<valtype> *values_topo;
/* Stack for creating SCCs, represented by a linked list too. */
ipcp_value<valtype> *stack;
/* Counter driving the algorithm in add_val_to_toposort. */
int dfs_counter;
value_topo_info () : values_topo (NULL), stack (NULL), dfs_counter (0)
{}
void add_val (ipcp_value<valtype> *cur_val);
void propagate_effects ();
};
/* Arrays representing a topological ordering of call graph nodes and a stack
of nodes used during constant propagation and also data required to perform
topological sort of values and propagation of benefits in the determined
order. */
class ipa_topo_info
{
public:
/* Array with obtained topological order of cgraph nodes. */
struct cgraph_node **order;
/* Stack of cgraph nodes used during propagation within SCC until all values
in the SCC stabilize. */
struct cgraph_node **stack;
int nnodes, stack_top;
value_topo_info<tree> constants;
value_topo_info<ipa_polymorphic_call_context> contexts;
ipa_topo_info () : order(NULL), stack(NULL), nnodes(0), stack_top(0),
constants ()
{}
};
/* Skip edges from and to nodes without ipa_cp enabled.
Ignore not available symbols. */
static bool
ignore_edge_p (cgraph_edge *e)
{
enum availability avail;
cgraph_node *ultimate_target
= e->callee->function_or_virtual_thunk_symbol (&avail, e->caller);
return (avail <= AVAIL_INTERPOSABLE
|| !opt_for_fn (ultimate_target->decl, optimize)
|| !opt_for_fn (ultimate_target->decl, flag_ipa_cp));
}
/* Allocate the arrays in TOPO and topologically sort the nodes into order. */
static void
build_toporder_info (class ipa_topo_info *topo)
{
topo->order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
topo->stack = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
gcc_checking_assert (topo->stack_top == 0);
topo->nnodes = ipa_reduced_postorder (topo->order, true,
ignore_edge_p);
}
/* Free information about strongly connected components and the arrays in
TOPO. */
static void
free_toporder_info (class ipa_topo_info *topo)
{
ipa_free_postorder_info ();
free (topo->order);
free (topo->stack);
}
/* Add NODE to the stack in TOPO, unless it is already there. */
static inline void
push_node_to_stack (class ipa_topo_info *topo, struct cgraph_node *node)
{
ipa_node_params *info = ipa_node_params_sum->get (node);
if (info->node_enqueued)
return;
info->node_enqueued = 1;
topo->stack[topo->stack_top++] = node;
}
/* Pop a node from the stack in TOPO and return it or return NULL if the stack
is empty. */
static struct cgraph_node *
pop_node_from_stack (class ipa_topo_info *topo)
{
if (topo->stack_top)
{
struct cgraph_node *node;
topo->stack_top--;
node = topo->stack[topo->stack_top];
ipa_node_params_sum->get (node)->node_enqueued = 0;
return node;
}
else
return NULL;
}
/* Set lattice LAT to bottom and return true if it previously was not set as
such. */
template <typename valtype>
inline bool
ipcp_lattice<valtype>::set_to_bottom ()
{
bool ret = !bottom;
bottom = true;
return ret;
}
/* Mark lattice as containing an unknown value and return true if it previously
was not marked as such. */
template <typename valtype>
inline bool
ipcp_lattice<valtype>::set_contains_variable ()
{
bool ret = !contains_variable;
contains_variable = true;
return ret;
}
/* Set all aggregate lattices in PLATS to bottom and return true if they were
not previously set as such. */
static inline bool
set_agg_lats_to_bottom (class ipcp_param_lattices *plats)
{
bool ret = !plats->aggs_bottom;
plats->aggs_bottom = true;
return ret;
}
/* Mark all aggregate lattices in PLATS as containing an unknown value and
return true if they were not previously marked as such. */
static inline bool
set_agg_lats_contain_variable (class ipcp_param_lattices *plats)
{
bool ret = !plats->aggs_contain_variable;
plats->aggs_contain_variable = true;
return ret;
}
bool
ipcp_vr_lattice::meet_with (const ipcp_vr_lattice &other)
{
return meet_with_1 (&other.m_vr);
}
/* Meet the current value of the lattice with value range described by VR
lattice. */
bool
ipcp_vr_lattice::meet_with (const value_range *p_vr)
{
return meet_with_1 (p_vr);
}
/* Meet the current value of the lattice with value range described by
OTHER_VR lattice. Return TRUE if anything changed. */
bool
ipcp_vr_lattice::meet_with_1 (const value_range *other_vr)
{
if (bottom_p ())
return false;
if (other_vr->varying_p ())
return set_to_bottom ();
value_range save (m_vr);
m_vr.union_ (*other_vr);
return m_vr != save;
}
/* Return true if value range information in the lattice is yet unknown. */
bool
ipcp_vr_lattice::top_p () const
{
return m_vr.undefined_p ();
}
/* Return true if value range information in the lattice is known to be
unusable. */
bool
ipcp_vr_lattice::bottom_p () const
{
return m_vr.varying_p ();
}
/* Set value range information in the lattice to bottom. Return true if it
previously was in a different state. */
bool
ipcp_vr_lattice::set_to_bottom ()
{
if (m_vr.varying_p ())
return false;
/* ?? We create all sorts of VARYING ranges for floats, structures,
and other types which we cannot handle as ranges. We should
probably avoid handling them throughout the pass, but it's easier
to create a sensible VARYING here and let the lattice
propagate. */
m_vr.set_varying (integer_type_node);
return true;
}
/* Set lattice value to bottom, if it already isn't the case. */
bool
ipcp_bits_lattice::set_to_bottom ()
{
if (bottom_p ())
return false;
m_lattice_val = IPA_BITS_VARYING;
m_value = 0;
m_mask = -1;
return true;
}
/* Set to constant if it isn't already. Only meant to be called
when switching state from TOP. */
bool
ipcp_bits_lattice::set_to_constant (widest_int value, widest_int mask)
{
gcc_assert (top_p ());
m_lattice_val = IPA_BITS_CONSTANT;
m_value = wi::bit_and (wi::bit_not (mask), value);
m_mask = mask;
return true;
}
/* Return true if any of the known bits are non-zero. */
bool
ipcp_bits_lattice::known_nonzero_p () const
{
if (!constant_p ())
return false;
return wi::ne_p (wi::bit_and (wi::bit_not (m_mask), m_value), 0);
}
/* Convert operand to value, mask form. */
void
ipcp_bits_lattice::get_value_and_mask (tree operand, widest_int *valuep, widest_int *maskp)
{
wide_int get_nonzero_bits (const_tree);
if (TREE_CODE (operand) == INTEGER_CST)
{
*valuep = wi::to_widest (operand);
*maskp = 0;
}
else
{
*valuep = 0;
*maskp = -1;
}
}
/* Meet operation, similar to ccp_lattice_meet, we xor values
if this->value, value have different values at same bit positions, we want
to drop that bit to varying. Return true if mask is changed.
This function assumes that the lattice value is in CONSTANT state. If
DROP_ALL_ONES, mask out any known bits with value one afterwards. */
bool
ipcp_bits_lattice::meet_with_1 (widest_int value, widest_int mask,
unsigned precision, bool drop_all_ones)
{
gcc_assert (constant_p ());
widest_int old_mask = m_mask;
m_mask = (m_mask | mask) | (m_value ^ value);
if (drop_all_ones)
m_mask |= m_value;
m_value &= ~m_mask;
if (wi::sext (m_mask, precision) == -1)
return set_to_bottom ();
return m_mask != old_mask;
}
/* Meet the bits lattice with operand
described by <value, mask, sgn, precision. */
bool
ipcp_bits_lattice::meet_with (widest_int value, widest_int mask,
unsigned precision)
{
if (bottom_p ())
return false;
if (top_p ())
{
if (wi::sext (mask, precision) == -1)
return set_to_bottom ();
return set_to_constant (value, mask);
}
return meet_with_1 (value, mask, precision, false);
}
/* Meet bits lattice with the result of bit_value_binop (other, operand)
if code is binary operation or bit_value_unop (other) if code is unary op.
In the case when code is nop_expr, no adjustment is required. If
DROP_ALL_ONES, mask out any known bits with value one afterwards. */
bool
ipcp_bits_lattice::meet_with (ipcp_bits_lattice& other, unsigned precision,
signop sgn, enum tree_code code, tree operand,
bool drop_all_ones)
{
if (other.bottom_p ())
return set_to_bottom ();
if (bottom_p () || other.top_p ())
return false;
widest_int adjusted_value, adjusted_mask;
if (TREE_CODE_CLASS (code) == tcc_binary)
{
tree type = TREE_TYPE (operand);
widest_int o_value, o_mask;
get_value_and_mask (operand, &o_value, &o_mask);
bit_value_binop (code, sgn, precision, &adjusted_value, &adjusted_mask,
sgn, precision, other.get_value (), other.get_mask (),
TYPE_SIGN (type), TYPE_PRECISION (type), o_value, o_mask);
if (wi::sext (adjusted_mask, precision) == -1)
return set_to_bottom ();
}
else if (TREE_CODE_CLASS (code) == tcc_unary)
{
bit_value_unop (code, sgn, precision, &adjusted_value,
&adjusted_mask, sgn, precision, other.get_value (),
other.get_mask ());
if (wi::sext (adjusted_mask, precision) == -1)
return set_to_bottom ();
}
else
return set_to_bottom ();
if (top_p ())
{
if (drop_all_ones)
{
adjusted_mask |= adjusted_value;
adjusted_value &= ~adjusted_mask;
}
if (wi::sext (adjusted_mask, precision) == -1)
return set_to_bottom ();
return set_to_constant (adjusted_value, adjusted_mask);
}
else
return meet_with_1 (adjusted_value, adjusted_mask, precision,
drop_all_ones);
}
/* Dump the contents of the list to FILE. */
void
ipa_argagg_value_list::dump (FILE *f)
{
bool comma = false;
for (const ipa_argagg_value &av : m_elts)
{
fprintf (f, "%s %i[%u]=", comma ? "," : "",
av.index, av.unit_offset);
print_generic_expr (f, av.value);
if (av.by_ref)
fprintf (f, "(by_ref)");
comma = true;
}
fprintf (f, "\n");
}
/* Dump the contents of the list to stderr. */
void
ipa_argagg_value_list::debug ()
{
dump (stderr);
}
/* Return the item describing a constant stored for INDEX at UNIT_OFFSET or
NULL if there is no such constant. */
const ipa_argagg_value *
ipa_argagg_value_list::get_elt (int index, unsigned unit_offset) const
{
ipa_argagg_value key;
key.index = index;
key.unit_offset = unit_offset;
const ipa_argagg_value *res
= std::lower_bound (m_elts.begin (), m_elts.end (), key,
[] (const ipa_argagg_value &elt,
const ipa_argagg_value &val)
{
if (elt.index < val.index)
return true;
if (elt.index > val.index)
return false;
if (elt.unit_offset < val.unit_offset)
return true;
return false;
});
if (res == m_elts.end ()
|| res->index != index
|| res->unit_offset != unit_offset)
res = nullptr;
/* TODO: perhaps remove the check (that the underlying array is indeed
sorted) if it turns out it can be too slow? */
if (!flag_checking)
return res;
const ipa_argagg_value *slow_res = NULL;
int prev_index = -1;
unsigned prev_unit_offset = 0;
for (const ipa_argagg_value &av : m_elts)
{
gcc_assert (prev_index < 0
|| prev_index < av.index
|| prev_unit_offset < av.unit_offset);
prev_index = av.index;
prev_unit_offset = av.unit_offset;
if (av.index == index
&& av.unit_offset == unit_offset)
slow_res = &av;
}
gcc_assert (res == slow_res);
return res;
}
/* Return the first item describing a constant stored for parameter with INDEX,
regardless of offset or reference, or NULL if there is no such constant. */
const ipa_argagg_value *
ipa_argagg_value_list::get_elt_for_index (int index) const
{
const ipa_argagg_value *res
= std::lower_bound (m_elts.begin (), m_elts.end (), index,
[] (const ipa_argagg_value &elt, unsigned idx)
{
return elt.index < idx;
});
if (res == m_elts.end ()
|| res->index != index)
res = nullptr;
return res;
}
/* Return the aggregate constant stored for INDEX at UNIT_OFFSET, not
performing any check of whether value is passed by reference, or NULL_TREE
if there is no such constant. */
tree
ipa_argagg_value_list::get_value (int index, unsigned unit_offset) const
{
const ipa_argagg_value *av = get_elt (index, unit_offset);
return av ? av->value : NULL_TREE;
}
/* Return the aggregate constant stored for INDEX at UNIT_OFFSET, if it is
passed by reference or not according to BY_REF, or NULL_TREE if there is
no such constant. */
tree
ipa_argagg_value_list::get_value (int index, unsigned unit_offset,
bool by_ref) const
{
const ipa_argagg_value *av = get_elt (index, unit_offset);
if (av && av->by_ref == by_ref)
return av->value;
return NULL_TREE;
}
/* Return true if all elements present in OTHER are also present in this
list. */
bool
ipa_argagg_value_list::superset_of_p (const ipa_argagg_value_list &other) const
{
unsigned j = 0;
for (unsigned i = 0; i < other.m_elts.size (); i++)
{
unsigned other_index = other.m_elts[i].index;
unsigned other_offset = other.m_elts[i].unit_offset;
while (j < m_elts.size ()
&& (m_elts[j].index < other_index
|| (m_elts[j].index == other_index
&& m_elts[j].unit_offset < other_offset)))
j++;
if (j >= m_elts.size ()
|| m_elts[j].index != other_index
|| m_elts[j].unit_offset != other_offset
|| m_elts[j].by_ref != other.m_elts[i].by_ref
|| !m_elts[j].value
|| !values_equal_for_ipcp_p (m_elts[j].value, other.m_elts[i].value))
return false;
}
return true;
}
/* Push all items in this list that describe parameter SRC_INDEX into RES as
ones describing DST_INDEX while subtracting UNIT_DELTA from their unit
offsets but skip those which would end up with a negative offset. */
void
ipa_argagg_value_list::push_adjusted_values (unsigned src_index,
unsigned dest_index,
unsigned unit_delta,
vec<ipa_argagg_value> *res) const
{
const ipa_argagg_value *av = get_elt_for_index (src_index);
if (!av)
return;
unsigned prev_unit_offset = 0;
bool first = true;
for (; av < m_elts.end (); ++av)
{
if (av->index > src_index)
return;
if (av->index == src_index
&& (av->unit_offset >= unit_delta)
&& av->value)
{
ipa_argagg_value new_av;
gcc_checking_assert (av->value);
new_av.value = av->value;
new_av.unit_offset = av->unit_offset - unit_delta;
new_av.index = dest_index;
new_av.by_ref = av->by_ref;
/* Quick check that the offsets we push are indeed increasing. */
gcc_assert (first
|| new_av.unit_offset > prev_unit_offset);
prev_unit_offset = new_av.unit_offset;
first = false;
res->safe_push (new_av);
}
}
}
/* Push to RES information about single lattices describing aggregate values in
PLATS as those describing parameter DEST_INDEX and the original offset minus
UNIT_DELTA. Return true if any item has been pushed to RES. */
static bool
push_agg_values_from_plats (ipcp_param_lattices *plats, int dest_index,
unsigned unit_delta,
vec<ipa_argagg_value> *res)
{
if (plats->aggs_contain_variable)
return false;
bool pushed_sth = false;
bool first = true;
unsigned prev_unit_offset = 0;
for (struct ipcp_agg_lattice *aglat = plats->aggs; aglat; aglat = aglat->next)
if (aglat->is_single_const ()
&& (aglat->offset / BITS_PER_UNIT - unit_delta) >= 0)
{
ipa_argagg_value iav;
iav.value = aglat->values->value;
iav.unit_offset = aglat->offset / BITS_PER_UNIT - unit_delta;
iav.index = dest_index;
iav.by_ref = plats->aggs_by_ref;
gcc_assert (first
|| iav.unit_offset > prev_unit_offset);
prev_unit_offset = iav.unit_offset;
first = false;
pushed_sth = true;
res->safe_push (iav);
}
return pushed_sth;
}
/* Turn all values in LIST that are not present in OTHER into NULL_TREEs.
Return the number of remaining valid entries. */
static unsigned
intersect_argaggs_with (vec<ipa_argagg_value> &elts,
const vec<ipa_argagg_value> &other)
{
unsigned valid_entries = 0;
unsigned j = 0;
for (unsigned i = 0; i < elts.length (); i++)
{
if (!elts[i].value)
continue;
unsigned this_index = elts[i].index;
unsigned this_offset = elts[i].unit_offset;
while (j < other.length ()
&& (other[j].index < this_index
|| (other[j].index == this_index
&& other[j].unit_offset < this_offset)))
j++;
if (j >= other.length ())
{
elts[i].value = NULL_TREE;
continue;
}
if (other[j].index == this_index
&& other[j].unit_offset == this_offset
&& other[j].by_ref == elts[i].by_ref
&& other[j].value
&& values_equal_for_ipcp_p (other[j].value, elts[i].value))
valid_entries++;
else
elts[i].value = NULL_TREE;
}
return valid_entries;
}
/* Mark bot aggregate and scalar lattices as containing an unknown variable,
return true is any of them has not been marked as such so far. */
static inline bool
set_all_contains_variable (class ipcp_param_lattices *plats)
{
bool ret;
ret = plats->itself.set_contains_variable ();
ret |= plats->ctxlat.set_contains_variable ();
ret |= set_agg_lats_contain_variable (plats);
ret |= plats->bits_lattice.set_to_bottom ();
ret |= plats->m_value_range.set_to_bottom ();
return ret;
}
/* Worker of call_for_symbol_thunks_and_aliases, increment the integer DATA
points to by the number of callers to NODE. */
static bool
count_callers (cgraph_node *node, void *data)
{
int *caller_count = (int *) data;
for (cgraph_edge *cs = node->callers; cs; cs = cs->next_caller)
/* Local thunks can be handled transparently, but if the thunk cannot
be optimized out, count it as a real use. */
if (!cs->caller->thunk || !cs->caller->local)
++*caller_count;
return false;
}
/* Worker of call_for_symbol_thunks_and_aliases, it is supposed to be called on
the one caller of some other node. Set the caller's corresponding flag. */
static bool
set_single_call_flag (cgraph_node *node, void *)
{
cgraph_edge *cs = node->callers;
/* Local thunks can be handled transparently, skip them. */
while (cs && cs->caller->thunk && cs->caller->local)
cs = cs->next_caller;
if (cs)
if (ipa_node_params* info = ipa_node_params_sum->get (cs->caller))
{
info->node_calling_single_call = true;
return true;
}
return false;
}
/* Initialize ipcp_lattices. */
static void
initialize_node_lattices (struct cgraph_node *node)
{
ipa_node_params *info = ipa_node_params_sum->get (node);
struct cgraph_edge *ie;
bool disable = false, variable = false;
int i;
gcc_checking_assert (node->has_gimple_body_p ());
if (!ipa_get_param_count (info))
disable = true;
else if (node->local)
{
int caller_count = 0;
node->call_for_symbol_thunks_and_aliases (count_callers, &caller_count,
true);
gcc_checking_assert (caller_count > 0);
if (caller_count == 1)
node->call_for_symbol_thunks_and_aliases (set_single_call_flag,
NULL, true);
}
else
{
/* When cloning is allowed, we can assume that externally visible
functions are not called. We will compensate this by cloning
later. */
if (ipcp_versionable_function_p (node)
&& ipcp_cloning_candidate_p (node))
variable = true;
else
disable = true;
}
if (dump_file && (dump_flags & TDF_DETAILS)
&& !node->alias && !node->thunk)
{
fprintf (dump_file, "Initializing lattices of %s\n",
node->dump_name ());
if (disable || variable)
fprintf (dump_file, " Marking all lattices as %s\n",
disable ? "BOTTOM" : "VARIABLE");
}
auto_vec<bool, 16> surviving_params;
bool pre_modified = false;
clone_info *cinfo = clone_info::get (node);
if (!disable && cinfo && cinfo->param_adjustments)
{
/* At the moment all IPA optimizations should use the number of
parameters of the prevailing decl as the m_always_copy_start.
Handling any other value would complicate the code below, so for the
time bing let's only assert it is so. */
gcc_assert ((cinfo->param_adjustments->m_always_copy_start
== ipa_get_param_count (info))
|| cinfo->param_adjustments->m_always_copy_start < 0);
pre_modified = true;
cinfo->param_adjustments->get_surviving_params (&surviving_params);
if (dump_file && (dump_flags & TDF_DETAILS)
&& !node->alias && !node->thunk)
{
bool first = true;
for (int j = 0; j < ipa_get_param_count (info); j++)
{
if (j < (int) surviving_params.length ()
&& surviving_params[j])
continue;
if (first)
{
fprintf (dump_file,
" The following parameters are dead on arrival:");
first = false;
}
fprintf (dump_file, " %u", j);
}
if (!first)
fprintf (dump_file, "\n");
}
}
for (i = 0; i < ipa_get_param_count (info); i++)
{
ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
if (disable
|| !ipa_get_type (info, i)
|| (pre_modified && (surviving_params.length () <= (unsigned) i
|| !surviving_params[i])))
{
plats->itself.set_to_bottom ();
plats->ctxlat.set_to_bottom ();
set_agg_lats_to_bottom (plats);
plats->bits_lattice.set_to_bottom ();
plats->m_value_range.m_vr = value_range ();
plats->m_value_range.set_to_bottom ();
}
else
{
plats->m_value_range.init ();
if (variable)
set_all_contains_variable (plats);
}
}
for (ie = node->indirect_calls; ie; ie = ie->next_callee)
if (ie->indirect_info->polymorphic
&& ie->indirect_info->param_index >= 0)
{
gcc_checking_assert (ie->indirect_info->param_index >= 0);
ipa_get_parm_lattices (info,
ie->indirect_info->param_index)->virt_call = 1;
}
}
/* Return true if VALUE can be safely IPA-CP propagated to a parameter of type
PARAM_TYPE. */
static bool
ipacp_value_safe_for_type (tree param_type, tree value)
{
tree val_type = TREE_TYPE (value);
if (param_type == val_type
|| useless_type_conversion_p (param_type, val_type)
|| fold_convertible_p (param_type, value))
return true;
else
return false;
}
/* Return the result of a (possibly arithmetic) operation on the constant
value INPUT. OPERAND is 2nd operand for binary operation. RES_TYPE is
the type of the parameter to which the result is passed. Return
NULL_TREE if that cannot be determined or be considered an
interprocedural invariant. */
static tree
ipa_get_jf_arith_result (enum tree_code opcode, tree input, tree operand,
tree res_type)
{
tree res;
if (opcode == NOP_EXPR)
return input;
if (!is_gimple_ip_invariant (input))
return NULL_TREE;
if (opcode == ASSERT_EXPR)
{
if (values_equal_for_ipcp_p (input, operand))
return input;
else
return NULL_TREE;
}
if (!res_type)
{
if (TREE_CODE_CLASS (opcode) == tcc_comparison)
res_type = boolean_type_node;
else if (expr_type_first_operand_type_p (opcode))
res_type = TREE_TYPE (input);
else
return NULL_TREE;
}
if (TREE_CODE_CLASS (opcode) == tcc_unary)
res = fold_unary (opcode, res_type, input);
else
res = fold_binary (opcode, res_type, input, operand);
if (res && !is_gimple_ip_invariant (res))
return NULL_TREE;
return res;
}
/* Return the result of a (possibly arithmetic) pass through jump function
JFUNC on the constant value INPUT. RES_TYPE is the type of the parameter
to which the result is passed. Return NULL_TREE if that cannot be
determined or be considered an interprocedural invariant. */
static tree
ipa_get_jf_pass_through_result (struct ipa_jump_func *jfunc, tree input,
tree res_type)
{
return ipa_get_jf_arith_result (ipa_get_jf_pass_through_operation (jfunc),
input,
ipa_get_jf_pass_through_operand (jfunc),
res_type);
}
/* Return the result of an ancestor jump function JFUNC on the constant value
INPUT. Return NULL_TREE if that cannot be determined. */
static tree
ipa_get_jf_ancestor_result (struct ipa_jump_func *jfunc, tree input)
{
gcc_checking_assert (TREE_CODE (input) != TREE_BINFO);
if (TREE_CODE (input) == ADDR_EXPR)
{
gcc_checking_assert (is_gimple_ip_invariant_address (input));
poly_int64 off = ipa_get_jf_ancestor_offset (jfunc);
if (known_eq (off, 0))
return input;
poly_int64 byte_offset = exact_div (off, BITS_PER_UNIT);
return build1 (ADDR_EXPR, TREE_TYPE (input),
fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (input)), input,
build_int_cst (ptr_type_node, byte_offset)));
}
else if (ipa_get_jf_ancestor_keep_null (jfunc)
&& zerop (input))
return input;
else
return NULL_TREE;
}
/* Determine whether JFUNC evaluates to a single known constant value and if
so, return it. Otherwise return NULL. INFO describes the caller node or
the one it is inlined to, so that pass-through jump functions can be
evaluated. PARM_TYPE is the type of the parameter to which the result is
passed. */
tree
ipa_value_from_jfunc (class ipa_node_params *info, struct ipa_jump_func *jfunc,
tree parm_type)
{
if (jfunc->type == IPA_JF_CONST)
return ipa_get_jf_constant (jfunc);
else if (jfunc->type == IPA_JF_PASS_THROUGH
|| jfunc->type == IPA_JF_ANCESTOR)
{
tree input;
int idx;
if (jfunc->type == IPA_JF_PASS_THROUGH)
idx = ipa_get_jf_pass_through_formal_id (jfunc);
else
idx = ipa_get_jf_ancestor_formal_id (jfunc);
if (info->ipcp_orig_node)
input = info->known_csts[idx];
else
{
ipcp_lattice<tree> *lat;
if (!info->lattices
|| idx >= ipa_get_param_count (info))
return NULL_TREE;
lat = ipa_get_scalar_lat (info, idx);
if (!lat->is_single_const ())
return NULL_TREE;
input = lat->values->value;
}
if (!input)
return NULL_TREE;
if (jfunc->type == IPA_JF_PASS_THROUGH)
return ipa_get_jf_pass_through_result (jfunc, input, parm_type);
else
return ipa_get_jf_ancestor_result (jfunc, input);
}
else
return NULL_TREE;
}
/* Determine whether JFUNC evaluates to single known polymorphic context, given
that INFO describes the caller node or the one it is inlined to, CS is the
call graph edge corresponding to JFUNC and CSIDX index of the described
parameter. */
ipa_polymorphic_call_context
ipa_context_from_jfunc (ipa_node_params *info, cgraph_edge *cs, int csidx,
ipa_jump_func *jfunc)
{
ipa_edge_args *args = ipa_edge_args_sum->get (cs);
ipa_polymorphic_call_context ctx;
ipa_polymorphic_call_context *edge_ctx
= cs ? ipa_get_ith_polymorhic_call_context (args, csidx) : NULL;
if (edge_ctx && !edge_ctx->useless_p ())
ctx = *edge_ctx;
if (jfunc->type == IPA_JF_PASS_THROUGH
|| jfunc->type == IPA_JF_ANCESTOR)
{
ipa_polymorphic_call_context srcctx;
int srcidx;
bool type_preserved = true;
if (jfunc->type == IPA_JF_PASS_THROUGH)
{
if (ipa_get_jf_pass_through_operation (jfunc) != NOP_EXPR)
return ctx;
type_preserved = ipa_get_jf_pass_through_type_preserved (jfunc);
srcidx = ipa_get_jf_pass_through_formal_id (jfunc);
}
else
{
type_preserved = ipa_get_jf_ancestor_type_preserved (jfunc);
srcidx = ipa_get_jf_ancestor_formal_id (jfunc);
}
if (info->ipcp_orig_node)
{
if (info->known_contexts.exists ())
srcctx = info->known_contexts[srcidx];
}
else
{
if (!info->lattices
|| srcidx >= ipa_get_param_count (info))
return ctx;
ipcp_lattice<ipa_polymorphic_call_context> *lat;
lat = ipa_get_poly_ctx_lat (info, srcidx);
if (!lat->is_single_const ())
return ctx;
srcctx = lat->values->value;
}
if (srcctx.useless_p ())
return ctx;
if (jfunc->type == IPA_JF_ANCESTOR)
srcctx.offset_by (ipa_get_jf_ancestor_offset (jfunc));
if (!type_preserved)
srcctx.possible_dynamic_type_change (cs->in_polymorphic_cdtor);
srcctx.combine_with (ctx);
return srcctx;
}
return ctx;
}
/* Emulate effects of unary OPERATION and/or conversion from SRC_TYPE to
DST_TYPE on value range in SRC_VR and store it to DST_VR. Return true if
the result is a range or an anti-range. */
static bool
ipa_vr_operation_and_type_effects (value_range *dst_vr,
value_range *src_vr,
enum tree_code operation,
tree dst_type, tree src_type)
{
range_fold_unary_expr (dst_vr, operation, dst_type, src_vr, src_type);
if (dst_vr->varying_p () || dst_vr->undefined_p ())
return false;
return true;
}
/* Determine value_range of JFUNC given that INFO describes the caller node or
the one it is inlined to, CS is the call graph edge corresponding to JFUNC
and PARM_TYPE of the parameter. */
value_range
ipa_value_range_from_jfunc (ipa_node_params *info, cgraph_edge *cs,
ipa_jump_func *jfunc, tree parm_type)
{
value_range vr;
if (jfunc->m_vr)
ipa_vr_operation_and_type_effects (&vr,
jfunc->m_vr,
NOP_EXPR, parm_type,
jfunc->m_vr->type ());
if (vr.singleton_p ())
return vr;
if (jfunc->type == IPA_JF_PASS_THROUGH)
{
int idx;
ipcp_transformation *sum
= ipcp_get_transformation_summary (cs->caller->inlined_to
? cs->caller->inlined_to
: cs->caller);
if (!sum || !sum->m_vr)
return vr;
idx = ipa_get_jf_pass_through_formal_id (jfunc);
if (!(*sum->m_vr)[idx].known)
return vr;
tree vr_type = ipa_get_type (info, idx);
value_range srcvr (wide_int_to_tree (vr_type, (*sum->m_vr)[idx].min),
wide_int_to_tree (vr_type, (*sum->m_vr)[idx].max),
(*sum->m_vr)[idx].type);
enum tree_code operation = ipa_get_jf_pass_through_operation (jfunc);
if (TREE_CODE_CLASS (operation) == tcc_unary)
{
value_range res;
if (ipa_vr_operation_and_type_effects (&res,
&srcvr,
operation, parm_type,
vr_type))
vr.intersect (res);
}
else
{
value_range op_res, res;
tree op = ipa_get_jf_pass_through_operand (jfunc);
value_range op_vr (op, op);
range_fold_binary_expr (&op_res, operation, vr_type, &srcvr, &op_vr);
if (ipa_vr_operation_and_type_effects (&res,
&op_res,
NOP_EXPR, parm_type,
vr_type))
vr.intersect (res);
}
}
return vr;
}
/* Determine whether ITEM, jump function for an aggregate part, evaluates to a
single known constant value and if so, return it. Otherwise return NULL.
NODE and INFO describes the caller node or the one it is inlined to, and
its related info. */
tree
ipa_agg_value_from_jfunc (ipa_node_params *info, cgraph_node *node,
const ipa_agg_jf_item *item)
{
tree value = NULL_TREE;
int src_idx;
if (item->offset < 0 || item->jftype == IPA_JF_UNKNOWN)
return NULL_TREE;
if (item->jftype == IPA_JF_CONST)
return item->value.constant;
gcc_checking_assert (item->jftype == IPA_JF_PASS_THROUGH
|| item->jftype == IPA_JF_LOAD_AGG);
src_idx = item->value.pass_through.formal_id;
if (info->ipcp_orig_node)
{
if (item->jftype == IPA_JF_PASS_THROUGH)
value = info->known_csts[src_idx];
else if (ipcp_transformation *ts = ipcp_get_transformation_summary (node))
{
ipa_argagg_value_list avl (ts);
value = avl.get_value (src_idx,
item->value.load_agg.offset / BITS_PER_UNIT,
item->value.load_agg.by_ref);
}
}
else if (info->lattices)
{
class ipcp_param_lattices *src_plats
= ipa_get_parm_lattices (info, src_idx);
if (item->jftype == IPA_JF_PASS_THROUGH)
{
struct ipcp_lattice<tree> *lat = &src_plats->itself;
if (!lat->is_single_const ())
return NULL_TREE;
value = lat->values->value;
}
else if (src_plats->aggs
&& !src_plats->aggs_bottom
&& !src_plats->aggs_contain_variable
&& src_plats->aggs_by_ref == item->value.load_agg.by_ref)
{
struct ipcp_agg_lattice *aglat;
for (aglat = src_plats->aggs; aglat; aglat = aglat->next)
{
if (aglat->offset > item->value.load_agg.offset)
break;
if (aglat->offset == item->value.load_agg.offset)
{
if (aglat->is_single_const ())
value = aglat->values->value;
break;
}
}
}
}
if (!value)
return NULL_TREE;
if (item->jftype == IPA_JF_LOAD_AGG)
{
tree load_type = item->value.load_agg.type;
tree value_type = TREE_TYPE (value);
/* Ensure value type is compatible with load type. */
if (!useless_type_conversion_p (load_type, value_type))
return NULL_TREE;
}
return ipa_get_jf_arith_result (item->value.pass_through.operation,
value,
item->value.pass_through.operand,
item->type);
}
/* Process all items in AGG_JFUNC relative to caller (or the node the original
caller is inlined to) NODE which described by INFO and push the results to
RES as describing values passed in parameter DST_INDEX. */
void
ipa_push_agg_values_from_jfunc (ipa_node_params *info, cgraph_node *node,
ipa_agg_jump_function *agg_jfunc,
unsigned dst_index,
vec<ipa_argagg_value> *res)
{
unsigned prev_unit_offset = 0;
bool first = true;
for (const ipa_agg_jf_item &item : agg_jfunc->items)
{
tree value = ipa_agg_value_from_jfunc (info, node, &item);
if (!value)
continue;
ipa_argagg_value iav;
iav.value = value;
iav.unit_offset = item.offset / BITS_PER_UNIT;
iav.index = dst_index;
iav.by_ref = agg_jfunc->by_ref;
gcc_assert (first
|| iav.unit_offset > prev_unit_offset);
prev_unit_offset = iav.unit_offset;
first = false;
res->safe_push (iav);
}
}
/* If checking is enabled, verify that no lattice is in the TOP state, i.e. not
bottom, not containing a variable component and without any known value at
the same time. */
DEBUG_FUNCTION void
ipcp_verify_propagated_values (void)
{
struct cgraph_node *node;
FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
{
ipa_node_params *info = ipa_node_params_sum->get (node);
if (!opt_for_fn (node->decl, flag_ipa_cp)
|| !opt_for_fn (node->decl, optimize))
continue;
int i, count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
ipcp_lattice<tree> *lat = ipa_get_scalar_lat (info, i);
if (!lat->bottom
&& !lat->contains_variable
&& lat->values_count == 0)
{
if (dump_file)
{
symtab->dump (dump_file);
fprintf (dump_file, "\nIPA lattices after constant "
"propagation, before gcc_unreachable:\n");
print_all_lattices (dump_file, true, false);
}
gcc_unreachable ();
}
}
}
}
/* Return true iff X and Y should be considered equal contexts by IPA-CP. */
static bool
values_equal_for_ipcp_p (ipa_polymorphic_call_context x,
ipa_polymorphic_call_context y)
{
return x.equal_to (y);
}
/* Add a new value source to the value represented by THIS, marking that a
value comes from edge CS and (if the underlying jump function is a
pass-through or an ancestor one) from a caller value SRC_VAL of a caller
parameter described by SRC_INDEX. OFFSET is negative if the source was the
scalar value of the parameter itself or the offset within an aggregate. */
template <typename valtype>
void
ipcp_value<valtype>::add_source (cgraph_edge *cs, ipcp_value *src_val,
int src_idx, HOST_WIDE_INT offset)
{
ipcp_value_source<valtype> *src;
src = new (ipcp_sources_pool.allocate ()) ipcp_value_source<valtype>;
src->offset = offset;
src->cs = cs;
src->val = src_val;
src->index = src_idx;
src->next = sources;
sources = src;
}
/* Allocate a new ipcp_value holding a tree constant, initialize its value to
SOURCE and clear all other fields. */
static ipcp_value<tree> *
allocate_and_init_ipcp_value (tree cst, unsigned same_lat_gen_level)
{
ipcp_value<tree> *val;
val = new (ipcp_cst_values_pool.allocate ()) ipcp_value<tree>();
val->value = cst;
val->self_recursion_generated_level = same_lat_gen_level;
return val;
}
/* Allocate a new ipcp_value holding a polymorphic context, initialize its
value to SOURCE and clear all other fields. */
static ipcp_value<ipa_polymorphic_call_context> *
allocate_and_init_ipcp_value (ipa_polymorphic_call_context ctx,
unsigned same_lat_gen_level)
{
ipcp_value<ipa_polymorphic_call_context> *val;
val = new (ipcp_poly_ctx_values_pool.allocate ())
ipcp_value<ipa_polymorphic_call_context>();
val->value = ctx;
val->self_recursion_generated_level = same_lat_gen_level;
return val;
}
/* Try to add NEWVAL to LAT, potentially creating a new ipcp_value for it. CS,
SRC_VAL SRC_INDEX and OFFSET are meant for add_source and have the same
meaning. OFFSET -1 means the source is scalar and not a part of an
aggregate. If non-NULL, VAL_P records address of existing or newly added
ipcp_value.
If the value is generated for a self-recursive call as a result of an
arithmetic pass-through jump-function acting on a value in the same lattice,
SAME_LAT_GEN_LEVEL must be the length of such chain, otherwise it must be
zero. If it is non-zero, PARAM_IPA_CP_VALUE_LIST_SIZE limit is ignored. */
template <typename valtype>
bool
ipcp_lattice<valtype>::add_value (valtype newval, cgraph_edge *cs,
ipcp_value<valtype> *src_val,
int src_idx, HOST_WIDE_INT offset,
ipcp_value<valtype> **val_p,
unsigned same_lat_gen_level)
{
ipcp_value<valtype> *val, *last_val = NULL;
if (val_p)
*val_p = NULL;
if (bottom)
return false;
for (val = values; val; last_val = val, val = val->next)
if (values_equal_for_ipcp_p (val->value, newval))
{
if (val_p)
*val_p = val;
if (val->self_recursion_generated_level < same_lat_gen_level)
val->self_recursion_generated_level = same_lat_gen_level;
if (ipa_edge_within_scc (cs))
{
ipcp_value_source<valtype> *s;
for (s = val->sources; s; s = s->next)
if (s->cs == cs && s->val == src_val)
break;
if (s)
return false;
}
val->add_source (cs, src_val, src_idx, offset);
return false;
}
if (!same_lat_gen_level && values_count == opt_for_fn (cs->caller->decl,
param_ipa_cp_value_list_size))
{
/* We can only free sources, not the values themselves, because sources
of other values in this SCC might point to them. */
for (val = values; val; val = val->next)
{
while (val->sources)
{
ipcp_value_source<valtype> *src = val->sources;
val->sources = src->next;
ipcp_sources_pool.remove ((ipcp_value_source<tree>*)src);
}
}
values = NULL;
return set_to_bottom ();
}
values_count++;
val = allocate_and_init_ipcp_value (newval, same_lat_gen_level);
val->add_source (cs, src_val, src_idx, offset);
val->next = NULL;
/* Add the new value to end of value list, which can reduce iterations
of propagation stage for recursive function. */
if (last_val)
last_val->next = val;
else
values = val;
if (val_p)
*val_p = val;
return true;
}
/* A helper function that returns result of operation specified by OPCODE on
the value of SRC_VAL. If non-NULL, OPND1_TYPE is expected type for the
value of SRC_VAL. If the operation is binary, OPND2 is a constant value
acting as its second operand. If non-NULL, RES_TYPE is expected type of
the result. */
static tree
get_val_across_arith_op (enum tree_code opcode,
tree opnd1_type,
tree opnd2,
ipcp_value<tree> *src_val,
tree res_type)
{
tree opnd1 = src_val->value;
/* Skip source values that is incompatible with specified type. */
if (opnd1_type
&& !useless_type_conversion_p (opnd1_type, TREE_TYPE (opnd1)))
return NULL_TREE;
return ipa_get_jf_arith_result (opcode, opnd1, opnd2, res_type);
}
/* Propagate values through an arithmetic transformation described by a jump
function associated with edge CS, taking values from SRC_LAT and putting
them into DEST_LAT. OPND1_TYPE is expected type for the values in SRC_LAT.
OPND2 is a constant value if transformation is a binary operation.
SRC_OFFSET specifies offset in an aggregate if SRC_LAT describes lattice of
a part of the aggregate. SRC_IDX is the index of the source parameter.
RES_TYPE is the value type of result being propagated into. Return true if
DEST_LAT changed. */
static bool
propagate_vals_across_arith_jfunc (cgraph_edge *cs,
enum tree_code opcode,
tree opnd1_type,
tree opnd2,
ipcp_lattice<tree> *src_lat,
ipcp_lattice<tree> *dest_lat,
HOST_WIDE_INT src_offset,
int src_idx,
tree res_type)
{
ipcp_value<tree> *src_val;
bool ret = false;
/* Due to circular dependencies, propagating within an SCC through arithmetic
transformation would create infinite number of values. But for
self-feeding recursive function, we could allow propagation in a limited
count, and this can enable a simple kind of recursive function versioning.
For other scenario, we would just make lattices bottom. */
if (opcode != NOP_EXPR && ipa_edge_within_scc (cs))
{
int i;
int max_recursive_depth = opt_for_fn(cs->caller->decl,
param_ipa_cp_max_recursive_depth);
if (src_lat != dest_lat || max_recursive_depth < 1)
return dest_lat->set_contains_variable ();
/* No benefit if recursive execution is in low probability. */
if (cs->sreal_frequency () * 100
<= ((sreal) 1) * opt_for_fn (cs->caller->decl,
param_ipa_cp_min_recursive_probability))
return dest_lat->set_contains_variable ();
auto_vec<ipcp_value<tree> *, 8> val_seeds;
for (src_val = src_lat->values; src_val; src_val = src_val->next)
{
/* Now we do not use self-recursively generated value as propagation
source, this is absolutely conservative, but could avoid explosion
of lattice's value space, especially when one recursive function
calls another recursive. */
if (src_val->self_recursion_generated_p ())
{
ipcp_value_source<tree> *s;
/* If the lattice has already been propagated for the call site,
no need to do that again. */
for (s = src_val->sources; s; s = s->next)
if (s->cs == cs)
return dest_lat->set_contains_variable ();
}
else
val_seeds.safe_push (src_val);
}
gcc_assert ((int) val_seeds.length () <= param_ipa_cp_value_list_size);
/* Recursively generate lattice values with a limited count. */
FOR_EACH_VEC_ELT (val_seeds, i, src_val)
{
for (int j = 1; j < max_recursive_depth; j++)
{
tree cstval = get_val_across_arith_op (opcode, opnd1_type, opnd2,
src_val, res_type);
if (!cstval
|| !ipacp_value_safe_for_type (res_type, cstval))
break;
ret |= dest_lat->add_value (cstval, cs, src_val, src_idx,
src_offset, &src_val, j);
gcc_checking_assert (src_val);
}
}
ret |= dest_lat->set_contains_variable ();
}
else
for (src_val = src_lat->values; src_val; src_val = src_val->next)
{
/* Now we do not use self-recursively generated value as propagation
source, otherwise it is easy to make value space of normal lattice
overflow. */
if (src_val->self_recursion_generated_p ())
{
ret |= dest_lat->set_contains_variable ();
continue;
}
tree cstval = get_val_across_arith_op (opcode, opnd1_type, opnd2,
src_val, res_type);
if (cstval
&& ipacp_value_safe_for_type (res_type, cstval))
ret |= dest_lat->add_value (cstval, cs, src_val, src_idx,
src_offset);
else
ret |= dest_lat->set_contains_variable ();
}
return ret;
}
/* Propagate values through a pass-through jump function JFUNC associated with
edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
is the index of the source parameter. PARM_TYPE is the type of the
parameter to which the result is passed. */
static bool
propagate_vals_across_pass_through (cgraph_edge *cs, ipa_jump_func *jfunc,
ipcp_lattice<tree> *src_lat,
ipcp_lattice<tree> *dest_lat, int src_idx,
tree parm_type)
{
return propagate_vals_across_arith_jfunc (cs,
ipa_get_jf_pass_through_operation (jfunc),
NULL_TREE,
ipa_get_jf_pass_through_operand (jfunc),
src_lat, dest_lat, -1, src_idx, parm_type);
}
/* Propagate values through an ancestor jump function JFUNC associated with
edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
is the index of the source parameter. */
static bool
propagate_vals_across_ancestor (struct cgraph_edge *cs,
struct ipa_jump_func *jfunc,
ipcp_lattice<tree> *src_lat,
ipcp_lattice<tree> *dest_lat, int src_idx,
tree param_type)
{
ipcp_value<tree> *src_val;
bool ret = false;
if (ipa_edge_within_scc (cs))
return dest_lat->set_contains_variable ();
for (src_val = src_lat->values; src_val; src_val = src_val->next)
{
tree t = ipa_get_jf_ancestor_result (jfunc, src_val->value);
if (t && ipacp_value_safe_for_type (param_type, t))
ret |= dest_lat->add_value (t, cs, src_val, src_idx);
else
ret |= dest_lat->set_contains_variable ();
}
return ret;
}
/* Propagate scalar values across jump function JFUNC that is associated with
edge CS and put the values into DEST_LAT. PARM_TYPE is the type of the
parameter to which the result is passed. */
static bool
propagate_scalar_across_jump_function (struct cgraph_edge *cs,
struct ipa_jump_func *jfunc,
ipcp_lattice<tree> *dest_lat,
tree param_type)
{
if (dest_lat->bottom)
return false;
if (jfunc->type == IPA_JF_CONST)
{
tree val = ipa_get_jf_constant (jfunc);
if (ipacp_value_safe_for_type (param_type, val))
return dest_lat->add_value (val, cs, NULL, 0);
else
return dest_lat->set_contains_variable ();
}
else if (jfunc->type == IPA_JF_PASS_THROUGH
|| jfunc->type == IPA_JF_ANCESTOR)
{
ipa_node_params *caller_info = ipa_node_params_sum->get (cs->caller);
ipcp_lattice<tree> *src_lat;
int src_idx;
bool ret;
if (jfunc->type == IPA_JF_PASS_THROUGH)
src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
else
src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
src_lat = ipa_get_scalar_lat (caller_info, src_idx);
if (src_lat->bottom)
return dest_lat->set_contains_variable ();
/* If we would need to clone the caller and cannot, do not propagate. */
if (!ipcp_versionable_function_p (cs->caller)
&& (src_lat->contains_variable
|| (src_lat->values_count > 1)))
return dest_lat->set_contains_variable ();
if (jfunc->type == IPA_JF_PASS_THROUGH)
ret = propagate_vals_across_pass_through (cs, jfunc, src_lat,
dest_lat, src_idx,
param_type);
else
ret = propagate_vals_across_ancestor (cs, jfunc, src_lat, dest_lat,
src_idx, param_type);
if (src_lat->contains_variable)
ret |= dest_lat->set_contains_variable ();
return ret;
}
/* TODO: We currently do not handle member method pointers in IPA-CP (we only
use it for indirect inlining), we should propagate them too. */
return dest_lat->set_contains_variable ();
}
/* Propagate scalar values across jump function JFUNC that is associated with
edge CS and describes argument IDX and put the values into DEST_LAT. */
static bool
propagate_context_across_jump_function (cgraph_edge *cs,
ipa_jump_func *jfunc, int idx,
ipcp_lattice<ipa_polymorphic_call_context> *dest_lat)
{
if (dest_lat->bottom)
return false;
ipa_edge_args *args = ipa_edge_args_sum->get (cs);
bool ret = false;
bool added_sth = false;
bool type_preserved = true;
ipa_polymorphic_call_context edge_ctx, *edge_ctx_ptr
= ipa_get_ith_polymorhic_call_context (args, idx);
if (edge_ctx_ptr)
edge_ctx = *edge_ctx_ptr;
if (jfunc->type == IPA_JF_PASS_THROUGH
|| jfunc->type == IPA_JF_ANCESTOR)
{
ipa_node_params *caller_info = ipa_node_params_sum->get (cs->caller);
int src_idx;
ipcp_lattice<ipa_polymorphic_call_context> *src_lat;
/* TODO: Once we figure out how to propagate speculations, it will
probably be a good idea to switch to speculation if type_preserved is
not set instead of punting. */
if (jfunc->type == IPA_JF_PASS_THROUGH)
{
if (ipa_get_jf_pass_through_operation (jfunc) != NOP_EXPR)
goto prop_fail;
type_preserved = ipa_get_jf_pass_through_type_preserved (jfunc);
src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
}
else
{
type_preserved = ipa_get_jf_ancestor_type_preserved (jfunc);
src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
}
src_lat = ipa_get_poly_ctx_lat (caller_info, src_idx);
/* If we would need to clone the caller and cannot, do not propagate. */
if (!ipcp_versionable_function_p (cs->caller)
&& (src_lat->contains_variable
|| (src_lat->values_count > 1)))
goto prop_fail;
ipcp_value<ipa_polymorphic_call_context> *src_val;
for (src_val = src_lat->values; src_val; src_val = src_val->next)
{
ipa_polymorphic_call_context cur = src_val->value;
if (!type_preserved)
cur.possible_dynamic_type_change (cs->in_polymorphic_cdtor);
if (jfunc->type == IPA_JF_ANCESTOR)
cur.offset_by (ipa_get_jf_ancestor_offset (jfunc));
/* TODO: In cases we know how the context is going to be used,
we can improve the result by passing proper OTR_TYPE. */
cur.combine_with (edge_ctx);
if (!cur.useless_p ())
{
if (src_lat->contains_variable
&& !edge_ctx.equal_to (cur))
ret |= dest_lat->set_contains_variable ();
ret |= dest_lat->add_value (cur, cs, src_val, src_idx);
added_sth = true;
}
}
}
prop_fail:
if (!added_sth)
{
if (!edge_ctx.useless_p ())
ret |= dest_lat->add_value (edge_ctx, cs);
else
ret |= dest_lat->set_contains_variable ();
}
return ret;
}
/* Propagate bits across jfunc that is associated with
edge cs and update dest_lattice accordingly. */
bool
propagate_bits_across_jump_function (cgraph_edge *cs, int idx,
ipa_jump_func *jfunc,
ipcp_bits_lattice *dest_lattice)
{
if (dest_lattice->bottom_p ())
return false;
enum availability availability;
cgraph_node *callee = cs->callee->function_symbol (&availability);
ipa_node_params *callee_info = ipa_node_params_sum->get (callee);
tree parm_type = ipa_get_type (callee_info, idx);
/* For K&R C programs, ipa_get_type() could return NULL_TREE. Avoid the
transform for these cases. Similarly, we can have bad type mismatches
with LTO, avoid doing anything with those too. */
if (!parm_type
|| (!INTEGRAL_TYPE_P (parm_type) && !POINTER_TYPE_P (parm_type)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Setting dest_lattice to bottom, because type of "
"param %i of %s is NULL or unsuitable for bits propagation\n",
idx, cs->callee->dump_name ());
return dest_lattice->set_to_bottom ();
}
unsigned precision = TYPE_PRECISION (parm_type);
signop sgn = TYPE_SIGN (parm_type);
if (jfunc->type == IPA_JF_PASS_THROUGH
|| jfunc->type == IPA_JF_ANCESTOR)
{
ipa_node_params *caller_info = ipa_node_params_sum->get (cs->caller);
tree operand = NULL_TREE;
enum tree_code code;
unsigned src_idx;
bool keep_null = false;
if (jfunc->type == IPA_JF_PASS_THROUGH)
{
code = ipa_get_jf_pass_through_operation (jfunc);
src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
if (code != NOP_EXPR)
operand = ipa_get_jf_pass_through_operand (jfunc);
}
else
{
code = POINTER_PLUS_EXPR;
src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
unsigned HOST_WIDE_INT offset
= ipa_get_jf_ancestor_offset (jfunc) / BITS_PER_UNIT;
keep_null = (ipa_get_jf_ancestor_keep_null (jfunc) || !offset);
operand = build_int_cstu (size_type_node, offset);
}
class ipcp_param_lattices *src_lats
= ipa_get_parm_lattices (caller_info, src_idx);
/* Try to propagate bits if src_lattice is bottom, but jfunc is known.
for eg consider:
int f(int x)
{
g (x & 0xff);
}
Assume lattice for x is bottom, however we can still propagate
result of x & 0xff == 0xff, which gets computed during ccp1 pass
and we store it in jump function during analysis stage. */
if (!src_lats->bits_lattice.bottom_p ())
{
bool drop_all_ones
= keep_null && !src_lats->bits_lattice.known_nonzero_p ();
return dest_lattice->meet_with (src_lats->bits_lattice, precision,
sgn, code, operand, drop_all_ones);
}
}
if (jfunc->bits)
return dest_lattice->meet_with (jfunc->bits->value, jfunc->bits->mask,
precision);
else
return dest_lattice->set_to_bottom ();
}
/* Propagate value range across jump function JFUNC that is associated with
edge CS with param of callee of PARAM_TYPE and update DEST_PLATS
accordingly. */
static bool
propagate_vr_across_jump_function (cgraph_edge *cs, ipa_jump_func *jfunc,
class ipcp_param_lattices *dest_plats,
tree param_type)
{
ipcp_vr_lattice *dest_lat = &dest_plats->m_value_range;
if (dest_lat->bottom_p ())
return false;
if (!param_type
|| (!INTEGRAL_TYPE_P (param_type)
&& !POINTER_TYPE_P (param_type)))
return dest_lat->set_to_bottom ();
if (jfunc->type == IPA_JF_PASS_THROUGH)
{
enum tree_code operation = ipa_get_jf_pass_through_operation (jfunc);
ipa_node_params *caller_info = ipa_node_params_sum->get (cs->caller);
int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
class ipcp_param_lattices *src_lats
= ipa_get_parm_lattices (caller_info, src_idx);
tree operand_type = ipa_get_type (caller_info, src_idx);
if (src_lats->m_value_range.bottom_p ())
return dest_lat->set_to_bottom ();
value_range vr;
if (TREE_CODE_CLASS (operation) == tcc_unary)
ipa_vr_operation_and_type_effects (&vr,
&src_lats->m_value_range.m_vr,
operation, param_type,
operand_type);
/* A crude way to prevent unbounded number of value range updates
in SCC components. We should allow limited number of updates within
SCC, too. */
else if (!ipa_edge_within_scc (cs))
{
tree op = ipa_get_jf_pass_through_operand (jfunc);
value_range op_vr (op, op);
value_range op_res,res;
range_fold_binary_expr (&op_res, operation, operand_type,
&src_lats->m_value_range.m_vr, &op_vr);
ipa_vr_operation_and_type_effects (&vr,
&op_res,
NOP_EXPR, param_type,
operand_type);
}
if (!vr.undefined_p () && !vr.varying_p ())
{
if (jfunc->m_vr)
{
value_range jvr;
if (ipa_vr_operation_and_type_effects (&jvr, jfunc->m_vr,
NOP_EXPR,
param_type,
jfunc->m_vr->type ()))
vr.intersect (jvr);
}
return dest_lat->meet_with (&vr);
}
}
else if (jfunc->type == IPA_JF_CONST)
{
tree val = ipa_get_jf_constant (jfunc);
if (TREE_CODE (val) == INTEGER_CST)
{
val = fold_convert (param_type, val);
if (TREE_OVERFLOW_P (val))
val = drop_tree_overflow (val);
value_range tmpvr (val, val);
return dest_lat->meet_with (&tmpvr);
}
}
value_range vr;
if (jfunc->m_vr
&& ipa_vr_operation_and_type_effects (&vr, jfunc->m_vr, NOP_EXPR,
param_type,
jfunc->m_vr->type ()))
return dest_lat->meet_with (&vr);
else
return dest_lat->set_to_bottom ();
}
/* If DEST_PLATS already has aggregate items, check that aggs_by_ref matches
NEW_AGGS_BY_REF and if not, mark all aggs as bottoms and return true (in all
other cases, return false). If there are no aggregate items, set
aggs_by_ref to NEW_AGGS_BY_REF. */
static bool
set_check_aggs_by_ref (class ipcp_param_lattices *dest_plats,
bool new_aggs_by_ref)
{
if (dest_plats->aggs)
{
if (dest_plats->aggs_by_ref != new_aggs_by_ref)
{
set_agg_lats_to_bottom (dest_plats);
return true;
}
}
else
dest_plats->aggs_by_ref = new_aggs_by_ref;
return false;
}
/* Walk aggregate lattices in DEST_PLATS from ***AGLAT on, until ***aglat is an
already existing lattice for the given OFFSET and SIZE, marking all skipped
lattices as containing variable and checking for overlaps. If there is no
already existing lattice for the OFFSET and VAL_SIZE, create one, initialize
it with offset, size and contains_variable to PRE_EXISTING, and return true,
unless there are too many already. If there are two many, return false. If
there are overlaps turn whole DEST_PLATS to bottom and return false. If any
skipped lattices were newly marked as containing variable, set *CHANGE to
true. MAX_AGG_ITEMS is the maximum number of lattices. */
static bool
merge_agg_lats_step (class ipcp_param_lattices *dest_plats,
HOST_WIDE_INT offset, HOST_WIDE_INT val_size,
struct ipcp_agg_lattice ***aglat,
bool pre_existing, bool *change, int max_agg_items)
{
gcc_checking_assert (offset >= 0);
while (**aglat && (**aglat)->offset < offset)
{
if ((**aglat)->offset + (**aglat)->size > offset)
{
set_agg_lats_to_bottom (dest_plats);
return false;
}
*change |= (**aglat)->set_contains_variable ();
*aglat = &(**aglat)->next;
}
if (**aglat && (**aglat)->offset == offset)
{
if ((**aglat)->size != val_size)
{
set_agg_lats_to_bottom (dest_plats);
return false;
}
gcc_assert (!(**aglat)->next
|| (**aglat)->next->offset >= offset + val_size);
return true;
}
else
{
struct ipcp_agg_lattice *new_al;
if (**aglat && (**aglat)->offset < offset + val_size)
{
set_agg_lats_to_bottom (dest_plats);
return false;
}
if (dest_plats->aggs_count == max_agg_items)
return false;
dest_plats->aggs_count++;
new_al = ipcp_agg_lattice_pool.allocate ();
memset (new_al, 0, sizeof (*new_al));
new_al->offset = offset;
new_al->size = val_size;
new_al->contains_variable = pre_existing;
new_al->next = **aglat;
**aglat = new_al;
return true;
}
}
/* Set all AGLAT and all other aggregate lattices reachable by next pointers as
containing an unknown value. */
static bool
set_chain_of_aglats_contains_variable (struct ipcp_agg_lattice *aglat)
{
bool ret = false;
while (aglat)
{
ret |= aglat->set_contains_variable ();
aglat = aglat->next;
}
return ret;
}
/* Merge existing aggregate lattices in SRC_PLATS to DEST_PLATS, subtracting
DELTA_OFFSET. CS is the call graph edge and SRC_IDX the index of the source
parameter used for lattice value sources. Return true if DEST_PLATS changed
in any way. */
static bool
merge_aggregate_lattices (struct cgraph_edge *cs,
class ipcp_param_lattices *dest_plats,
class ipcp_param_lattices *src_plats,
int src_idx, HOST_WIDE_INT offset_delta)
{
bool pre_existing = dest_plats->aggs != NULL;
struct ipcp_agg_lattice **dst_aglat;
bool ret = false;
if (set_check_aggs_by_ref (dest_plats, src_plats->aggs_by_ref))
return true;
if (src_plats->aggs_bottom)
return set_agg_lats_contain_variable (dest_plats);
if (src_plats->aggs_contain_variable)
ret |= set_agg_lats_contain_variable (dest_plats);
dst_aglat = &dest_plats->aggs;
int max_agg_items = opt_for_fn (cs->callee->function_symbol ()->decl,
param_ipa_max_agg_items);
for (struct ipcp_agg_lattice *src_aglat = src_plats->aggs;
src_aglat;
src_aglat = src_aglat->next)
{
HOST_WIDE_INT new_offset = src_aglat->offset - offset_delta;
if (new_offset < 0)
continue;
if (merge_agg_lats_step (dest_plats, new_offset, src_aglat->size,
&dst_aglat, pre_existing, &ret, max_agg_items))
{
struct ipcp_agg_lattice *new_al = *dst_aglat;
dst_aglat = &(*dst_aglat)->next;
if (src_aglat->bottom)
{
ret |= new_al->set_contains_variable ();
continue;
}
if (src_aglat->contains_variable)
ret |= new_al->set_contains_variable ();
for (ipcp_value<tree> *val = src_aglat->values;
val;
val = val->next)
ret |= new_al->add_value (val->value, cs, val, src_idx,
src_aglat->offset);
}
else if (dest_plats->aggs_bottom)
return true;
}
ret |= set_chain_of_aglats_contains_variable (*dst_aglat);
return ret;
}
/* Determine whether there is anything to propagate FROM SRC_PLATS through a
pass-through JFUNC and if so, whether it has conform and conforms to the
rules about propagating values passed by reference. */
static bool
agg_pass_through_permissible_p (class ipcp_param_lattices *src_plats,
struct ipa_jump_func *jfunc)
{
return src_plats->aggs
&& (!src_plats->aggs_by_ref
|| ipa_get_jf_pass_through_agg_preserved (jfunc));
}
/* Propagate values through ITEM, jump function for a part of an aggregate,
into corresponding aggregate lattice AGLAT. CS is the call graph edge
associated with the jump function. Return true if AGLAT changed in any
way. */
static bool
propagate_aggregate_lattice (struct cgraph_edge *cs,
struct ipa_agg_jf_item *item,
struct ipcp_agg_lattice *aglat)
{
class ipa_node_params *caller_info;
class ipcp_param_lattices *src_plats;
struct ipcp_lattice<tree> *src_lat;
HOST_WIDE_INT src_offset;
int src_idx;
tree load_type;
bool ret;
if (item->jftype == IPA_JF_CONST)
{
tree value = item->value.constant;
gcc_checking_assert (is_gimple_ip_invariant (value));
return aglat->add_value (value, cs, NULL, 0);
}
gcc_checking_assert (item->jftype == IPA_JF_PASS_THROUGH
|| item->jftype == IPA_JF_LOAD_AGG);
caller_info = ipa_node_params_sum->get (cs->caller);
src_idx = item->value.pass_through.formal_id;
src_plats = ipa_get_parm_lattices (caller_info, src_idx);
if (item->jftype == IPA_JF_PASS_THROUGH)
{
load_type = NULL_TREE;
src_lat = &src_plats->itself;
src_offset = -1;
}
else
{
HOST_WIDE_INT load_offset = item->value.load_agg.offset;
struct ipcp_agg_lattice *src_aglat;
for (src_aglat = src_plats->aggs; src_aglat; src_aglat = src_aglat->next)
if (src_aglat->offset >= load_offset)
break;
load_type = item->value.load_agg.type;
if (!src_aglat
|| src_aglat->offset > load_offset
|| src_aglat->size != tree_to_shwi (TYPE_SIZE (load_type))
|| src_plats->aggs_by_ref != item->value.load_agg.by_ref)
return aglat->set_contains_variable ();
src_lat = src_aglat;
src_offset = load_offset;
}
if (src_lat->bottom
|| (!ipcp_versionable_function_p (cs->caller)
&& !src_lat->is_single_const ()))
return aglat->set_contains_variable ();
ret = propagate_vals_across_arith_jfunc (cs,
item->value.pass_through.operation,
load_type,
item->value.pass_through.operand,
src_lat, aglat,
src_offset,
src_idx,
item->type);
if (src_lat->contains_variable)
ret |= aglat->set_contains_variable ();
return ret;
}
/* Propagate scalar values across jump function JFUNC that is associated with
edge CS and put the values into DEST_LAT. */
static bool
propagate_aggs_across_jump_function (struct cgraph_edge *cs,
struct ipa_jump_func *jfunc,
class ipcp_param_lattices *dest_plats)
{
bool ret = false;
if (dest_plats->aggs_bottom)
return false;
if (jfunc->type == IPA_JF_PASS_THROUGH
&& ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
{
ipa_node_params *caller_info = ipa_node_params_sum->get (cs->caller);
int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
class ipcp_param_lattices *src_plats;
src_plats = ipa_get_parm_lattices (caller_info, src_idx);
if (agg_pass_through_permissible_p (src_plats, jfunc))
{
/* Currently we do not produce clobber aggregate jump
functions, replace with merging when we do. */
gcc_assert (!jfunc->agg.items);
ret |= merge_aggregate_lattices (cs, dest_plats, src_plats,
src_idx, 0);
return ret;
}
}
else if (jfunc->type == IPA_JF_ANCESTOR
&& ipa_get_jf_ancestor_agg_preserved (jfunc))
{
ipa_node_params *caller_info = ipa_node_params_sum->get (cs->caller);
int src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
class ipcp_param_lattices *src_plats;
src_plats = ipa_get_parm_lattices (caller_info, src_idx);
if (src_plats->aggs && src_plats->aggs_by_ref)
{
/* Currently we do not produce clobber aggregate jump
functions, replace with merging when we do. */
gcc_assert (!jfunc->agg.items);
ret |= merge_aggregate_lattices (cs, dest_plats, src_plats, src_idx,
ipa_get_jf_ancestor_offset (jfunc));
}
else if (!src_plats->aggs_by_ref)
ret |= set_agg_lats_to_bottom (dest_plats);
else
ret |= set_agg_lats_contain_variable (dest_plats);
return ret;
}
if (jfunc->agg.items)
{
bool pre_existing = dest_plats->aggs != NULL;
struct ipcp_agg_lattice **aglat = &dest_plats->aggs;
struct ipa_agg_jf_item *item;
int i;
if (set_check_aggs_by_ref (dest_plats, jfunc->agg.by_ref))
return true;
int max_agg_items = opt_for_fn (cs->callee->function_symbol ()->decl,
param_ipa_max_agg_items);
FOR_EACH_VEC_ELT (*jfunc->agg.items, i, item)
{
HOST_WIDE_INT val_size;
if (item->offset < 0 || item->jftype == IPA_JF_UNKNOWN)
continue;
val_size = tree_to_shwi (TYPE_SIZE (item->type));
if (merge_agg_lats_step (dest_plats, item->offset, val_size,
&aglat, pre_existing, &ret, max_agg_items))
{
ret |= propagate_aggregate_lattice (cs, item, *aglat);
aglat = &(*aglat)->next;
}
else if (dest_plats->aggs_bottom)
return true;
}
ret |= set_chain_of_aglats_contains_variable (*aglat);
}
else
ret |= set_agg_lats_contain_variable (dest_plats);
return ret;
}
/* Return true if on the way cfrom CS->caller to the final (non-alias and
non-thunk) destination, the call passes through a thunk. */
static bool
call_passes_through_thunk (cgraph_edge *cs)
{
cgraph_node *alias_or_thunk = cs->callee;
while (alias_or_thunk->alias)
alias_or_thunk = alias_or_thunk->get_alias_target ();
return alias_or_thunk->thunk;
}
/* Propagate constants from the caller to the callee of CS. INFO describes the
caller. */
static bool
propagate_constants_across_call (struct cgraph_edge *cs)
{
class ipa_node_params *callee_info;
enum availability availability;
cgraph_node *callee;
class ipa_edge_args *args;
bool ret = false;
int i, args_count, parms_count;
callee = cs->callee->function_symbol (&availability);
if (!callee->definition)
return false;
gcc_checking_assert (callee->has_gimple_body_p ());
callee_info = ipa_node_params_sum->get (callee);
if (!callee_info)
return false;
args = ipa_edge_args_sum->get (cs);
parms_count = ipa_get_param_count (callee_info);
if (parms_count == 0)
return false;
if (!args
|| !opt_for_fn (cs->caller->decl, flag_ipa_cp)
|| !opt_for_fn (cs->caller->decl, optimize))
{
for (i = 0; i < parms_count; i++)
ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info,
i));
return ret;
}
args_count = ipa_get_cs_argument_count (args);
/* If this call goes through a thunk we must not propagate to the first (0th)
parameter. However, we might need to uncover a thunk from below a series
of aliases first. */
if (call_passes_through_thunk (cs))
{
ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info,
0));
i = 1;
}
else
i = 0;
for (; (i < args_count) && (i < parms_count); i++)
{
struct ipa_jump_func *jump_func = ipa_get_ith_jump_func (args, i);
class ipcp_param_lattices *dest_plats;
tree param_type = ipa_get_type (callee_info, i);
dest_plats = ipa_get_parm_lattices (callee_info, i);
if (availability == AVAIL_INTERPOSABLE)
ret |= set_all_contains_variable (dest_plats);
else
{
ret |= propagate_scalar_across_jump_function (cs, jump_func,
&dest_plats->itself,
param_type);
ret |= propagate_context_across_jump_function (cs, jump_func, i,
&dest_plats->ctxlat);
ret
|= propagate_bits_across_jump_function (cs, i, jump_func,
&dest_plats->bits_lattice);
ret |= propagate_aggs_across_jump_function (cs, jump_func,
dest_plats);
if (opt_for_fn (callee->decl, flag_ipa_vrp))
ret |= propagate_vr_across_jump_function (cs, jump_func,
dest_plats, param_type);
else
ret |= dest_plats->m_value_range.set_to_bottom ();
}
}
for (; i < parms_count; i++)
ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info, i));
return ret;
}
/* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
KNOWN_CONTEXTS, and known aggregates either in AVS or KNOWN_AGGS return
the destination. The latter three can be NULL. If AGG_REPS is not NULL,
KNOWN_AGGS is ignored. */
static tree
ipa_get_indirect_edge_target_1 (struct cgraph_edge *ie,
const vec<tree> &known_csts,
const vec<ipa_polymorphic_call_context> &known_contexts,
const ipa_argagg_value_list &avs,
bool *speculative)
{
int param_index = ie->indirect_info->param_index;
HOST_WIDE_INT anc_offset;
tree t = NULL;
tree target = NULL;
*speculative = false;
if (param_index == -1)
return NULL_TREE;
if (!ie->indirect_info->polymorphic)
{
tree t = NULL;
if (ie->indirect_info->agg_contents)
{
t = NULL;
if ((unsigned) param_index < known_csts.length ()
&& known_csts[param_index])
t = ipa_find_agg_cst_from_init (known_csts[param_index],
ie->indirect_info->offset,
ie->indirect_info->by_ref);
if (!t && ie->indirect_info->guaranteed_unmodified)
t = avs.get_value (param_index,
ie->indirect_info->offset / BITS_PER_UNIT,
ie->indirect_info->by_ref);
}
else if ((unsigned) param_index < known_csts.length ())
t = known_csts[param_index];
if (t
&& TREE_CODE (t) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL)
return TREE_OPERAND (t, 0);
else
return NULL_TREE;
}
if (!opt_for_fn (ie->caller->decl, flag_devirtualize))
return NULL_TREE;
gcc_assert (!ie->indirect_info->agg_contents);
gcc_assert (!ie->indirect_info->by_ref);
anc_offset = ie->indirect_info->offset;
t = NULL;
if ((unsigned) param_index < known_csts.length ()
&& known_csts[param_index])
t = ipa_find_agg_cst_from_init (known_csts[param_index],
ie->indirect_info->offset, true);
/* Try to work out value of virtual table pointer value in replacements. */
/* or known aggregate values. */
if (!t)
t = avs.get_value (param_index,
ie->indirect_info->offset / BITS_PER_UNIT,
true);
/* If we found the virtual table pointer, lookup the target. */
if (t)
{
tree vtable;
unsigned HOST_WIDE_INT offset;
if (vtable_pointer_value_to_vtable (t, &vtable, &offset))
{
bool can_refer;
target = gimple_get_virt_method_for_vtable (ie->indirect_info->otr_token,
vtable, offset, &can_refer);
if (can_refer)
{
if (!target
|| fndecl_built_in_p (target, BUILT_IN_UNREACHABLE)
|| !possible_polymorphic_call_target_p
(ie, cgraph_node::get (target)))
{
/* Do not speculate builtin_unreachable, it is stupid! */
if (ie->indirect_info->vptr_changed)
return NULL;
target = ipa_impossible_devirt_target (ie, target);
}
*speculative = ie->indirect_info->vptr_changed;
if (!*speculative)
return target;
}
}
}
/* Do we know the constant value of pointer? */
if (!t && (unsigned) param_index < known_csts.length ())
t = known_csts[param_index];
gcc_checking_assert (!t || TREE_CODE (t) != TREE_BINFO);
ipa_polymorphic_call_context context;
if (known_contexts.length () > (unsigned int) param_index)
{
context = known_contexts[param_index];
context.offset_by (anc_offset);
if (ie->indirect_info->vptr_changed)
context.possible_dynamic_type_change (ie->in_polymorphic_cdtor,
ie->indirect_info->otr_type);
if (t)
{
ipa_polymorphic_call_context ctx2 = ipa_polymorphic_call_context
(t, ie->indirect_info->otr_type, anc_offset);
if (!ctx2.useless_p ())
context.combine_with (ctx2, ie->indirect_info->otr_type);
}
}
else if (t)
{
context = ipa_polymorphic_call_context (t, ie->indirect_info->otr_type,
anc_offset);
if (ie->indirect_info->vptr_changed)
context.possible_dynamic_type_change (ie->in_polymorphic_cdtor,
ie->indirect_info->otr_type);
}
else
return NULL_TREE;
vec <cgraph_node *>targets;
bool final;
targets = possible_polymorphic_call_targets
(ie->indirect_info->otr_type,
ie->indirect_info->otr_token,
context, &final);
if (!final || targets.length () > 1)
{
struct cgraph_node *node;
if (*speculative)
return target;
if (!opt_for_fn (ie->caller->decl, flag_devirtualize_speculatively)
|| ie->speculative || !ie->maybe_hot_p ())
return NULL;
node = try_speculative_devirtualization (ie->indirect_info->otr_type,
ie->indirect_info->otr_token,
context);
if (node)
{
*speculative = true;
target = node->decl;
}
else
return NULL;
}
else
{
*speculative = false;
if (targets.length () == 1)
target = targets[0]->decl;
else
target = ipa_impossible_devirt_target (ie, NULL_TREE);
}
if (target && !possible_polymorphic_call_target_p (ie,
cgraph_node::get (target)))
{
if (*speculative)
return NULL;
target = ipa_impossible_devirt_target (ie, target);
}
return target;
}
/* If an indirect edge IE can be turned into a direct one based on data in
AVALS, return the destination. Store into *SPECULATIVE a boolean determinig
whether the discovered target is only speculative guess. */
tree
ipa_get_indirect_edge_target (struct cgraph_edge *ie,
ipa_call_arg_values *avals,
bool *speculative)
{
ipa_argagg_value_list avl (avals);
return ipa_get_indirect_edge_target_1 (ie, avals->m_known_vals,
avals->m_known_contexts,
avl, speculative);
}
/* Calculate devirtualization time bonus for NODE, assuming we know information
about arguments stored in AVALS. */
static int
devirtualization_time_bonus (struct cgraph_node *node,
ipa_auto_call_arg_values *avals)
{
struct cgraph_edge *ie;
int res = 0;
for (ie = node->indirect_calls; ie; ie = ie->next_callee)
{
struct cgraph_node *callee;
class ipa_fn_summary *isummary;
enum availability avail;
tree target;
bool speculative;
ipa_argagg_value_list avl (avals);
target = ipa_get_indirect_edge_target_1 (ie, avals->m_known_vals,
avals->m_known_contexts,
avl, &speculative);
if (!target)
continue;
/* Only bare minimum benefit for clearly un-inlineable targets. */
res += 1;
callee = cgraph_node::get (target);
if (!callee || !callee->definition)
continue;
callee = callee->function_symbol (&avail);
if (avail < AVAIL_AVAILABLE)
continue;
isummary = ipa_fn_summaries->get (callee);
if (!isummary || !isummary->inlinable)
continue;
int size = ipa_size_summaries->get (callee)->size;
/* FIXME: The values below need re-considering and perhaps also
integrating into the cost metrics, at lest in some very basic way. */
int max_inline_insns_auto
= opt_for_fn (callee->decl, param_max_inline_insns_auto);
if (size <= max_inline_insns_auto / 4)
res += 31 / ((int)speculative + 1);
else if (size <= max_inline_insns_auto / 2)
res += 15 / ((int)speculative + 1);
else if (size <= max_inline_insns_auto
|| DECL_DECLARED_INLINE_P (callee->decl))
res += 7 / ((int)speculative + 1);
}
return res;
}
/* Return time bonus incurred because of hints stored in ESTIMATES. */
static int
hint_time_bonus (cgraph_node *node, const ipa_call_estimates &estimates)
{
int result = 0;
ipa_hints hints = estimates.hints;
if (hints & (INLINE_HINT_loop_iterations | INLINE_HINT_loop_stride))
result += opt_for_fn (node->decl, param_ipa_cp_loop_hint_bonus);
sreal bonus_for_one = opt_for_fn (node->decl, param_ipa_cp_loop_hint_bonus);
if (hints & INLINE_HINT_loop_iterations)
result += (estimates.loops_with_known_iterations * bonus_for_one).to_int ();
if (hints & INLINE_HINT_loop_stride)
result += (estimates.loops_with_known_strides * bonus_for_one).to_int ();
return result;
}
/* If there is a reason to penalize the function described by INFO in the
cloning goodness evaluation, do so. */
static inline sreal
incorporate_penalties (cgraph_node *node, ipa_node_params *info,
sreal evaluation)
{
if (info->node_within_scc && !info->node_is_self_scc)
evaluation = (evaluation
* (100 - opt_for_fn (node->decl,
param_ipa_cp_recursion_penalty))) / 100;
if (info->node_calling_single_call)
evaluation = (evaluation
* (100 - opt_for_fn (node->decl,
param_ipa_cp_single_call_penalty)))
/ 100;
return evaluation;
}
/* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT
and SIZE_COST and with the sum of frequencies of incoming edges to the
potential new clone in FREQUENCIES. */
static bool
good_cloning_opportunity_p (struct cgraph_node *node, sreal time_benefit,
sreal freq_sum, profile_count count_sum,
int size_cost)
{
if (time_benefit == 0
|| !opt_for_fn (node->decl, flag_ipa_cp_clone)
|| node->optimize_for_size_p ())
return false;
gcc_assert (size_cost > 0);
ipa_node_params *info = ipa_node_params_sum->get (node);
int eval_threshold = opt_for_fn (node->decl, param_ipa_cp_eval_threshold);
if (count_sum.nonzero_p ())
{
gcc_assert (base_count.nonzero_p ());
sreal factor = count_sum.probability_in (base_count).to_sreal ();
sreal evaluation = (time_benefit * factor) / size_cost;
evaluation = incorporate_penalties (node, info, evaluation);
evaluation *= 1000;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " good_cloning_opportunity_p (time: %g, "
"size: %i, count_sum: ", time_benefit.to_double (),
size_cost);
count_sum.dump (dump_file);
fprintf (dump_file, "%s%s) -> evaluation: %.2f, threshold: %i\n",
info->node_within_scc
? (info->node_is_self_scc ? ", self_scc" : ", scc") : "",
info->node_calling_single_call ? ", single_call" : "",
evaluation.to_double (), eval_threshold);
}
return evaluation.to_int () >= eval_threshold;
}
else
{
sreal evaluation = (time_benefit * freq_sum) / size_cost;
evaluation = incorporate_penalties (node, info, evaluation);
evaluation *= 1000;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " good_cloning_opportunity_p (time: %g, "
"size: %i, freq_sum: %g%s%s) -> evaluation: %.2f, "
"threshold: %i\n",
time_benefit.to_double (), size_cost, freq_sum.to_double (),
info->node_within_scc
? (info->node_is_self_scc ? ", self_scc" : ", scc") : "",
info->node_calling_single_call ? ", single_call" : "",
evaluation.to_double (), eval_threshold);
return evaluation.to_int () >= eval_threshold;
}
}
/* Grow vectors in AVALS and fill them with information about values of
parameters that are known to be independent of the context. Only calculate
m_known_aggs if CALCULATE_AGGS is true. INFO describes the function. If
REMOVABLE_PARAMS_COST is non-NULL, the movement cost of all removable
parameters will be stored in it.
TODO: Also grow context independent value range vectors. */
static bool
gather_context_independent_values (class ipa_node_params *info,
ipa_auto_call_arg_values *avals,
bool calculate_aggs,
int *removable_params_cost)
{
int i, count = ipa_get_param_count (info);
bool ret = false;
avals->m_known_vals.safe_grow_cleared (count, true);
avals->m_known_contexts.safe_grow_cleared (count, true);
if (removable_params_cost)
*removable_params_cost = 0;
for (i = 0; i < count; i++)
{
class ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
ipcp_lattice<tree> *lat = &plats->itself;
if (lat->is_single_const ())
{
ipcp_value<tree> *val = lat->values;
gcc_checking_assert (TREE_CODE (val->value) != TREE_BINFO);
avals->m_known_vals[i] = val->value;
if (removable_params_cost)
*removable_params_cost
+= estimate_move_cost (TREE_TYPE (val->value), false);
ret = true;
}
else if (removable_params_cost
&& !ipa_is_param_used (info, i))
*removable_params_cost
+= ipa_get_param_move_cost (info, i);
if (!ipa_is_param_used (info, i))
continue;
ipcp_lattice<ipa_polymorphic_call_context> *ctxlat = &plats->ctxlat;
/* Do not account known context as reason for cloning. We can see
if it permits devirtualization. */
if (ctxlat->is_single_const ())
avals->m_known_contexts[i] = ctxlat->values->value;
if (calculate_aggs)
ret |= push_agg_values_from_plats (plats, i, 0, &avals->m_known_aggs);
}
return ret;
}
/* Perform time and size measurement of NODE with the context given in AVALS,
calculate the benefit compared to the node without specialization and store
it into VAL. Take into account REMOVABLE_PARAMS_COST of all
context-independent or unused removable parameters and EST_MOVE_COST, the
estimated movement of the considered parameter. */
static void
perform_estimation_of_a_value (cgraph_node *node,
ipa_auto_call_arg_values *avals,
int removable_params_cost, int est_move_cost,
ipcp_value_base *val)
{
sreal time_benefit;
ipa_call_estimates estimates;
estimate_ipcp_clone_size_and_time (node, avals, &estimates);
/* Extern inline functions have no cloning local time benefits because they
will be inlined anyway. The only reason to clone them is if it enables
optimization in any of the functions they call. */
if (DECL_EXTERNAL (node->decl) && DECL_DECLARED_INLINE_P (node->decl))
time_benefit = 0;
else
time_benefit = (estimates.nonspecialized_time - estimates.time)
+ (devirtualization_time_bonus (node, avals)
+ hint_time_bonus (node, estimates)
+ removable_params_cost + est_move_cost);
int size = estimates.size;
gcc_checking_assert (size >=0);
/* The inliner-heuristics based estimates may think that in certain
contexts some functions do not have any size at all but we want
all specializations to have at least a tiny cost, not least not to
divide by zero. */
if (size == 0)
size = 1;
val->local_time_benefit = time_benefit;
val->local_size_cost = size;
}
/* Get the overall limit oof growth based on parameters extracted from growth.
it does not really make sense to mix functions with different overall growth
limits but it is possible and if it happens, we do not want to select one
limit at random. */
static long
get_max_overall_size (cgraph_node *node)
{
long max_new_size = orig_overall_size;
long large_unit = opt_for_fn (node->decl, param_ipa_cp_large_unit_insns);
if (max_new_size < large_unit)
max_new_size = large_unit;
int unit_growth = opt_for_fn (node->decl, param_ipa_cp_unit_growth);
max_new_size += max_new_size * unit_growth / 100 + 1;
return max_new_size;
}
/* Return true if NODE should be cloned just for a parameter removal, possibly
dumping a reason if not. */
static bool
clone_for_param_removal_p (cgraph_node *node)
{
if (!node->can_change_signature)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Not considering cloning to remove parameters, "
"function cannot change signature.\n");
return false;
}
if (node->can_be_local_p ())
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Not considering cloning to remove parameters, "
"IPA-SRA can do it potentially better.\n");
return false;
}
return true;
}
/* Iterate over known values of parameters of NODE and estimate the local
effects in terms of time and size they have. */
static void
estimate_local_effects (struct cgraph_node *node)
{
ipa_node_params *info = ipa_node_params_sum->get (node);
int count = ipa_get_param_count (info);
bool always_const;
int removable_params_cost;
if (!count || !ipcp_versionable_function_p (node))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nEstimating effects for %s.\n", node->dump_name ());
ipa_auto_call_arg_values avals;
always_const = gather_context_independent_values (info, &avals, true,
&removable_params_cost);
int devirt_bonus = devirtualization_time_bonus (node, &avals);
if (always_const || devirt_bonus
|| (removable_params_cost && clone_for_param_removal_p (node)))
{
struct caller_statistics stats;
ipa_call_estimates estimates;
init_caller_stats (&stats);
node->call_for_symbol_thunks_and_aliases (gather_caller_stats, &stats,
false);
estimate_ipcp_clone_size_and_time (node, &avals, &estimates);
sreal time = estimates.nonspecialized_time - estimates.time;
time += devirt_bonus;
time += hint_time_bonus (node, estimates);
time += removable_params_cost;
int size = estimates.size - stats.n_calls * removable_params_cost;
if (dump_file)
fprintf (dump_file, " - context independent values, size: %i, "
"time_benefit: %f\n", size, (time).to_double ());
if (size <= 0 || node->local)
{
info->do_clone_for_all_contexts = true;
if (dump_file)
fprintf (dump_file, " Decided to specialize for all "
"known contexts, code not going to grow.\n");
}
else if (good_cloning_opportunity_p (node, time, stats.freq_sum,
stats.count_sum, size))
{
if (size + overall_size <= get_max_overall_size (node))
{
info->do_clone_for_all_contexts = true;
overall_size += size;
if (dump_file)
fprintf (dump_file, " Decided to specialize for all "
"known contexts, growth (to %li) deemed "
"beneficial.\n", overall_size);
}
else if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Not cloning for all contexts because "
"maximum unit size would be reached with %li.\n",
size + overall_size);
}
else if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Not cloning for all contexts because "
"!good_cloning_opportunity_p.\n");
}
for (int i = 0; i < count; i++)
{
class ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
ipcp_lattice<tree> *lat = &plats->itself;
ipcp_value<tree> *val;
if (lat->bottom
|| !lat->values
|| avals.m_known_vals[i])
continue;
for (val = lat->values; val; val = val->next)
{
gcc_checking_assert (TREE_CODE (val->value) != TREE_BINFO);
avals.m_known_vals[i] = val->value;
int emc = estimate_move_cost (TREE_TYPE (val->value), true);
perform_estimation_of_a_value (node, &avals, removable_params_cost,
emc, val);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " - estimates for value ");
print_ipcp_constant_value (dump_file, val->value);
fprintf (dump_file, " for ");
ipa_dump_param (dump_file, info, i);
fprintf (dump_file, ": time_benefit: %g, size: %i\n",
val->local_time_benefit.to_double (),
val->local_size_cost);
}
}
avals.m_known_vals[i] = NULL_TREE;
}
for (int i = 0; i < count; i++)
{
class ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
if (!plats->virt_call)
continue;
ipcp_lattice<ipa_polymorphic_call_context> *ctxlat = &plats->ctxlat;
ipcp_value<ipa_polymorphic_call_context> *val;
if (ctxlat->bottom
|| !ctxlat->values
|| !avals.m_known_contexts[i].useless_p ())
continue;
for (val = ctxlat->values; val; val = val->next)
{
avals.m_known_contexts[i] = val->value;
perform_estimation_of_a_value (node, &avals, removable_params_cost,
0, val);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " - estimates for polymorphic context ");
print_ipcp_constant_value (dump_file, val->value);
fprintf (dump_file, " for ");
ipa_dump_param (dump_file, info, i);
fprintf (dump_file, ": time_benefit: %g, size: %i\n",
val->local_time_benefit.to_double (),
val->local_size_cost);
}
}
avals.m_known_contexts[i] = ipa_polymorphic_call_context ();
}
unsigned all_ctx_len = avals.m_known_aggs.length ();
auto_vec<ipa_argagg_value, 32> all_ctx;
all_ctx.reserve_exact (all_ctx_len);
all_ctx.splice (avals.m_known_aggs);
avals.m_known_aggs.safe_grow_cleared (all_ctx_len + 1);
unsigned j = 0;
for (int index = 0; index < count; index++)
{
class ipcp_param_lattices *plats = ipa_get_parm_lattices (info, index);
if (plats->aggs_bottom || !plats->aggs)
continue;
for (ipcp_agg_lattice *aglat = plats->aggs; aglat; aglat = aglat->next)
{
ipcp_value<tree> *val;
if (aglat->bottom || !aglat->values
/* If the following is true, the one value is already part of all
context estimations. */
|| (!plats->aggs_contain_variable
&& aglat->is_single_const ()))
continue;
unsigned unit_offset = aglat->offset / BITS_PER_UNIT;
while (j < all_ctx_len
&& (all_ctx[j].index < index
|| (all_ctx[j].index == index
&& all_ctx[j].unit_offset < unit_offset)))
{
avals.m_known_aggs[j] = all_ctx[j];
j++;
}
for (unsigned k = j; k < all_ctx_len; k++)
avals.m_known_aggs[k+1] = all_ctx[k];
for (val = aglat->values; val; val = val->next)
{
avals.m_known_aggs[j].value = val->value;
avals.m_known_aggs[j].unit_offset = unit_offset;
avals.m_known_aggs[j].index = index;
avals.m_known_aggs[j].by_ref = plats->aggs_by_ref;
perform_estimation_of_a_value (node, &avals,
removable_params_cost, 0, val);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " - estimates for value ");
print_ipcp_constant_value (dump_file, val->value);
fprintf (dump_file, " for ");
ipa_dump_param (dump_file, info, index);
fprintf (dump_file, "[%soffset: " HOST_WIDE_INT_PRINT_DEC
"]: time_benefit: %g, size: %i\n",
plats->aggs_by_ref ? "ref " : "",
aglat->offset,
val->local_time_benefit.to_double (),
val->local_size_cost);
}
}
}
}
}
/* Add value CUR_VAL and all yet-unsorted values it is dependent on to the
topological sort of values. */
template <typename valtype>
void
value_topo_info<valtype>::add_val (ipcp_value<valtype> *cur_val)
{
ipcp_value_source<valtype> *src;
if (cur_val->dfs)
return;
dfs_counter++;
cur_val->dfs = dfs_counter;
cur_val->low_link = dfs_counter;
cur_val->topo_next = stack;
stack = cur_val;
cur_val->on_stack = true;
for (src = cur_val->sources; src; src = src->next)
if (src->val)
{
if (src->val->dfs == 0)
{
add_val (src->val);
if (src->val->low_link < cur_val->low_link)
cur_val->low_link = src->val->low_link;
}
else if (src->val->on_stack
&& src->val->dfs < cur_val->low_link)
cur_val->low_link = src->val->dfs;
}
if (cur_val->dfs == cur_val->low_link)
{
ipcp_value<valtype> *v, *scc_list = NULL;
do
{
v = stack;
stack = v->topo_next;
v->on_stack = false;
v->scc_no = cur_val->dfs;
v->scc_next = scc_list;
scc_list = v;
}
while (v != cur_val);
cur_val->topo_next = values_topo;
values_topo = cur_val;
}
}
/* Add all values in lattices associated with NODE to the topological sort if
they are not there yet. */
static void
add_all_node_vals_to_toposort (cgraph_node *node, ipa_topo_info *topo)
{
ipa_node_params *info = ipa_node_params_sum->get (node);
int i, count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
class ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
ipcp_lattice<tree> *lat = &plats->itself;
struct ipcp_agg_lattice *aglat;
if (!lat->bottom)
{
ipcp_value<tree> *val;
for (val = lat->values; val; val = val->next)
topo->constants.add_val (val);
}
if (!plats->aggs_bottom)
for (aglat = plats->aggs; aglat; aglat = aglat->next)
if (!aglat->bottom)
{
ipcp_value<tree> *val;
for (val = aglat->values; val; val = val->next)
topo->constants.add_val (val);
}
ipcp_lattice<ipa_polymorphic_call_context> *ctxlat = &plats->ctxlat;
if (!ctxlat->bottom)
{
ipcp_value<ipa_polymorphic_call_context> *ctxval;
for (ctxval = ctxlat->values; ctxval; ctxval = ctxval->next)
topo->contexts.add_val (ctxval);
}
}
}
/* One pass of constants propagation along the call graph edges, from callers
to callees (requires topological ordering in TOPO), iterate over strongly
connected components. */
static void
propagate_constants_topo (class ipa_topo_info *topo)
{
int i;
for (i = topo->nnodes - 1; i >= 0; i--)
{
unsigned j;
struct cgraph_node *v, *node = topo->order[i];
vec<cgraph_node *> cycle_nodes = ipa_get_nodes_in_cycle (node);
/* First, iteratively propagate within the strongly connected component
until all lattices stabilize. */
FOR_EACH_VEC_ELT (cycle_nodes, j, v)
if (v->has_gimple_body_p ())
{
if (opt_for_fn (v->decl, flag_ipa_cp)
&& opt_for_fn (v->decl, optimize))
push_node_to_stack (topo, v);
/* When V is not optimized, we can not push it to stack, but
still we need to set all its callees lattices to bottom. */
else
{
for (cgraph_edge *cs = v->callees; cs; cs = cs->next_callee)
propagate_constants_across_call (cs);
}
}
v = pop_node_from_stack (topo);
while (v)
{
struct cgraph_edge *cs;
class ipa_node_params *info = NULL;
bool self_scc = true;
for (cs = v->callees; cs; cs = cs->next_callee)
if (ipa_edge_within_scc (cs))
{
cgraph_node *callee = cs->callee->function_symbol ();
if (v != callee)
self_scc = false;
if (!info)
{
info = ipa_node_params_sum->get (v);
info->node_within_scc = true;
}
if (propagate_constants_across_call (cs))
push_node_to_stack (topo, callee);
}
if (info)
info->node_is_self_scc = self_scc;
v = pop_node_from_stack (topo);
}
/* Afterwards, propagate along edges leading out of the SCC, calculates
the local effects of the discovered constants and all valid values to
their topological sort. */
FOR_EACH_VEC_ELT (cycle_nodes, j, v)
if (v->has_gimple_body_p ()
&& opt_for_fn (v->decl, flag_ipa_cp)
&& opt_for_fn (v->decl, optimize))
{
struct cgraph_edge *cs;
estimate_local_effects (v);
add_all_node_vals_to_toposort (v, topo);
for (cs = v->callees; cs; cs = cs->next_callee)
if (!ipa_edge_within_scc (cs))
propagate_constants_across_call (cs);
}
cycle_nodes.release ();
}
}
/* Propagate the estimated effects of individual values along the topological
from the dependent values to those they depend on. */
template <typename valtype>
void
value_topo_info<valtype>::propagate_effects ()
{
ipcp_value<valtype> *base;
hash_set<ipcp_value<valtype> *> processed_srcvals;
for (base = values_topo; base; base = base->topo_next)
{
ipcp_value_source<valtype> *src;
ipcp_value<valtype> *val;
sreal time = 0;
HOST_WIDE_INT size = 0;
for (val = base; val; val = val->scc_next)
{
time = time + val->local_time_benefit + val->prop_time_benefit;
size = size + val->local_size_cost + val->prop_size_cost;
}
for (val = base; val; val = val->scc_next)
{
processed_srcvals.empty ();
for (src = val->sources; src; src = src->next)
if (src->val
&& src->cs->maybe_hot_p ())
{
if (!processed_srcvals.add (src->val))
{
HOST_WIDE_INT prop_size = size + src->val->prop_size_cost;
if (prop_size < INT_MAX)
src->val->prop_size_cost = prop_size;
else
continue;
}
int special_factor = 1;
if (val->same_scc (src->val))
special_factor
= opt_for_fn(src->cs->caller->decl,
param_ipa_cp_recursive_freq_factor);
else if (val->self_recursion_generated_p ()
&& (src->cs->callee->function_symbol ()
== src->cs->caller))
{
int max_recur_gen_depth
= opt_for_fn(src->cs->caller->decl,
param_ipa_cp_max_recursive_depth);
special_factor = max_recur_gen_depth
- val->self_recursion_generated_level + 1;
}
src->val->prop_time_benefit
+= time * special_factor * src->cs->sreal_frequency ();
}
if (size < INT_MAX)
{
val->prop_time_benefit = time;
val->prop_size_cost = size;
}
else
{
val->prop_time_benefit = 0;
val->prop_size_cost = 0;
}
}
}
}
/* Callback for qsort to sort counts of all edges. */
static int
compare_edge_profile_counts (const void *a, const void *b)
{
const profile_count *cnt1 = (const profile_count *) a;
const profile_count *cnt2 = (const profile_count *) b;
if (*cnt1 < *cnt2)
return 1;
if (*cnt1 > *cnt2)
return -1;
return 0;
}
/* Propagate constants, polymorphic contexts and their effects from the
summaries interprocedurally. */
static void
ipcp_propagate_stage (class ipa_topo_info *topo)
{
struct cgraph_node *node;
if (dump_file)
fprintf (dump_file, "\n Propagating constants:\n\n");
base_count = profile_count::uninitialized ();
bool compute_count_base = false;
unsigned base_count_pos_percent = 0;
FOR_EACH_DEFINED_FUNCTION (node)
{
if (node->has_gimple_body_p ()
&& opt_for_fn (node->decl, flag_ipa_cp)
&& opt_for_fn (node->decl, optimize))
{
ipa_node_params *info = ipa_node_params_sum->get (node);
determine_versionability (node, info);
unsigned nlattices = ipa_get_param_count (info);
void *chunk = XCNEWVEC (class ipcp_param_lattices, nlattices);
info->lattices = new (chunk) ipcp_param_lattices[nlattices];
initialize_node_lattices (node);
}
ipa_size_summary *s = ipa_size_summaries->get (node);
if (node->definition && !node->alias && s != NULL)
overall_size += s->self_size;
if (node->count.ipa ().initialized_p ())
{
compute_count_base = true;
unsigned pos_percent = opt_for_fn (node->decl,
param_ipa_cp_profile_count_base);
base_count_pos_percent = MAX (base_count_pos_percent, pos_percent);
}
}
if (compute_count_base)
{
auto_vec<profile_count> all_edge_counts;
all_edge_counts.reserve_exact (symtab->edges_count);
FOR_EACH_DEFINED_FUNCTION (node)
for (cgraph_edge *cs = node->callees; cs; cs = cs->next_callee)
{
profile_count count = cs->count.ipa ();
if (!count.nonzero_p ())
continue;
enum availability avail;
cgraph_node *tgt
= cs->callee->function_or_virtual_thunk_symbol (&avail);
ipa_node_params *info = ipa_node_params_sum->get (tgt);
if (info && info->versionable)
all_edge_counts.quick_push (count);
}
if (!all_edge_counts.is_empty ())
{
gcc_assert (base_count_pos_percent <= 100);
all_edge_counts.qsort (compare_edge_profile_counts);
unsigned base_count_pos
= ((all_edge_counts.length () * (base_count_pos_percent)) / 100);
base_count = all_edge_counts[base_count_pos];
if (dump_file)
{
fprintf (dump_file, "\nSelected base_count from %u edges at "
"position %u, arriving at: ", all_edge_counts.length (),
base_count_pos);
base_count.dump (dump_file);
fprintf (dump_file, "\n");
}
}
else if (dump_file)
fprintf (dump_file, "\nNo candidates with non-zero call count found, "
"continuing as if without profile feedback.\n");
}
orig_overall_size = overall_size;
if (dump_file)
fprintf (dump_file, "\noverall_size: %li\n", overall_size);
propagate_constants_topo (topo);
if (flag_checking)
ipcp_verify_propagated_values ();
topo->constants.propagate_effects ();
topo->contexts.propagate_effects ();
if (dump_file)
{
fprintf (dump_file, "\nIPA lattices after all propagation:\n");
print_all_lattices (dump_file, (dump_flags & TDF_DETAILS), true);
}
}
/* Discover newly direct outgoing edges from NODE which is a new clone with
known KNOWN_CSTS and make them direct. */
static void
ipcp_discover_new_direct_edges (struct cgraph_node *node,
vec<tree> known_csts,
vec<ipa_polymorphic_call_context>
known_contexts,
vec<ipa_argagg_value, va_gc> *aggvals)
{
struct cgraph_edge *ie, *next_ie;
bool found = false;
for (ie = node->indirect_calls; ie; ie = next_ie)
{
tree target;
bool speculative;
next_ie = ie->next_callee;
ipa_argagg_value_list avs (aggvals);
target = ipa_get_indirect_edge_target_1 (ie, known_csts, known_contexts,
avs, &speculative);
if (target)
{
bool agg_contents = ie->indirect_info->agg_contents;
bool polymorphic = ie->indirect_info->polymorphic;
int param_index = ie->indirect_info->param_index;
struct cgraph_edge *cs = ipa_make_edge_direct_to_target (ie, target,
speculative);
found = true;
if (cs && !agg_contents && !polymorphic)
{
ipa_node_params *info = ipa_node_params_sum->get (node);
int c = ipa_get_controlled_uses (info, param_index);
if (c != IPA_UNDESCRIBED_USE
&& !ipa_get_param_load_dereferenced (info, param_index))
{
struct ipa_ref *to_del;
c--;
ipa_set_controlled_uses (info, param_index, c);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " controlled uses count of param "
"%i bumped down to %i\n", param_index, c);
if (c == 0
&& (to_del = node->find_reference (cs->callee, NULL, 0)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " and even removing its "
"cloning-created reference\n");
to_del->remove_reference ();
}
}
}
}
}
/* Turning calls to direct calls will improve overall summary. */
if (found)
ipa_update_overall_fn_summary (node);
}
class edge_clone_summary;
static call_summary <edge_clone_summary *> *edge_clone_summaries = NULL;
/* Edge clone summary. */
class edge_clone_summary
{
public:
/* Default constructor. */
edge_clone_summary (): prev_clone (NULL), next_clone (NULL) {}
/* Default destructor. */
~edge_clone_summary ()
{
if (prev_clone)
edge_clone_summaries->get (prev_clone)->next_clone = next_clone;
if (next_clone)
edge_clone_summaries->get (next_clone)->prev_clone = prev_clone;
}
cgraph_edge *prev_clone;
cgraph_edge *next_clone;
};
class edge_clone_summary_t:
public call_summary <edge_clone_summary *>
{
public:
edge_clone_summary_t (symbol_table *symtab):
call_summary <edge_clone_summary *> (symtab)
{
m_initialize_when_cloning = true;
}
void duplicate (cgraph_edge *src_edge, cgraph_edge *dst_edge,
edge_clone_summary *src_data,
edge_clone_summary *dst_data) final override;
};
/* Edge duplication hook. */
void
edge_clone_summary_t::duplicate (cgraph_edge *src_edge, cgraph_edge *dst_edge,
edge_clone_summary *src_data,
edge_clone_summary *dst_data)
{
if (src_data->next_clone)
edge_clone_summaries->get (src_data->next_clone)->prev_clone = dst_edge;
dst_data->prev_clone = src_edge;
dst_data->next_clone = src_data->next_clone;
src_data->next_clone = dst_edge;
}
/* Return true is CS calls DEST or its clone for all contexts. When
ALLOW_RECURSION_TO_CLONE is false, also return false for self-recursive
edges from/to an all-context clone. */
static bool
calls_same_node_or_its_all_contexts_clone_p (cgraph_edge *cs, cgraph_node *dest,
bool allow_recursion_to_clone)
{
enum availability availability;
cgraph_node *callee = cs->callee->function_symbol (&availability);
if (availability <= AVAIL_INTERPOSABLE)
return false;
if (callee == dest)
return true;
if (!allow_recursion_to_clone && cs->caller == callee)
return false;
ipa_node_params *info = ipa_node_params_sum->get (callee);
return info->is_all_contexts_clone && info->ipcp_orig_node == dest;
}
/* Return true if edge CS does bring about the value described by SRC to
DEST_VAL of node DEST or its clone for all contexts. */
static bool
cgraph_edge_brings_value_p (cgraph_edge *cs, ipcp_value_source<tree> *src,
cgraph_node *dest, ipcp_value<tree> *dest_val)
{
ipa_node_params *caller_info = ipa_node_params_sum->get (cs->caller);
if (!calls_same_node_or_its_all_contexts_clone_p (cs, dest, !src->val)
|| caller_info->node_dead)
return false;
if (!src->val)
return true;
if (caller_info->ipcp_orig_node)
{
tree t = NULL_TREE;
if (src->offset == -1)
t = caller_info->known_csts[src->index];
else if (ipcp_transformation *ts
= ipcp_get_transformation_summary (cs->caller))
{
ipa_argagg_value_list avl (ts);
t = avl.get_value (src->index, src->offset / BITS_PER_UNIT);
}
return (t != NULL_TREE
&& values_equal_for_ipcp_p (src->val->value, t));
}
else
{
if (src->val == dest_val)
return true;
struct ipcp_agg_lattice *aglat;
class ipcp_param_lattices *plats = ipa_get_parm_lattices (caller_info,
src->index);
if (src->offset == -1)
return (plats->itself.is_single_const ()
&& values_equal_for_ipcp_p (src->val->value,
plats->itself.values->value));
else
{
if (plats->aggs_bottom || plats->aggs_contain_variable)
return false;
for (aglat = plats->aggs; aglat; aglat = aglat->next)
if (aglat->offset == src->offset)
return (aglat->is_single_const ()
&& values_equal_for_ipcp_p (src->val->value,
aglat->values->value));
}
return false;
}
}
/* Return true if edge CS does bring about the value described by SRC to
DST_VAL of node DEST or its clone for all contexts. */
static bool
cgraph_edge_brings_value_p (cgraph_edge *cs,
ipcp_value_source<ipa_polymorphic_call_context> *src,
cgraph_node *dest,
ipcp_value<ipa_polymorphic_call_context> *)
{
ipa_node_params *caller_info = ipa_node_params_sum->get (cs->caller);
if (!calls_same_node_or_its_all_contexts_clone_p (cs, dest, true)
|| caller_info->node_dead)
return false;
if (!src->val)
return true;
if (caller_info->ipcp_orig_node)
return (caller_info->known_contexts.length () > (unsigned) src->index)
&& values_equal_for_ipcp_p (src->val->value,
caller_info->known_contexts[src->index]);
class ipcp_param_lattices *plats = ipa_get_parm_lattices (caller_info,
src->index);
return plats->ctxlat.is_single_const ()
&& values_equal_for_ipcp_p (src->val->value,
plats->ctxlat.values->value);
}
/* Get the next clone in the linked list of clones of an edge. */
static inline struct cgraph_edge *
get_next_cgraph_edge_clone (struct cgraph_edge *cs)
{
edge_clone_summary *s = edge_clone_summaries->get (cs);
return s != NULL ? s->next_clone : NULL;
}
/* Given VAL that is intended for DEST, iterate over all its sources and if any
of them is viable and hot, return true. In that case, for those that still
hold, add their edge frequency and their number and cumulative profile
counts of self-ecursive and other edges into *FREQUENCY, *CALLER_COUNT,
REC_COUNT_SUM and NONREC_COUNT_SUM respectively. */
template <typename valtype>
static bool
get_info_about_necessary_edges (ipcp_value<valtype> *val, cgraph_node *dest,
sreal *freq_sum, int *caller_count,
profile_count *rec_count_sum,
profile_count *nonrec_count_sum)
{
ipcp_value_source<valtype> *src;
sreal freq = 0;
int count = 0;
profile_count rec_cnt = profile_count::zero ();
profile_count nonrec_cnt = profile_count::zero ();
bool hot = false;
bool non_self_recursive = false;
for (src = val->sources; src; src = src->next)
{
struct cgraph_edge *cs = src->cs;
while (cs)
{
if (cgraph_edge_brings_value_p (cs, src, dest, val))
{
count++;
freq += cs->sreal_frequency ();
hot |= cs->maybe_hot_p ();
if (cs->caller != dest)
{
non_self_recursive = true;
if (cs->count.ipa ().initialized_p ())
rec_cnt += cs->count.ipa ();
}
else if (cs->count.ipa ().initialized_p ())
nonrec_cnt += cs->count.ipa ();
}
cs = get_next_cgraph_edge_clone (cs);
}
}
/* If the only edges bringing a value are self-recursive ones, do not bother
evaluating it. */
if (!non_self_recursive)
return false;
*freq_sum = freq;
*caller_count = count;
*rec_count_sum = rec_cnt;
*nonrec_count_sum = nonrec_cnt;
if (!hot && ipa_node_params_sum->get (dest)->node_within_scc)
{
struct cgraph_edge *cs;
/* Cold non-SCC source edge could trigger hot recursive execution of
function. Consider the case as hot and rely on following cost model
computation to further select right one. */
for (cs = dest->callers; cs; cs = cs->next_caller)
if (cs->caller == dest && cs->maybe_hot_p ())
return true;
}
return hot;
}
/* Given a NODE, and a set of its CALLERS, try to adjust order of the callers
to let a non-self-recursive caller be the first element. Thus, we can
simplify intersecting operations on values that arrive from all of these
callers, especially when there exists self-recursive call. Return true if
this kind of adjustment is possible. */
static bool
adjust_callers_for_value_intersection (vec<cgraph_edge *> &callers,
cgraph_node *node)
{
for (unsigned i = 0; i < callers.length (); i++)
{
cgraph_edge *cs = callers[i];
if (cs->caller != node)
{
if (i > 0)
{
callers[i] = callers[0];
callers[0] = cs;
}
return true;
}
}
return false;
}
/* Return a vector of incoming edges that do bring value VAL to node DEST. It
is assumed their number is known and equal to CALLER_COUNT. */
template <typename valtype>
static vec<cgraph_edge *>
gather_edges_for_value (ipcp_value<valtype> *val, cgraph_node *dest,
int caller_count)
{
ipcp_value_source<valtype> *src;
vec<cgraph_edge *> ret;
ret.create (caller_count);
for (src = val->sources; src; src = src->next)
{
struct cgraph_edge *cs = src->cs;
while (cs)
{
if (cgraph_edge_brings_value_p (cs, src, dest, val))
ret.quick_push (cs);
cs = get_next_cgraph_edge_clone (cs);
}
}
if (caller_count > 1)
adjust_callers_for_value_intersection (ret, dest);
return ret;
}
/* Construct a replacement map for a know VALUE for a formal parameter PARAM.
Return it or NULL if for some reason it cannot be created. FORCE_LOAD_REF
should be set to true when the reference created for the constant should be
a load one and not an address one because the corresponding parameter p is
only used as *p. */
static struct ipa_replace_map *
get_replacement_map (class ipa_node_params *info, tree value, int parm_num,
bool force_load_ref)
{
struct ipa_replace_map *replace_map;
replace_map = ggc_alloc<ipa_replace_map> ();
if (dump_file)
{
fprintf (dump_file, " replacing ");
ipa_dump_param (dump_file, info, parm_num);
fprintf (dump_file, " with const ");
print_generic_expr (dump_file, value);
if (force_load_ref)
fprintf (dump_file, " - forcing load reference\n");
else
fprintf (dump_file, "\n");
}
replace_map->parm_num = parm_num;
replace_map->new_tree = value;
replace_map->force_load_ref = force_load_ref;
return replace_map;
}
/* Dump new profiling counts of NODE. SPEC is true when NODE is a specialzied
one, otherwise it will be referred to as the original node. */
static void
dump_profile_updates (cgraph_node *node, bool spec)
{
if (spec)
fprintf (dump_file, " setting count of the specialized node %s to ",
node->dump_name ());
else
fprintf (dump_file, " setting count of the original node %s to ",
node->dump_name ());
node->count.dump (dump_file);
fprintf (dump_file, "\n");
for (cgraph_edge *cs = node->callees; cs; cs = cs->next_callee)
{
fprintf (dump_file, " edge to %s has count ",
cs->callee->dump_name ());
cs->count.dump (dump_file);
fprintf (dump_file, "\n");
}
}
/* With partial train run we do not want to assume that original's count is
zero whenever we redurect all executed edges to clone. Simply drop profile
to local one in this case. In eany case, return the new value. ORIG_NODE
is the original node and its count has not been updaed yet. */
profile_count
lenient_count_portion_handling (profile_count remainder, cgraph_node *orig_node)
{
if (remainder.ipa_p () && !remainder.ipa ().nonzero_p ()
&& orig_node->count.ipa_p () && orig_node->count.ipa ().nonzero_p ()
&& opt_for_fn (orig_node->decl, flag_profile_partial_training))
remainder = remainder.guessed_local ();
return remainder;
}
/* Structure to sum counts coming from nodes other than the original node and
its clones. */
struct gather_other_count_struct
{
cgraph_node *orig;
profile_count other_count;
};
/* Worker callback of call_for_symbol_thunks_and_aliases summing the number of
counts that come from non-self-recursive calls.. */
static bool
gather_count_of_non_rec_edges (cgraph_node *node, void *data)
{
gather_other_count_struct *desc = (gather_other_count_struct *) data;
for (cgraph_edge *cs = node->callers; cs; cs = cs->next_caller)
if (cs->caller != desc->orig && cs->caller->clone_of != desc->orig)
desc->other_count += cs->count.ipa ();
return false;
}
/* Structure to help analyze if we need to boost counts of some clones of some
non-recursive edges to match the new callee count. */
struct desc_incoming_count_struct
{
cgraph_node *orig;
hash_set <cgraph_edge *> *processed_edges;
profile_count count;
unsigned unproc_orig_rec_edges;
};
/* Go over edges calling NODE and its thunks and gather information about
incoming counts so that we know if we need to make any adjustments. */
static void
analyze_clone_icoming_counts (cgraph_node *node,
desc_incoming_count_struct *desc)
{
for (cgraph_edge *cs = node->callers; cs; cs = cs->next_caller)
if (cs->caller->thunk)
{
analyze_clone_icoming_counts (cs->caller, desc);
continue;
}
else
{
if (cs->count.initialized_p ())
desc->count += cs->count.ipa ();
if (!desc->processed_edges->contains (cs)
&& cs->caller->clone_of == desc->orig)
desc->unproc_orig_rec_edges++;
}
}
/* If caller edge counts of a clone created for a self-recursive arithmetic
jump function must be adjusted because it is coming from a the "seed" clone
for the first value and so has been excessively scaled back as if it was not
a recursive call, adjust it so that the incoming counts of NODE match its
count. NODE is the node or its thunk. */
static void
adjust_clone_incoming_counts (cgraph_node *node,
desc_incoming_count_struct *desc)
{
for (cgraph_edge *cs = node->callers; cs; cs = cs->next_caller)
if (cs->caller->thunk)
{
adjust_clone_incoming_counts (cs->caller, desc);
profile_count sum = profile_count::zero ();
for (cgraph_edge *e = cs->caller->callers; e; e = e->next_caller)
if (e->count.initialized_p ())
sum += e->count.ipa ();
cs->count = cs->count.combine_with_ipa_count (sum);
}
else if (!desc->processed_edges->contains (cs)
&& cs->caller->clone_of == desc->orig)
{
cs->count += desc->count;
if (dump_file)
{
fprintf (dump_file, " Adjusted count of an incoming edge of "
"a clone %s -> %s to ", cs->caller->dump_name (),
cs->callee->dump_name ());
cs->count.dump (dump_file);
fprintf (dump_file, "\n");
}
}
}
/* When ORIG_NODE has been cloned for values which have been generated fora
self-recursive call as a result of an arithmetic pass-through
jump-functions, adjust its count together with counts of all such clones in
SELF_GEN_CLONES which also at this point contains ORIG_NODE itself.
The function sums the counts of the original node and all its clones that
cannot be attributed to a specific clone because it comes from a
non-recursive edge. This sum is then evenly divided between the clones and
on top of that each one gets all the counts which can be attributed directly
to it. */
static void
update_counts_for_self_gen_clones (cgraph_node *orig_node,
const vec<cgraph_node *> &self_gen_clones)
{
profile_count redist_sum = orig_node->count.ipa ();
if (!(redist_sum > profile_count::zero ()))
return;
if (dump_file)
fprintf (dump_file, " Updating profile of self recursive clone "
"series\n");
gather_other_count_struct gocs;
gocs.orig = orig_node;
gocs.other_count = profile_count::zero ();
auto_vec <profile_count, 8> other_edges_count;
for (cgraph_node *n : self_gen_clones)
{
gocs.other_count = profile_count::zero ();
n->call_for_symbol_thunks_and_aliases (gather_count_of_non_rec_edges,
&gocs, false);
other_edges_count.safe_push (gocs.other_count);
redist_sum -= gocs.other_count;
}
hash_set<cgraph_edge *> processed_edges;
unsigned i = 0;
for (cgraph_node *n : self_gen_clones)
{
profile_count orig_count = n->count;
profile_count new_count
= (redist_sum / self_gen_clones.length () + other_edges_count[i]);
new_count = lenient_count_portion_handling (new_count, orig_node);
n->count = new_count;
profile_count::adjust_for_ipa_scaling (&new_count, &orig_count);
for (cgraph_edge *cs = n->callees; cs; cs = cs->next_callee)
{
cs->count = cs->count.apply_scale (new_count, orig_count);
processed_edges.add (cs);
}
for (cgraph_edge *cs = n->indirect_calls; cs; cs = cs->next_callee)
cs->count = cs->count.apply_scale (new_count, orig_count);
i++;
}
/* There are still going to be edges to ORIG_NODE that have one or more
clones coming from another node clone in SELF_GEN_CLONES and which we
scaled by the same amount, which means that the total incoming sum of
counts to ORIG_NODE will be too high, scale such edges back. */
for (cgraph_edge *cs = orig_node->callees; cs; cs = cs->next_callee)
{
if (cs->callee->ultimate_alias_target () == orig_node)
{
unsigned den = 0;
for (cgraph_edge *e = cs; e; e = get_next_cgraph_edge_clone (e))
if (e->callee->ultimate_alias_target () == orig_node
&& processed_edges.contains (e))
den++;
if (den > 0)
for (cgraph_edge *e = cs; e; e = get_next_cgraph_edge_clone (e))
if (e->callee->ultimate_alias_target () == orig_node
&& processed_edges.contains (e))
e->count /= den;
}
}
/* Edges from the seeds of the valus generated for arithmetic jump-functions
along self-recursive edges are likely to have fairly low count and so
edges from them to nodes in the self_gen_clones do not correspond to the
artificially distributed count of the nodes, the total sum of incoming
edges to some clones might be too low. Detect this situation and correct
it. */
for (cgraph_node *n : self_gen_clones)
{
if (!(n->count.ipa () > profile_count::zero ()))
continue;
desc_incoming_count_struct desc;
desc.orig = orig_node;
desc.processed_edges = &processed_edges;
desc.count = profile_count::zero ();
desc.unproc_orig_rec_edges = 0;
analyze_clone_icoming_counts (n, &desc);
if (n->count.differs_from_p (desc.count))
{
if (n->count > desc.count
&& desc.unproc_orig_rec_edges > 0)
{
desc.count = n->count - desc.count;
desc.count = desc.count /= desc.unproc_orig_rec_edges;
adjust_clone_incoming_counts (n, &desc);
}
else if (dump_file)
fprintf (dump_file,
" Unable to fix up incoming counts for %s.\n",
n->dump_name ());
}
}
if (dump_file)
for (cgraph_node *n : self_gen_clones)
dump_profile_updates (n, n != orig_node);
return;
}
/* After a specialized NEW_NODE version of ORIG_NODE has been created, update
their profile information to reflect this. This function should not be used
for clones generated for arithmetic pass-through jump functions on a
self-recursive call graph edge, that situation is handled by
update_counts_for_self_gen_clones. */
static void
update_profiling_info (struct cgraph_node *orig_node,
struct cgraph_node *new_node)
{
struct caller_statistics stats;
profile_count new_sum;
profile_count remainder, orig_node_count = orig_node->count.ipa ();
if (!(orig_node_count > profile_count::zero ()))
return;
if (dump_file)
{
fprintf (dump_file, " Updating profile from original count: ");
orig_node_count.dump (dump_file);
fprintf (dump_file, "\n");
}
init_caller_stats (&stats, new_node);
new_node->call_for_symbol_thunks_and_aliases (gather_caller_stats, &stats,
false);
new_sum = stats.count_sum;
if (new_sum > orig_node_count)
{
/* TODO: Perhaps this should be gcc_unreachable ()? */
remainder = profile_count::zero ().guessed_local ();
}
else if (stats.rec_count_sum.nonzero_p ())
{
int new_nonrec_calls = stats.n_nonrec_calls;
/* There are self-recursive edges which are likely to bring in the
majority of calls but which we must divide in between the original and
new node. */
init_caller_stats (&stats, orig_node);
orig_node->call_for_symbol_thunks_and_aliases (gather_caller_stats,
&stats, false);
int orig_nonrec_calls = stats.n_nonrec_calls;
profile_count orig_nonrec_call_count = stats.count_sum;
if (orig_node->local)
{
if (!orig_nonrec_call_count.nonzero_p ())
{
if (dump_file)
fprintf (dump_file, " The original is local and the only "
"incoming edges from non-dead callers with nonzero "
"counts are self-recursive, assuming it is cold.\n");
/* The NEW_NODE count and counts of all its outgoing edges
are still unmodified copies of ORIG_NODE's. Just clear
the latter and bail out. */
profile_count zero;
if (opt_for_fn (orig_node->decl, flag_profile_partial_training))
zero = profile_count::zero ().guessed_local ();
else
zero = profile_count::adjusted_zero ();
orig_node->count = zero;
for (cgraph_edge *cs = orig_node->callees;
cs;
cs = cs->next_callee)
cs->count = zero;
for (cgraph_edge *cs = orig_node->indirect_calls;
cs;
cs = cs->next_callee)
cs->count = zero;
return;
}
}
else
{
/* Let's behave as if there was another caller that accounts for all
the calls that were either indirect or from other compilation
units. */
orig_nonrec_calls++;
profile_count pretend_caller_count
= (orig_node_count - new_sum - orig_nonrec_call_count
- stats.rec_count_sum);
orig_nonrec_call_count += pretend_caller_count;
}
/* Divide all "unexplained" counts roughly proportionally to sums of
counts of non-recursive calls.
We put rather arbitrary limits on how many counts we claim because the
number of non-self-recursive incoming count is only a rough guideline
and there are cases (such as mcf) where using it blindly just takes
too many. And if lattices are considered in the opposite order we
could also take too few. */
profile_count unexp = orig_node_count - new_sum - orig_nonrec_call_count;
int limit_den = 2 * (orig_nonrec_calls + new_nonrec_calls);
profile_count new_part
= MAX(MIN (unexp.apply_scale (new_sum,
new_sum + orig_nonrec_call_count),
unexp.apply_scale (limit_den - 1, limit_den)),
unexp.apply_scale (new_nonrec_calls, limit_den));
if (dump_file)
{
fprintf (dump_file, " Claiming ");
new_part.dump (dump_file);
fprintf (dump_file, " of unexplained ");
unexp.dump (dump_file);
fprintf (dump_file, " counts because of self-recursive "
"calls\n");
}
new_sum += new_part;
remainder = lenient_count_portion_handling (orig_node_count - new_sum,
orig_node);
}
else
remainder = lenient_count_portion_handling (orig_node_count - new_sum,
orig_node);
new_sum = orig_node_count.combine_with_ipa_count (new_sum);
new_node->count = new_sum;
orig_node->count = remainder;
profile_count orig_new_node_count = orig_node_count;
profile_count::adjust_for_ipa_scaling (&new_sum, &orig_new_node_count);
for (cgraph_edge *cs = new_node->callees; cs; cs = cs->next_callee)
cs->count = cs->count.apply_scale (new_sum, orig_new_node_count);
for (cgraph_edge *cs = new_node->indirect_calls; cs; cs = cs->next_callee)
cs->count = cs->count.apply_scale (new_sum, orig_new_node_count);
profile_count::adjust_for_ipa_scaling (&remainder, &orig_node_count);
for (cgraph_edge *cs = orig_node->callees; cs; cs = cs->next_callee)
cs->count = cs->count.apply_scale (remainder, orig_node_count);
for (cgraph_edge *cs = orig_node->indirect_calls; cs; cs = cs->next_callee)
cs->count = cs->count.apply_scale (remainder, orig_node_count);
if (dump_file)
{
dump_profile_updates (new_node, true);
dump_profile_updates (orig_node, false);
}
}
/* Update the respective profile of specialized NEW_NODE and the original
ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM
have been redirected to the specialized version. */
static void
update_specialized_profile (struct cgraph_node *new_node,
struct cgraph_node *orig_node,
profile_count redirected_sum)
{
struct cgraph_edge *cs;
profile_count new_node_count, orig_node_count = orig_node->count;
if (dump_file)
{
fprintf (dump_file, " the sum of counts of redirected edges is ");
redirected_sum.dump (dump_file);
fprintf (dump_file, "\n");
}
if (!(orig_node_count > profile_count::zero ()))
return;
gcc_assert (orig_node_count >= redirected_sum);
new_node_count = new_node->count;
new_node->count += redirected_sum;
orig_node->count -= redirected_sum;
for (cs = new_node->callees; cs; cs = cs->next_callee)
cs->count += cs->count.apply_scale (redirected_sum, new_node_count);
for (cs = orig_node->callees; cs; cs = cs->next_callee)
{
profile_count dec = cs->count.apply_scale (redirected_sum,
orig_node_count);
cs->count -= dec;
}
if (dump_file)
{
dump_profile_updates (new_node, true);
dump_profile_updates (orig_node, false);
}
}
static void adjust_references_in_caller (cgraph_edge *cs,
symtab_node *symbol, int index);
/* Simple structure to pass a symbol and index (with same meaning as parameters
of adjust_references_in_caller) through a void* parameter of a
call_for_symbol_thunks_and_aliases callback. */
struct symbol_and_index_together
{
symtab_node *symbol;
int index;
};
/* Worker callback of call_for_symbol_thunks_and_aliases to recursively call
adjust_references_in_caller on edges up in the call-graph, if necessary. */
static bool
adjust_refs_in_act_callers (struct cgraph_node *node, void *data)
{
symbol_and_index_together *pack = (symbol_and_index_together *) data;
for (cgraph_edge *cs = node->callers; cs; cs = cs->next_caller)
if (!cs->caller->thunk)
adjust_references_in_caller (cs, pack->symbol, pack->index);
return false;
}
/* At INDEX of a function being called by CS there is an ADDR_EXPR of a
variable which is only dereferenced and which is represented by SYMBOL. See
if we can remove ADDR reference in callers assosiated witht the call. */
static void
adjust_references_in_caller (cgraph_edge *cs, symtab_node *symbol, int index)
{
ipa_edge_args *args = ipa_edge_args_sum->get (cs);
ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, index);
if (jfunc->type == IPA_JF_CONST)
{
ipa_ref *to_del = cs->caller->find_reference (symbol, cs->call_stmt,
cs->lto_stmt_uid);
if (!to_del)
return;
to_del->remove_reference ();
if (dump_file)
fprintf (dump_file, " Removed a reference from %s to %s.\n",
cs->caller->dump_name (), symbol->dump_name ());
return;
}
if (jfunc->type != IPA_JF_PASS_THROUGH
|| ipa_get_jf_pass_through_operation (jfunc) != NOP_EXPR)
return;
int fidx = ipa_get_jf_pass_through_formal_id (jfunc);
cgraph_node *caller = cs->caller;
ipa_node_params *caller_info = ipa_node_params_sum->get (caller);
/* TODO: This consistency check may be too big and not really
that useful. Consider removing it. */
tree cst;
if (caller_info->ipcp_orig_node)
cst = caller_info->known_csts[fidx];
else
{
ipcp_lattice<tree> *lat = ipa_get_scalar_lat (caller_info, fidx);
gcc_assert (lat->is_single_const ());
cst = lat->values->value;
}
gcc_assert (TREE_CODE (cst) == ADDR_EXPR
&& (symtab_node::get (get_base_address (TREE_OPERAND (cst, 0)))
== symbol));
int cuses = ipa_get_controlled_uses (caller_info, fidx);
if (cuses == IPA_UNDESCRIBED_USE)
return;
gcc_assert (cuses > 0);
cuses--;
ipa_set_controlled_uses (caller_info, fidx, cuses);
if (cuses)
return;
if (caller_info->ipcp_orig_node)
{
/* Cloning machinery has created a reference here, we need to either
remove it or change it to a read one. */
ipa_ref *to_del = caller->find_reference (symbol, NULL, 0);
if (to_del && to_del->use == IPA_REF_ADDR)
{
to_del->remove_reference ();
if (dump_file)
fprintf (dump_file, " Removed a reference from %s to %s.\n",
cs->caller->dump_name (), symbol->dump_name ());
if (ipa_get_param_load_dereferenced (caller_info, fidx))
{
caller->create_reference (symbol, IPA_REF_LOAD, NULL);
if (dump_file)
fprintf (dump_file,
" ...and replaced it with LOAD one.\n");
}
}
}
symbol_and_index_together pack;
pack.symbol = symbol;
pack.index = fidx;
if (caller->can_change_signature)
caller->call_for_symbol_thunks_and_aliases (adjust_refs_in_act_callers,
&pack, true);
}
/* Return true if we would like to remove a parameter from NODE when cloning it
with KNOWN_CSTS scalar constants. */
static bool
want_remove_some_param_p (cgraph_node *node, vec<tree> known_csts)
{
auto_vec<bool, 16> surviving;
bool filled_vec = false;
ipa_node_params *info = ipa_node_params_sum->get (node);
int i, count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
if (!known_csts[i] && ipa_is_param_used (info, i))
continue;
if (!filled_vec)
{
clone_info *info = clone_info::get (node);
if (!info || !info->param_adjustments)
return true;
info->param_adjustments->get_surviving_params (&surviving);
filled_vec = true;
}
if (surviving.length() < (unsigned) i && surviving[i])
return true;
}
return false;
}
/* Create a specialized version of NODE with known constants in KNOWN_CSTS,
known contexts in KNOWN_CONTEXTS and known aggregate values in AGGVALS and
redirect all edges in CALLERS to it. */
static struct cgraph_node *
create_specialized_node (struct cgraph_node *node,
vec<tree> known_csts,
vec<ipa_polymorphic_call_context> known_contexts,
vec<ipa_argagg_value, va_gc> *aggvals,
vec<cgraph_edge *> &callers)
{
ipa_node_params *new_info, *info = ipa_node_params_sum->get (node);
vec<ipa_replace_map *, va_gc> *replace_trees = NULL;
vec<ipa_adjusted_param, va_gc> *new_params = NULL;
struct cgraph_node *new_node;
int i, count = ipa_get_param_count (info);
clone_info *cinfo = clone_info::get (node);
ipa_param_adjustments *old_adjustments = cinfo
? cinfo->param_adjustments : NULL;
ipa_param_adjustments *new_adjustments;
gcc_assert (!info->ipcp_orig_node);
gcc_assert (node->can_change_signature
|| !old_adjustments);
if (old_adjustments)
{
/* At the moment all IPA optimizations should use the number of
parameters of the prevailing decl as the m_always_copy_start.
Handling any other value would complicate the code below, so for the
time bing let's only assert it is so. */
gcc_assert (old_adjustments->m_always_copy_start == count
|| old_adjustments->m_always_copy_start < 0);
int old_adj_count = vec_safe_length (old_adjustments->m_adj_params);
for (i = 0; i < old_adj_count; i++)
{
ipa_adjusted_param *old_adj = &(*old_adjustments->m_adj_params)[i];
if (!node->can_change_signature
|| old_adj->op != IPA_PARAM_OP_COPY
|| (!known_csts[old_adj->base_index]
&& ipa_is_param_used (info, old_adj->base_index)))
{
ipa_adjusted_param new_adj = *old_adj;
new_adj.prev_clone_adjustment = true;
new_adj.prev_clone_index = i;
vec_safe_push (new_params, new_adj);
}
}
bool skip_return = old_adjustments->m_skip_return;
new_adjustments = (new (ggc_alloc <ipa_param_adjustments> ())
ipa_param_adjustments (new_params, count,
skip_return));
}
else if (node->can_change_signature
&& want_remove_some_param_p (node, known_csts))
{
ipa_adjusted_param adj;
memset (&adj, 0, sizeof (adj));
adj.op = IPA_PARAM_OP_COPY;
for (i = 0; i < count; i++)
if (!known_csts[i] && ipa_is_param_used (info, i))
{
adj.base_index = i;
adj.prev_clone_index = i;
vec_safe_push (new_params, adj);
}
new_adjustments = (new (ggc_alloc <ipa_param_adjustments> ())
ipa_param_adjustments (new_params, count, false));
}
else
new_adjustments = NULL;
auto_vec<cgraph_edge *, 2> self_recursive_calls;
for (i = callers.length () - 1; i >= 0; i--)
{
cgraph_edge *cs = callers[i];
if (cs->caller == node)
{
self_recursive_calls.safe_push (cs);
callers.unordered_remove (i);
}
}
replace_trees = cinfo ? vec_safe_copy (cinfo->tree_map) : NULL;
for (i = 0; i < count; i++)
{
tree t = known_csts[i];
if (!t)
continue;
gcc_checking_assert (TREE_CODE (t) != TREE_BINFO);
bool load_ref = false;
symtab_node *ref_symbol;
if (TREE_CODE (t) == ADDR_EXPR)
{
tree base = get_base_address (TREE_OPERAND (t, 0));
if (TREE_CODE (base) == VAR_DECL
&& ipa_get_controlled_uses (info, i) == 0
&& ipa_get_param_load_dereferenced (info, i)
&& (ref_symbol = symtab_node::get (base)))
{
load_ref = true;
if (node->can_change_signature)
for (cgraph_edge *caller : callers)
adjust_references_in_caller (caller, ref_symbol, i);
}
}
ipa_replace_map *replace_map = get_replacement_map (info, t, i, load_ref);
if (replace_map)
vec_safe_push (replace_trees, replace_map);
}
unsigned &suffix_counter = clone_num_suffixes->get_or_insert (
IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (
node->decl)));
new_node = node->create_virtual_clone (callers, replace_trees,
new_adjustments, "constprop",
suffix_counter);
suffix_counter++;
bool have_self_recursive_calls = !self_recursive_calls.is_empty ();
for (unsigned j = 0; j < self_recursive_calls.length (); j++)
{
cgraph_edge *cs = get_next_cgraph_edge_clone (self_recursive_calls[j]);
/* Cloned edges can disappear during cloning as speculation can be
resolved, check that we have one and that it comes from the last
cloning. */
if (cs && cs->caller == new_node)
cs->redirect_callee_duplicating_thunks (new_node);
/* Any future code that would make more than one clone of an outgoing
edge would confuse this mechanism, so let's check that does not
happen. */
gcc_checking_assert (!cs
|| !get_next_cgraph_edge_clone (cs)
|| get_next_cgraph_edge_clone (cs)->caller != new_node);
}
if (have_self_recursive_calls)
new_node->expand_all_artificial_thunks ();
ipa_set_node_agg_value_chain (new_node, aggvals);
for (const ipa_argagg_value &av : aggvals)
new_node->maybe_create_reference (av.value, NULL);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " the new node is %s.\n", new_node->dump_name ());
if (known_contexts.exists ())
{
for (i = 0; i < count; i++)
if (!known_contexts[i].useless_p ())
{
fprintf (dump_file, " known ctx %i is ", i);
known_contexts[i].dump (dump_file);
}
}
if (aggvals)
{
fprintf (dump_file, " Aggregate replacements:");
ipa_argagg_value_list avs (aggvals);
avs.dump (dump_file);
}
}
new_info = ipa_node_params_sum->get (new_node);
new_info->ipcp_orig_node = node;
new_node->ipcp_clone = true;
new_info->known_csts = known_csts;
new_info->known_contexts = known_contexts;
ipcp_discover_new_direct_edges (new_node, known_csts, known_contexts,
aggvals);
return new_node;
}
/* Return true if JFUNC, which describes a i-th parameter of call CS, is a
pass-through function to itself when the cgraph_node involved is not an
IPA-CP clone. When SIMPLE is true, further check if JFUNC is a simple
no-operation pass-through. */
static bool
self_recursive_pass_through_p (cgraph_edge *cs, ipa_jump_func *jfunc, int i,
bool simple = true)
{
enum availability availability;
if (cs->caller == cs->callee->function_symbol (&availability)
&& availability > AVAIL_INTERPOSABLE
&& jfunc->type == IPA_JF_PASS_THROUGH
&& (!simple || ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
&& ipa_get_jf_pass_through_formal_id (jfunc) == i
&& ipa_node_params_sum->get (cs->caller)
&& !ipa_node_params_sum->get (cs->caller)->ipcp_orig_node)
return true;
return false;
}
/* Return true if JFUNC, which describes a part of an aggregate represented or
pointed to by the i-th parameter of call CS, is a pass-through function to
itself when the cgraph_node involved is not an IPA-CP clone.. When
SIMPLE is true, further check if JFUNC is a simple no-operation
pass-through. */
static bool
self_recursive_agg_pass_through_p (const cgraph_edge *cs,
const ipa_agg_jf_item *jfunc,
int i, bool simple = true)
{
enum availability availability;
if (cs->caller == cs->callee->function_symbol (&availability)
&& availability > AVAIL_INTERPOSABLE
&& jfunc->jftype == IPA_JF_LOAD_AGG
&& jfunc->offset == jfunc->value.load_agg.offset
&& (!simple || jfunc->value.pass_through.operation == NOP_EXPR)
&& jfunc->value.pass_through.formal_id == i
&& useless_type_conversion_p (jfunc->value.load_agg.type, jfunc->type)
&& ipa_node_params_sum->get (cs->caller)
&& !ipa_node_params_sum->get (cs->caller)->ipcp_orig_node)
return true;
return false;
}
/* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in
KNOWN_CSTS with constants that are also known for all of the CALLERS. */
static void
find_more_scalar_values_for_callers_subset (struct cgraph_node *node,
vec<tree> &known_csts,
const vec<cgraph_edge *> &callers)
{
ipa_node_params *info = ipa_node_params_sum->get (node);
int i, count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
struct cgraph_edge *cs;
tree newval = NULL_TREE;
int j;
bool first = true;
tree type = ipa_get_type (info, i);
if (ipa_get_scalar_lat (info, i)->bottom || known_csts[i])
continue;
FOR_EACH_VEC_ELT (callers, j, cs)
{
struct ipa_jump_func *jump_func;
tree t;
ipa_edge_args *args = ipa_edge_args_sum->get (cs);
if (!args
|| i >= ipa_get_cs_argument_count (args)
|| (i == 0
&& call_passes_through_thunk (cs)))
{
newval = NULL_TREE;
break;
}
jump_func = ipa_get_ith_jump_func (args, i);
/* Besides simple pass-through jump function, arithmetic jump
function could also introduce argument-direct-pass-through for
self-feeding recursive call. For example,
fn (int i)
{
fn (i & 1);
}
Given that i is 0, recursive propagation via (i & 1) also gets
0. */
if (self_recursive_pass_through_p (cs, jump_func, i, false))
{
gcc_assert (newval);
t = ipa_get_jf_arith_result (
ipa_get_jf_pass_through_operation (jump_func),
newval,
ipa_get_jf_pass_through_operand (jump_func),
type);
}
else
t = ipa_value_from_jfunc (ipa_node_params_sum->get (cs->caller),
jump_func, type);
if (!t
|| (newval
&& !values_equal_for_ipcp_p (t, newval))
|| (!first && !newval))
{
newval = NULL_TREE;
break;
}
else
newval = t;
first = false;
}
if (newval)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " adding an extra known scalar value ");
print_ipcp_constant_value (dump_file, newval);
fprintf (dump_file, " for ");
ipa_dump_param (dump_file, info, i);
fprintf (dump_file, "\n");
}
known_csts[i] = newval;
}
}
}
/* Given a NODE and a subset of its CALLERS, try to populate plank slots in
KNOWN_CONTEXTS with polymorphic contexts that are also known for all of the
CALLERS. */
static void
find_more_contexts_for_caller_subset (cgraph_node *node,
vec<ipa_polymorphic_call_context>
*known_contexts,
const vec<cgraph_edge *> &callers)
{
ipa_node_params *info = ipa_node_params_sum->get (node);
int i, count = ipa_get_param_count (info);
for (i = 0; i < count; i++)
{
cgraph_edge *cs;
if (ipa_get_poly_ctx_lat (info, i)->bottom
|| (known_contexts->exists ()
&& !(*known_contexts)[i].useless_p ()))
continue;
ipa_polymorphic_call_context newval;
bool first = true;
int j;
FOR_EACH_VEC_ELT (callers, j, cs)
{
ipa_edge_args *args = ipa_edge_args_sum->get (cs);
if (!args
|| i >= ipa_get_cs_argument_count (args))
return;
ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
ipa_polymorphic_call_context ctx;
ctx = ipa_context_from_jfunc (ipa_node_params_sum->get (cs->caller),
cs, i, jfunc);
if (first)
{
newval = ctx;
first = false;
}
else
newval.meet_with (ctx);
if (newval.useless_p ())
break;
}
if (!newval.useless_p ())
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " adding an extra known polymorphic "
"context ");
print_ipcp_constant_value (dump_file, newval);
fprintf (dump_file, " for ");
ipa_dump_param (dump_file, info, i);
fprintf (dump_file, "\n");
}
if (!known_contexts->exists ())
known_contexts->safe_grow_cleared (ipa_get_param_count (info),
true);
(*known_contexts)[i] = newval;
}
}
}
/* Push all aggregate values coming along edge CS for parameter number INDEX to
RES. If INTERIM is non-NULL, it contains the current interim state of
collected aggregate values which can be used to compute values passed over
self-recursive edges.
This basically one iteration of push_agg_values_from_edge over one
parameter, which allows for simpler early returns. */
static void
push_agg_values_for_index_from_edge (struct cgraph_edge *cs, int index,
vec<ipa_argagg_value> *res,
const ipa_argagg_value_list *interim)
{
bool agg_values_from_caller = false;
bool agg_jf_preserved = false;
unsigned unit_delta = UINT_MAX;
int src_idx = -1;
ipa_jump_func *jfunc = ipa_get_ith_jump_func (ipa_edge_args_sum->get (cs),
index);
if (jfunc->type == IPA_JF_PASS_THROUGH
&& ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
{
agg_values_from_caller = true;
agg_jf_preserved = ipa_get_jf_pass_through_agg_preserved (jfunc);
src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
unit_delta = 0;
}
else if (jfunc->type == IPA_JF_ANCESTOR
&& ipa_get_jf_ancestor_agg_preserved (jfunc))
{
agg_values_from_caller = true;
agg_jf_preserved = true;
src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
unit_delta = ipa_get_jf_ancestor_offset (jfunc) / BITS_PER_UNIT;
}
ipa_node_params *caller_info = ipa_node_params_sum->get (cs->caller);
if (agg_values_from_caller)
{
if (caller_info->ipcp_orig_node)
{
struct cgraph_node *orig_node = caller_info->ipcp_orig_node;
ipcp_transformation *ts
= ipcp_get_transformation_summary (cs->caller);
ipa_node_params *orig_info = ipa_node_params_sum->get (orig_node);
ipcp_param_lattices *orig_plats
= ipa_get_parm_lattices (orig_info, src_idx);
if (ts
&& orig_plats->aggs
&& (agg_jf_preserved || !orig_plats->aggs_by_ref))
{
ipa_argagg_value_list src (ts);
src.push_adjusted_values (src_idx, index, unit_delta, res);
return;
}
}
else
{
ipcp_param_lattices *src_plats
= ipa_get_parm_lattices (caller_info, src_idx);
if (src_plats->aggs
&& !src_plats->aggs_bottom
&& (agg_jf_preserved || !src_plats->aggs_by_ref))
{
if (interim && self_recursive_pass_through_p (cs, jfunc, index))
{
interim->push_adjusted_values (src_idx, index, unit_delta,
res);
return;
}
if (!src_plats->aggs_contain_variable)
{
push_agg_values_from_plats (src_plats, index, unit_delta,
res);
return;
}
}
}
}
if (!jfunc->agg.items)
return;
bool first = true;
unsigned prev_unit_offset = 0;
for (const ipa_agg_jf_item &agg_jf : *jfunc->agg.items)
{
tree value, srcvalue;
/* Besides simple pass-through aggregate jump function, arithmetic
aggregate jump function could also bring same aggregate value as
parameter passed-in for self-feeding recursive call. For example,
fn (int *i)
{
int j = *i & 1;
fn (&j);
}
Given that *i is 0, recursive propagation via (*i & 1) also gets 0. */
if (interim
&& self_recursive_agg_pass_through_p (cs, &agg_jf, index, false)
&& (srcvalue = interim->get_value(index,
agg_jf.offset / BITS_PER_UNIT)))
value = ipa_get_jf_arith_result (agg_jf.value.pass_through.operation,
srcvalue,
agg_jf.value.pass_through.operand,
agg_jf.type);
else
value = ipa_agg_value_from_jfunc (caller_info, cs->caller,
&agg_jf);
if (value)
{
struct ipa_argagg_value iav;
iav.value = value;
iav.unit_offset = agg_jf.offset / BITS_PER_UNIT;
iav.index = index;
iav.by_ref = jfunc->agg.by_ref;
gcc_assert (first
|| iav.unit_offset > prev_unit_offset);
prev_unit_offset = iav.unit_offset;
first = false;
res->safe_push (iav);
}
}
return;
}
/* Push all aggregate values coming along edge CS to RES. DEST_INFO is the
description of ultimate callee of CS or the one it was cloned from (the
summary where lattices are). If INTERIM is non-NULL, it contains the
current interim state of collected aggregate values which can be used to
compute values passed over self-recursive edges (if OPTIMIZE_SELF_RECURSION
is true) and to skip values which clearly will not be part of intersection
with INTERIM. */
static void
push_agg_values_from_edge (struct cgraph_edge *cs,
ipa_node_params *dest_info,
vec<ipa_argagg_value> *res,
const ipa_argagg_value_list *interim,
bool optimize_self_recursion)
{
ipa_edge_args *args = ipa_edge_args_sum->get (cs);
if (!args)
return;
int count = MIN (ipa_get_param_count (dest_info),
ipa_get_cs_argument_count (args));
unsigned interim_index = 0;
for (int index = 0; index < count; index++)
{
if (interim)
{
while (interim_index < interim->m_elts.size ()
&& interim->m_elts[interim_index].value
&& interim->m_elts[interim_index].index < index)
interim_index++;
if (interim_index >= interim->m_elts.size ()
|| interim->m_elts[interim_index].index > index)
continue;
}
ipcp_param_lattices *plats = ipa_get_parm_lattices (dest_info, index);
if (!ipa_is_param_used (dest_info, index)
|| plats->aggs_bottom)
continue;
push_agg_values_for_index_from_edge (cs, index, res,
optimize_self_recursion ? interim
: NULL);
}
}
/* Look at edges in CALLERS and collect all known aggregate values that arrive
from all of them. Return nullptr if there are none. */
static struct vec<ipa_argagg_value, va_gc> *
find_aggregate_values_for_callers_subset (struct cgraph_node *node,
const vec<cgraph_edge *> &callers)
{
ipa_node_params *dest_info = ipa_node_params_sum->get (node);
if (dest_info->ipcp_orig_node)
dest_info = ipa_node_params_sum->get (dest_info->ipcp_orig_node);
/* gather_edges_for_value puts a non-recursive call into the first element of
callers if it can. */
auto_vec<ipa_argagg_value, 32> interim;
push_agg_values_from_edge (callers[0], dest_info, &interim, NULL, true);
unsigned valid_entries = interim.length ();
if (!valid_entries)
return nullptr;
unsigned caller_count = callers.length();
for (unsigned i = 1; i < caller_count; i++)
{
auto_vec<ipa_argagg_value, 32> last;
ipa_argagg_value_list avs (&interim);
push_agg_values_from_edge (callers[i], dest_info, &last, &avs, true);
valid_entries = intersect_argaggs_with (interim, last);
if (!valid_entries)
return nullptr;
}
vec<ipa_argagg_value, va_gc> *res = NULL;
vec_safe_reserve_exact (res, valid_entries);
for (const ipa_argagg_value &av : interim)
if (av.value)
res->quick_push(av);
gcc_checking_assert (res->length () == valid_entries);
return res;
}
/* Determine whether CS also brings all scalar values that the NODE is
specialized for. */
static bool
cgraph_edge_brings_all_scalars_for_node (struct cgraph_edge *cs,
struct cgraph_node *node)
{
ipa_node_params *dest_info = ipa_node_params_sum->get (node);
int count = ipa_get_param_count (dest_info);
class ipa_node_params *caller_info;
class ipa_edge_args *args;
int i;
caller_info = ipa_node_params_sum->get (cs->caller);
args = ipa_edge_args_sum->get (cs);
for (i = 0; i < count; i++)
{
struct ipa_jump_func *jump_func;
tree val, t;
val = dest_info->known_csts[i];
if (!val)
continue;
if (i >= ipa_get_cs_argument_count (args))
return false;
jump_func = ipa_get_ith_jump_func (args, i);
t = ipa_value_from_jfunc (caller_info, jump_func,
ipa_get_type (dest_info, i));
if (!t || !values_equal_for_ipcp_p (val, t))
return false;
}
return true;
}
/* Determine whether CS also brings all aggregate values that NODE is
specialized for. */
static bool
cgraph_edge_brings_all_agg_vals_for_node (struct cgraph_edge *cs,
struct cgraph_node *node)
{
ipcp_transformation *ts = ipcp_get_transformation_summary (node);
if (!ts || vec_safe_is_empty (ts->m_agg_values))
return true;
const ipa_argagg_value_list existing (ts->m_agg_values);
auto_vec<ipa_argagg_value, 32> edge_values;
ipa_node_params *dest_info = ipa_node_params_sum->get (node);
gcc_checking_assert (dest_info->ipcp_orig_node);
dest_info = ipa_node_params_sum->get (dest_info->ipcp_orig_node);
push_agg_values_from_edge (cs, dest_info, &edge_values, &existing, false);
const ipa_argagg_value_list avl (&edge_values);
return avl.superset_of_p (existing);
}
/* Given an original NODE and a VAL for which we have already created a
specialized clone, look whether there are incoming edges that still lead
into the old node but now also bring the requested value and also conform to
all other criteria such that they can be redirected the special node.
This function can therefore redirect the final edge in a SCC. */
template <typename valtype>
static void
perhaps_add_new_callers (cgraph_node *node, ipcp_value<valtype> *val)
{
ipcp_value_source<valtype> *src;
profile_count redirected_sum = profile_count::zero ();
for (src = val->sources; src; src = src->next)
{
struct cgraph_edge *cs = src->cs;
while (cs)
{
if (cgraph_edge_brings_value_p (cs, src, node, val)
&& cgraph_edge_brings_all_scalars_for_node (cs, val->spec_node)
&& cgraph_edge_brings_all_agg_vals_for_node (cs, val->spec_node))
{
if (dump_file)
fprintf (dump_file, " - adding an extra caller %s of %s\n",
cs->caller->dump_name (),
val->spec_node->dump_name ());
cs->redirect_callee_duplicating_thunks (val->spec_node);
val->spec_node->expand_all_artificial_thunks ();
if (cs->count.ipa ().initialized_p ())
redirected_sum = redirected_sum + cs->count.ipa ();
}
cs = get_next_cgraph_edge_clone (cs);
}
}
if (redirected_sum.nonzero_p ())
update_specialized_profile (val->spec_node, node, redirected_sum);
}
/* Return true if KNOWN_CONTEXTS contain at least one useful context. */
static bool
known_contexts_useful_p (vec<ipa_polymorphic_call_context> known_contexts)
{
ipa_polymorphic_call_context *ctx;
int i;
FOR_EACH_VEC_ELT (known_contexts, i, ctx)
if (!ctx->useless_p ())
return true;
return false;
}
/* Return a copy of KNOWN_CSTS if it is not empty, otherwise return vNULL. */
static vec<ipa_polymorphic_call_context>
copy_useful_known_contexts (const vec<ipa_polymorphic_call_context> &known_contexts)
{
if (known_contexts_useful_p (known_contexts))
return known_contexts.copy ();
else
return vNULL;
}
/* Copy known scalar values from AVALS into KNOWN_CSTS and modify the copy
according to VAL and INDEX. If non-empty, replace KNOWN_CONTEXTS with its
copy too. */
static void
copy_known_vectors_add_val (ipa_auto_call_arg_values *avals,
vec<tree> *known_csts,
vec<ipa_polymorphic_call_context> *known_contexts,
ipcp_value<tree> *val, int index)
{
*known_csts = avals->m_known_vals.copy ();
*known_contexts = copy_useful_known_contexts (avals->m_known_contexts);
(*known_csts)[index] = val->value;
}
/* Copy known scalar values from AVALS into KNOWN_CSTS. Similarly, copy
contexts to KNOWN_CONTEXTS and modify the copy according to VAL and
INDEX. */
static void
copy_known_vectors_add_val (ipa_auto_call_arg_values *avals,
vec<tree> *known_csts,
vec<ipa_polymorphic_call_context> *known_contexts,
ipcp_value<ipa_polymorphic_call_context> *val,
int index)
{
*known_csts = avals->m_known_vals.copy ();
*known_contexts = avals->m_known_contexts.copy ();
(*known_contexts)[index] = val->value;
}
/* Return true if OFFSET indicates this was not an aggregate value or there is
a replacement equivalent to VALUE, INDEX and OFFSET among those in the
AGGVALS list. */
DEBUG_FUNCTION bool
ipcp_val_agg_replacement_ok_p (vec<ipa_argagg_value, va_gc> *aggvals,
int index, HOST_WIDE_INT offset, tree value)
{
if (offset == -1)
return true;
const ipa_argagg_value_list avl (aggvals);
tree v = avl.get_value (index, offset / BITS_PER_UNIT);
return v && values_equal_for_ipcp_p (v, value);
}
/* Return true if offset is minus one because source of a polymorphic context
cannot be an aggregate value. */
DEBUG_FUNCTION bool
ipcp_val_agg_replacement_ok_p (vec<ipa_argagg_value, va_gc> *,
int , HOST_WIDE_INT offset,
ipa_polymorphic_call_context)
{
return offset == -1;
}
/* Decide whether to create a special version of NODE for value VAL of
parameter at the given INDEX. If OFFSET is -1, the value is for the
parameter itself, otherwise it is stored at the given OFFSET of the
parameter. AVALS describes the other already known values. SELF_GEN_CLONES
is a vector which contains clones created for self-recursive calls with an
arithmetic pass-through jump function. */
template <typename valtype>
static bool
decide_about_value (struct cgraph_node *node, int index, HOST_WIDE_INT offset,
ipcp_value<valtype> *val, ipa_auto_call_arg_values *avals,
vec<cgraph_node *> *self_gen_clones)
{
int caller_count;
sreal freq_sum;
profile_count count_sum, rec_count_sum;
vec<cgraph_edge *> callers;
if (val->spec_node)
{
perhaps_add_new_callers (node, val);
return false;
}
else if (val->local_size_cost + overall_size > get_max_overall_size (node))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Ignoring candidate value because "
"maximum unit size would be reached with %li.\n",
val->local_size_cost + overall_size);
return false;
}
else if (!get_info_about_necessary_edges (val, node, &freq_sum, &caller_count,
&rec_count_sum, &count_sum))
return false;
if (!dbg_cnt (ipa_cp_values))
return false;
if (val->self_recursion_generated_p ())
{
/* The edge counts in this case might not have been adjusted yet.
Nevertleless, even if they were it would be only a guesswork which we
can do now. The recursive part of the counts can be derived from the
count of the original node anyway. */
if (node->count.ipa ().nonzero_p ())
{
unsigned dem = self_gen_clones->length () + 1;
rec_count_sum = node->count.ipa () / dem;
}
else
rec_count_sum = profile_count::zero ();
}
/* get_info_about_necessary_edges only sums up ipa counts. */
count_sum += rec_count_sum;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " - considering value ");
print_ipcp_constant_value (dump_file, val->value);
fprintf (dump_file, " for ");
ipa_dump_param (dump_file, ipa_node_params_sum->get (node), index);
if (offset != -1)
fprintf (dump_file, ", offset: " HOST_WIDE_INT_PRINT_DEC, offset);
fprintf (dump_file, " (caller_count: %i)\n", caller_count);
}
if (!good_cloning_opportunity_p (node, val->local_time_benefit,
freq_sum, count_sum,
val->local_size_cost)
&& !good_cloning_opportunity_p (node, val->prop_time_benefit,
freq_sum, count_sum, val->prop_size_cost))
return false;
if (dump_file)
fprintf (dump_file, " Creating a specialized node of %s.\n",
node->dump_name ());
vec<tree> known_csts;
vec<ipa_polymorphic_call_context> known_contexts;
callers = gather_edges_for_value (val, node, caller_count);
if (offset == -1)
copy_known_vectors_add_val (avals, &known_csts, &known_contexts, val, index);
else
{
known_csts = avals->m_known_vals.copy ();
known_contexts = copy_useful_known_contexts (avals->m_known_contexts);
}
find_more_scalar_values_for_callers_subset (node, known_csts, callers);
find_more_contexts_for_caller_subset (node, &known_contexts, callers);
vec<ipa_argagg_value, va_gc> *aggvals
= find_aggregate_values_for_callers_subset (node, callers);
gcc_checking_assert (ipcp_val_agg_replacement_ok_p (aggvals, index,
offset, val->value));
val->spec_node = create_specialized_node (node, known_csts, known_contexts,
aggvals, callers);
if (val->self_recursion_generated_p ())
self_gen_clones->safe_push (val->spec_node);
else
update_profiling_info (node, val->spec_node);
callers.release ();
overall_size += val->local_size_cost;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " overall size reached %li\n",
overall_size);
/* TODO: If for some lattice there is only one other known value
left, make a special node for it too. */
return true;
}
/* Decide whether and what specialized clones of NODE should be created. */
static bool
decide_whether_version_node (struct cgraph_node *node)
{
ipa_node_params *info = ipa_node_params_sum->get (node);
int i, count = ipa_get_param_count (info);
bool ret = false;
if (count == 0)
return false;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nEvaluating opportunities for %s.\n",
node->dump_name ());
auto_vec <cgraph_node *, 9> self_gen_clones;
ipa_auto_call_arg_values avals;
gather_context_independent_values (info, &avals, false, NULL);
for (i = 0; i < count;i++)
{
if (!ipa_is_param_used (info, i))
continue;
class ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
ipcp_lattice<tree> *lat = &plats->itself;
ipcp_lattice<ipa_polymorphic_call_context> *ctxlat = &plats->ctxlat;
if (!lat->bottom
&& !avals.m_known_vals[i])
{
ipcp_value<tree> *val;
for (val = lat->values; val; val = val->next)
{
/* If some values generated for self-recursive calls with
arithmetic jump functions fall outside of the known
value_range for the parameter, we can skip them. VR interface
supports this only for integers now. */
if (TREE_CODE (val->value) == INTEGER_CST
&& !plats->m_value_range.bottom_p ()
&& !plats->m_value_range.m_vr.contains_p (val->value))
{
/* This can happen also if a constant present in the source
code falls outside of the range of parameter's type, so we
cannot assert. */
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " - skipping%s value ",
val->self_recursion_generated_p ()
? " self_recursion_generated" : "");
print_ipcp_constant_value (dump_file, val->value);
fprintf (dump_file, " because it is outside known "
"value range.\n");
}
continue;
}
ret |= decide_about_value (node, i, -1, val, &avals,
&self_gen_clones);
}
}
if (!plats->aggs_bottom)
{
struct ipcp_agg_lattice *aglat;
ipcp_value<tree> *val;
for (aglat = plats->aggs; aglat; aglat = aglat->next)
if (!aglat->bottom && aglat->values
/* If the following is false, the one value has been considered
for cloning for all contexts. */
&& (plats->aggs_contain_variable
|| !aglat->is_single_const ()))
for (val = aglat->values; val; val = val->next)
ret |= decide_about_value (node, i, aglat->offset, val, &avals,
&self_gen_clones);
}
if (!ctxlat->bottom
&& avals.m_known_contexts[i].useless_p ())
{
ipcp_value<ipa_polymorphic_call_context> *val;
for (val = ctxlat->values; val; val = val->next)
ret |= decide_about_value (node, i, -1, val, &avals,
&self_gen_clones);
}
}
if (!self_gen_clones.is_empty ())
{
self_gen_clones.safe_push (node);
update_counts_for_self_gen_clones (node, self_gen_clones);
}
if (info->do_clone_for_all_contexts)
{
if (!dbg_cnt (ipa_cp_values))
{
info->do_clone_for_all_contexts = false;
return ret;
}
struct cgraph_node *clone;
auto_vec<cgraph_edge *> callers = node->collect_callers ();
for (int i = callers.length () - 1; i >= 0; i--)
{
cgraph_edge *cs = callers[i];
ipa_node_params *caller_info = ipa_node_params_sum->get (cs->caller);
if (caller_info && caller_info->node_dead)
callers.unordered_remove (i);
}
if (!adjust_callers_for_value_intersection (callers, node))
{
/* If node is not called by anyone, or all its caller edges are
self-recursive, the node is not really in use, no need to do
cloning. */
info->do_clone_for_all_contexts = false;
return ret;
}
if (dump_file)
fprintf (dump_file, " - Creating a specialized node of %s "
"for all known contexts.\n", node->dump_name ());
vec<tree> known_csts = avals.m_known_vals.copy ();
vec<ipa_polymorphic_call_context> known_contexts
= copy_useful_known_contexts (avals.m_known_contexts);
find_more_scalar_values_for_callers_subset (node, known_csts, callers);
find_more_contexts_for_caller_subset (node, &known_contexts, callers);
vec<ipa_argagg_value, va_gc> *aggvals
= find_aggregate_values_for_callers_subset (node, callers);
if (!known_contexts_useful_p (known_contexts))
{
known_contexts.release ();
known_contexts = vNULL;
}
clone = create_specialized_node (node, known_csts, known_contexts,
aggvals, callers);
info->do_clone_for_all_contexts = false;
ipa_node_params_sum->get (clone)->is_all_contexts_clone = true;
ret = true;
}
return ret;
}
/* Transitively mark all callees of NODE within the same SCC as not dead. */
static void
spread_undeadness (struct cgraph_node *node)
{
struct cgraph_edge *cs;
for (cs = node->callees; cs; cs = cs->next_callee)
if (ipa_edge_within_scc (cs))
{
struct cgraph_node *callee;
class ipa_node_params *info;
callee = cs->callee->function_symbol (NULL);
info = ipa_node_params_sum->get (callee);
if (info && info->node_dead)
{
info->node_dead = 0;
spread_undeadness (callee);
}
}
}
/* Return true if NODE has a caller from outside of its SCC that is not
dead. Worker callback for cgraph_for_node_and_aliases. */
static bool
has_undead_caller_from_outside_scc_p (struct cgraph_node *node,
void *data ATTRIBUTE_UNUSED)
{
struct cgraph_edge *cs;
for (cs = node->callers; cs; cs = cs->next_caller)
if (cs->caller->thunk
&& cs->caller->call_for_symbol_thunks_and_aliases
(has_undead_caller_from_outside_scc_p, NULL, true))
return true;
else if (!ipa_edge_within_scc (cs))
{
ipa_node_params *caller_info = ipa_node_params_sum->get (cs->caller);
if (!caller_info /* Unoptimized caller are like dead ones. */
|| !caller_info->node_dead)
return true;
}
return false;
}
/* Identify nodes within the same SCC as NODE which are no longer needed
because of new clones and will be removed as unreachable. */
static void
identify_dead_nodes (struct cgraph_node *node)
{
struct cgraph_node *v;
for (v = node; v; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
if (v->local)
{
ipa_node_params *info = ipa_node_params_sum->get (v);
if (info
&& !v->call_for_symbol_thunks_and_aliases
(has_undead_caller_from_outside_scc_p, NULL, true))
info->node_dead = 1;
}
for (v = node; v; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
{
ipa_node_params *info = ipa_node_params_sum->get (v);
if (info && !info->node_dead)
spread_undeadness (v);
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
for (v = node; v; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
if (ipa_node_params_sum->get (v)
&& ipa_node_params_sum->get (v)->node_dead)
fprintf (dump_file, " Marking node as dead: %s.\n",
v->dump_name ());
}
}
/* The decision stage. Iterate over the topological order of call graph nodes
TOPO and make specialized clones if deemed beneficial. */
static void
ipcp_decision_stage (class ipa_topo_info *topo)
{
int i;
if (dump_file)
fprintf (dump_file, "\nIPA decision stage:\n\n");
for (i = topo->nnodes - 1; i >= 0; i--)
{
struct cgraph_node *node = topo->order[i];
bool change = false, iterate = true;
while (iterate)
{
struct cgraph_node *v;
iterate = false;
for (v = node; v; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
if (v->has_gimple_body_p ()
&& ipcp_versionable_function_p (v))
iterate |= decide_whether_version_node (v);
change |= iterate;
}
if (change)
identify_dead_nodes (node);
}
}
/* Look up all the bits information that we have discovered and copy it over
to the transformation summary. */
static void
ipcp_store_bits_results (void)
{
cgraph_node *node;
FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
{
ipa_node_params *info = ipa_node_params_sum->get (node);
bool dumped_sth = false;
bool found_useful_result = false;
if (!opt_for_fn (node->decl, flag_ipa_bit_cp) || !info)
{
if (dump_file)
fprintf (dump_file, "Not considering %s for ipa bitwise propagation "
"; -fipa-bit-cp: disabled.\n",
node->dump_name ());
continue;
}
if (info->ipcp_orig_node)
info = ipa_node_params_sum->get (info->ipcp_orig_node);
if (!info->lattices)
/* Newly expanded artificial thunks do not have lattices. */
continue;
unsigned count = ipa_get_param_count (info);
for (unsigned i = 0; i < count; i++)
{
ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
if (plats->bits_lattice.constant_p ())
{
found_useful_result = true;
break;
}
}
if (!found_useful_result)
continue;
ipcp_transformation_initialize ();
ipcp_transformation *ts = ipcp_transformation_sum->get_create (node);
vec_safe_reserve_exact (ts->bits, count);
for (unsigned i = 0; i < count; i++)
{
ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
ipa_bits *jfbits;
if (plats->bits_lattice.constant_p ())
{
jfbits
= ipa_get_ipa_bits_for_value (plats->bits_lattice.get_value (),
plats->bits_lattice.get_mask ());
if (!dbg_cnt (ipa_cp_bits))
jfbits = NULL;
}
else
jfbits = NULL;
ts->bits->quick_push (jfbits);
if (!dump_file || !jfbits)
continue;
if (!dumped_sth)
{
fprintf (dump_file, "Propagated bits info for function %s:\n",
node->dump_name ());
dumped_sth = true;
}
fprintf (dump_file, " param %i: value = ", i);
print_hex (jfbits->value, dump_file);
fprintf (dump_file, ", mask = ");
print_hex (jfbits->mask, dump_file);
fprintf (dump_file, "\n");
}
}
}
/* Look up all VR information that we have discovered and copy it over
to the transformation summary. */
static void
ipcp_store_vr_results (void)
{
cgraph_node *node;
FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
{
ipa_node_params *info = ipa_node_params_sum->get (node);
bool found_useful_result = false;
if (!info || !opt_for_fn (node->decl, flag_ipa_vrp))
{
if (dump_file)
fprintf (dump_file, "Not considering %s for VR discovery "
"and propagate; -fipa-ipa-vrp: disabled.\n",
node->dump_name ());
continue;
}
if (info->ipcp_orig_node)
info = ipa_node_params_sum->get (info->ipcp_orig_node);
if (!info->lattices)
/* Newly expanded artificial thunks do not have lattices. */
continue;
unsigned count = ipa_get_param_count (info);
for (unsigned i = 0; i < count; i++)
{
ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
if (!plats->m_value_range.bottom_p ()
&& !plats->m_value_range.top_p ())
{
found_useful_result = true;
break;
}
}
if (!found_useful_result)
continue;
ipcp_transformation_initialize ();
ipcp_transformation *ts = ipcp_transformation_sum->get_create (node);
vec_safe_reserve_exact (ts->m_vr, count);
for (unsigned i = 0; i < count; i++)
{
ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
ipa_vr vr;
if (!plats->m_value_range.bottom_p ()
&& !plats->m_value_range.top_p ()
&& dbg_cnt (ipa_cp_vr))
{
vr.known = true;
vr.type = plats->m_value_range.m_vr.kind ();
vr.min = wi::to_wide (plats->m_value_range.m_vr.min ());
vr.max = wi::to_wide (plats->m_value_range.m_vr.max ());
}
else
{
vr.known = false;
vr.type = VR_VARYING;
vr.min = vr.max = wi::zero (INT_TYPE_SIZE);
}
ts->m_vr->quick_push (vr);
}
}
}
/* The IPCP driver. */
static unsigned int
ipcp_driver (void)
{
class ipa_topo_info topo;
if (edge_clone_summaries == NULL)
edge_clone_summaries = new edge_clone_summary_t (symtab);
ipa_check_create_node_params ();
ipa_check_create_edge_args ();
clone_num_suffixes = new hash_map<const char *, unsigned>;
if (dump_file)
{
fprintf (dump_file, "\nIPA structures before propagation:\n");
if (dump_flags & TDF_DETAILS)
ipa_print_all_params (dump_file);
ipa_print_all_jump_functions (dump_file);
}
/* Topological sort. */
build_toporder_info (&topo);
/* Do the interprocedural propagation. */
ipcp_propagate_stage (&topo);
/* Decide what constant propagation and cloning should be performed. */
ipcp_decision_stage (&topo);
/* Store results of bits propagation. */
ipcp_store_bits_results ();
/* Store results of value range propagation. */
ipcp_store_vr_results ();
/* Free all IPCP structures. */
delete clone_num_suffixes;
free_toporder_info (&topo);
delete edge_clone_summaries;
edge_clone_summaries = NULL;
ipa_free_all_structures_after_ipa_cp ();
if (dump_file)
fprintf (dump_file, "\nIPA constant propagation end\n");
return 0;
}
/* Initialization and computation of IPCP data structures. This is the initial
intraprocedural analysis of functions, which gathers information to be
propagated later on. */
static void
ipcp_generate_summary (void)
{
struct cgraph_node *node;
if (dump_file)
fprintf (dump_file, "\nIPA constant propagation start:\n");
ipa_register_cgraph_hooks ();
FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
ipa_analyze_node (node);
}
namespace {
const pass_data pass_data_ipa_cp =
{
IPA_PASS, /* type */
"cp", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_IPA_CONSTANT_PROP, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
( TODO_dump_symtab | TODO_remove_functions ), /* todo_flags_finish */
};
class pass_ipa_cp : public ipa_opt_pass_d
{
public:
pass_ipa_cp (gcc::context *ctxt)
: ipa_opt_pass_d (pass_data_ipa_cp, ctxt,
ipcp_generate_summary, /* generate_summary */
NULL, /* write_summary */
NULL, /* read_summary */
ipcp_write_transformation_summaries, /*
write_optimization_summary */
ipcp_read_transformation_summaries, /*
read_optimization_summary */
NULL, /* stmt_fixup */
0, /* function_transform_todo_flags_start */
ipcp_transform_function, /* function_transform */
NULL) /* variable_transform */
{}
/* opt_pass methods: */
bool gate (function *) final override
{
/* FIXME: We should remove the optimize check after we ensure we never run
IPA passes when not optimizing. */
return (flag_ipa_cp && optimize) || in_lto_p;
}
unsigned int execute (function *) final override { return ipcp_driver (); }
}; // class pass_ipa_cp
} // anon namespace
ipa_opt_pass_d *
make_pass_ipa_cp (gcc::context *ctxt)
{
return new pass_ipa_cp (ctxt);
}
/* Reset all state within ipa-cp.cc so that we can rerun the compiler
within the same process. For use by toplev::finalize. */
void
ipa_cp_cc_finalize (void)
{
base_count = profile_count::uninitialized ();
overall_size = 0;
orig_overall_size = 0;
ipcp_free_transformation_sum ();
}
|